[879] | 1 | SUBROUTINE cv3_cine(nloc,ncum,nd,icb,inb |
---|
| 2 | : ,pbase,plcl,p,ph,tv,tvp |
---|
| 3 | : ,cina,cinb) |
---|
| 4 | |
---|
| 5 | *************************************************************** |
---|
| 6 | * * |
---|
| 7 | * CV3_CINE * |
---|
| 8 | * * |
---|
| 9 | * * |
---|
| 10 | * written by : Frederique Cheruy * |
---|
| 11 | * vectorization: Jean-Yves Grandpeix, 19/06/2003, 11.54.43 * |
---|
| 12 | * modified by : * |
---|
| 13 | *************************************************************** |
---|
| 14 | * |
---|
| 15 | implicit none |
---|
| 16 | c |
---|
| 17 | #include "YOMCST.h" |
---|
| 18 | #include "cvthermo.h" |
---|
| 19 | #include "cv3param.h" |
---|
| 20 | c input: |
---|
| 21 | integer ncum, nd, nloc |
---|
| 22 | integer icb(nloc), inb(nloc) |
---|
| 23 | real pbase(nloc),plcl(nloc) |
---|
| 24 | real p(nloc,nd), ph(nloc,nd+1) |
---|
| 25 | real tv(nloc,nd),tvp(nloc,nd) |
---|
| 26 | c |
---|
| 27 | c output |
---|
| 28 | real cina(nloc),cinb(nloc) |
---|
| 29 | c |
---|
| 30 | c local variables |
---|
| 31 | integer il,i,j,k |
---|
| 32 | integer itop(nloc),ineg(nloc),ilow(nloc) |
---|
| 33 | integer ifst(nloc),isublcl(nloc) |
---|
| 34 | logical lswitch(nloc),lswitch1(nloc),lswitch2(nloc) |
---|
| 35 | real dpmax |
---|
| 36 | real deltap,dcin |
---|
| 37 | real buoylcl(nloc),tvplcl(nloc),tvlcl(nloc) |
---|
| 38 | real plfc(nloc),p0(nloc) |
---|
| 39 | real buoyz(nloc), buoy(nloc,nd) |
---|
| 40 | c |
---|
| 41 | c------------------------------------------------------------- |
---|
| 42 | c Initialization |
---|
| 43 | c------------------------------------------------------------- |
---|
| 44 | do il = 1,ncum |
---|
| 45 | cina(il) = 0. |
---|
| 46 | cinb(il) = 0. |
---|
| 47 | enddo |
---|
| 48 | c |
---|
| 49 | c-------------------------------------------------------------- |
---|
| 50 | c Recompute buoyancies |
---|
| 51 | c-------------------------------------------------------------- |
---|
| 52 | DO k = 1,nl |
---|
| 53 | DO il = 1,ncum |
---|
| 54 | buoy(il,k) = tvp(il,k) - tv(il,k) |
---|
| 55 | ENDDO |
---|
| 56 | ENDDO |
---|
| 57 | c |
---|
| 58 | c--------------------------------------------------------------- |
---|
| 59 | c premiere couche contenant un niveau de flotabilite positive |
---|
| 60 | c et premiere couche contenant un niveau de flotabilite negative |
---|
| 61 | c au dessus du niveau de condensation |
---|
| 62 | c--------------------------------------------------------------- |
---|
| 63 | do il = 1,ncum |
---|
| 64 | itop(il) =nl-1 |
---|
| 65 | ineg(il) = nl-1 |
---|
| 66 | enddo |
---|
| 67 | do 100 k=nl,1,-1 |
---|
| 68 | do 110 il=1,ncum |
---|
| 69 | if (k .ge. icb(il)) then |
---|
| 70 | if (buoy(il,k) .gt. 0.) then |
---|
| 71 | itop(il)=k |
---|
| 72 | else |
---|
| 73 | ineg(il)=k |
---|
| 74 | endif |
---|
| 75 | endif |
---|
| 76 | 110 continue |
---|
| 77 | 100 continue |
---|
| 78 | c print *,' itop, ineg, icb ',itop(1),ineg(1), icb(1) |
---|
| 79 | c |
---|
| 80 | c--------------------------------------------------------------- |
---|
| 81 | c |
---|
| 82 | c calcul de la flottabilite a LCL (Buoylcl) |
---|
| 83 | c ifst = first P-level above lcl |
---|
| 84 | c isublcl = highest P-level below lcl. |
---|
| 85 | c--------------------------------------------------------------- |
---|
| 86 | c |
---|
| 87 | do il = 1,ncum |
---|
| 88 | TVPlcl(il) = TVP(il,1)*(Plcl(il)/P(il,1))**(2./7.) !For dry air, R/Cp=2/7 |
---|
| 89 | enddo |
---|
| 90 | c |
---|
| 91 | do il = 1,ncum |
---|
| 92 | IF (Plcl(il) .GT. P(il,icb(il))) THEN |
---|
| 93 | ifst(il) = icb(il) |
---|
| 94 | isublcl(il) = icb(il)-1 |
---|
| 95 | ELSE |
---|
| 96 | ifst(il) = icb(il)+1 |
---|
| 97 | isublcl(il) = icb(il) |
---|
| 98 | ENDIF |
---|
| 99 | enddo |
---|
| 100 | c |
---|
| 101 | do il = 1,ncum |
---|
| 102 | TVlcl(il)=TV(il,ifst(il)-1)+(TV(il,ifst(il))-TV(il,ifst(il)-1)) |
---|
| 103 | $ *(Plcl(il)-P(il,ifst(il)-1))/(P(il,ifst(il))-P(il,ifst(il)-1)) |
---|
| 104 | enddo |
---|
| 105 | c |
---|
| 106 | do il = 1,ncum |
---|
| 107 | BUOYlcl(il) = TVPlcl(il)-TVlcl(il) |
---|
| 108 | enddo |
---|
| 109 | c |
---|
| 110 | c--------------------------------------------------------------- |
---|
| 111 | c -- Two cases : BUOYlcl >= 0 and BUOYlcl < 0. |
---|
| 112 | c--------------------------------------------------------------- |
---|
| 113 | C |
---|
| 114 | C-------------------- |
---|
| 115 | C -- 1.0 BUOYlcl >=0. |
---|
| 116 | C-------------------- |
---|
| 117 | c |
---|
| 118 | DPMAX = 50. |
---|
| 119 | DO il = 1,ncum |
---|
| 120 | lswitch1(il)=BUOYlcl(il) .GE. 0. |
---|
| 121 | lswitch(il) = lswitch1(il) |
---|
| 122 | ENDDO |
---|
| 123 | c |
---|
| 124 | c 1.1 No inhibition case |
---|
| 125 | c ---------------------- |
---|
| 126 | C If buoyancy is positive at LCL and stays positive over a large enough |
---|
| 127 | C pressure interval (=DPMAX), inhibition is set to zero, |
---|
| 128 | C |
---|
| 129 | DO il = 1,ncum |
---|
| 130 | IF (lswitch(il)) THEN |
---|
| 131 | IF (P(il,ineg(il)) .LT. P(il,icb(il))-DPmax) THEN |
---|
| 132 | PLFC(il) = Plcl(il) |
---|
| 133 | Cina(il) = 0. |
---|
| 134 | Cinb(il) = 0. |
---|
| 135 | ENDIF |
---|
| 136 | ENDIF |
---|
| 137 | ENDDO |
---|
| 138 | c |
---|
| 139 | c 1.2 Upper inhibition only case |
---|
| 140 | c ------------------------------ |
---|
| 141 | DO il = 1,ncum |
---|
| 142 | lswitch2(il)= P(il,ineg(il)) .GE. P(il,icb(il))-DPmax |
---|
| 143 | lswitch(il) = lswitch1(il) .AND. lswitch2(il) |
---|
| 144 | ENDDO |
---|
| 145 | c |
---|
| 146 | DO il = 1,ncum |
---|
| 147 | IF (lswitch(il)) THEN |
---|
| 148 | Cinb(il) = 0. |
---|
| 149 | c |
---|
| 150 | c 1.2.1 Calcul de la pression du niveau de flot. nulle juste au-dessus de LCL |
---|
| 151 | c --------------------------------------------------------------------------- |
---|
| 152 | IF (ineg(il) .GT. isublcl(il)+1) THEN |
---|
| 153 | C In order to get P0, one may interpolate linearly buoyancies |
---|
| 154 | C between P(ineg) and P(ineg-1). |
---|
| 155 | P0(il)=(buoy(il,ineg(il))*P(il,ineg(il)-1) |
---|
| 156 | $ -buoy(il,ineg(il)-1)*P(il,ineg(il))) |
---|
| 157 | : / (buoy(il,ineg(il))-buoy(il,ineg(il)-1)) |
---|
| 158 | ELSE |
---|
| 159 | C In order to get P0, one has to interpolate between P(ineg) and Plcl. |
---|
| 160 | P0(il) = (BUOY(il,ineg(il))*Plcl(il)-BUOYlcl(il)*P(il,ineg(il))) |
---|
| 161 | $ /(BUOY(il,ineg(il)) -BUOYlcl(il)) |
---|
| 162 | ENDIF |
---|
| 163 | ENDIF |
---|
| 164 | ENDDO |
---|
| 165 | c |
---|
| 166 | c 1.2.2 Recompute itop (=1st layer with positive buoyancy above ineg) |
---|
| 167 | c ------------------------------------------------------------------- |
---|
| 168 | do il = 1,ncum |
---|
| 169 | IF (lswitch(il)) THEN |
---|
| 170 | itop(il) =nl-1 |
---|
| 171 | ENDIF |
---|
| 172 | enddo |
---|
| 173 | c |
---|
| 174 | do k=nl,1,-1 |
---|
| 175 | do il=1,ncum |
---|
| 176 | IF (lswitch(il)) THEN |
---|
| 177 | if (k .ge. ineg(il) .and. buoy(il,k) .gt. 0) then |
---|
| 178 | itop(il)=k |
---|
| 179 | endif |
---|
| 180 | ENDIF |
---|
| 181 | enddo |
---|
| 182 | enddo |
---|
| 183 | c |
---|
| 184 | c 1.2.3 Computation of PLFC |
---|
| 185 | c ------------------------- |
---|
| 186 | DO il = 1,ncum |
---|
| 187 | IF (lswitch(il)) THEN |
---|
| 188 | PLFC(il)=(buoy(il,itop(il))*P(il,itop(il)-1) |
---|
| 189 | $ -buoy(il,itop(il)-1)*P(il,itop(il))) |
---|
| 190 | $ / (buoy(il,itop(il))-buoy(il,itop(il)-1)) |
---|
| 191 | ENDIF |
---|
| 192 | ENDDO |
---|
| 193 | c |
---|
| 194 | c 1.2.4 Computation of CINA |
---|
| 195 | c ------------------------- |
---|
| 196 | c |
---|
| 197 | C Upper part of CINA : integral from P(itop-1) to Plfc |
---|
| 198 | DO il = 1,ncum |
---|
| 199 | IF (lswitch(il)) THEN |
---|
| 200 | deltap = P(il,itop(il)-1)-Plfc(il) |
---|
| 201 | dcin = RD*BUOY(il,itop(il)-1)*deltap |
---|
| 202 | $ / (P(il,itop(il)-1)+Plfc(il)) |
---|
| 203 | CINA(il) = min(0.,dcin) |
---|
| 204 | ENDIF |
---|
| 205 | ENDDO |
---|
| 206 | c |
---|
| 207 | C Middle part of CINA : integral from P(ineg) to P(itop-1) |
---|
| 208 | DO k = 1,nl |
---|
| 209 | DO il = 1,ncum |
---|
| 210 | IF (lswitch(il)) THEN |
---|
| 211 | IF (k .GE. ineg(il) .AND. k .LE. itop(il)-2) THEN |
---|
| 212 | deltap = P(il,k)-P(il,k+1) |
---|
| 213 | dcin = 0.5*RD*(BUOY(il,k)+BUOY(il,k+1))*deltap/PH(il,k+1) |
---|
| 214 | CINA(il) = CINA(il) + min(0.,dcin) |
---|
| 215 | ENDIF |
---|
| 216 | ENDIF |
---|
| 217 | ENDDO |
---|
| 218 | ENDDO |
---|
| 219 | c |
---|
| 220 | C Lower part of CINA : integral from P0 to P(ineg) |
---|
| 221 | DO il = 1,ncum |
---|
| 222 | IF (lswitch(il)) THEN |
---|
| 223 | deltap = P0(il)-P(il,ineg(il)) |
---|
| 224 | dcin = RD*BUOY(il,ineg(il))*deltap/(P(il,ineg(il))+P0(il)) |
---|
| 225 | CINA(il) = CINA(il) + min(0.,dcin) |
---|
| 226 | ENDIF |
---|
| 227 | ENDDO |
---|
| 228 | c |
---|
| 229 | C |
---|
| 230 | C ------------------ |
---|
| 231 | C -- 2.0 BUOYlcl <0. |
---|
| 232 | C ------------------ |
---|
| 233 | C |
---|
| 234 | DO il = 1,ncum |
---|
| 235 | lswitch1(il)=BUOYlcl(il) .LT. 0. |
---|
| 236 | lswitch(il) = lswitch1(il) |
---|
| 237 | ENDDO |
---|
| 238 | c |
---|
| 239 | c 2.0.1 Premiere couche ou la flotabilite est negative au dessus du sol |
---|
| 240 | c ---------------------------------------------------- |
---|
| 241 | c au cas ou il existe sinon ilow=1 (nk apres) |
---|
| 242 | c on suppose que la parcelle part de la premiere couche |
---|
| 243 | c |
---|
| 244 | DO il = 1,ncum |
---|
| 245 | IF (lswitch(il)) THEN |
---|
| 246 | ilow(il)=1 |
---|
| 247 | ENDIF |
---|
| 248 | ENDDO |
---|
| 249 | c |
---|
| 250 | do 200 i=nl,1,-1 |
---|
| 251 | DO il = 1,ncum |
---|
| 252 | IF (lswitch(il) .AND. k .LE.icb(il)-1) THEN |
---|
| 253 | if(buoy(il,k).lt. 0.) then |
---|
| 254 | ilow(il) = k |
---|
| 255 | endif |
---|
| 256 | ENDIF |
---|
| 257 | ENDDO |
---|
| 258 | 200 continue |
---|
| 259 | |
---|
| 260 | c 2.0.2 Calcul de la pression du niveau de flot. nulle sous le nuage |
---|
| 261 | c ---------------------------------------------------- |
---|
| 262 | DO il = 1,ncum |
---|
| 263 | IF (lswitch(il)) THEN |
---|
| 264 | if(ilow(il).gt. 1) then |
---|
| 265 | P0(il)=(buoy(il,ilow(il))*P(il,ilow(il)-1) |
---|
| 266 | $ -buoy(il,ilow(il)-1)*P(il,ilow(il))) |
---|
| 267 | : / (buoy(il,ilow(il))-buoy(il,ilow(il)-1)) |
---|
| 268 | BUOYz(il) = 0. |
---|
| 269 | else |
---|
| 270 | P0(il) = P(il,1) |
---|
| 271 | BUOYz(il) = BUOY(il,1) |
---|
| 272 | endif |
---|
| 273 | ENDIF |
---|
| 274 | ENDDO |
---|
| 275 | c |
---|
| 276 | C 2.1. Computation of CINB |
---|
| 277 | C ----------------------- |
---|
| 278 | c |
---|
| 279 | DO il = 1,ncum |
---|
| 280 | lswitch2(il)= (isublcl(il) .EQ. 1 .AND. ilow(il) .EQ. 1) |
---|
| 281 | $ .OR.(isublcl(il) .EQ. ilow(il)-1) |
---|
| 282 | lswitch(il) = lswitch1(il) .AND. lswitch2(il) |
---|
| 283 | ENDDO |
---|
| 284 | cc IF ( (isublcl .EQ. 1 .AND. ilow .EQ. 1) |
---|
| 285 | cc $ .OR.(isublcl .EQ. ilow-1)) THEN |
---|
| 286 | c |
---|
| 287 | c 2.1.1 First case : Plcl just above P0 |
---|
| 288 | c ------------------------------------- |
---|
| 289 | DO il = 1,ncum |
---|
| 290 | IF (lswitch(il)) THEN |
---|
| 291 | deltap = P0(il)-Plcl(il) |
---|
| 292 | dcin = RD*(BUOYz(il)+BUOYlcl(il))*deltap/(P0(il)+Plcl(il)) |
---|
| 293 | CINB(il) = min(0.,dcin) |
---|
| 294 | cc print *,'buoyz(il),buoylcl(il),deltap,p0(il),plcl(il),dcin ', |
---|
| 295 | cc $ buoyz(il),buoylcl(il),deltap,p0(il),plcl(il),dcin |
---|
| 296 | ENDIF |
---|
| 297 | ENDDO |
---|
| 298 | c print*, 'CINB ',CINB(1),'DCIN ',DCIN,I,BUOYz(1),BUOYlcl(1) |
---|
| 299 | c |
---|
| 300 | DO il = 1,ncum |
---|
| 301 | lswitch(il) = lswitch1(il) .AND. .NOT. lswitch2(il) |
---|
| 302 | ENDDO |
---|
| 303 | cc ELSE |
---|
| 304 | c |
---|
| 305 | c 2.1.2 Second case : there is at least one P-level between P0 and Plcl |
---|
| 306 | c --------------------------------------------------------------------- |
---|
| 307 | c |
---|
| 308 | C Lower part of CINB : integral from P0 to P(ilow) |
---|
| 309 | DO il = 1,ncum |
---|
| 310 | IF (lswitch(il)) THEN |
---|
| 311 | deltap = P0(il)-P(il,ilow(il)) |
---|
| 312 | dcin = RD*(BUOYz(il)+BUOY(il,ilow(il)))*deltap |
---|
| 313 | $ /(P0(il)+P(il,ilow(il))) |
---|
| 314 | CINB(il) = min(0.,dcin) |
---|
| 315 | ENDIF |
---|
| 316 | ENDDO |
---|
| 317 | c |
---|
| 318 | IF (lswitch(1)) THEN |
---|
| 319 | c print*,'ilow= ',ilow(1),'DCIN0 ',DCIN,P0(1),P(1,ilow(1)) |
---|
| 320 | c print*,'buoy',(BUOY(1,k),k=1,itop(1)) |
---|
| 321 | ENDIF |
---|
| 322 | c |
---|
| 323 | C Middle part of CINB : integral from P(ilow) to P(isublcl) |
---|
| 324 | cc DO k = ilow,isublcl-1 |
---|
| 325 | DO k = 1,nl |
---|
| 326 | DO il = 1,ncum |
---|
| 327 | IF (lswitch(il) |
---|
| 328 | $ .AND. k .GE. ilow(il) .AND. k .LE. isublcl(il)-1) THEN |
---|
| 329 | deltap = P(il,k)-P(il,k+1) |
---|
| 330 | dcin = 0.5*RD*(BUOY(il,k)+BUOY(il,k+1))*deltap/PH(il,k+1) |
---|
| 331 | CINB(il) = CINB(il) + min(0.,dcin) |
---|
| 332 | ENDIF |
---|
| 333 | ENDDO |
---|
| 334 | c print*, 'CINB ', CINB(1), 'DCIN',DCIN,k,BUOY(1,k),BUOY(1,k+1) |
---|
| 335 | ENDDO |
---|
| 336 | c |
---|
| 337 | C Upper part of CINB : integral from P(isublcl) to Plcl |
---|
| 338 | DO il = 1,ncum |
---|
| 339 | IF (lswitch(il)) THEN |
---|
| 340 | deltap = P(il,isublcl(il)) - Plcl(il) |
---|
| 341 | dcin = RD*(BUOY(il,isublcl(il))+BUOYlcl(il))*deltap |
---|
| 342 | $ /(P(il,isublcl(il))+Plcl(il)) |
---|
| 343 | CINB(il) = CINB(il)+min(0.,dcin) |
---|
| 344 | ENDIF |
---|
| 345 | ENDDO |
---|
| 346 | C |
---|
| 347 | c print*, ' CINB ', CINB(1), 'Dcin ',dcin |
---|
| 348 | c |
---|
| 349 | cc ENDIF |
---|
| 350 | c |
---|
| 351 | C 2.2 Computation of CINA |
---|
| 352 | c --------------------- |
---|
| 353 | c |
---|
| 354 | DO il = 1,ncum |
---|
| 355 | lswitch2(il)= Plcl(il) .GT. P(il,itop(il)-1) |
---|
| 356 | lswitch(il) = lswitch1(il) .AND. lswitch2(il) |
---|
| 357 | ENDDO |
---|
| 358 | c |
---|
| 359 | c 2.2.1 FIrst case : Plcl > P(itop-1) |
---|
| 360 | C --------------------------------- |
---|
| 361 | C In order to get Plfc, one may interpolate linearly buoyancies |
---|
| 362 | C between P(itop) and P(itop-1). |
---|
| 363 | DO il = 1,ncum |
---|
| 364 | IF (lswitch(il)) THEN |
---|
| 365 | PLFC(il)=(buoy(il,itop(il))*P(il,itop(il)-1) |
---|
| 366 | $ -buoy(il,itop(il)-1)*P(il,itop(il))) |
---|
| 367 | $ / (buoy(il,itop(il))-buoy(il,itop(il)-1)) |
---|
| 368 | ENDIF |
---|
| 369 | ENDDO |
---|
| 370 | c |
---|
| 371 | C Upper part of CINA : integral from P(itop-1) to Plfc |
---|
| 372 | DO il = 1,ncum |
---|
| 373 | IF (lswitch(il)) THEN |
---|
| 374 | deltap = P(il,itop(il)-1)-Plfc(il) |
---|
| 375 | dcin = RD*BUOY(il,itop(il)-1)*deltap |
---|
| 376 | $ /(P(il,itop(il)-1)+Plfc(il)) |
---|
| 377 | CINA(il) = min(0.,dcin) |
---|
| 378 | ENDIF |
---|
| 379 | ENDDO |
---|
| 380 | c |
---|
| 381 | C Middle part of CINA : integral from P(icb+1) to P(itop-1) |
---|
| 382 | DO k = 1,nl |
---|
| 383 | DO il = 1,ncum |
---|
| 384 | IF (lswitch(il) |
---|
| 385 | $ .AND. k .GE. icb(il)+1 .AND. k .LE. itop(il)-2) THEN |
---|
| 386 | deltap = P(il,k)-P(il,k+1) |
---|
| 387 | dcin = 0.5*RD*(BUOY(il,k)+BUOY(il,k+1))*deltap/PH(il,k+1) |
---|
| 388 | CINA(il) = CINA(il) + min(0.,dcin) |
---|
| 389 | ENDIF |
---|
| 390 | ENDDO |
---|
| 391 | ENDDO |
---|
| 392 | c |
---|
| 393 | C Lower part of CINA : integral from Plcl to P(icb+1) |
---|
| 394 | DO il = 1,ncum |
---|
| 395 | IF (lswitch(il)) THEN |
---|
| 396 | IF (Plcl(il) .GT. P(il,icb(il))) THEN |
---|
| 397 | IF (icb(il) .LT. itop(il)-1) THEN |
---|
| 398 | deltap = P(il,icb(il))-P(il,icb(il)+1) |
---|
| 399 | dcin = 0.5*RD*(BUOY(il,icb(il))+BUOY(il,icb(il)+1)) |
---|
| 400 | $ *deltap/PH(il,icb(il)+1) |
---|
| 401 | CINA(il) = CINA(il)+min(0.,dcin) |
---|
| 402 | ENDIF |
---|
| 403 | c |
---|
| 404 | deltap = Plcl(il)-P(il,icb(il)) |
---|
| 405 | dcin = RD*(BUOYlcl(il)+BUOY(il,icb(il))) |
---|
| 406 | $ *deltap/(Plcl(il)+P(il,icb(il))) |
---|
| 407 | CINA(il) = CINA(il)+min(0.,dcin) |
---|
| 408 | ELSE |
---|
| 409 | deltap = Plcl(il)-P(il,icb(il)+1) |
---|
| 410 | dcin = RD*(BUOYlcl(il)+BUOY(il,icb(il)+1)) |
---|
| 411 | $ *deltap/(Plcl(il)+P(il,icb(il)+1)) |
---|
| 412 | CINA(il) = CINA(il)+min(0.,dcin) |
---|
| 413 | ENDIF |
---|
| 414 | ENDIF |
---|
| 415 | ENDDO |
---|
| 416 | c |
---|
| 417 | DO il = 1,ncum |
---|
| 418 | lswitch(il) = lswitch1(il) .AND. .NOT. lswitch2(il) |
---|
| 419 | ENDDO |
---|
| 420 | cc ELSE |
---|
| 421 | c |
---|
| 422 | c 2.2.2 Second case : Plcl lies between P(itop-1) and P(itop); |
---|
| 423 | C ---------------------------------------------------------- |
---|
| 424 | C In order to get Plfc, one has to interpolate between P(itop) and Plcl. |
---|
| 425 | DO il = 1,ncum |
---|
| 426 | IF (lswitch(il)) THEN |
---|
| 427 | PLFC(il) = |
---|
| 428 | $ (BUOY(il,itop(il))*Plcl(il)-BUOYlcl(il)*P(il,itop(il))) |
---|
| 429 | $ /(BUOY(il,itop(il)) -BUOYlcl(il)) |
---|
| 430 | ENDIF |
---|
| 431 | ENDDO |
---|
| 432 | c |
---|
| 433 | DO il = 1,ncum |
---|
| 434 | IF (lswitch(il)) THEN |
---|
| 435 | deltap = Plcl(il)-Plfc(il) |
---|
| 436 | dcin = RD*BUOYlcl(il)*deltap/(Plcl(il)+Plfc(il)) |
---|
| 437 | CINA(il) = min(0.,dcin) |
---|
| 438 | ENDIF |
---|
| 439 | ENDDO |
---|
| 440 | cc ENDIF |
---|
| 441 | c Print *,' Plcl,P(itop-1),P(itop),PLFC,BUOYlcl' |
---|
| 442 | c $ ,Plcl(1),P(1,itop(1)-1),P(1,itop(1)),PLFC(1),BUOYlcl(1) |
---|
| 443 | C |
---|
| 444 | c print*, 'CIN above', CINA(1), 'CIN below',CINB(1) |
---|
| 445 | c |
---|
| 446 | |
---|
| 447 | |
---|
| 448 | RETURN |
---|
| 449 | END |
---|