1 | ! |
---|
2 | ! $Header$ |
---|
3 | ! |
---|
4 | SUBROUTINE cv_driver(len,nd,ndp1,ntra,iflag_con, |
---|
5 | & t1,q1,qs1,u1,v1,tra1, |
---|
6 | & p1,ph1,iflag1,ft1,fq1,fu1,fv1,ftra1, |
---|
7 | & precip1,VPrecip1, |
---|
8 | & cbmf1,sig1,w01, |
---|
9 | & icb1,inb1, |
---|
10 | & delt,Ma1,upwd1,dnwd1,dnwd01,qcondc1,wd1,cape1, |
---|
11 | & da1,phi1,mp1) |
---|
12 | C |
---|
13 | USE dimphy |
---|
14 | implicit none |
---|
15 | C |
---|
16 | C.............................START PROLOGUE............................ |
---|
17 | C |
---|
18 | C PARAMETERS: |
---|
19 | C Name Type Usage Description |
---|
20 | C ---------- ---------- ------- ---------------------------- |
---|
21 | C |
---|
22 | C len Integer Input first (i) dimension |
---|
23 | C nd Integer Input vertical (k) dimension |
---|
24 | C ndp1 Integer Input nd + 1 |
---|
25 | C ntra Integer Input number of tracors |
---|
26 | C iflag_con Integer Input version of convect (3/4) |
---|
27 | C t1 Real Input temperature |
---|
28 | C q1 Real Input specific hum |
---|
29 | C qs1 Real Input sat specific hum |
---|
30 | C u1 Real Input u-wind |
---|
31 | C v1 Real Input v-wind |
---|
32 | C tra1 Real Input tracors |
---|
33 | C p1 Real Input full level pressure |
---|
34 | C ph1 Real Input half level pressure |
---|
35 | C iflag1 Integer Output flag for Emanuel conditions |
---|
36 | C ft1 Real Output temp tend |
---|
37 | C fq1 Real Output spec hum tend |
---|
38 | C fu1 Real Output u-wind tend |
---|
39 | C fv1 Real Output v-wind tend |
---|
40 | C ftra1 Real Output tracor tend |
---|
41 | C precip1 Real Output precipitation |
---|
42 | C VPrecip1 Real Output vertical profile of precipitations |
---|
43 | C cbmf1 Real Output cloud base mass flux |
---|
44 | C sig1 Real In/Out section adiabatic updraft |
---|
45 | C w01 Real In/Out vertical velocity within adiab updraft |
---|
46 | C delt Real Input time step |
---|
47 | C Ma1 Real Output mass flux adiabatic updraft |
---|
48 | C upwd1 Real Output total upward mass flux (adiab+mixed) |
---|
49 | C dnwd1 Real Output saturated downward mass flux (mixed) |
---|
50 | C dnwd01 Real Output unsaturated downward mass flux |
---|
51 | C qcondc1 Real Output in-cld mixing ratio of condensed water |
---|
52 | C wd1 Real Output downdraft velocity scale for sfc fluxes |
---|
53 | C cape1 Real Output CAPE |
---|
54 | C |
---|
55 | C S. Bony, Mar 2002: |
---|
56 | C * Several modules corresponding to different physical processes |
---|
57 | C * Several versions of convect may be used: |
---|
58 | C - iflag_con=3: version lmd (previously named convect3) |
---|
59 | C - iflag_con=4: version 4.3b (vect. version, previously convect1/2) |
---|
60 | C + tard: - iflag_con=5: version lmd with ice (previously named convectg) |
---|
61 | C S. Bony, Oct 2002: |
---|
62 | C * Vectorization of convect3 (ie version lmd) |
---|
63 | C |
---|
64 | C..............................END PROLOGUE............................. |
---|
65 | c |
---|
66 | c |
---|
67 | cym#include "dimensions.h" |
---|
68 | cym#include "dimphy.h" |
---|
69 | |
---|
70 | integer len |
---|
71 | integer nd |
---|
72 | integer ndp1 |
---|
73 | integer noff |
---|
74 | integer iflag_con |
---|
75 | integer ntra |
---|
76 | real t1(len,nd) |
---|
77 | real q1(len,nd) |
---|
78 | real qs1(len,nd) |
---|
79 | real u1(len,nd) |
---|
80 | real v1(len,nd) |
---|
81 | real p1(len,nd) |
---|
82 | real ph1(len,ndp1) |
---|
83 | integer iflag1(len) |
---|
84 | real ft1(len,nd) |
---|
85 | real fq1(len,nd) |
---|
86 | real fu1(len,nd) |
---|
87 | real fv1(len,nd) |
---|
88 | real precip1(len) |
---|
89 | real cbmf1(len) |
---|
90 | real VPrecip1(len,nd+1) |
---|
91 | real Ma1(len,nd) |
---|
92 | real upwd1(len,nd) |
---|
93 | real dnwd1(len,nd) |
---|
94 | real dnwd01(len,nd) |
---|
95 | |
---|
96 | real qcondc1(len,nd) ! cld |
---|
97 | real wd1(len) ! gust |
---|
98 | real cape1(len) |
---|
99 | |
---|
100 | real da1(len,nd),phi1(len,nd,nd),mp1(len,nd) |
---|
101 | real da(len,nd),phi(len,nd,nd),mp(len,nd) |
---|
102 | real tra1(len,nd,ntra) |
---|
103 | real ftra1(len,nd,ntra) |
---|
104 | |
---|
105 | real delt |
---|
106 | |
---|
107 | !------------------------------------------------------------------- |
---|
108 | ! --- ARGUMENTS |
---|
109 | !------------------------------------------------------------------- |
---|
110 | ! --- On input: |
---|
111 | ! |
---|
112 | ! t: Array of absolute temperature (K) of dimension ND, with first |
---|
113 | ! index corresponding to lowest model level. Note that this array |
---|
114 | ! will be altered by the subroutine if dry convective adjustment |
---|
115 | ! occurs and if IPBL is not equal to 0. |
---|
116 | ! |
---|
117 | ! q: Array of specific humidity (gm/gm) of dimension ND, with first |
---|
118 | ! index corresponding to lowest model level. Must be defined |
---|
119 | ! at same grid levels as T. Note that this array will be altered |
---|
120 | ! if dry convective adjustment occurs and if IPBL is not equal to 0. |
---|
121 | ! |
---|
122 | ! qs: Array of saturation specific humidity of dimension ND, with first |
---|
123 | ! index corresponding to lowest model level. Must be defined |
---|
124 | ! at same grid levels as T. Note that this array will be altered |
---|
125 | ! if dry convective adjustment occurs and if IPBL is not equal to 0. |
---|
126 | ! |
---|
127 | ! u: Array of zonal wind velocity (m/s) of dimension ND, witth first |
---|
128 | ! index corresponding with the lowest model level. Defined at |
---|
129 | ! same levels as T. Note that this array will be altered if |
---|
130 | ! dry convective adjustment occurs and if IPBL is not equal to 0. |
---|
131 | ! |
---|
132 | ! v: Same as u but for meridional velocity. |
---|
133 | ! |
---|
134 | ! tra: Array of passive tracer mixing ratio, of dimensions (ND,NTRA), |
---|
135 | ! where NTRA is the number of different tracers. If no |
---|
136 | ! convective tracer transport is needed, define a dummy |
---|
137 | ! input array of dimension (ND,1). Tracers are defined at |
---|
138 | ! same vertical levels as T. Note that this array will be altered |
---|
139 | ! if dry convective adjustment occurs and if IPBL is not equal to 0. |
---|
140 | ! |
---|
141 | ! p: Array of pressure (mb) of dimension ND, with first |
---|
142 | ! index corresponding to lowest model level. Must be defined |
---|
143 | ! at same grid levels as T. |
---|
144 | ! |
---|
145 | ! ph: Array of pressure (mb) of dimension ND+1, with first index |
---|
146 | ! corresponding to lowest level. These pressures are defined at |
---|
147 | ! levels intermediate between those of P, T, Q and QS. The first |
---|
148 | ! value of PH should be greater than (i.e. at a lower level than) |
---|
149 | ! the first value of the array P. |
---|
150 | ! |
---|
151 | ! nl: The maximum number of levels to which convection can penetrate, plus 1. |
---|
152 | ! NL MUST be less than or equal to ND-1. |
---|
153 | ! |
---|
154 | ! delt: The model time step (sec) between calls to CONVECT |
---|
155 | ! |
---|
156 | !---------------------------------------------------------------------------- |
---|
157 | ! --- On Output: |
---|
158 | ! |
---|
159 | ! iflag: An output integer whose value denotes the following: |
---|
160 | ! VALUE INTERPRETATION |
---|
161 | ! ----- -------------- |
---|
162 | ! 0 Moist convection occurs. |
---|
163 | ! 1 Moist convection occurs, but a CFL condition |
---|
164 | ! on the subsidence warming is violated. This |
---|
165 | ! does not cause the scheme to terminate. |
---|
166 | ! 2 Moist convection, but no precip because ep(inb) lt 0.0001 |
---|
167 | ! 3 No moist convection because new cbmf is 0 and old cbmf is 0. |
---|
168 | ! 4 No moist convection; atmosphere is not |
---|
169 | ! unstable |
---|
170 | ! 6 No moist convection because ihmin le minorig. |
---|
171 | ! 7 No moist convection because unreasonable |
---|
172 | ! parcel level temperature or specific humidity. |
---|
173 | ! 8 No moist convection: lifted condensation |
---|
174 | ! level is above the 200 mb level. |
---|
175 | ! 9 No moist convection: cloud base is higher |
---|
176 | ! then the level NL-1. |
---|
177 | ! |
---|
178 | ! ft: Array of temperature tendency (K/s) of dimension ND, defined at same |
---|
179 | ! grid levels as T, Q, QS and P. |
---|
180 | ! |
---|
181 | ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension ND, |
---|
182 | ! defined at same grid levels as T, Q, QS and P. |
---|
183 | ! |
---|
184 | ! fu: Array of forcing of zonal velocity (m/s^2) of dimension ND, |
---|
185 | ! defined at same grid levels as T. |
---|
186 | ! |
---|
187 | ! fv: Same as FU, but for forcing of meridional velocity. |
---|
188 | ! |
---|
189 | ! ftra: Array of forcing of tracer content, in tracer mixing ratio per |
---|
190 | ! second, defined at same levels as T. Dimensioned (ND,NTRA). |
---|
191 | ! |
---|
192 | ! precip: Scalar convective precipitation rate (mm/day). |
---|
193 | ! |
---|
194 | ! VPrecip: Vertical profile of convective precipitation (kg/m2/s). |
---|
195 | ! |
---|
196 | ! wd: A convective downdraft velocity scale. For use in surface |
---|
197 | ! flux parameterizations. See convect.ps file for details. |
---|
198 | ! |
---|
199 | ! tprime: A convective downdraft temperature perturbation scale (K). |
---|
200 | ! For use in surface flux parameterizations. See convect.ps |
---|
201 | ! file for details. |
---|
202 | ! |
---|
203 | ! qprime: A convective downdraft specific humidity |
---|
204 | ! perturbation scale (gm/gm). |
---|
205 | ! For use in surface flux parameterizations. See convect.ps |
---|
206 | ! file for details. |
---|
207 | ! |
---|
208 | ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST |
---|
209 | ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT |
---|
210 | ! ITS NEXT CALL. That is, the value of CBMF must be "remembered" |
---|
211 | ! by the calling program between calls to CONVECT. |
---|
212 | ! |
---|
213 | ! det: Array of detrainment mass flux of dimension ND. |
---|
214 | ! |
---|
215 | !------------------------------------------------------------------- |
---|
216 | c |
---|
217 | c Local arrays |
---|
218 | c |
---|
219 | |
---|
220 | integer i,k,n,il,j |
---|
221 | integer icbmax |
---|
222 | integer nk1(klon) |
---|
223 | integer icb1(klon) |
---|
224 | integer inb1(klon) |
---|
225 | integer icbs1(klon) |
---|
226 | |
---|
227 | real plcl1(klon) |
---|
228 | real tnk1(klon) |
---|
229 | real qnk1(klon) |
---|
230 | real gznk1(klon) |
---|
231 | real pnk1(klon) |
---|
232 | real qsnk1(klon) |
---|
233 | real pbase1(klon) |
---|
234 | real buoybase1(klon) |
---|
235 | |
---|
236 | real lv1(klon,klev) |
---|
237 | real cpn1(klon,klev) |
---|
238 | real tv1(klon,klev) |
---|
239 | real gz1(klon,klev) |
---|
240 | real hm1(klon,klev) |
---|
241 | real h1(klon,klev) |
---|
242 | real tp1(klon,klev) |
---|
243 | real tvp1(klon,klev) |
---|
244 | real clw1(klon,klev) |
---|
245 | real sig1(klon,klev) |
---|
246 | real w01(klon,klev) |
---|
247 | real th1(klon,klev) |
---|
248 | c |
---|
249 | integer ncum |
---|
250 | c |
---|
251 | c (local) compressed fields: |
---|
252 | c |
---|
253 | cym integer nloc |
---|
254 | cym parameter (nloc=klon) ! pour l'instant |
---|
255 | #define nloc klon |
---|
256 | integer idcum(nloc) |
---|
257 | integer iflag(nloc),nk(nloc),icb(nloc) |
---|
258 | integer nent(nloc,klev) |
---|
259 | integer icbs(nloc) |
---|
260 | integer inb(nloc), inbis(nloc) |
---|
261 | |
---|
262 | real cbmf(nloc),plcl(nloc),tnk(nloc),qnk(nloc),gznk(nloc) |
---|
263 | real t(nloc,klev),q(nloc,klev),qs(nloc,klev) |
---|
264 | real u(nloc,klev),v(nloc,klev) |
---|
265 | real gz(nloc,klev),h(nloc,klev),lv(nloc,klev),cpn(nloc,klev) |
---|
266 | real p(nloc,klev),ph(nloc,klev+1),tv(nloc,klev),tp(nloc,klev) |
---|
267 | real clw(nloc,klev) |
---|
268 | real dph(nloc,klev) |
---|
269 | real pbase(nloc), buoybase(nloc), th(nloc,klev) |
---|
270 | real tvp(nloc,klev) |
---|
271 | real sig(nloc,klev), w0(nloc,klev) |
---|
272 | real hp(nloc,klev), ep(nloc,klev), sigp(nloc,klev) |
---|
273 | real frac(nloc), buoy(nloc,klev) |
---|
274 | real cape(nloc) |
---|
275 | real m(nloc,klev), ment(nloc,klev,klev), qent(nloc,klev,klev) |
---|
276 | real uent(nloc,klev,klev), vent(nloc,klev,klev) |
---|
277 | real ments(nloc,klev,klev), qents(nloc,klev,klev) |
---|
278 | real sij(nloc,klev,klev), elij(nloc,klev,klev) |
---|
279 | real qp(nloc,klev), up(nloc,klev), vp(nloc,klev) |
---|
280 | real wt(nloc,klev), water(nloc,klev), evap(nloc,klev) |
---|
281 | real b(nloc,klev), ft(nloc,klev), fq(nloc,klev) |
---|
282 | real fu(nloc,klev), fv(nloc,klev) |
---|
283 | real upwd(nloc,klev), dnwd(nloc,klev), dnwd0(nloc,klev) |
---|
284 | real Ma(nloc,klev), mike(nloc,klev), tls(nloc,klev) |
---|
285 | real tps(nloc,klev), qprime(nloc), tprime(nloc) |
---|
286 | real precip(nloc) |
---|
287 | real VPrecip(nloc,klev+1) |
---|
288 | real tra(nloc,klev,ntra), trap(nloc,klev,ntra) |
---|
289 | real ftra(nloc,klev,ntra), traent(nloc,klev,klev,ntra) |
---|
290 | real qcondc(nloc,klev) ! cld |
---|
291 | real wd(nloc) ! gust |
---|
292 | |
---|
293 | nent(:,:)=0 |
---|
294 | !------------------------------------------------------------------- |
---|
295 | ! --- SET CONSTANTS AND PARAMETERS |
---|
296 | !------------------------------------------------------------------- |
---|
297 | |
---|
298 | c -- set simulation flags: |
---|
299 | c (common cvflag) |
---|
300 | |
---|
301 | CALL cv_flag |
---|
302 | |
---|
303 | c -- set thermodynamical constants: |
---|
304 | c (common cvthermo) |
---|
305 | |
---|
306 | CALL cv_thermo(iflag_con) |
---|
307 | |
---|
308 | c -- set convect parameters |
---|
309 | c |
---|
310 | c includes microphysical parameters and parameters that |
---|
311 | c control the rate of approach to quasi-equilibrium) |
---|
312 | c (common cvparam) |
---|
313 | |
---|
314 | |
---|
315 | if (iflag_con.eq.30) then |
---|
316 | CALL cv30_param(nd,delt) |
---|
317 | endif |
---|
318 | |
---|
319 | if (iflag_con.eq.4) then |
---|
320 | CALL cv_param(nd) |
---|
321 | endif |
---|
322 | |
---|
323 | !--------------------------------------------------------------------- |
---|
324 | ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS |
---|
325 | !--------------------------------------------------------------------- |
---|
326 | |
---|
327 | do 20 k=1,nd |
---|
328 | do 10 i=1,len |
---|
329 | ft1(i,k)=0.0 |
---|
330 | fq1(i,k)=0.0 |
---|
331 | fu1(i,k)=0.0 |
---|
332 | fv1(i,k)=0.0 |
---|
333 | tvp1(i,k)=0.0 |
---|
334 | tp1(i,k)=0.0 |
---|
335 | clw1(i,k)=0.0 |
---|
336 | cym |
---|
337 | clw(i,k)=0.0 |
---|
338 | gz1(i,k) = 0. |
---|
339 | VPrecip1(i,k) = 0. |
---|
340 | Ma1(i,k)=0.0 |
---|
341 | upwd1(i,k)=0.0 |
---|
342 | dnwd1(i,k)=0.0 |
---|
343 | dnwd01(i,k)=0.0 |
---|
344 | qcondc1(i,k)=0.0 |
---|
345 | 10 continue |
---|
346 | 20 continue |
---|
347 | |
---|
348 | do 30 j=1,ntra |
---|
349 | do 31 k=1,nd |
---|
350 | do 32 i=1,len |
---|
351 | ftra1(i,k,j)=0.0 |
---|
352 | 32 continue |
---|
353 | 31 continue |
---|
354 | 30 continue |
---|
355 | |
---|
356 | do 60 i=1,len |
---|
357 | precip1(i)=0.0 |
---|
358 | iflag1(i)=0 |
---|
359 | wd1(i)=0.0 |
---|
360 | cape1(i)=0.0 |
---|
361 | VPrecip1(i,nd+1)=0.0 |
---|
362 | 60 continue |
---|
363 | |
---|
364 | if (iflag_con.eq.30) then |
---|
365 | do il=1,len |
---|
366 | sig1(il,nd)=sig1(il,nd)+1. |
---|
367 | sig1(il,nd)=amin1(sig1(il,nd),12.1) |
---|
368 | enddo |
---|
369 | endif |
---|
370 | |
---|
371 | !-------------------------------------------------------------------- |
---|
372 | ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
---|
373 | !-------------------------------------------------------------------- |
---|
374 | |
---|
375 | if (iflag_con.eq.30) then |
---|
376 | |
---|
377 | print*,'Emanuel version 30 ' |
---|
378 | CALL cv30_prelim(len,nd,ndp1,t1,q1,p1,ph1 ! nd->na |
---|
379 | o ,lv1,cpn1,tv1,gz1,h1,hm1,th1) |
---|
380 | endif |
---|
381 | |
---|
382 | if (iflag_con.eq.4) then |
---|
383 | CALL cv_prelim(len,nd,ndp1,t1,q1,p1,ph1 |
---|
384 | o ,lv1,cpn1,tv1,gz1,h1,hm1) |
---|
385 | endif |
---|
386 | |
---|
387 | !-------------------------------------------------------------------- |
---|
388 | ! --- CONVECTIVE FEED |
---|
389 | !-------------------------------------------------------------------- |
---|
390 | |
---|
391 | if (iflag_con.eq.30) then |
---|
392 | CALL cv30_feed(len,nd,t1,q1,qs1,p1,ph1,hm1,gz1 ! nd->na |
---|
393 | o ,nk1,icb1,icbmax,iflag1,tnk1,qnk1,gznk1,plcl1) |
---|
394 | endif |
---|
395 | |
---|
396 | if (iflag_con.eq.4) then |
---|
397 | CALL cv_feed(len,nd,t1,q1,qs1,p1,hm1,gz1 |
---|
398 | o ,nk1,icb1,icbmax,iflag1,tnk1,qnk1,gznk1,plcl1) |
---|
399 | endif |
---|
400 | |
---|
401 | !-------------------------------------------------------------------- |
---|
402 | ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part |
---|
403 | ! (up through ICB for convect4, up through ICB+1 for convect3) |
---|
404 | ! Calculates the lifted parcel virtual temperature at nk, the |
---|
405 | ! actual temperature, and the adiabatic liquid water content. |
---|
406 | !-------------------------------------------------------------------- |
---|
407 | |
---|
408 | if (iflag_con.eq.30) then |
---|
409 | CALL cv30_undilute1(len,nd,t1,q1,qs1,gz1,plcl1,p1,nk1,icb1 ! nd->na |
---|
410 | o ,tp1,tvp1,clw1,icbs1) |
---|
411 | endif |
---|
412 | |
---|
413 | if (iflag_con.eq.4) then |
---|
414 | CALL cv_undilute1(len,nd,t1,q1,qs1,gz1,p1,nk1,icb1,icbmax |
---|
415 | : ,tp1,tvp1,clw1) |
---|
416 | endif |
---|
417 | |
---|
418 | !------------------------------------------------------------------- |
---|
419 | ! --- TRIGGERING |
---|
420 | !------------------------------------------------------------------- |
---|
421 | |
---|
422 | if (iflag_con.eq.30) then |
---|
423 | CALL cv30_trigger(len,nd,icb1,plcl1,p1,th1,tv1,tvp1 ! nd->na |
---|
424 | o ,pbase1,buoybase1,iflag1,sig1,w01) |
---|
425 | endif |
---|
426 | |
---|
427 | if (iflag_con.eq.4) then |
---|
428 | CALL cv_trigger(len,nd,icb1,cbmf1,tv1,tvp1,iflag1) |
---|
429 | endif |
---|
430 | |
---|
431 | !===================================================================== |
---|
432 | ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY |
---|
433 | !===================================================================== |
---|
434 | |
---|
435 | ncum=0 |
---|
436 | do 400 i=1,len |
---|
437 | if(iflag1(i).eq.0)then |
---|
438 | ncum=ncum+1 |
---|
439 | idcum(ncum)=i |
---|
440 | endif |
---|
441 | 400 continue |
---|
442 | |
---|
443 | c print*,'klon, ncum = ',len,ncum |
---|
444 | |
---|
445 | IF (ncum.gt.0) THEN |
---|
446 | |
---|
447 | !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
448 | ! --- COMPRESS THE FIELDS |
---|
449 | ! (-> vectorization over convective gridpoints) |
---|
450 | !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
451 | |
---|
452 | if (iflag_con.eq.30) then |
---|
453 | CALL cv30_compress( len,nloc,ncum,nd,ntra |
---|
454 | : ,iflag1,nk1,icb1,icbs1 |
---|
455 | : ,plcl1,tnk1,qnk1,gznk1,pbase1,buoybase1 |
---|
456 | : ,t1,q1,qs1,u1,v1,gz1,th1 |
---|
457 | : ,tra1 |
---|
458 | : ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1 |
---|
459 | : ,sig1,w01 |
---|
460 | o ,iflag,nk,icb,icbs |
---|
461 | o ,plcl,tnk,qnk,gznk,pbase,buoybase |
---|
462 | o ,t,q,qs,u,v,gz,th |
---|
463 | o ,tra |
---|
464 | o ,h,lv,cpn,p,ph,tv,tp,tvp,clw |
---|
465 | o ,sig,w0 ) |
---|
466 | endif |
---|
467 | |
---|
468 | if (iflag_con.eq.4) then |
---|
469 | CALL cv_compress( len,nloc,ncum,nd |
---|
470 | : ,iflag1,nk1,icb1 |
---|
471 | : ,cbmf1,plcl1,tnk1,qnk1,gznk1 |
---|
472 | : ,t1,q1,qs1,u1,v1,gz1 |
---|
473 | : ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1 |
---|
474 | o ,iflag,nk,icb |
---|
475 | o ,cbmf,plcl,tnk,qnk,gznk |
---|
476 | o ,t,q,qs,u,v,gz,h,lv,cpn,p,ph,tv,tp,tvp,clw |
---|
477 | o ,dph ) |
---|
478 | endif |
---|
479 | |
---|
480 | !------------------------------------------------------------------- |
---|
481 | ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part : |
---|
482 | ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
483 | ! --- & |
---|
484 | ! --- COMPUTE THE PRECIPITATION EFFICIENCIES AND THE |
---|
485 | ! --- FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
486 | ! --- & |
---|
487 | ! --- FIND THE LEVEL OF NEUTRAL BUOYANCY |
---|
488 | !------------------------------------------------------------------- |
---|
489 | |
---|
490 | if (iflag_con.eq.30) then |
---|
491 | CALL cv30_undilute2(nloc,ncum,nd,icb,icbs,nk !na->nd |
---|
492 | : ,tnk,qnk,gznk,t,q,qs,gz |
---|
493 | : ,p,h,tv,lv,pbase,buoybase,plcl |
---|
494 | o ,inb,tp,tvp,clw,hp,ep,sigp,buoy) |
---|
495 | endif |
---|
496 | |
---|
497 | if (iflag_con.eq.4) then |
---|
498 | CALL cv_undilute2(nloc,ncum,nd,icb,nk |
---|
499 | : ,tnk,qnk,gznk,t,q,qs,gz |
---|
500 | : ,p,dph,h,tv,lv |
---|
501 | o ,inb,inbis,tp,tvp,clw,hp,ep,sigp,frac) |
---|
502 | endif |
---|
503 | |
---|
504 | !------------------------------------------------------------------- |
---|
505 | ! --- CLOSURE |
---|
506 | !------------------------------------------------------------------- |
---|
507 | |
---|
508 | if (iflag_con.eq.30) then |
---|
509 | CALL cv30_closure(nloc,ncum,nd,icb,inb ! na->nd |
---|
510 | : ,pbase,p,ph,tv,buoy |
---|
511 | o ,sig,w0,cape,m) |
---|
512 | endif |
---|
513 | |
---|
514 | if (iflag_con.eq.4) then |
---|
515 | CALL cv_closure(nloc,ncum,nd,nk,icb |
---|
516 | : ,tv,tvp,p,ph,dph,plcl,cpn |
---|
517 | o ,iflag,cbmf) |
---|
518 | endif |
---|
519 | |
---|
520 | !------------------------------------------------------------------- |
---|
521 | ! --- MIXING |
---|
522 | !------------------------------------------------------------------- |
---|
523 | |
---|
524 | if (iflag_con.eq.30) then |
---|
525 | CALL cv30_mixing(nloc,ncum,nd,nd,ntra,icb,nk,inb ! na->nd |
---|
526 | : ,ph,t,q,qs,u,v,tra,h,lv,qnk |
---|
527 | : ,hp,tv,tvp,ep,clw,m,sig |
---|
528 | o ,ment,qent,uent,vent,sij,elij,ments,qents,traent) |
---|
529 | endif |
---|
530 | |
---|
531 | if (iflag_con.eq.4) then |
---|
532 | CALL cv_mixing(nloc,ncum,nd,icb,nk,inb,inbis |
---|
533 | : ,ph,t,q,qs,u,v,h,lv,qnk |
---|
534 | : ,hp,tv,tvp,ep,clw,cbmf |
---|
535 | o ,m,ment,qent,uent,vent,nent,sij,elij) |
---|
536 | endif |
---|
537 | |
---|
538 | !------------------------------------------------------------------- |
---|
539 | ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS |
---|
540 | !------------------------------------------------------------------- |
---|
541 | |
---|
542 | if (iflag_con.eq.30) then |
---|
543 | CALL cv30_unsat(nloc,ncum,nd,nd,ntra,icb,inb ! na->nd |
---|
544 | : ,t,q,qs,gz,u,v,tra,p,ph |
---|
545 | : ,th,tv,lv,cpn,ep,sigp,clw |
---|
546 | : ,m,ment,elij,delt,plcl |
---|
547 | o ,mp,qp,up,vp,trap,wt,water,evap,b) |
---|
548 | endif |
---|
549 | |
---|
550 | if (iflag_con.eq.4) then |
---|
551 | CALL cv_unsat(nloc,ncum,nd,inb,t,q,qs,gz,u,v,p,ph |
---|
552 | : ,h,lv,ep,sigp,clw,m,ment,elij |
---|
553 | o ,iflag,mp,qp,up,vp,wt,water,evap) |
---|
554 | endif |
---|
555 | |
---|
556 | !------------------------------------------------------------------- |
---|
557 | ! --- YIELD |
---|
558 | ! (tendencies, precipitation, variables of interface with other |
---|
559 | ! processes, etc) |
---|
560 | !------------------------------------------------------------------- |
---|
561 | |
---|
562 | if (iflag_con.eq.30) then |
---|
563 | CALL cv30_yield(nloc,ncum,nd,nd,ntra ! na->nd |
---|
564 | : ,icb,inb,delt |
---|
565 | : ,t,q,u,v,tra,gz,p,ph,h,hp,lv,cpn,th |
---|
566 | : ,ep,clw,m,tp,mp,qp,up,vp,trap |
---|
567 | : ,wt,water,evap,b |
---|
568 | : ,ment,qent,uent,vent,nent,elij,traent,sig |
---|
569 | : ,tv,tvp |
---|
570 | o ,iflag,precip,VPrecip,ft,fq,fu,fv,ftra |
---|
571 | o ,upwd,dnwd,dnwd0,ma,mike,tls,tps,qcondc,wd) |
---|
572 | endif |
---|
573 | |
---|
574 | if (iflag_con.eq.4) then |
---|
575 | CALL cv_yield(nloc,ncum,nd,nk,icb,inb,delt |
---|
576 | : ,t,q,u,v,gz,p,ph,h,hp,lv,cpn |
---|
577 | : ,ep,clw,frac,m,mp,qp,up,vp |
---|
578 | : ,wt,water,evap |
---|
579 | : ,ment,qent,uent,vent,nent,elij |
---|
580 | : ,tv,tvp |
---|
581 | o ,iflag,wd,qprime,tprime |
---|
582 | o ,precip,cbmf,ft,fq,fu,fv,Ma,qcondc) |
---|
583 | endif |
---|
584 | |
---|
585 | !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
586 | ! --- passive tracers |
---|
587 | !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
588 | |
---|
589 | if (iflag_con.eq.30) then |
---|
590 | CALL cv30_tracer(nloc,len,ncum,nd,nd, |
---|
591 | : ment,sij,da,phi) |
---|
592 | endif |
---|
593 | |
---|
594 | !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
595 | ! --- UNCOMPRESS THE FIELDS |
---|
596 | !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ |
---|
597 | c set iflag1 =42 for non convective points |
---|
598 | do i=1,len |
---|
599 | iflag1(i)=42 |
---|
600 | end do |
---|
601 | c |
---|
602 | if (iflag_con.eq.30) then |
---|
603 | CALL cv30_uncompress(nloc,len,ncum,nd,ntra,idcum |
---|
604 | : ,iflag |
---|
605 | : ,precip,VPrecip,sig,w0 |
---|
606 | : ,ft,fq,fu,fv,ftra |
---|
607 | : ,inb |
---|
608 | : ,Ma,upwd,dnwd,dnwd0,qcondc,wd,cape |
---|
609 | : ,da,phi,mp |
---|
610 | o ,iflag1 |
---|
611 | o ,precip1,VPrecip1,sig1,w01 |
---|
612 | o ,ft1,fq1,fu1,fv1,ftra1 |
---|
613 | o ,inb1 |
---|
614 | o ,Ma1,upwd1,dnwd1,dnwd01,qcondc1,wd1,cape1 |
---|
615 | o ,da1,phi1,mp1) |
---|
616 | endif |
---|
617 | |
---|
618 | if (iflag_con.eq.4) then |
---|
619 | CALL cv_uncompress(nloc,len,ncum,nd,idcum |
---|
620 | : ,iflag |
---|
621 | : ,precip,cbmf |
---|
622 | : ,ft,fq,fu,fv |
---|
623 | : ,Ma,qcondc |
---|
624 | o ,iflag1 |
---|
625 | o ,precip1,cbmf1 |
---|
626 | o ,ft1,fq1,fu1,fv1 |
---|
627 | o ,Ma1,qcondc1 ) |
---|
628 | endif |
---|
629 | |
---|
630 | ENDIF ! ncum>0 |
---|
631 | |
---|
632 | 9999 continue |
---|
633 | |
---|
634 | return |
---|
635 | end |
---|
636 | |
---|
637 | !================================================================== |
---|
638 | SUBROUTINE cv_flag |
---|
639 | implicit none |
---|
640 | |
---|
641 | #include "cvflag.h" |
---|
642 | |
---|
643 | c -- si .TRUE., on rend la gravite plus explicite et eventuellement |
---|
644 | c differente de 10.0 dans convect3: |
---|
645 | cvflag_grav = .TRUE. |
---|
646 | |
---|
647 | return |
---|
648 | end |
---|
649 | |
---|
650 | !================================================================== |
---|
651 | SUBROUTINE cv_thermo(iflag_con) |
---|
652 | implicit none |
---|
653 | |
---|
654 | c------------------------------------------------------------- |
---|
655 | c Set thermodynamical constants for convectL |
---|
656 | c------------------------------------------------------------- |
---|
657 | |
---|
658 | #include "YOMCST.h" |
---|
659 | #include "cvthermo.h" |
---|
660 | |
---|
661 | integer iflag_con |
---|
662 | |
---|
663 | |
---|
664 | c original set from convect: |
---|
665 | if (iflag_con.eq.4) then |
---|
666 | cpd=1005.7 |
---|
667 | cpv=1870.0 |
---|
668 | cl=4190.0 |
---|
669 | rrv=461.5 |
---|
670 | rrd=287.04 |
---|
671 | lv0=2.501E6 |
---|
672 | g=9.8 |
---|
673 | t0=273.15 |
---|
674 | grav=g |
---|
675 | else |
---|
676 | |
---|
677 | c constants consistent with LMDZ: |
---|
678 | cpd = RCPD |
---|
679 | cpv = RCPV |
---|
680 | cl = RCW |
---|
681 | rrv = RV |
---|
682 | rrd = RD |
---|
683 | lv0 = RLVTT |
---|
684 | g = RG ! not used in convect3 |
---|
685 | c ori t0 = RTT |
---|
686 | t0 = 273.15 ! convect3 (RTT=273.16) |
---|
687 | c maf grav= 10. ! implicitely or explicitely used in convect3 |
---|
688 | grav= g ! implicitely or explicitely used in convect3 |
---|
689 | endif |
---|
690 | |
---|
691 | rowl=1000.0 !(a quelle variable de YOMCST cela correspond-il?) |
---|
692 | |
---|
693 | clmcpv=cl-cpv |
---|
694 | clmcpd=cl-cpd |
---|
695 | cpdmcp=cpd-cpv |
---|
696 | cpvmcpd=cpv-cpd |
---|
697 | cpvmcl=cl-cpv ! for convect3 |
---|
698 | eps=rrd/rrv |
---|
699 | epsi=1.0/eps |
---|
700 | epsim1=epsi-1.0 |
---|
701 | c ginv=1.0/g |
---|
702 | ginv=1.0/grav |
---|
703 | hrd=0.5*rrd |
---|
704 | |
---|
705 | return |
---|
706 | end |
---|
707 | |
---|