[879] | 1 | SUBROUTINE cv3p1_closure(nloc,ncum,nd,icb,inb |
---|
| 2 | : ,pbase,plcl,p,ph,tv,tvp,buoy |
---|
| 3 | : ,Supmax,ok_inhib,Ale,Alp |
---|
| 4 | o ,sig,w0,ptop2,cape,cin,m,iflag,coef |
---|
| 5 | : ,Plim1,Plim2,asupmax,supmax0 |
---|
| 6 | : ,asupmaxmin,cbmf) |
---|
| 7 | |
---|
| 8 | * |
---|
| 9 | *************************************************************** |
---|
| 10 | * * |
---|
| 11 | * CV3P1_CLOSURE * |
---|
| 12 | * Ale & Alp Closure of Convect3 * |
---|
| 13 | * * |
---|
| 14 | * written by : Kerry Emanuel * |
---|
| 15 | * vectorization: S. Bony * |
---|
| 16 | * modified by : Jean-Yves Grandpeix, 18/06/2003, 19.32.10 * |
---|
| 17 | * Julie Frohwirth, 14/10/2005 17.44.22 * |
---|
| 18 | *************************************************************** |
---|
| 19 | * |
---|
| 20 | implicit none |
---|
| 21 | |
---|
| 22 | #include "cvthermo.h" |
---|
| 23 | #include "cv3param.h" |
---|
| 24 | #include "YOMCST2.h" |
---|
| 25 | #include "YOMCST.h" |
---|
| 26 | #include "conema3.h" |
---|
| 27 | |
---|
| 28 | c input: |
---|
| 29 | integer ncum, nd, nloc |
---|
| 30 | integer icb(nloc), inb(nloc) |
---|
| 31 | real pbase(nloc),plcl(nloc) |
---|
| 32 | real p(nloc,nd), ph(nloc,nd+1) |
---|
| 33 | real tv(nloc,nd),tvp(nloc,nd), buoy(nloc,nd) |
---|
| 34 | real Supmax(nloc,nd) |
---|
| 35 | logical ok_inhib ! enable convection inhibition by dryness |
---|
| 36 | real Ale(nloc),Alp(nloc) |
---|
| 37 | |
---|
| 38 | c input/output: |
---|
| 39 | real sig(nloc,nd), w0(nloc,nd), ptop2(nloc) |
---|
| 40 | |
---|
| 41 | c output: |
---|
| 42 | real cape(nloc),cin(nloc) |
---|
| 43 | real m(nloc,nd) |
---|
| 44 | real Plim1(nloc),Plim2(nloc) |
---|
| 45 | real asupmax(nloc,nd),supmax0(nloc) |
---|
| 46 | real asupmaxmin(nloc) |
---|
| 47 | integer iflag(nloc) |
---|
| 48 | c |
---|
| 49 | c local variables: |
---|
| 50 | integer il, i, j, k, icbmax, i0 |
---|
| 51 | real deltap, fac, w, amu |
---|
| 52 | real rhodp |
---|
| 53 | real Pbmxup |
---|
| 54 | real dtmin(nloc,nd), sigold(nloc,nd) |
---|
| 55 | real coefmix(nloc,nd) |
---|
| 56 | real pzero(nloc),ptop2old(nloc) |
---|
| 57 | real cina(nloc),cinb(nloc) |
---|
| 58 | integer ibeg(nloc) |
---|
| 59 | integer nsupmax(nloc) |
---|
| 60 | real supcrit,temp(nloc,nd) |
---|
| 61 | real P1(nloc),Pmin(nloc) |
---|
| 62 | real asupmax0(nloc) |
---|
| 63 | logical ok(nloc) |
---|
| 64 | real siglim(nloc,nd),wlim(nloc,nd),mlim(nloc,nd) |
---|
| 65 | real wb2(nloc) |
---|
| 66 | real cbmflim(nloc),cbmf1(nloc),cbmfmax(nloc),cbmf(nloc) |
---|
| 67 | real cbmflast(nloc) |
---|
| 68 | real coef(nloc) |
---|
| 69 | real xp(nloc),xq(nloc),xr(nloc),discr(nloc),b3(nloc),b4(nloc) |
---|
| 70 | real theta(nloc),bb(nloc) |
---|
| 71 | real term1,term2,term3 |
---|
| 72 | real alp2(nloc) ! Alp with offset |
---|
| 73 | real wb,sigmax |
---|
| 74 | data wb /2./, sigmax /0.1/ |
---|
| 75 | c |
---|
| 76 | c print *,' -> cv3p1_closure, Ale ',ale(1) |
---|
| 77 | c |
---|
| 78 | |
---|
| 79 | c ------------------------------------------------------- |
---|
| 80 | c -- Initialization |
---|
| 81 | c ------------------------------------------------------- |
---|
| 82 | |
---|
| 83 | c |
---|
| 84 | c |
---|
| 85 | do il = 1,ncum |
---|
| 86 | alp2(il) = max(alp(il),1.e-5) |
---|
| 87 | enddo |
---|
| 88 | c |
---|
| 89 | PBMXUP=50. ! PBMXUP+PBCRIT = cloud depth above which mixed updraughts |
---|
| 90 | c exist (if any) |
---|
| 91 | |
---|
| 92 | do k=1,nl |
---|
| 93 | do il=1,ncum |
---|
| 94 | m(il,k)=0.0 |
---|
| 95 | enddo |
---|
| 96 | enddo |
---|
| 97 | |
---|
| 98 | c ------------------------------------------------------- |
---|
| 99 | c -- Reset sig(i) and w0(i) for i>inb and i<icb |
---|
| 100 | c ------------------------------------------------------- |
---|
| 101 | |
---|
| 102 | c update sig and w0 above LNB: |
---|
| 103 | |
---|
| 104 | do 100 k=1,nl-1 |
---|
| 105 | do 110 il=1,ncum |
---|
| 106 | if ((inb(il).lt.(nl-1)).and.(k.ge.(inb(il)+1)))then |
---|
| 107 | sig(il,k)=beta*sig(il,k) |
---|
| 108 | : +2.*alpha*buoy(il,inb(il))*ABS(buoy(il,inb(il))) |
---|
| 109 | sig(il,k)=AMAX1(sig(il,k),0.0) |
---|
| 110 | w0(il,k)=beta*w0(il,k) |
---|
| 111 | endif |
---|
| 112 | 110 continue |
---|
| 113 | 100 continue |
---|
| 114 | |
---|
| 115 | c compute icbmax: |
---|
| 116 | |
---|
| 117 | icbmax=2 |
---|
| 118 | do 200 il=1,ncum |
---|
| 119 | icbmax=MAX(icbmax,icb(il)) |
---|
| 120 | 200 continue |
---|
| 121 | |
---|
| 122 | c update sig and w0 below cloud base: |
---|
| 123 | |
---|
| 124 | do 300 k=1,icbmax |
---|
| 125 | do 310 il=1,ncum |
---|
| 126 | if (k.le.icb(il))then |
---|
| 127 | sig(il,k)=beta*sig(il,k)-2.*alpha*buoy(il,icb(il)) |
---|
| 128 | $ *buoy(il,icb(il)) |
---|
| 129 | sig(il,k)=amax1(sig(il,k),0.0) |
---|
| 130 | w0(il,k)=beta*w0(il,k) |
---|
| 131 | endif |
---|
| 132 | 310 continue |
---|
| 133 | 300 continue |
---|
| 134 | |
---|
| 135 | c ------------------------------------------------------------- |
---|
| 136 | c -- Reset fractional areas of updrafts and w0 at initial time |
---|
| 137 | c -- and after 10 time steps of no convection |
---|
| 138 | c ------------------------------------------------------------- |
---|
| 139 | |
---|
| 140 | do 400 k=1,nl-1 |
---|
| 141 | do 410 il=1,ncum |
---|
| 142 | if (sig(il,nd).lt.1.5.or.sig(il,nd).gt.12.0)then |
---|
| 143 | sig(il,k)=0.0 |
---|
| 144 | w0(il,k)=0.0 |
---|
| 145 | endif |
---|
| 146 | 410 continue |
---|
| 147 | 400 continue |
---|
| 148 | c |
---|
| 149 | c ------------------------------------------------------------- |
---|
| 150 | Cjyg1 |
---|
| 151 | C -- Calculate adiabatic ascent top pressure (ptop) |
---|
| 152 | c ------------------------------------------------------------- |
---|
| 153 | C |
---|
| 154 | c |
---|
| 155 | cc 1. Start at first level where precipitations form |
---|
| 156 | do il = 1,ncum |
---|
| 157 | Pzero(il) = Plcl(il)-PBcrit |
---|
| 158 | enddo |
---|
| 159 | c |
---|
| 160 | cc 2. Add offset |
---|
| 161 | do il = 1,ncum |
---|
| 162 | Pzero(il) = Pzero(il)-PBmxup |
---|
| 163 | enddo |
---|
| 164 | do il=1,ncum |
---|
| 165 | ptop2old(il)=ptop2(il) |
---|
| 166 | enddo |
---|
| 167 | c |
---|
| 168 | do il = 1,ncum |
---|
| 169 | cCR:c est quoi ce 300?? |
---|
| 170 | P1(il) = Pzero(il)-300. |
---|
| 171 | enddo |
---|
| 172 | |
---|
| 173 | c compute asupmax=abs(supmax) up to lnm+1 |
---|
| 174 | |
---|
| 175 | DO il=1,ncum |
---|
| 176 | ok(il)=.true. |
---|
| 177 | nsupmax(il)=inb(il) |
---|
| 178 | ENDDO |
---|
| 179 | |
---|
| 180 | DO i = 1,nl |
---|
| 181 | DO il = 1,ncum |
---|
| 182 | IF (i .GT. icb(il) .AND. i .LE. inb(il)) THEN |
---|
| 183 | IF (P(il,i) .LE. Pzero(il) .and. |
---|
| 184 | $ supmax(il,i) .lt. 0 .and. ok(il)) THEN |
---|
| 185 | nsupmax(il)=i |
---|
| 186 | ok(il)=.false. |
---|
| 187 | ENDIF ! end IF (P(i) ... |
---|
| 188 | ENDIF ! end IF (icb+1 le i le inb) |
---|
| 189 | ENDDO |
---|
| 190 | ENDDO |
---|
| 191 | |
---|
| 192 | DO i = 1,nl |
---|
| 193 | DO il = 1,ncum |
---|
| 194 | asupmax(il,i)=abs(supmax(il,i)) |
---|
| 195 | ENDDO |
---|
| 196 | ENDDO |
---|
| 197 | |
---|
| 198 | c |
---|
| 199 | DO il = 1,ncum |
---|
| 200 | asupmaxmin(il)=10. |
---|
| 201 | Pmin(il)=100. |
---|
| 202 | ENDDO |
---|
| 203 | |
---|
| 204 | cc 3. Compute in which level is Pzero |
---|
| 205 | |
---|
| 206 | i0 = 18 |
---|
| 207 | |
---|
| 208 | DO i = 1,nl |
---|
| 209 | DO il = 1,ncum |
---|
| 210 | IF (i .GT. icb(il) .AND. i .LE. inb(il)) THEN |
---|
| 211 | IF (P(il,i) .LE. Pzero(il) .AND. P(il,i) .GE. P1(il)) THEN |
---|
| 212 | IF (Pzero(il) .GT. P(il,i) .AND. |
---|
| 213 | $ Pzero(il) .LT. P(il,i-1)) THEN |
---|
| 214 | i0 = i |
---|
| 215 | ENDIF |
---|
| 216 | ENDIF |
---|
| 217 | ENDIF |
---|
| 218 | ENDDO |
---|
| 219 | ENDDO |
---|
| 220 | cc 4. Compute asupmax at Pzero |
---|
| 221 | |
---|
| 222 | DO i = 1,nl |
---|
| 223 | DO il = 1,ncum |
---|
| 224 | IF (i .GT. icb(il) .AND. i .LE. inb(il)) THEN |
---|
| 225 | IF (P(il,i) .LE. Pzero(il) .AND. P(il,i) .GE. P1(il)) THEN |
---|
| 226 | asupmax0(il) = ((Pzero(il)-P(il,i0-1))*asupmax(il,i0) |
---|
| 227 | $ -(Pzero(il)-P(il,i0))*asupmax(il,i0-1)) |
---|
| 228 | $ /(P(il,i0)-P(il,i0-1)) |
---|
| 229 | ENDIF |
---|
| 230 | ENDIF |
---|
| 231 | ENDDO |
---|
| 232 | ENDDO |
---|
| 233 | |
---|
| 234 | |
---|
| 235 | DO i = 1,nl |
---|
| 236 | DO il = 1,ncum |
---|
| 237 | IF (P(il,i) .EQ. Pzero(il)) THEN |
---|
| 238 | asupmax(i,il) = asupmax0(il) |
---|
| 239 | ENDIF |
---|
| 240 | ENDDO |
---|
| 241 | ENDDO |
---|
| 242 | |
---|
| 243 | cc 5. Compute asupmaxmin, minimum of asupmax |
---|
| 244 | |
---|
| 245 | DO i = 1,nl |
---|
| 246 | DO il = 1,ncum |
---|
| 247 | IF (i .GT. icb(il) .AND. i .LE. inb(il)) THEN |
---|
| 248 | IF (P(il,i) .LE. Pzero(il) .AND. P(il,i) .GE. P1(il)) THEN |
---|
| 249 | IF (asupmax(il,i) .LT. asupmaxmin(il)) THEN |
---|
| 250 | asupmaxmin(il)=asupmax(il,i) |
---|
| 251 | Pmin(il)=P(il,i) |
---|
| 252 | ENDIF |
---|
| 253 | ENDIF |
---|
| 254 | ENDIF |
---|
| 255 | ENDDO |
---|
| 256 | ENDDO |
---|
| 257 | |
---|
| 258 | DO il = 1,ncum |
---|
| 259 | IF (asupmax0(il) .LT. asupmaxmin(il)) THEN |
---|
| 260 | asupmaxmin(il) = asupmax0(il) |
---|
| 261 | Pmin(il) = Pzero(il) |
---|
| 262 | ENDIF |
---|
| 263 | ENDDO |
---|
| 264 | |
---|
| 265 | |
---|
| 266 | c |
---|
| 267 | c Compute Supmax at Pzero |
---|
| 268 | c |
---|
| 269 | DO i = 1,nl |
---|
| 270 | DO il = 1,ncum |
---|
| 271 | IF (i .GT. icb(il) .AND. i .LE. inb(il)) THEN |
---|
| 272 | IF (P(il,i) .LE. Pzero(il)) THEN |
---|
| 273 | Supmax0(il) = ((P(il,i )-Pzero(il))*aSupmax(il,i-1) |
---|
| 274 | $ -(P(il,i-1)-Pzero(il))*aSupmax(il,i )) |
---|
| 275 | $ /(P(il,i)-P(il,i-1)) |
---|
| 276 | GO TO 425 |
---|
| 277 | ENDIF ! end IF (P(i) ... |
---|
| 278 | ENDIF ! end IF (icb+1 le i le inb) |
---|
| 279 | ENDDO |
---|
| 280 | ENDDO |
---|
| 281 | |
---|
| 282 | 425 continue |
---|
| 283 | |
---|
| 284 | |
---|
| 285 | cc 6. Calculate ptop2 |
---|
| 286 | c |
---|
| 287 | DO il = 1,ncum |
---|
| 288 | IF (asupmaxmin(il) .LT. Supcrit1) THEN |
---|
| 289 | Ptop2(il) = Pmin(il) |
---|
| 290 | ENDIF |
---|
| 291 | |
---|
| 292 | IF (asupmaxmin(il) .GT. Supcrit1 |
---|
| 293 | $ .AND. asupmaxmin(il) .LT. Supcrit2) THEN |
---|
| 294 | Ptop2(il) = Ptop2old(il) |
---|
| 295 | ENDIF |
---|
| 296 | |
---|
| 297 | IF (asupmaxmin(il) .GT. Supcrit2) THEN |
---|
| 298 | Ptop2(il) = Ph(il,inb(il)) |
---|
| 299 | ENDIF |
---|
| 300 | ENDDO |
---|
| 301 | c |
---|
| 302 | |
---|
| 303 | cc 7. Compute multiplying factor for adiabatic updraught mass flux |
---|
| 304 | c |
---|
| 305 | c |
---|
| 306 | IF (ok_inhib) THEN |
---|
| 307 | c |
---|
| 308 | DO i = 1,nl |
---|
| 309 | DO il = 1,ncum |
---|
| 310 | IF (i .le. nl) THEN |
---|
| 311 | coefmix(il,i) = (min(ptop2(il),ph(il,i))-ph(il,i)) |
---|
| 312 | $ /(ph(il,i+1)-ph(il,i)) |
---|
| 313 | coefmix(il,i) = min(coefmix(il,i),1.) |
---|
| 314 | ENDIF |
---|
| 315 | ENDDO |
---|
| 316 | ENDDO |
---|
| 317 | c |
---|
| 318 | c |
---|
| 319 | ELSE ! when inhibition is not taken into account, coefmix=1 |
---|
| 320 | c |
---|
| 321 | |
---|
| 322 | c |
---|
| 323 | DO i = 1,nl |
---|
| 324 | DO il = 1,ncum |
---|
| 325 | IF (i .le. nl) THEN |
---|
| 326 | coefmix(il,i) = 1. |
---|
| 327 | ENDIF |
---|
| 328 | ENDDO |
---|
| 329 | ENDDO |
---|
| 330 | c |
---|
| 331 | ENDIF ! ok_inhib |
---|
| 332 | c ------------------------------------------------------------------- |
---|
| 333 | c ------------------------------------------------------------------- |
---|
| 334 | c |
---|
| 335 | |
---|
| 336 | Cjyg2 |
---|
| 337 | C |
---|
| 338 | c========================================================================== |
---|
| 339 | C |
---|
| 340 | c |
---|
| 341 | c ------------------------------------------------------------- |
---|
| 342 | c -- Calculate convective inhibition (CIN) |
---|
| 343 | c ------------------------------------------------------------- |
---|
| 344 | |
---|
| 345 | c do i=1,nloc |
---|
| 346 | c print*,'avant cine p',pbase(i),plcl(i) |
---|
| 347 | c enddo |
---|
| 348 | do j=1,nd |
---|
| 349 | do i=1,nloc |
---|
| 350 | c print*,'avant cine t',tv(i),tvp(i) |
---|
| 351 | enddo |
---|
| 352 | enddo |
---|
| 353 | CALL cv3_cine (nloc,ncum,nd,icb,inb |
---|
| 354 | : ,pbase,plcl,p,ph,tv,tvp |
---|
| 355 | : ,cina,cinb) |
---|
| 356 | c |
---|
| 357 | DO il = 1,ncum |
---|
| 358 | cin(il) = cina(il)+cinb(il) |
---|
| 359 | ENDDO |
---|
| 360 | |
---|
| 361 | c ------------------------------------------------------------- |
---|
| 362 | c --Update buoyancies to account for Ale |
---|
| 363 | c ------------------------------------------------------------- |
---|
| 364 | c |
---|
| 365 | CALL cv3_buoy (nloc,ncum,nd,icb,inb |
---|
| 366 | : ,pbase,plcl,p,ph,Ale,Cin |
---|
| 367 | : ,tv,tvp |
---|
| 368 | : ,buoy ) |
---|
| 369 | |
---|
| 370 | |
---|
| 371 | c ------------------------------------------------------------- |
---|
| 372 | c -- Calculate convective available potential energy (cape), |
---|
| 373 | c -- vertical velocity (w), fractional area covered by |
---|
| 374 | c -- undilute updraft (sig), and updraft mass flux (m) |
---|
| 375 | c ------------------------------------------------------------- |
---|
| 376 | |
---|
| 377 | do 500 il=1,ncum |
---|
| 378 | cape(il)=0.0 |
---|
| 379 | 500 continue |
---|
| 380 | |
---|
| 381 | c compute dtmin (minimum buoyancy between ICB and given level k): |
---|
| 382 | |
---|
| 383 | do k=1,nl |
---|
| 384 | do il=1,ncum |
---|
| 385 | dtmin(il,k)=100.0 |
---|
| 386 | enddo |
---|
| 387 | enddo |
---|
| 388 | |
---|
| 389 | do 550 k=1,nl |
---|
| 390 | do 560 j=minorig,nl |
---|
| 391 | do 570 il=1,ncum |
---|
| 392 | if ( (k.ge.(icb(il)+1)).and.(k.le.inb(il)).and. |
---|
| 393 | : (j.ge.icb(il)).and.(j.le.(k-1)) )then |
---|
| 394 | dtmin(il,k)=AMIN1(dtmin(il,k),buoy(il,j)) |
---|
| 395 | endif |
---|
| 396 | 570 continue |
---|
| 397 | 560 continue |
---|
| 398 | 550 continue |
---|
| 399 | |
---|
| 400 | c the interval on which cape is computed starts at pbase : |
---|
| 401 | |
---|
| 402 | do 600 k=1,nl |
---|
| 403 | do 610 il=1,ncum |
---|
| 404 | |
---|
| 405 | if ((k.ge.(icb(il)+1)).and.(k.le.inb(il))) then |
---|
| 406 | |
---|
| 407 | deltap = MIN(pbase(il),ph(il,k-1))-MIN(pbase(il),ph(il,k)) |
---|
| 408 | cape(il)=cape(il)+rrd*buoy(il,k-1)*deltap/p(il,k-1) |
---|
| 409 | cape(il)=AMAX1(0.0,cape(il)) |
---|
| 410 | sigold(il,k)=sig(il,k) |
---|
| 411 | |
---|
| 412 | |
---|
| 413 | cjyg Coefficient coefmix limits convection to levels where a sufficient |
---|
| 414 | c fraction of mixed draughts are ascending. |
---|
| 415 | siglim(il,k)=coefmix(il,k)*alpha1*dtmin(il,k)*ABS(dtmin(il,k)) |
---|
| 416 | siglim(il,k)=amax1(siglim(il,k),0.0) |
---|
| 417 | siglim(il,k)=amin1(siglim(il,k),0.01) |
---|
| 418 | cc fac=AMIN1(((dtcrit-dtmin(il,k))/dtcrit),1.0) |
---|
| 419 | fac = 1. |
---|
| 420 | wlim(il,k)=fac*SQRT(cape(il)) |
---|
| 421 | amu=siglim(il,k)*wlim(il,k) |
---|
| 422 | rhodp = 0.007*p(il,k)*(ph(il,k)-ph(il,k+1))/tv(il,k) |
---|
| 423 | mlim(il,k)=amu*rhodp |
---|
| 424 | c print*, 'siglim ', k,siglim(1,k) |
---|
| 425 | endif |
---|
| 426 | |
---|
| 427 | 610 continue |
---|
| 428 | 600 continue |
---|
| 429 | |
---|
| 430 | do 700 il=1,ncum |
---|
| 431 | mlim(il,icb(il))=0.5*mlim(il,icb(il)+1) |
---|
| 432 | : *(ph(il,icb(il))-ph(il,icb(il)+1)) |
---|
| 433 | : /(ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
---|
| 434 | 700 continue |
---|
| 435 | |
---|
| 436 | cjyg1 |
---|
| 437 | c------------------------------------------------------------------------ |
---|
| 438 | cc Correct mass fluxes so that power used to overcome CIN does not |
---|
| 439 | cc exceed Power Available for Lifting (PAL). |
---|
| 440 | c------------------------------------------------------------------------ |
---|
| 441 | c |
---|
| 442 | do il = 1,ncum |
---|
| 443 | cbmflim(il) = 0. |
---|
| 444 | cbmf(il) = 0. |
---|
| 445 | enddo |
---|
| 446 | c |
---|
| 447 | cc 1. Compute cloud base mass flux of elementary system (Cbmf0=Cbmflim) |
---|
| 448 | c |
---|
| 449 | do k= 1,nl |
---|
| 450 | do il = 1,ncum |
---|
| 451 | IF (k .ge. icb(il) .and. k .le. inb(il)) THEN |
---|
| 452 | cbmflim(il) = cbmflim(il)+MLIM(il,k) |
---|
| 453 | ENDIF |
---|
| 454 | enddo |
---|
| 455 | enddo |
---|
| 456 | c |
---|
| 457 | cc 1.5 Compute cloud base mass flux given by Alp closure (Cbmf1), maximum |
---|
| 458 | cc allowed mass flux (Cbmfmax) and final target mass flux (Cbmf) |
---|
| 459 | cc Cbmf is set to zero if Cbmflim (the mass flux of elementary cloud) is |
---|
| 460 | c-- exceedingly small. |
---|
| 461 | c |
---|
| 462 | DO il = 1,ncum |
---|
| 463 | wb2(il) = sqrt(2.*max(Ale(il)+cin(il),0.)) |
---|
| 464 | ENDDO |
---|
| 465 | c |
---|
| 466 | DO il = 1,ncum |
---|
| 467 | cbmf1(il) = alp2(il)/(0.5*wb*wb-Cin(il)) |
---|
| 468 | cbmfmax(il) = sigmax*wb2(il)*100.*p(il,icb(il)) |
---|
| 469 | : /(rrd*tv(il,icb(il))) |
---|
| 470 | ENDDO |
---|
| 471 | c |
---|
| 472 | DO il = 1,ncum |
---|
| 473 | IF (cbmflim(il) .gt. 1.e-6) THEN |
---|
| 474 | cATTENTION TEST CR |
---|
| 475 | c if (cbmfmax(il).lt.1.e-12) then |
---|
| 476 | cbmf(il) = min(cbmf1(il),cbmfmax(il)) |
---|
| 477 | c else |
---|
| 478 | c cbmf(il) = cbmf1(il) |
---|
| 479 | c endif |
---|
| 480 | c print*,'cbmf',cbmf1(il),cbmfmax(il) |
---|
| 481 | ENDIF |
---|
| 482 | ENDDO |
---|
| 483 | c |
---|
| 484 | cc 2. Compute coefficient and apply correction |
---|
| 485 | c |
---|
| 486 | do il = 1,ncum |
---|
| 487 | coef(il) = (cbmf(il)+1.e-10)/(cbmflim(il)+1.e-10) |
---|
| 488 | enddo |
---|
| 489 | c |
---|
| 490 | DO k = 1,nl |
---|
| 491 | do il = 1,ncum |
---|
| 492 | IF ( k .ge. icb(il)+1 .AND. k .le. inb(il)) THEN |
---|
| 493 | sig(il,k) = beta*sig(il,k)+(1.-beta)*coef(il)*siglim(il,k) |
---|
| 494 | cc sig(il,k) = beta*sig(il,k)+siglim(il,k) |
---|
| 495 | w0(il,k) = beta*w0(il,k) +(1.-beta)*wlim(il,k) |
---|
| 496 | AMU=SIG(il,k)*W0(il,k) |
---|
| 497 | cc amu = 0.5*(SIG(il,k)+sigold(il,k))*W0(il,k) |
---|
| 498 | M(il,k)=AMU*0.007*P(il,k)*(PH(il,k)-PH(il,k+1))/TV(il,k) |
---|
| 499 | ENDIF |
---|
| 500 | enddo |
---|
| 501 | ENDDO |
---|
| 502 | cjyg2 |
---|
| 503 | DO il = 1,ncum |
---|
| 504 | w0(il,icb(il))=0.5*w0(il,icb(il)+1) |
---|
| 505 | m(il,icb(il))=0.5*m(il,icb(il)+1) |
---|
| 506 | $ *(ph(il,icb(il))-ph(il,icb(il)+1)) |
---|
| 507 | $ /(ph(il,icb(il)+1)-ph(il,icb(il)+2)) |
---|
| 508 | sig(il,icb(il))=sig(il,icb(il)+1) |
---|
| 509 | sig(il,icb(il)-1)=sig(il,icb(il)) |
---|
| 510 | ENDDO |
---|
| 511 | |
---|
| 512 | c |
---|
| 513 | cc 3. Compute final cloud base mass flux and set iflag to 3 if |
---|
| 514 | cc cloud base mass flux is exceedingly small and is decreasing (i.e. if |
---|
| 515 | cc the final mass flux (cbmflast) is greater than the target mass flux |
---|
| 516 | cc (cbmf)). |
---|
| 517 | c |
---|
| 518 | do il = 1,ncum |
---|
| 519 | cbmflast(il) = 0. |
---|
| 520 | enddo |
---|
| 521 | c |
---|
| 522 | do k= 1,nl |
---|
| 523 | do il = 1,ncum |
---|
| 524 | IF (k .ge. icb(il) .and. k .le. inb(il)) THEN |
---|
| 525 | cbmflast(il) = cbmflast(il)+M(il,k) |
---|
| 526 | ENDIF |
---|
| 527 | enddo |
---|
| 528 | enddo |
---|
| 529 | c |
---|
| 530 | do il = 1,ncum |
---|
| 531 | IF (cbmflast(il) .lt. 1.e-6 .and. |
---|
| 532 | $ cbmflast(il) .ge. cbmf(il)) THEN |
---|
| 533 | iflag(il) = 3 |
---|
| 534 | ENDIF |
---|
| 535 | enddo |
---|
| 536 | c |
---|
| 537 | do k= 1,nl |
---|
| 538 | do il = 1,ncum |
---|
| 539 | IF (iflag(il) .ge. 3) THEN |
---|
| 540 | M(il,k) = 0. |
---|
| 541 | sig(il,k) = 0. |
---|
| 542 | w0(il,k) = 0. |
---|
| 543 | ENDIF |
---|
| 544 | enddo |
---|
| 545 | enddo |
---|
| 546 | c |
---|
| 547 | cc 4. Introduce a correcting factor for coef, in order to obtain an effective |
---|
| 548 | cc sigdz larger in the present case (using cv3p1_closure) than in the old |
---|
| 549 | cc closure (using cv3_closure). |
---|
| 550 | |
---|
| 551 | if (iflag_cvl_sigd.eq.0) then |
---|
| 552 | ctest pour verifier qu on fait la meme chose qu avant: sid constant |
---|
| 553 | coef(1:ncum)=1. |
---|
| 554 | else |
---|
| 555 | coef(1:ncum) = min(2.*coef(1:ncum),5.) |
---|
| 556 | coef(1:ncum) = max(2.*coef(1:ncum),0.2) |
---|
| 557 | endif |
---|
| 558 | c |
---|
| 559 | return |
---|
| 560 | end |
---|
| 561 | |
---|
| 562 | |
---|