1 | SUBROUTINE cv3p1_closure(nloc,ncum,nd,icb,inb |
---|
2 | : ,pbase,plcl,p,ph,tv,tvp,buoy |
---|
3 | : ,Supmax,ok_inhib,Ale,Alp |
---|
4 | o ,sig,w0,ptop2,cape,cin,m,iflag,coef |
---|
5 | : ,Plim1,Plim2,asupmax,supmax0 |
---|
6 | : ,asupmaxmin,cbmf) |
---|
7 | |
---|
8 | * |
---|
9 | *************************************************************** |
---|
10 | * * |
---|
11 | * CV3P1_CLOSURE * |
---|
12 | * Ale & Alp Closure of Convect3 * |
---|
13 | * * |
---|
14 | * written by : Kerry Emanuel * |
---|
15 | * vectorization: S. Bony * |
---|
16 | * modified by : Jean-Yves Grandpeix, 18/06/2003, 19.32.10 * |
---|
17 | * Julie Frohwirth, 14/10/2005 17.44.22 * |
---|
18 | *************************************************************** |
---|
19 | * |
---|
20 | implicit none |
---|
21 | |
---|
22 | #include "cvthermo.h" |
---|
23 | #include "cv3param.h" |
---|
24 | #include "YOMCST2.h" |
---|
25 | #include "YOMCST.h" |
---|
26 | #include "conema3.h" |
---|
27 | |
---|
28 | c input: |
---|
29 | integer ncum, nd, nloc |
---|
30 | integer icb(nloc), inb(nloc) |
---|
31 | real pbase(nloc),plcl(nloc) |
---|
32 | real p(nloc,nd), ph(nloc,nd+1) |
---|
33 | real tv(nloc,nd),tvp(nloc,nd), buoy(nloc,nd) |
---|
34 | real Supmax(nloc,nd) |
---|
35 | logical ok_inhib ! enable convection inhibition by dryness |
---|
36 | real Ale(nloc),Alp(nloc) |
---|
37 | |
---|
38 | c input/output: |
---|
39 | real sig(nloc,nd), w0(nloc,nd), ptop2(nloc) |
---|
40 | |
---|
41 | c output: |
---|
42 | real cape(nloc),cin(nloc) |
---|
43 | real m(nloc,nd) |
---|
44 | real Plim1(nloc),Plim2(nloc) |
---|
45 | real asupmax(nloc,nd),supmax0(nloc) |
---|
46 | real asupmaxmin(nloc) |
---|
47 | integer iflag(nloc) |
---|
48 | c |
---|
49 | c local variables: |
---|
50 | integer il, i, j, k, icbmax, i0 |
---|
51 | real deltap, fac, w, amu |
---|
52 | real rhodp |
---|
53 | real Pbmxup |
---|
54 | real dtmin(nloc,nd), sigold(nloc,nd) |
---|
55 | real coefmix(nloc,nd) |
---|
56 | real pzero(nloc),ptop2old(nloc) |
---|
57 | real cina(nloc),cinb(nloc) |
---|
58 | integer ibeg(nloc) |
---|
59 | integer nsupmax(nloc) |
---|
60 | real supcrit,temp(nloc,nd) |
---|
61 | real P1(nloc),Pmin(nloc) |
---|
62 | real asupmax0(nloc) |
---|
63 | logical ok(nloc) |
---|
64 | real siglim(nloc,nd),wlim(nloc,nd),mlim(nloc,nd) |
---|
65 | real wb2(nloc) |
---|
66 | real cbmflim(nloc),cbmf1(nloc),cbmfmax(nloc),cbmf(nloc) |
---|
67 | real cbmflast(nloc) |
---|
68 | real coef(nloc) |
---|
69 | real xp(nloc),xq(nloc),xr(nloc),discr(nloc),b3(nloc),b4(nloc) |
---|
70 | real theta(nloc),bb(nloc) |
---|
71 | real term1,term2,term3 |
---|
72 | real alp2(nloc) ! Alp with offset |
---|
73 | real wb,sigmax |
---|
74 | data wb /2./, sigmax /0.1/ |
---|
75 | c |
---|
76 | c print *,' -> cv3p1_closure, Ale ',ale(1) |
---|
77 | c |
---|
78 | |
---|
79 | c ------------------------------------------------------- |
---|
80 | c -- Initialization |
---|
81 | c ------------------------------------------------------- |
---|
82 | |
---|
83 | c |
---|
84 | c |
---|
85 | do il = 1,ncum |
---|
86 | alp2(il) = max(alp(il),1.e-5) |
---|
87 | enddo |
---|
88 | c |
---|
89 | PBMXUP=50. ! PBMXUP+PBCRIT = cloud depth above which mixed updraughts |
---|
90 | c exist (if any) |
---|
91 | |
---|
92 | do k=1,nl |
---|
93 | do il=1,ncum |
---|
94 | m(il,k)=0.0 |
---|
95 | enddo |
---|
96 | enddo |
---|
97 | |
---|
98 | c ------------------------------------------------------- |
---|
99 | c -- Reset sig(i) and w0(i) for i>inb and i<icb |
---|
100 | c ------------------------------------------------------- |
---|
101 | |
---|
102 | c update sig and w0 above LNB: |
---|
103 | |
---|
104 | do 100 k=1,nl-1 |
---|
105 | do 110 il=1,ncum |
---|
106 | if ((inb(il).lt.(nl-1)).and.(k.ge.(inb(il)+1)))then |
---|
107 | sig(il,k)=beta*sig(il,k) |
---|
108 | : +2.*alpha*buoy(il,inb(il))*ABS(buoy(il,inb(il))) |
---|
109 | sig(il,k)=AMAX1(sig(il,k),0.0) |
---|
110 | w0(il,k)=beta*w0(il,k) |
---|
111 | endif |
---|
112 | 110 continue |
---|
113 | 100 continue |
---|
114 | |
---|
115 | c compute icbmax: |
---|
116 | |
---|
117 | icbmax=2 |
---|
118 | do 200 il=1,ncum |
---|
119 | icbmax=MAX(icbmax,icb(il)) |
---|
120 | 200 continue |
---|
121 | |
---|
122 | c update sig and w0 below cloud base: |
---|
123 | |
---|
124 | do 300 k=1,icbmax |
---|
125 | do 310 il=1,ncum |
---|
126 | if (k.le.icb(il))then |
---|
127 | sig(il,k)=beta*sig(il,k)-2.*alpha*buoy(il,icb(il)) |
---|
128 | $ *buoy(il,icb(il)) |
---|
129 | sig(il,k)=amax1(sig(il,k),0.0) |
---|
130 | w0(il,k)=beta*w0(il,k) |
---|
131 | endif |
---|
132 | 310 continue |
---|
133 | 300 continue |
---|
134 | |
---|
135 | c ------------------------------------------------------------- |
---|
136 | c -- Reset fractional areas of updrafts and w0 at initial time |
---|
137 | c -- and after 10 time steps of no convection |
---|
138 | c ------------------------------------------------------------- |
---|
139 | |
---|
140 | do 400 k=1,nl-1 |
---|
141 | do 410 il=1,ncum |
---|
142 | if (sig(il,nd).lt.1.5.or.sig(il,nd).gt.12.0)then |
---|
143 | sig(il,k)=0.0 |
---|
144 | w0(il,k)=0.0 |
---|
145 | endif |
---|
146 | 410 continue |
---|
147 | 400 continue |
---|
148 | c |
---|
149 | c ------------------------------------------------------------- |
---|
150 | Cjyg1 |
---|
151 | C -- Calculate adiabatic ascent top pressure (ptop) |
---|
152 | c ------------------------------------------------------------- |
---|
153 | C |
---|
154 | c |
---|
155 | cc 1. Start at first level where precipitations form |
---|
156 | do il = 1,ncum |
---|
157 | Pzero(il) = Plcl(il)-PBcrit |
---|
158 | enddo |
---|
159 | c |
---|
160 | cc 2. Add offset |
---|
161 | do il = 1,ncum |
---|
162 | Pzero(il) = Pzero(il)-PBmxup |
---|
163 | enddo |
---|
164 | do il=1,ncum |
---|
165 | ptop2old(il)=ptop2(il) |
---|
166 | enddo |
---|
167 | c |
---|
168 | do il = 1,ncum |
---|
169 | cCR:c est quoi ce 300?? |
---|
170 | P1(il) = Pzero(il)-300. |
---|
171 | enddo |
---|
172 | |
---|
173 | c compute asupmax=abs(supmax) up to lnm+1 |
---|
174 | |
---|
175 | DO il=1,ncum |
---|
176 | ok(il)=.true. |
---|
177 | nsupmax(il)=inb(il) |
---|
178 | ENDDO |
---|
179 | |
---|
180 | DO i = 1,nl |
---|
181 | DO il = 1,ncum |
---|
182 | IF (i .GT. icb(il) .AND. i .LE. inb(il)) THEN |
---|
183 | IF (P(il,i) .LE. Pzero(il) .and. |
---|
184 | $ supmax(il,i) .lt. 0 .and. ok(il)) THEN |
---|
185 | nsupmax(il)=i |
---|
186 | ok(il)=.false. |
---|
187 | ENDIF ! end IF (P(i) ... |
---|
188 | ENDIF ! end IF (icb+1 le i le inb) |
---|
189 | ENDDO |
---|
190 | ENDDO |
---|
191 | |
---|
192 | DO i = 1,nl |
---|
193 | DO il = 1,ncum |
---|
194 | asupmax(il,i)=abs(supmax(il,i)) |
---|
195 | ENDDO |
---|
196 | ENDDO |
---|
197 | |
---|
198 | c |
---|
199 | DO il = 1,ncum |
---|
200 | asupmaxmin(il)=10. |
---|
201 | Pmin(il)=100. |
---|
202 | ENDDO |
---|
203 | |
---|
204 | cc 3. Compute in which level is Pzero |
---|
205 | |
---|
206 | i0 = 18 |
---|
207 | |
---|
208 | DO i = 1,nl |
---|
209 | DO il = 1,ncum |
---|
210 | IF (i .GT. icb(il) .AND. i .LE. inb(il)) THEN |
---|
211 | IF (P(il,i) .LE. Pzero(il) .AND. P(il,i) .GE. P1(il)) THEN |
---|
212 | IF (Pzero(il) .GT. P(il,i) .AND. |
---|
213 | $ Pzero(il) .LT. P(il,i-1)) THEN |
---|
214 | i0 = i |
---|
215 | ENDIF |
---|
216 | ENDIF |
---|
217 | ENDIF |
---|
218 | ENDDO |
---|
219 | ENDDO |
---|
220 | cc 4. Compute asupmax at Pzero |
---|
221 | |
---|
222 | DO i = 1,nl |
---|
223 | DO il = 1,ncum |
---|
224 | IF (i .GT. icb(il) .AND. i .LE. inb(il)) THEN |
---|
225 | IF (P(il,i) .LE. Pzero(il) .AND. P(il,i) .GE. P1(il)) THEN |
---|
226 | asupmax0(il) = ((Pzero(il)-P(il,i0-1))*asupmax(il,i0) |
---|
227 | $ -(Pzero(il)-P(il,i0))*asupmax(il,i0-1)) |
---|
228 | $ /(P(il,i0)-P(il,i0-1)) |
---|
229 | ENDIF |
---|
230 | ENDIF |
---|
231 | ENDDO |
---|
232 | ENDDO |
---|
233 | |
---|
234 | |
---|
235 | DO i = 1,nl |
---|
236 | DO il = 1,ncum |
---|
237 | IF (P(il,i) .EQ. Pzero(il)) THEN |
---|
238 | asupmax(i,il) = asupmax0(il) |
---|
239 | ENDIF |
---|
240 | ENDDO |
---|
241 | ENDDO |
---|
242 | |
---|
243 | cc 5. Compute asupmaxmin, minimum of asupmax |
---|
244 | |
---|
245 | DO i = 1,nl |
---|
246 | DO il = 1,ncum |
---|
247 | IF (i .GT. icb(il) .AND. i .LE. inb(il)) THEN |
---|
248 | IF (P(il,i) .LE. Pzero(il) .AND. P(il,i) .GE. P1(il)) THEN |
---|
249 | IF (asupmax(il,i) .LT. asupmaxmin(il)) THEN |
---|
250 | asupmaxmin(il)=asupmax(il,i) |
---|
251 | Pmin(il)=P(il,i) |
---|
252 | ENDIF |
---|
253 | ENDIF |
---|
254 | ENDIF |
---|
255 | ENDDO |
---|
256 | ENDDO |
---|
257 | |
---|
258 | DO il = 1,ncum |
---|
259 | IF (asupmax0(il) .LT. asupmaxmin(il)) THEN |
---|
260 | asupmaxmin(il) = asupmax0(il) |
---|
261 | Pmin(il) = Pzero(il) |
---|
262 | ENDIF |
---|
263 | ENDDO |
---|
264 | |
---|
265 | |
---|
266 | c |
---|
267 | c Compute Supmax at Pzero |
---|
268 | c |
---|
269 | DO i = 1,nl |
---|
270 | DO il = 1,ncum |
---|
271 | IF (i .GT. icb(il) .AND. i .LE. inb(il)) THEN |
---|
272 | IF (P(il,i) .LE. Pzero(il)) THEN |
---|
273 | Supmax0(il) = ((P(il,i )-Pzero(il))*aSupmax(il,i-1) |
---|
274 | $ -(P(il,i-1)-Pzero(il))*aSupmax(il,i )) |
---|
275 | $ /(P(il,i)-P(il,i-1)) |
---|
276 | GO TO 425 |
---|
277 | ENDIF ! end IF (P(i) ... |
---|
278 | ENDIF ! end IF (icb+1 le i le inb) |
---|
279 | ENDDO |
---|
280 | ENDDO |
---|
281 | |
---|
282 | 425 continue |
---|
283 | |
---|
284 | |
---|
285 | cc 6. Calculate ptop2 |
---|
286 | c |
---|
287 | DO il = 1,ncum |
---|
288 | IF (asupmaxmin(il) .LT. Supcrit1) THEN |
---|
289 | Ptop2(il) = Pmin(il) |
---|
290 | ENDIF |
---|
291 | |
---|
292 | IF (asupmaxmin(il) .GT. Supcrit1 |
---|
293 | $ .AND. asupmaxmin(il) .LT. Supcrit2) THEN |
---|
294 | Ptop2(il) = Ptop2old(il) |
---|
295 | ENDIF |
---|
296 | |
---|
297 | IF (asupmaxmin(il) .GT. Supcrit2) THEN |
---|
298 | Ptop2(il) = Ph(il,inb(il)) |
---|
299 | ENDIF |
---|
300 | ENDDO |
---|
301 | c |
---|
302 | |
---|
303 | cc 7. Compute multiplying factor for adiabatic updraught mass flux |
---|
304 | c |
---|
305 | c |
---|
306 | IF (ok_inhib) THEN |
---|
307 | c |
---|
308 | DO i = 1,nl |
---|
309 | DO il = 1,ncum |
---|
310 | IF (i .le. nl) THEN |
---|
311 | coefmix(il,i) = (min(ptop2(il),ph(il,i))-ph(il,i)) |
---|
312 | $ /(ph(il,i+1)-ph(il,i)) |
---|
313 | coefmix(il,i) = min(coefmix(il,i),1.) |
---|
314 | ENDIF |
---|
315 | ENDDO |
---|
316 | ENDDO |
---|
317 | c |
---|
318 | c |
---|
319 | ELSE ! when inhibition is not taken into account, coefmix=1 |
---|
320 | c |
---|
321 | |
---|
322 | c |
---|
323 | DO i = 1,nl |
---|
324 | DO il = 1,ncum |
---|
325 | IF (i .le. nl) THEN |
---|
326 | coefmix(il,i) = 1. |
---|
327 | ENDIF |
---|
328 | ENDDO |
---|
329 | ENDDO |
---|
330 | c |
---|
331 | ENDIF ! ok_inhib |
---|
332 | c ------------------------------------------------------------------- |
---|
333 | c ------------------------------------------------------------------- |
---|
334 | c |
---|
335 | |
---|
336 | Cjyg2 |
---|
337 | C |
---|
338 | c========================================================================== |
---|
339 | C |
---|
340 | c |
---|
341 | c ------------------------------------------------------------- |
---|
342 | c -- Calculate convective inhibition (CIN) |
---|
343 | c ------------------------------------------------------------- |
---|
344 | |
---|
345 | c do i=1,nloc |
---|
346 | c print*,'avant cine p',pbase(i),plcl(i) |
---|
347 | c enddo |
---|
348 | do j=1,nd |
---|
349 | do i=1,nloc |
---|
350 | c print*,'avant cine t',tv(i),tvp(i) |
---|
351 | enddo |
---|
352 | enddo |
---|
353 | CALL cv3_cine (nloc,ncum,nd,icb,inb |
---|
354 | : ,pbase,plcl,p,ph,tv,tvp |
---|
355 | : ,cina,cinb) |
---|
356 | c |
---|
357 | DO il = 1,ncum |
---|
358 | cin(il) = cina(il)+cinb(il) |
---|
359 | ENDDO |
---|
360 | |
---|
361 | c ------------------------------------------------------------- |
---|
362 | c --Update buoyancies to account for Ale |
---|
363 | c ------------------------------------------------------------- |
---|
364 | c |
---|
365 | CALL cv3_buoy (nloc,ncum,nd,icb,inb |
---|
366 | : ,pbase,plcl,p,ph,Ale,Cin |
---|
367 | : ,tv,tvp |
---|
368 | : ,buoy ) |
---|
369 | |
---|
370 | |
---|
371 | c ------------------------------------------------------------- |
---|
372 | c -- Calculate convective available potential energy (cape), |
---|
373 | c -- vertical velocity (w), fractional area covered by |
---|
374 | c -- undilute updraft (sig), and updraft mass flux (m) |
---|
375 | c ------------------------------------------------------------- |
---|
376 | |
---|
377 | do 500 il=1,ncum |
---|
378 | cape(il)=0.0 |
---|
379 | 500 continue |
---|
380 | |
---|
381 | c compute dtmin (minimum buoyancy between ICB and given level k): |
---|
382 | |
---|
383 | do k=1,nl |
---|
384 | do il=1,ncum |
---|
385 | dtmin(il,k)=100.0 |
---|
386 | enddo |
---|
387 | enddo |
---|
388 | |
---|
389 | do 550 k=1,nl |
---|
390 | do 560 j=minorig,nl |
---|
391 | do 570 il=1,ncum |
---|
392 | if ( (k.ge.(icb(il)+1)).and.(k.le.inb(il)).and. |
---|
393 | : (j.ge.icb(il)).and.(j.le.(k-1)) )then |
---|
394 | dtmin(il,k)=AMIN1(dtmin(il,k),buoy(il,j)) |
---|
395 | endif |
---|
396 | 570 continue |
---|
397 | 560 continue |
---|
398 | 550 continue |
---|
399 | |
---|
400 | c the interval on which cape is computed starts at pbase : |
---|
401 | |
---|
402 | do 600 k=1,nl |
---|
403 | do 610 il=1,ncum |
---|
404 | |
---|
405 | if ((k.ge.(icb(il)+1)).and.(k.le.inb(il))) then |
---|
406 | |
---|
407 | deltap = MIN(pbase(il),ph(il,k-1))-MIN(pbase(il),ph(il,k)) |
---|
408 | cape(il)=cape(il)+rrd*buoy(il,k-1)*deltap/p(il,k-1) |
---|
409 | cape(il)=AMAX1(0.0,cape(il)) |
---|
410 | sigold(il,k)=sig(il,k) |
---|
411 | |
---|
412 | |
---|
413 | cjyg Coefficient coefmix limits convection to levels where a sufficient |
---|
414 | c fraction of mixed draughts are ascending. |
---|
415 | siglim(il,k)=coefmix(il,k)*alpha1*dtmin(il,k)*ABS(dtmin(il,k)) |
---|
416 | siglim(il,k)=amax1(siglim(il,k),0.0) |
---|
417 | siglim(il,k)=amin1(siglim(il,k),0.01) |
---|
418 | cc fac=AMIN1(((dtcrit-dtmin(il,k))/dtcrit),1.0) |
---|
419 | fac = 1. |
---|
420 | wlim(il,k)=fac*SQRT(cape(il)) |
---|
421 | amu=siglim(il,k)*wlim(il,k) |
---|
422 | rhodp = 0.007*p(il,k)*(ph(il,k)-ph(il,k+1))/tv(il,k) |
---|
423 | mlim(il,k)=amu*rhodp |
---|
424 | c print*, 'siglim ', k,siglim(1,k) |
---|
425 | endif |
---|
426 | |
---|
427 | 610 continue |
---|
428 | 600 continue |
---|
429 | |
---|
430 | do 700 il=1,ncum |
---|
431 | mlim(il,icb(il))=0.5*mlim(il,icb(il)+1) |
---|
432 | : *(ph(il,icb(il))-ph(il,icb(il)+1)) |
---|
433 | : /(ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
---|
434 | 700 continue |
---|
435 | |
---|
436 | cjyg1 |
---|
437 | c------------------------------------------------------------------------ |
---|
438 | cc Correct mass fluxes so that power used to overcome CIN does not |
---|
439 | cc exceed Power Available for Lifting (PAL). |
---|
440 | c------------------------------------------------------------------------ |
---|
441 | c |
---|
442 | do il = 1,ncum |
---|
443 | cbmflim(il) = 0. |
---|
444 | cbmf(il) = 0. |
---|
445 | enddo |
---|
446 | c |
---|
447 | cc 1. Compute cloud base mass flux of elementary system (Cbmf0=Cbmflim) |
---|
448 | c |
---|
449 | do k= 1,nl |
---|
450 | do il = 1,ncum |
---|
451 | IF (k .ge. icb(il) .and. k .le. inb(il)) THEN |
---|
452 | cbmflim(il) = cbmflim(il)+MLIM(il,k) |
---|
453 | ENDIF |
---|
454 | enddo |
---|
455 | enddo |
---|
456 | c |
---|
457 | cc 1.5 Compute cloud base mass flux given by Alp closure (Cbmf1), maximum |
---|
458 | cc allowed mass flux (Cbmfmax) and final target mass flux (Cbmf) |
---|
459 | cc Cbmf is set to zero if Cbmflim (the mass flux of elementary cloud) is |
---|
460 | c-- exceedingly small. |
---|
461 | c |
---|
462 | DO il = 1,ncum |
---|
463 | wb2(il) = sqrt(2.*max(Ale(il)+cin(il),0.)) |
---|
464 | ENDDO |
---|
465 | c |
---|
466 | DO il = 1,ncum |
---|
467 | cbmf1(il) = alp2(il)/(0.5*wb*wb-Cin(il)) |
---|
468 | cbmfmax(il) = sigmax*wb2(il)*100.*p(il,icb(il)) |
---|
469 | : /(rrd*tv(il,icb(il))) |
---|
470 | ENDDO |
---|
471 | c |
---|
472 | DO il = 1,ncum |
---|
473 | IF (cbmflim(il) .gt. 1.e-6) THEN |
---|
474 | cATTENTION TEST CR |
---|
475 | c if (cbmfmax(il).lt.1.e-12) then |
---|
476 | cbmf(il) = min(cbmf1(il),cbmfmax(il)) |
---|
477 | c else |
---|
478 | c cbmf(il) = cbmf1(il) |
---|
479 | c endif |
---|
480 | c print*,'cbmf',cbmf1(il),cbmfmax(il) |
---|
481 | ENDIF |
---|
482 | ENDDO |
---|
483 | c |
---|
484 | cc 2. Compute coefficient and apply correction |
---|
485 | c |
---|
486 | do il = 1,ncum |
---|
487 | coef(il) = (cbmf(il)+1.e-10)/(cbmflim(il)+1.e-10) |
---|
488 | enddo |
---|
489 | c |
---|
490 | DO k = 1,nl |
---|
491 | do il = 1,ncum |
---|
492 | IF ( k .ge. icb(il)+1 .AND. k .le. inb(il)) THEN |
---|
493 | sig(il,k) = beta*sig(il,k)+(1.-beta)*coef(il)*siglim(il,k) |
---|
494 | cc sig(il,k) = beta*sig(il,k)+siglim(il,k) |
---|
495 | w0(il,k) = beta*w0(il,k) +(1.-beta)*wlim(il,k) |
---|
496 | AMU=SIG(il,k)*W0(il,k) |
---|
497 | cc amu = 0.5*(SIG(il,k)+sigold(il,k))*W0(il,k) |
---|
498 | M(il,k)=AMU*0.007*P(il,k)*(PH(il,k)-PH(il,k+1))/TV(il,k) |
---|
499 | ENDIF |
---|
500 | enddo |
---|
501 | ENDDO |
---|
502 | cjyg2 |
---|
503 | DO il = 1,ncum |
---|
504 | w0(il,icb(il))=0.5*w0(il,icb(il)+1) |
---|
505 | m(il,icb(il))=0.5*m(il,icb(il)+1) |
---|
506 | $ *(ph(il,icb(il))-ph(il,icb(il)+1)) |
---|
507 | $ /(ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
---|
508 | sig(il,icb(il))=sig(il,icb(il)+1) |
---|
509 | sig(il,icb(il)-1)=sig(il,icb(il)) |
---|
510 | ENDDO |
---|
511 | |
---|
512 | c |
---|
513 | cc 3. Compute final cloud base mass flux and set iflag to 3 if |
---|
514 | cc cloud base mass flux is exceedingly small and is decreasing (i.e. if |
---|
515 | cc the final mass flux (cbmflast) is greater than the target mass flux |
---|
516 | cc (cbmf)). |
---|
517 | c |
---|
518 | do il = 1,ncum |
---|
519 | cbmflast(il) = 0. |
---|
520 | enddo |
---|
521 | c |
---|
522 | do k= 1,nl |
---|
523 | do il = 1,ncum |
---|
524 | IF (k .ge. icb(il) .and. k .le. inb(il)) THEN |
---|
525 | cbmflast(il) = cbmflast(il)+M(il,k) |
---|
526 | ENDIF |
---|
527 | enddo |
---|
528 | enddo |
---|
529 | c |
---|
530 | do il = 1,ncum |
---|
531 | IF (cbmflast(il) .lt. 1.e-6 .and. |
---|
532 | $ cbmflast(il) .ge. cbmf(il)) THEN |
---|
533 | iflag(il) = 3 |
---|
534 | ENDIF |
---|
535 | enddo |
---|
536 | c |
---|
537 | do k= 1,nl |
---|
538 | do il = 1,ncum |
---|
539 | IF (iflag(il) .ge. 3) THEN |
---|
540 | M(il,k) = 0. |
---|
541 | sig(il,k) = 0. |
---|
542 | w0(il,k) = 0. |
---|
543 | ENDIF |
---|
544 | enddo |
---|
545 | enddo |
---|
546 | c |
---|
547 | cc 4. Introduce a correcting factor for coef, in order to obtain an effective |
---|
548 | cc sigdz larger in the present case (using cv3p1_closure) than in the old |
---|
549 | cc closure (using cv3_closure). |
---|
550 | |
---|
551 | if (iflag_cvl_sigd.eq.0) then |
---|
552 | ctest pour verifier qu on fait la meme chose qu avant: sid constant |
---|
553 | coef(1:ncum)=1. |
---|
554 | else |
---|
555 | coef(1:ncum) = min(2.*coef(1:ncum),5.) |
---|
556 | coef(1:ncum) = max(2.*coef(1:ncum),0.2) |
---|
557 | endif |
---|
558 | c |
---|
559 | return |
---|
560 | end |
---|
561 | |
---|
562 | |
---|