[879] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
| 4 | c |
---|
| 5 | c |
---|
| 6 | SUBROUTINE cv30_param(nd,delt) |
---|
| 7 | implicit none |
---|
| 8 | |
---|
| 9 | c------------------------------------------------------------ |
---|
| 10 | c Set parameters for convectL for iflag_con = 3 |
---|
| 11 | c------------------------------------------------------------ |
---|
| 12 | |
---|
| 13 | C |
---|
| 14 | C *** PBCRIT IS THE CRITICAL CLOUD DEPTH (MB) BENEATH WHICH THE *** |
---|
| 15 | C *** PRECIPITATION EFFICIENCY IS ASSUMED TO BE ZERO *** |
---|
| 16 | C *** PTCRIT IS THE CLOUD DEPTH (MB) ABOVE WHICH THE PRECIP. *** |
---|
| 17 | C *** EFFICIENCY IS ASSUMED TO BE UNITY *** |
---|
| 18 | C *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
---|
| 19 | C *** SPFAC IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
---|
| 20 | C *** OF CLOUD *** |
---|
| 21 | C |
---|
| 22 | C [TAU: CHARACTERISTIC TIMESCALE USED TO COMPUTE ALPHA & BETA] |
---|
| 23 | C *** ALPHA AND BETA ARE PARAMETERS THAT CONTROL THE RATE OF *** |
---|
| 24 | C *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
| 25 | C *** (THEIR STANDARD VALUES ARE 1.0 AND 0.96, RESPECTIVELY) *** |
---|
| 26 | C *** (BETA MUST BE LESS THAN OR EQUAL TO 1) *** |
---|
| 27 | C |
---|
| 28 | C *** DTCRIT IS THE CRITICAL BUOYANCY (K) USED TO ADJUST THE *** |
---|
| 29 | C *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
| 30 | C *** IT MUST BE LESS THAN 0 *** |
---|
| 31 | |
---|
| 32 | #include "cv30param.h" |
---|
| 33 | #include "conema3.h" |
---|
| 34 | |
---|
| 35 | integer nd |
---|
| 36 | real delt ! timestep (seconds) |
---|
| 37 | |
---|
| 38 | c noff: integer limit for convection (nd-noff) |
---|
| 39 | c minorig: First level of convection |
---|
| 40 | |
---|
| 41 | c -- limit levels for convection: |
---|
| 42 | |
---|
| 43 | noff = 1 |
---|
| 44 | minorig = 1 |
---|
| 45 | nl=nd-noff |
---|
| 46 | nlp=nl+1 |
---|
| 47 | nlm=nl-1 |
---|
| 48 | |
---|
| 49 | c -- "microphysical" parameters: |
---|
| 50 | |
---|
| 51 | sigd = 0.01 |
---|
| 52 | spfac = 0.15 |
---|
| 53 | pbcrit = 150.0 |
---|
| 54 | ptcrit = 500.0 |
---|
| 55 | cIM cf. FH epmax = 0.993 |
---|
| 56 | |
---|
| 57 | omtrain = 45.0 ! used also for snow (no disctinction rain/snow) |
---|
| 58 | |
---|
| 59 | c -- misc: |
---|
| 60 | |
---|
| 61 | dtovsh = -0.2 ! dT for overshoot |
---|
| 62 | dpbase = -40. ! definition cloud base (400m above LCL) |
---|
| 63 | dttrig = 5. ! (loose) condition for triggering |
---|
| 64 | |
---|
| 65 | c -- rate of approach to quasi-equilibrium: |
---|
| 66 | |
---|
| 67 | dtcrit = -2.0 |
---|
| 68 | tau = 8000. |
---|
| 69 | beta = 1.0 - delt/tau |
---|
| 70 | alpha = 1.5E-3 * delt/tau |
---|
| 71 | c increase alpha to compensate W decrease: |
---|
| 72 | alpha = alpha*1.5 |
---|
| 73 | |
---|
| 74 | c -- interface cloud parameterization: |
---|
| 75 | |
---|
| 76 | delta=0.01 ! cld |
---|
| 77 | |
---|
| 78 | c -- interface with boundary-layer (gust factor): (sb) |
---|
| 79 | |
---|
| 80 | betad=10.0 ! original value (from convect 4.3) |
---|
| 81 | |
---|
| 82 | return |
---|
| 83 | end |
---|
| 84 | |
---|
| 85 | SUBROUTINE cv30_prelim(len,nd,ndp1,t,q,p,ph |
---|
| 86 | : ,lv,cpn,tv,gz,h,hm,th) |
---|
| 87 | implicit none |
---|
| 88 | |
---|
| 89 | !===================================================================== |
---|
| 90 | ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
---|
| 91 | ! "ori": from convect4.3 (vectorized) |
---|
| 92 | ! "convect3": to be exactly consistent with convect3 |
---|
| 93 | !===================================================================== |
---|
| 94 | |
---|
| 95 | c inputs: |
---|
| 96 | integer len, nd, ndp1 |
---|
| 97 | real t(len,nd), q(len,nd), p(len,nd), ph(len,ndp1) |
---|
| 98 | |
---|
| 99 | c outputs: |
---|
| 100 | real lv(len,nd), cpn(len,nd), tv(len,nd) |
---|
| 101 | real gz(len,nd), h(len,nd), hm(len,nd) |
---|
| 102 | real th(len,nd) |
---|
| 103 | |
---|
| 104 | c local variables: |
---|
| 105 | integer k, i |
---|
| 106 | real rdcp |
---|
| 107 | real tvx,tvy ! convect3 |
---|
| 108 | real cpx(len,nd) |
---|
| 109 | |
---|
| 110 | #include "cvthermo.h" |
---|
| 111 | #include "cv30param.h" |
---|
| 112 | |
---|
| 113 | |
---|
| 114 | c ori do 110 k=1,nlp |
---|
| 115 | do 110 k=1,nl ! convect3 |
---|
| 116 | do 100 i=1,len |
---|
| 117 | cdebug lv(i,k)= lv0-clmcpv*(t(i,k)-t0) |
---|
| 118 | lv(i,k)= lv0-clmcpv*(t(i,k)-273.15) |
---|
| 119 | cpn(i,k)=cpd*(1.0-q(i,k))+cpv*q(i,k) |
---|
| 120 | cpx(i,k)=cpd*(1.0-q(i,k))+cl*q(i,k) |
---|
| 121 | c ori tv(i,k)=t(i,k)*(1.0+q(i,k)*epsim1) |
---|
| 122 | tv(i,k)=t(i,k)*(1.0+q(i,k)/eps-q(i,k)) |
---|
| 123 | rdcp=(rrd*(1.-q(i,k))+q(i,k)*rrv)/cpn(i,k) |
---|
| 124 | th(i,k)=t(i,k)*(1000.0/p(i,k))**rdcp |
---|
| 125 | 100 continue |
---|
| 126 | 110 continue |
---|
| 127 | c |
---|
| 128 | c gz = phi at the full levels (same as p). |
---|
| 129 | c |
---|
| 130 | do 120 i=1,len |
---|
| 131 | gz(i,1)=0.0 |
---|
| 132 | 120 continue |
---|
| 133 | c ori do 140 k=2,nlp |
---|
| 134 | do 140 k=2,nl ! convect3 |
---|
| 135 | do 130 i=1,len |
---|
| 136 | tvx=t(i,k)*(1.+q(i,k)/eps-q(i,k)) !convect3 |
---|
| 137 | tvy=t(i,k-1)*(1.+q(i,k-1)/eps-q(i,k-1)) !convect3 |
---|
| 138 | gz(i,k)=gz(i,k-1)+0.5*rrd*(tvx+tvy) !convect3 |
---|
| 139 | & *(p(i,k-1)-p(i,k))/ph(i,k) !convect3 |
---|
| 140 | |
---|
| 141 | c ori gz(i,k)=gz(i,k-1)+hrd*(tv(i,k-1)+tv(i,k)) |
---|
| 142 | c ori & *(p(i,k-1)-p(i,k))/ph(i,k) |
---|
| 143 | 130 continue |
---|
| 144 | 140 continue |
---|
| 145 | c |
---|
| 146 | c h = phi + cpT (dry static energy). |
---|
| 147 | c hm = phi + cp(T-Tbase)+Lq |
---|
| 148 | c |
---|
| 149 | c ori do 170 k=1,nlp |
---|
| 150 | do 170 k=1,nl ! convect3 |
---|
| 151 | do 160 i=1,len |
---|
| 152 | h(i,k)=gz(i,k)+cpn(i,k)*t(i,k) |
---|
| 153 | hm(i,k)=gz(i,k)+cpx(i,k)*(t(i,k)-t(i,1))+lv(i,k)*q(i,k) |
---|
| 154 | 160 continue |
---|
| 155 | 170 continue |
---|
| 156 | |
---|
| 157 | return |
---|
| 158 | end |
---|
| 159 | |
---|
| 160 | SUBROUTINE cv30_feed(len,nd,t,q,qs,p,ph,hm,gz |
---|
| 161 | : ,nk,icb,icbmax,iflag,tnk,qnk,gznk,plcl) |
---|
| 162 | implicit none |
---|
| 163 | |
---|
| 164 | C================================================================ |
---|
| 165 | C Purpose: CONVECTIVE FEED |
---|
| 166 | C |
---|
| 167 | C Main differences with cv_feed: |
---|
| 168 | C - ph added in input |
---|
| 169 | C - here, nk(i)=minorig |
---|
| 170 | C - icb defined differently (plcl compared with ph instead of p) |
---|
| 171 | C |
---|
| 172 | C Main differences with convect3: |
---|
| 173 | C - we do not compute dplcldt and dplcldr of CLIFT anymore |
---|
| 174 | C - values iflag different (but tests identical) |
---|
| 175 | C - A,B explicitely defined (!...) |
---|
| 176 | C================================================================ |
---|
| 177 | |
---|
| 178 | #include "cv30param.h" |
---|
| 179 | |
---|
| 180 | c inputs: |
---|
| 181 | integer len, nd |
---|
| 182 | real t(len,nd), q(len,nd), qs(len,nd), p(len,nd) |
---|
| 183 | real hm(len,nd), gz(len,nd) |
---|
| 184 | real ph(len,nd+1) |
---|
| 185 | |
---|
| 186 | c outputs: |
---|
| 187 | integer iflag(len), nk(len), icb(len), icbmax |
---|
| 188 | real tnk(len), qnk(len), gznk(len), plcl(len) |
---|
| 189 | |
---|
| 190 | c local variables: |
---|
| 191 | integer i, k |
---|
| 192 | integer ihmin(len) |
---|
| 193 | real work(len) |
---|
| 194 | real pnk(len), qsnk(len), rh(len), chi(len) |
---|
| 195 | real A, B ! convect3 |
---|
| 196 | cym |
---|
| 197 | plcl=0.0 |
---|
| 198 | c@ !------------------------------------------------------------------- |
---|
| 199 | c@ ! --- Find level of minimum moist static energy |
---|
| 200 | c@ ! --- If level of minimum moist static energy coincides with |
---|
| 201 | c@ ! --- or is lower than minimum allowable parcel origin level, |
---|
| 202 | c@ ! --- set iflag to 6. |
---|
| 203 | c@ !------------------------------------------------------------------- |
---|
| 204 | c@ |
---|
| 205 | c@ do 180 i=1,len |
---|
| 206 | c@ work(i)=1.0e12 |
---|
| 207 | c@ ihmin(i)=nl |
---|
| 208 | c@ 180 continue |
---|
| 209 | c@ do 200 k=2,nlp |
---|
| 210 | c@ do 190 i=1,len |
---|
| 211 | c@ if((hm(i,k).lt.work(i)).and. |
---|
| 212 | c@ & (hm(i,k).lt.hm(i,k-1)))then |
---|
| 213 | c@ work(i)=hm(i,k) |
---|
| 214 | c@ ihmin(i)=k |
---|
| 215 | c@ endif |
---|
| 216 | c@ 190 continue |
---|
| 217 | c@ 200 continue |
---|
| 218 | c@ do 210 i=1,len |
---|
| 219 | c@ ihmin(i)=min(ihmin(i),nlm) |
---|
| 220 | c@ if(ihmin(i).le.minorig)then |
---|
| 221 | c@ iflag(i)=6 |
---|
| 222 | c@ endif |
---|
| 223 | c@ 210 continue |
---|
| 224 | c@ c |
---|
| 225 | c@ !------------------------------------------------------------------- |
---|
| 226 | c@ ! --- Find that model level below the level of minimum moist static |
---|
| 227 | c@ ! --- energy that has the maximum value of moist static energy |
---|
| 228 | c@ !------------------------------------------------------------------- |
---|
| 229 | c@ |
---|
| 230 | c@ do 220 i=1,len |
---|
| 231 | c@ work(i)=hm(i,minorig) |
---|
| 232 | c@ nk(i)=minorig |
---|
| 233 | c@ 220 continue |
---|
| 234 | c@ do 240 k=minorig+1,nl |
---|
| 235 | c@ do 230 i=1,len |
---|
| 236 | c@ if((hm(i,k).gt.work(i)).and.(k.le.ihmin(i)))then |
---|
| 237 | c@ work(i)=hm(i,k) |
---|
| 238 | c@ nk(i)=k |
---|
| 239 | c@ endif |
---|
| 240 | c@ 230 continue |
---|
| 241 | c@ 240 continue |
---|
| 242 | |
---|
| 243 | !------------------------------------------------------------------- |
---|
| 244 | ! --- Origin level of ascending parcels for convect3: |
---|
| 245 | !------------------------------------------------------------------- |
---|
| 246 | |
---|
| 247 | do 220 i=1,len |
---|
| 248 | nk(i)=minorig |
---|
| 249 | 220 continue |
---|
| 250 | |
---|
| 251 | !------------------------------------------------------------------- |
---|
| 252 | ! --- Check whether parcel level temperature and specific humidity |
---|
| 253 | ! --- are reasonable |
---|
| 254 | !------------------------------------------------------------------- |
---|
| 255 | do 250 i=1,len |
---|
| 256 | if( ( ( t(i,nk(i)).lt.250.0 ) |
---|
| 257 | & .or.( q(i,nk(i)).le.0.0 ) ) |
---|
| 258 | c@ & .or.( p(i,ihmin(i)).lt.400.0 ) ) |
---|
| 259 | & .and. |
---|
| 260 | & ( iflag(i).eq.0) ) iflag(i)=7 |
---|
| 261 | 250 continue |
---|
| 262 | !------------------------------------------------------------------- |
---|
| 263 | ! --- Calculate lifted condensation level of air at parcel origin level |
---|
| 264 | ! --- (Within 0.2% of formula of Bolton, MON. WEA. REV.,1980) |
---|
| 265 | !------------------------------------------------------------------- |
---|
| 266 | |
---|
| 267 | A = 1669.0 ! convect3 |
---|
| 268 | B = 122.0 ! convect3 |
---|
| 269 | |
---|
| 270 | do 260 i=1,len |
---|
| 271 | |
---|
| 272 | if (iflag(i).ne.7) then ! modif sb Jun7th 2002 |
---|
| 273 | |
---|
| 274 | tnk(i)=t(i,nk(i)) |
---|
| 275 | qnk(i)=q(i,nk(i)) |
---|
| 276 | gznk(i)=gz(i,nk(i)) |
---|
| 277 | pnk(i)=p(i,nk(i)) |
---|
| 278 | qsnk(i)=qs(i,nk(i)) |
---|
| 279 | c |
---|
| 280 | rh(i)=qnk(i)/qsnk(i) |
---|
| 281 | c ori rh(i)=min(1.0,rh(i)) ! removed for convect3 |
---|
| 282 | c ori chi(i)=tnk(i)/(1669.0-122.0*rh(i)-tnk(i)) |
---|
| 283 | chi(i)=tnk(i)/(A-B*rh(i)-tnk(i)) ! convect3 |
---|
| 284 | plcl(i)=pnk(i)*(rh(i)**chi(i)) |
---|
| 285 | if(((plcl(i).lt.200.0).or.(plcl(i).ge.2000.0)) |
---|
| 286 | & .and.(iflag(i).eq.0))iflag(i)=8 |
---|
| 287 | |
---|
| 288 | endif ! iflag=7 |
---|
| 289 | |
---|
| 290 | 260 continue |
---|
| 291 | |
---|
| 292 | !------------------------------------------------------------------- |
---|
| 293 | ! --- Calculate first level above lcl (=icb) |
---|
| 294 | !------------------------------------------------------------------- |
---|
| 295 | |
---|
| 296 | c@ do 270 i=1,len |
---|
| 297 | c@ icb(i)=nlm |
---|
| 298 | c@ 270 continue |
---|
| 299 | c@c |
---|
| 300 | c@ do 290 k=minorig,nl |
---|
| 301 | c@ do 280 i=1,len |
---|
| 302 | c@ if((k.ge.(nk(i)+1)).and.(p(i,k).lt.plcl(i))) |
---|
| 303 | c@ & icb(i)=min(icb(i),k) |
---|
| 304 | c@ 280 continue |
---|
| 305 | c@ 290 continue |
---|
| 306 | c@c |
---|
| 307 | c@ do 300 i=1,len |
---|
| 308 | c@ if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
---|
| 309 | c@ 300 continue |
---|
| 310 | |
---|
| 311 | do 270 i=1,len |
---|
| 312 | icb(i)=nlm |
---|
| 313 | 270 continue |
---|
| 314 | c |
---|
| 315 | c la modification consiste a comparer plcl a ph et non a p: |
---|
| 316 | c icb est defini par : ph(icb)<plcl<ph(icb-1) |
---|
| 317 | c@ do 290 k=minorig,nl |
---|
| 318 | do 290 k=3,nl-1 ! modif pour que icb soit sup/egal a 2 |
---|
| 319 | do 280 i=1,len |
---|
| 320 | if( ph(i,k).lt.plcl(i) ) icb(i)=min(icb(i),k) |
---|
| 321 | 280 continue |
---|
| 322 | 290 continue |
---|
| 323 | c |
---|
| 324 | do 300 i=1,len |
---|
| 325 | c@ if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
---|
| 326 | if((icb(i).eq.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
---|
| 327 | 300 continue |
---|
| 328 | |
---|
| 329 | do 400 i=1,len |
---|
| 330 | icb(i) = icb(i)-1 ! icb sup ou egal a 2 |
---|
| 331 | 400 continue |
---|
| 332 | c |
---|
| 333 | c Compute icbmax. |
---|
| 334 | c |
---|
| 335 | icbmax=2 |
---|
| 336 | do 310 i=1,len |
---|
| 337 | c! icbmax=max(icbmax,icb(i)) |
---|
| 338 | if (iflag(i).lt.7) icbmax=max(icbmax,icb(i)) ! sb Jun7th02 |
---|
| 339 | 310 continue |
---|
| 340 | |
---|
| 341 | return |
---|
| 342 | end |
---|
| 343 | |
---|
| 344 | SUBROUTINE cv30_undilute1(len,nd,t,q,qs,gz,plcl,p,nk,icb |
---|
| 345 | : ,tp,tvp,clw,icbs) |
---|
| 346 | implicit none |
---|
| 347 | |
---|
| 348 | !---------------------------------------------------------------- |
---|
| 349 | ! Equivalent de TLIFT entre NK et ICB+1 inclus |
---|
| 350 | ! |
---|
| 351 | ! Differences with convect4: |
---|
| 352 | ! - specify plcl in input |
---|
| 353 | ! - icbs is the first level above LCL (may differ from icb) |
---|
| 354 | ! - in the iterations, used x(icbs) instead x(icb) |
---|
| 355 | ! - many minor differences in the iterations |
---|
| 356 | ! - tvp is computed in only one time |
---|
| 357 | ! - icbs: first level above Plcl (IMIN de TLIFT) in output |
---|
| 358 | ! - if icbs=icb, compute also tp(icb+1),tvp(icb+1) & clw(icb+1) |
---|
| 359 | !---------------------------------------------------------------- |
---|
| 360 | |
---|
| 361 | #include "cvthermo.h" |
---|
| 362 | #include "cv30param.h" |
---|
| 363 | |
---|
| 364 | c inputs: |
---|
| 365 | integer len, nd |
---|
| 366 | integer nk(len), icb(len) |
---|
| 367 | real t(len,nd), q(len,nd), qs(len,nd), gz(len,nd) |
---|
| 368 | real p(len,nd) |
---|
| 369 | real plcl(len) ! convect3 |
---|
| 370 | |
---|
| 371 | c outputs: |
---|
| 372 | real tp(len,nd), tvp(len,nd), clw(len,nd) |
---|
| 373 | |
---|
| 374 | c local variables: |
---|
| 375 | integer i, k |
---|
| 376 | integer icb1(len), icbs(len), icbsmax2 ! convect3 |
---|
| 377 | real tg, qg, alv, s, ahg, tc, denom, es, rg |
---|
| 378 | real ah0(len), cpp(len) |
---|
| 379 | real tnk(len), qnk(len), gznk(len), ticb(len), gzicb(len) |
---|
| 380 | real qsicb(len) ! convect3 |
---|
| 381 | real cpinv(len) ! convect3 |
---|
| 382 | |
---|
| 383 | !------------------------------------------------------------------- |
---|
| 384 | ! --- Calculates the lifted parcel virtual temperature at nk, |
---|
| 385 | ! --- the actual temperature, and the adiabatic |
---|
| 386 | ! --- liquid water content. The procedure is to solve the equation. |
---|
| 387 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
| 388 | !------------------------------------------------------------------- |
---|
| 389 | |
---|
| 390 | do 320 i=1,len |
---|
| 391 | tnk(i)=t(i,nk(i)) |
---|
| 392 | qnk(i)=q(i,nk(i)) |
---|
| 393 | gznk(i)=gz(i,nk(i)) |
---|
| 394 | c ori ticb(i)=t(i,icb(i)) |
---|
| 395 | c ori gzicb(i)=gz(i,icb(i)) |
---|
| 396 | 320 continue |
---|
| 397 | c |
---|
| 398 | c *** Calculate certain parcel quantities, including static energy *** |
---|
| 399 | c |
---|
| 400 | do 330 i=1,len |
---|
| 401 | ah0(i)=(cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) |
---|
| 402 | & +qnk(i)*(lv0-clmcpv*(tnk(i)-273.15))+gznk(i) |
---|
| 403 | cpp(i)=cpd*(1.-qnk(i))+qnk(i)*cpv |
---|
| 404 | cpinv(i)=1./cpp(i) |
---|
| 405 | 330 continue |
---|
| 406 | c |
---|
| 407 | c *** Calculate lifted parcel quantities below cloud base *** |
---|
| 408 | c |
---|
| 409 | do i=1,len !convect3 |
---|
| 410 | icb1(i)=MAX(icb(i),2) !convect3 |
---|
| 411 | icb1(i)=MIN(icb(i),nl) !convect3 |
---|
| 412 | c if icb is below LCL, start loop at ICB+1: |
---|
| 413 | c (icbs est le premier niveau au-dessus du LCL) |
---|
| 414 | icbs(i)=icb1(i) !convect3 |
---|
| 415 | if (plcl(i).lt.p(i,icb1(i))) then |
---|
| 416 | icbs(i)=MIN(icbs(i)+1,nl) !convect3 |
---|
| 417 | endif |
---|
| 418 | enddo !convect3 |
---|
| 419 | |
---|
| 420 | do i=1,len !convect3 |
---|
| 421 | ticb(i)=t(i,icbs(i)) !convect3 |
---|
| 422 | gzicb(i)=gz(i,icbs(i)) !convect3 |
---|
| 423 | qsicb(i)=qs(i,icbs(i)) !convect3 |
---|
| 424 | enddo !convect3 |
---|
| 425 | |
---|
| 426 | c |
---|
| 427 | c Re-compute icbsmax (icbsmax2): !convect3 |
---|
| 428 | c !convect3 |
---|
| 429 | icbsmax2=2 !convect3 |
---|
| 430 | do 310 i=1,len !convect3 |
---|
| 431 | icbsmax2=max(icbsmax2,icbs(i)) !convect3 |
---|
| 432 | 310 continue !convect3 |
---|
| 433 | |
---|
| 434 | c initialization outputs: |
---|
| 435 | |
---|
| 436 | do k=1,icbsmax2 ! convect3 |
---|
| 437 | do i=1,len ! convect3 |
---|
| 438 | tp(i,k) = 0.0 ! convect3 |
---|
| 439 | tvp(i,k) = 0.0 ! convect3 |
---|
| 440 | clw(i,k) = 0.0 ! convect3 |
---|
| 441 | enddo ! convect3 |
---|
| 442 | enddo ! convect3 |
---|
| 443 | |
---|
| 444 | c tp and tvp below cloud base: |
---|
| 445 | |
---|
| 446 | do 350 k=minorig,icbsmax2-1 |
---|
| 447 | do 340 i=1,len |
---|
| 448 | tp(i,k)=tnk(i)-(gz(i,k)-gznk(i))*cpinv(i) |
---|
| 449 | tvp(i,k)=tp(i,k)*(1.+qnk(i)/eps-qnk(i)) !whole thing (convect3) |
---|
| 450 | 340 continue |
---|
| 451 | 350 continue |
---|
| 452 | c |
---|
| 453 | c *** Find lifted parcel quantities above cloud base *** |
---|
| 454 | c |
---|
| 455 | do 360 i=1,len |
---|
| 456 | tg=ticb(i) |
---|
| 457 | c ori qg=qs(i,icb(i)) |
---|
| 458 | qg=qsicb(i) ! convect3 |
---|
| 459 | cdebug alv=lv0-clmcpv*(ticb(i)-t0) |
---|
| 460 | alv=lv0-clmcpv*(ticb(i)-273.15) |
---|
| 461 | c |
---|
| 462 | c First iteration. |
---|
| 463 | c |
---|
| 464 | c ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 465 | s=cpd*(1.-qnk(i))+cl*qnk(i) ! convect3 |
---|
| 466 | : +alv*alv*qg/(rrv*ticb(i)*ticb(i)) ! convect3 |
---|
| 467 | s=1./s |
---|
| 468 | c ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
| 469 | ahg=cpd*tg+(cl-cpd)*qnk(i)*tg+alv*qg+gzicb(i) ! convect3 |
---|
| 470 | tg=tg+s*(ah0(i)-ahg) |
---|
| 471 | c ori tg=max(tg,35.0) |
---|
| 472 | cdebug tc=tg-t0 |
---|
| 473 | tc=tg-273.15 |
---|
| 474 | denom=243.5+tc |
---|
| 475 | denom=MAX(denom,1.0) ! convect3 |
---|
| 476 | c ori if(tc.ge.0.0)then |
---|
| 477 | es=6.112*exp(17.67*tc/denom) |
---|
| 478 | c ori else |
---|
| 479 | c ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 480 | c ori endif |
---|
| 481 | c ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 482 | qg=eps*es/(p(i,icbs(i))-es*(1.-eps)) |
---|
| 483 | c |
---|
| 484 | c Second iteration. |
---|
| 485 | c |
---|
| 486 | |
---|
| 487 | c ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 488 | c ori s=1./s |
---|
| 489 | c ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
| 490 | ahg=cpd*tg+(cl-cpd)*qnk(i)*tg+alv*qg+gzicb(i) ! convect3 |
---|
| 491 | tg=tg+s*(ah0(i)-ahg) |
---|
| 492 | c ori tg=max(tg,35.0) |
---|
| 493 | cdebug tc=tg-t0 |
---|
| 494 | tc=tg-273.15 |
---|
| 495 | denom=243.5+tc |
---|
| 496 | denom=MAX(denom,1.0) ! convect3 |
---|
| 497 | c ori if(tc.ge.0.0)then |
---|
| 498 | es=6.112*exp(17.67*tc/denom) |
---|
| 499 | c ori else |
---|
| 500 | c ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 501 | c ori end if |
---|
| 502 | c ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 503 | qg=eps*es/(p(i,icbs(i))-es*(1.-eps)) |
---|
| 504 | |
---|
| 505 | alv=lv0-clmcpv*(ticb(i)-273.15) |
---|
| 506 | |
---|
| 507 | c ori c approximation here: |
---|
| 508 | c ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
---|
| 509 | c ori & -gz(i,icb(i))-alv*qg)/cpd |
---|
| 510 | |
---|
| 511 | c convect3: no approximation: |
---|
| 512 | tp(i,icbs(i))=(ah0(i)-gz(i,icbs(i))-alv*qg) |
---|
| 513 | : /(cpd+(cl-cpd)*qnk(i)) |
---|
| 514 | |
---|
| 515 | c ori clw(i,icb(i))=qnk(i)-qg |
---|
| 516 | c ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
---|
| 517 | clw(i,icbs(i))=qnk(i)-qg |
---|
| 518 | clw(i,icbs(i))=max(0.0,clw(i,icbs(i))) |
---|
| 519 | |
---|
| 520 | rg=qg/(1.-qnk(i)) |
---|
| 521 | c ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
---|
| 522 | c convect3: (qg utilise au lieu du vrai mixing ratio rg) |
---|
| 523 | tvp(i,icbs(i))=tp(i,icbs(i))*(1.+qg/eps-qnk(i)) !whole thing |
---|
| 524 | |
---|
| 525 | 360 continue |
---|
| 526 | c |
---|
| 527 | c ori do 380 k=minorig,icbsmax2 |
---|
| 528 | c ori do 370 i=1,len |
---|
| 529 | c ori tvp(i,k)=tvp(i,k)-tp(i,k)*qnk(i) |
---|
| 530 | c ori 370 continue |
---|
| 531 | c ori 380 continue |
---|
| 532 | c |
---|
| 533 | |
---|
| 534 | c -- The following is only for convect3: |
---|
| 535 | c |
---|
| 536 | c * icbs is the first level above the LCL: |
---|
| 537 | c if plcl<p(icb), then icbs=icb+1 |
---|
| 538 | c if plcl>p(icb), then icbs=icb |
---|
| 539 | c |
---|
| 540 | c * the routine above computes tvp from minorig to icbs (included). |
---|
| 541 | c |
---|
| 542 | c * to compute buoybase (in cv3_trigger.F), both tvp(icb) and tvp(icb+1) |
---|
| 543 | c must be known. This is the case if icbs=icb+1, but not if icbs=icb. |
---|
| 544 | c |
---|
| 545 | c * therefore, in the case icbs=icb, we compute tvp at level icb+1 |
---|
| 546 | c (tvp at other levels will be computed in cv3_undilute2.F) |
---|
| 547 | c |
---|
| 548 | |
---|
| 549 | do i=1,len |
---|
| 550 | ticb(i)=t(i,icb(i)+1) |
---|
| 551 | gzicb(i)=gz(i,icb(i)+1) |
---|
| 552 | qsicb(i)=qs(i,icb(i)+1) |
---|
| 553 | enddo |
---|
| 554 | |
---|
| 555 | do 460 i=1,len |
---|
| 556 | tg=ticb(i) |
---|
| 557 | qg=qsicb(i) ! convect3 |
---|
| 558 | cdebug alv=lv0-clmcpv*(ticb(i)-t0) |
---|
| 559 | alv=lv0-clmcpv*(ticb(i)-273.15) |
---|
| 560 | c |
---|
| 561 | c First iteration. |
---|
| 562 | c |
---|
| 563 | c ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 564 | s=cpd*(1.-qnk(i))+cl*qnk(i) ! convect3 |
---|
| 565 | : +alv*alv*qg/(rrv*ticb(i)*ticb(i)) ! convect3 |
---|
| 566 | s=1./s |
---|
| 567 | c ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
| 568 | ahg=cpd*tg+(cl-cpd)*qnk(i)*tg+alv*qg+gzicb(i) ! convect3 |
---|
| 569 | tg=tg+s*(ah0(i)-ahg) |
---|
| 570 | c ori tg=max(tg,35.0) |
---|
| 571 | cdebug tc=tg-t0 |
---|
| 572 | tc=tg-273.15 |
---|
| 573 | denom=243.5+tc |
---|
| 574 | denom=MAX(denom,1.0) ! convect3 |
---|
| 575 | c ori if(tc.ge.0.0)then |
---|
| 576 | es=6.112*exp(17.67*tc/denom) |
---|
| 577 | c ori else |
---|
| 578 | c ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 579 | c ori endif |
---|
| 580 | c ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 581 | qg=eps*es/(p(i,icb(i)+1)-es*(1.-eps)) |
---|
| 582 | c |
---|
| 583 | c Second iteration. |
---|
| 584 | c |
---|
| 585 | |
---|
| 586 | c ori s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 587 | c ori s=1./s |
---|
| 588 | c ori ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
| 589 | ahg=cpd*tg+(cl-cpd)*qnk(i)*tg+alv*qg+gzicb(i) ! convect3 |
---|
| 590 | tg=tg+s*(ah0(i)-ahg) |
---|
| 591 | c ori tg=max(tg,35.0) |
---|
| 592 | cdebug tc=tg-t0 |
---|
| 593 | tc=tg-273.15 |
---|
| 594 | denom=243.5+tc |
---|
| 595 | denom=MAX(denom,1.0) ! convect3 |
---|
| 596 | c ori if(tc.ge.0.0)then |
---|
| 597 | es=6.112*exp(17.67*tc/denom) |
---|
| 598 | c ori else |
---|
| 599 | c ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 600 | c ori end if |
---|
| 601 | c ori qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 602 | qg=eps*es/(p(i,icb(i)+1)-es*(1.-eps)) |
---|
| 603 | |
---|
| 604 | alv=lv0-clmcpv*(ticb(i)-273.15) |
---|
| 605 | |
---|
| 606 | c ori c approximation here: |
---|
| 607 | c ori tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
---|
| 608 | c ori & -gz(i,icb(i))-alv*qg)/cpd |
---|
| 609 | |
---|
| 610 | c convect3: no approximation: |
---|
| 611 | tp(i,icb(i)+1)=(ah0(i)-gz(i,icb(i)+1)-alv*qg) |
---|
| 612 | : /(cpd+(cl-cpd)*qnk(i)) |
---|
| 613 | |
---|
| 614 | c ori clw(i,icb(i))=qnk(i)-qg |
---|
| 615 | c ori clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
---|
| 616 | clw(i,icb(i)+1)=qnk(i)-qg |
---|
| 617 | clw(i,icb(i)+1)=max(0.0,clw(i,icb(i)+1)) |
---|
| 618 | |
---|
| 619 | rg=qg/(1.-qnk(i)) |
---|
| 620 | c ori tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
---|
| 621 | c convect3: (qg utilise au lieu du vrai mixing ratio rg) |
---|
| 622 | tvp(i,icb(i)+1)=tp(i,icb(i)+1)*(1.+qg/eps-qnk(i)) !whole thing |
---|
| 623 | |
---|
| 624 | 460 continue |
---|
| 625 | |
---|
| 626 | return |
---|
| 627 | end |
---|
| 628 | |
---|
| 629 | SUBROUTINE cv30_trigger(len,nd,icb,plcl,p,th,tv,tvp |
---|
| 630 | o ,pbase,buoybase,iflag,sig,w0) |
---|
| 631 | implicit none |
---|
| 632 | |
---|
| 633 | !------------------------------------------------------------------- |
---|
| 634 | ! --- TRIGGERING |
---|
| 635 | ! |
---|
| 636 | ! - computes the cloud base |
---|
| 637 | ! - triggering (crude in this version) |
---|
| 638 | ! - relaxation of sig and w0 when no convection |
---|
| 639 | ! |
---|
| 640 | ! Caution1: if no convection, we set iflag=4 |
---|
| 641 | ! (it used to be 0 in convect3) |
---|
| 642 | ! |
---|
| 643 | ! Caution2: at this stage, tvp (and thus buoy) are know up |
---|
| 644 | ! through icb only! |
---|
| 645 | ! -> the buoyancy below cloud base not (yet) set to the cloud base buoyancy |
---|
| 646 | !------------------------------------------------------------------- |
---|
| 647 | |
---|
| 648 | #include "cv30param.h" |
---|
| 649 | |
---|
| 650 | c input: |
---|
| 651 | integer len, nd |
---|
| 652 | integer icb(len) |
---|
| 653 | real plcl(len), p(len,nd) |
---|
| 654 | real th(len,nd), tv(len,nd), tvp(len,nd) |
---|
| 655 | |
---|
| 656 | c output: |
---|
| 657 | real pbase(len), buoybase(len) |
---|
| 658 | |
---|
| 659 | c input AND output: |
---|
| 660 | integer iflag(len) |
---|
| 661 | real sig(len,nd), w0(len,nd) |
---|
| 662 | |
---|
| 663 | c local variables: |
---|
| 664 | integer i,k |
---|
| 665 | real tvpbase, tvbase, tdif, ath, ath1 |
---|
| 666 | |
---|
| 667 | c |
---|
| 668 | c *** set cloud base buoyancy at (plcl+dpbase) level buoyancy |
---|
| 669 | c |
---|
| 670 | do 100 i=1,len |
---|
| 671 | pbase(i) = plcl(i) + dpbase |
---|
| 672 | tvpbase = tvp(i,icb(i))*(pbase(i)-p(i,icb(i)+1)) |
---|
| 673 | : /(p(i,icb(i))-p(i,icb(i)+1)) |
---|
| 674 | : + tvp(i,icb(i)+1)*(p(i,icb(i))-pbase(i)) |
---|
| 675 | : /(p(i,icb(i))-p(i,icb(i)+1)) |
---|
| 676 | tvbase = tv(i,icb(i))*(pbase(i)-p(i,icb(i)+1)) |
---|
| 677 | : /(p(i,icb(i))-p(i,icb(i)+1)) |
---|
| 678 | : + tv(i,icb(i)+1)*(p(i,icb(i))-pbase(i)) |
---|
| 679 | : /(p(i,icb(i))-p(i,icb(i)+1)) |
---|
| 680 | buoybase(i) = tvpbase - tvbase |
---|
| 681 | 100 continue |
---|
| 682 | |
---|
| 683 | c |
---|
| 684 | c *** make sure that column is dry adiabatic between the surface *** |
---|
| 685 | c *** and cloud base, and that lifted air is positively buoyant *** |
---|
| 686 | c *** at cloud base *** |
---|
| 687 | c *** if not, return to calling program after resetting *** |
---|
| 688 | c *** sig(i) and w0(i) *** |
---|
| 689 | c |
---|
| 690 | |
---|
| 691 | c oct3 do 200 i=1,len |
---|
| 692 | c oct3 |
---|
| 693 | c oct3 tdif = buoybase(i) |
---|
| 694 | c oct3 ath1 = th(i,1) |
---|
| 695 | c oct3 ath = th(i,icb(i)-1) - dttrig |
---|
| 696 | c oct3 |
---|
| 697 | c oct3 if (tdif.lt.dtcrit .or. ath.gt.ath1) then |
---|
| 698 | c oct3 do 60 k=1,nl |
---|
| 699 | c oct3 sig(i,k) = beta*sig(i,k) - 2.*alpha*tdif*tdif |
---|
| 700 | c oct3 sig(i,k) = AMAX1(sig(i,k),0.0) |
---|
| 701 | c oct3 w0(i,k) = beta*w0(i,k) |
---|
| 702 | c oct3 60 continue |
---|
| 703 | c oct3 iflag(i)=4 ! pour version vectorisee |
---|
| 704 | c oct3c convect3 iflag(i)=0 |
---|
| 705 | c oct3cccc return |
---|
| 706 | c oct3 endif |
---|
| 707 | c oct3 |
---|
| 708 | c oct3200 continue |
---|
| 709 | |
---|
| 710 | c -- oct3: on reecrit la boucle 200 (pour la vectorisation) |
---|
| 711 | |
---|
| 712 | do 60 k=1,nl |
---|
| 713 | do 200 i=1,len |
---|
| 714 | |
---|
| 715 | tdif = buoybase(i) |
---|
| 716 | ath1 = th(i,1) |
---|
| 717 | ath = th(i,icb(i)-1) - dttrig |
---|
| 718 | |
---|
| 719 | if (tdif.lt.dtcrit .or. ath.gt.ath1) then |
---|
| 720 | sig(i,k) = beta*sig(i,k) - 2.*alpha*tdif*tdif |
---|
| 721 | sig(i,k) = AMAX1(sig(i,k),0.0) |
---|
| 722 | w0(i,k) = beta*w0(i,k) |
---|
| 723 | iflag(i)=4 ! pour version vectorisee |
---|
| 724 | c convect3 iflag(i)=0 |
---|
| 725 | endif |
---|
| 726 | |
---|
| 727 | 200 continue |
---|
| 728 | 60 continue |
---|
| 729 | |
---|
| 730 | c fin oct3 -- |
---|
| 731 | |
---|
| 732 | return |
---|
| 733 | end |
---|
| 734 | |
---|
| 735 | SUBROUTINE cv30_compress( len,nloc,ncum,nd,ntra |
---|
| 736 | : ,iflag1,nk1,icb1,icbs1 |
---|
| 737 | : ,plcl1,tnk1,qnk1,gznk1,pbase1,buoybase1 |
---|
| 738 | : ,t1,q1,qs1,u1,v1,gz1,th1 |
---|
| 739 | : ,tra1 |
---|
| 740 | : ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1 |
---|
| 741 | : ,sig1,w01 |
---|
| 742 | o ,iflag,nk,icb,icbs |
---|
| 743 | o ,plcl,tnk,qnk,gznk,pbase,buoybase |
---|
| 744 | o ,t,q,qs,u,v,gz,th |
---|
| 745 | o ,tra |
---|
| 746 | o ,h,lv,cpn,p,ph,tv,tp,tvp,clw |
---|
| 747 | o ,sig,w0 ) |
---|
| 748 | implicit none |
---|
| 749 | |
---|
| 750 | #include "cv30param.h" |
---|
| 751 | |
---|
| 752 | c inputs: |
---|
| 753 | integer len,ncum,nd,ntra,nloc |
---|
| 754 | integer iflag1(len),nk1(len),icb1(len),icbs1(len) |
---|
| 755 | real plcl1(len),tnk1(len),qnk1(len),gznk1(len) |
---|
| 756 | real pbase1(len),buoybase1(len) |
---|
| 757 | real t1(len,nd),q1(len,nd),qs1(len,nd),u1(len,nd),v1(len,nd) |
---|
| 758 | real gz1(len,nd),h1(len,nd),lv1(len,nd),cpn1(len,nd) |
---|
| 759 | real p1(len,nd),ph1(len,nd+1),tv1(len,nd),tp1(len,nd) |
---|
| 760 | real tvp1(len,nd),clw1(len,nd) |
---|
| 761 | real th1(len,nd) |
---|
| 762 | real sig1(len,nd), w01(len,nd) |
---|
| 763 | real tra1(len,nd,ntra) |
---|
| 764 | |
---|
| 765 | c outputs: |
---|
| 766 | c en fait, on a nloc=len pour l'instant (cf cv_driver) |
---|
| 767 | integer iflag(nloc),nk(nloc),icb(nloc),icbs(nloc) |
---|
| 768 | real plcl(nloc),tnk(nloc),qnk(nloc),gznk(nloc) |
---|
| 769 | real pbase(nloc),buoybase(nloc) |
---|
| 770 | real t(nloc,nd),q(nloc,nd),qs(nloc,nd),u(nloc,nd),v(nloc,nd) |
---|
| 771 | real gz(nloc,nd),h(nloc,nd),lv(nloc,nd),cpn(nloc,nd) |
---|
| 772 | real p(nloc,nd),ph(nloc,nd+1),tv(nloc,nd),tp(nloc,nd) |
---|
| 773 | real tvp(nloc,nd),clw(nloc,nd) |
---|
| 774 | real th(nloc,nd) |
---|
| 775 | real sig(nloc,nd), w0(nloc,nd) |
---|
| 776 | real tra(nloc,nd,ntra) |
---|
| 777 | |
---|
| 778 | c local variables: |
---|
| 779 | integer i,k,nn,j |
---|
| 780 | |
---|
| 781 | |
---|
| 782 | do 110 k=1,nl+1 |
---|
| 783 | nn=0 |
---|
| 784 | do 100 i=1,len |
---|
| 785 | if(iflag1(i).eq.0)then |
---|
| 786 | nn=nn+1 |
---|
| 787 | sig(nn,k)=sig1(i,k) |
---|
| 788 | w0(nn,k)=w01(i,k) |
---|
| 789 | t(nn,k)=t1(i,k) |
---|
| 790 | q(nn,k)=q1(i,k) |
---|
| 791 | qs(nn,k)=qs1(i,k) |
---|
| 792 | u(nn,k)=u1(i,k) |
---|
| 793 | v(nn,k)=v1(i,k) |
---|
| 794 | gz(nn,k)=gz1(i,k) |
---|
| 795 | h(nn,k)=h1(i,k) |
---|
| 796 | lv(nn,k)=lv1(i,k) |
---|
| 797 | cpn(nn,k)=cpn1(i,k) |
---|
| 798 | p(nn,k)=p1(i,k) |
---|
| 799 | ph(nn,k)=ph1(i,k) |
---|
| 800 | tv(nn,k)=tv1(i,k) |
---|
| 801 | tp(nn,k)=tp1(i,k) |
---|
| 802 | tvp(nn,k)=tvp1(i,k) |
---|
| 803 | clw(nn,k)=clw1(i,k) |
---|
| 804 | th(nn,k)=th1(i,k) |
---|
| 805 | endif |
---|
| 806 | 100 continue |
---|
| 807 | 110 continue |
---|
| 808 | |
---|
| 809 | c do 121 j=1,ntra |
---|
| 810 | c do 111 k=1,nd |
---|
| 811 | c nn=0 |
---|
| 812 | c do 101 i=1,len |
---|
| 813 | c if(iflag1(i).eq.0)then |
---|
| 814 | c nn=nn+1 |
---|
| 815 | c tra(nn,k,j)=tra1(i,k,j) |
---|
| 816 | c endif |
---|
| 817 | c 101 continue |
---|
| 818 | c 111 continue |
---|
| 819 | c 121 continue |
---|
| 820 | |
---|
| 821 | if (nn.ne.ncum) then |
---|
| 822 | print*,'strange! nn not equal to ncum: ',nn,ncum |
---|
| 823 | stop |
---|
| 824 | endif |
---|
| 825 | |
---|
| 826 | nn=0 |
---|
| 827 | do 150 i=1,len |
---|
| 828 | if(iflag1(i).eq.0)then |
---|
| 829 | nn=nn+1 |
---|
| 830 | pbase(nn)=pbase1(i) |
---|
| 831 | buoybase(nn)=buoybase1(i) |
---|
| 832 | plcl(nn)=plcl1(i) |
---|
| 833 | tnk(nn)=tnk1(i) |
---|
| 834 | qnk(nn)=qnk1(i) |
---|
| 835 | gznk(nn)=gznk1(i) |
---|
| 836 | nk(nn)=nk1(i) |
---|
| 837 | icb(nn)=icb1(i) |
---|
| 838 | icbs(nn)=icbs1(i) |
---|
| 839 | iflag(nn)=iflag1(i) |
---|
| 840 | endif |
---|
| 841 | 150 continue |
---|
| 842 | |
---|
| 843 | return |
---|
| 844 | end |
---|
| 845 | |
---|
| 846 | SUBROUTINE cv30_undilute2(nloc,ncum,nd,icb,icbs,nk |
---|
| 847 | : ,tnk,qnk,gznk,t,q,qs,gz |
---|
| 848 | : ,p,h,tv,lv,pbase,buoybase,plcl |
---|
| 849 | o ,inb,tp,tvp,clw,hp,ep,sigp,buoy) |
---|
| 850 | implicit none |
---|
| 851 | |
---|
| 852 | C--------------------------------------------------------------------- |
---|
| 853 | C Purpose: |
---|
| 854 | C FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
| 855 | C & |
---|
| 856 | C COMPUTE THE PRECIPITATION EFFICIENCIES AND THE |
---|
| 857 | C FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
| 858 | C & |
---|
| 859 | C FIND THE LEVEL OF NEUTRAL BUOYANCY |
---|
| 860 | C |
---|
| 861 | C Main differences convect3/convect4: |
---|
| 862 | C - icbs (input) is the first level above LCL (may differ from icb) |
---|
| 863 | C - many minor differences in the iterations |
---|
| 864 | C - condensed water not removed from tvp in convect3 |
---|
| 865 | C - vertical profile of buoyancy computed here (use of buoybase) |
---|
| 866 | C - the determination of inb is different |
---|
| 867 | C - no inb1, only inb in output |
---|
| 868 | C--------------------------------------------------------------------- |
---|
| 869 | |
---|
| 870 | #include "cvthermo.h" |
---|
| 871 | #include "cv30param.h" |
---|
| 872 | #include "conema3.h" |
---|
| 873 | |
---|
| 874 | c inputs: |
---|
| 875 | integer ncum, nd, nloc |
---|
| 876 | integer icb(nloc), icbs(nloc), nk(nloc) |
---|
| 877 | real t(nloc,nd), q(nloc,nd), qs(nloc,nd), gz(nloc,nd) |
---|
| 878 | real p(nloc,nd) |
---|
| 879 | real tnk(nloc), qnk(nloc), gznk(nloc) |
---|
| 880 | real lv(nloc,nd), tv(nloc,nd), h(nloc,nd) |
---|
| 881 | real pbase(nloc), buoybase(nloc), plcl(nloc) |
---|
| 882 | |
---|
| 883 | c outputs: |
---|
| 884 | integer inb(nloc) |
---|
| 885 | real tp(nloc,nd), tvp(nloc,nd), clw(nloc,nd) |
---|
| 886 | real ep(nloc,nd), sigp(nloc,nd), hp(nloc,nd) |
---|
| 887 | real buoy(nloc,nd) |
---|
| 888 | |
---|
| 889 | c local variables: |
---|
| 890 | integer i, k |
---|
| 891 | real tg,qg,ahg,alv,s,tc,es,denom,rg,tca,elacrit |
---|
| 892 | real by, defrac, pden |
---|
| 893 | real ah0(nloc), cape(nloc), capem(nloc), byp(nloc) |
---|
| 894 | logical lcape(nloc) |
---|
| 895 | |
---|
| 896 | !===================================================================== |
---|
| 897 | ! --- SOME INITIALIZATIONS |
---|
| 898 | !===================================================================== |
---|
| 899 | |
---|
| 900 | do 170 k=1,nl |
---|
| 901 | do 160 i=1,ncum |
---|
| 902 | ep(i,k)=0.0 |
---|
| 903 | sigp(i,k)=spfac |
---|
| 904 | 160 continue |
---|
| 905 | 170 continue |
---|
| 906 | |
---|
| 907 | !===================================================================== |
---|
| 908 | ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
| 909 | !===================================================================== |
---|
| 910 | c |
---|
| 911 | c --- The procedure is to solve the equation. |
---|
| 912 | c cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
| 913 | c |
---|
| 914 | c *** Calculate certain parcel quantities, including static energy *** |
---|
| 915 | c |
---|
| 916 | c |
---|
| 917 | do 240 i=1,ncum |
---|
| 918 | ah0(i)=(cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) |
---|
| 919 | cdebug & +qnk(i)*(lv0-clmcpv*(tnk(i)-t0))+gznk(i) |
---|
| 920 | & +qnk(i)*(lv0-clmcpv*(tnk(i)-273.15))+gznk(i) |
---|
| 921 | 240 continue |
---|
| 922 | c |
---|
| 923 | c |
---|
| 924 | c *** Find lifted parcel quantities above cloud base *** |
---|
| 925 | c |
---|
| 926 | c |
---|
| 927 | do 300 k=minorig+1,nl |
---|
| 928 | do 290 i=1,ncum |
---|
| 929 | c ori if(k.ge.(icb(i)+1))then |
---|
| 930 | if(k.ge.(icbs(i)+1))then ! convect3 |
---|
| 931 | tg=t(i,k) |
---|
| 932 | qg=qs(i,k) |
---|
| 933 | cdebug alv=lv0-clmcpv*(t(i,k)-t0) |
---|
| 934 | alv=lv0-clmcpv*(t(i,k)-273.15) |
---|
| 935 | c |
---|
| 936 | c First iteration. |
---|
| 937 | c |
---|
| 938 | c ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
| 939 | s=cpd*(1.-qnk(i))+cl*qnk(i) ! convect3 |
---|
| 940 | : +alv*alv*qg/(rrv*t(i,k)*t(i,k)) ! convect3 |
---|
| 941 | s=1./s |
---|
| 942 | c ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
| 943 | ahg=cpd*tg+(cl-cpd)*qnk(i)*tg+alv*qg+gz(i,k) ! convect3 |
---|
| 944 | tg=tg+s*(ah0(i)-ahg) |
---|
| 945 | c ori tg=max(tg,35.0) |
---|
| 946 | cdebug tc=tg-t0 |
---|
| 947 | tc=tg-273.15 |
---|
| 948 | denom=243.5+tc |
---|
| 949 | denom=MAX(denom,1.0) ! convect3 |
---|
| 950 | c ori if(tc.ge.0.0)then |
---|
| 951 | es=6.112*exp(17.67*tc/denom) |
---|
| 952 | c ori else |
---|
| 953 | c ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 954 | c ori endif |
---|
| 955 | qg=eps*es/(p(i,k)-es*(1.-eps)) |
---|
| 956 | c |
---|
| 957 | c Second iteration. |
---|
| 958 | c |
---|
| 959 | c ori s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
| 960 | c ori s=1./s |
---|
| 961 | c ori ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
| 962 | ahg=cpd*tg+(cl-cpd)*qnk(i)*tg+alv*qg+gz(i,k) ! convect3 |
---|
| 963 | tg=tg+s*(ah0(i)-ahg) |
---|
| 964 | c ori tg=max(tg,35.0) |
---|
| 965 | cdebug tc=tg-t0 |
---|
| 966 | tc=tg-273.15 |
---|
| 967 | denom=243.5+tc |
---|
| 968 | denom=MAX(denom,1.0) ! convect3 |
---|
| 969 | c ori if(tc.ge.0.0)then |
---|
| 970 | es=6.112*exp(17.67*tc/denom) |
---|
| 971 | c ori else |
---|
| 972 | c ori es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 973 | c ori endif |
---|
| 974 | qg=eps*es/(p(i,k)-es*(1.-eps)) |
---|
| 975 | c |
---|
| 976 | cdebug alv=lv0-clmcpv*(t(i,k)-t0) |
---|
| 977 | alv=lv0-clmcpv*(t(i,k)-273.15) |
---|
| 978 | c print*,'cpd dans convect2 ',cpd |
---|
| 979 | c print*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
---|
| 980 | c print*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
---|
| 981 | |
---|
| 982 | c ori c approximation here: |
---|
| 983 | c ori tp(i,k)=(ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd |
---|
| 984 | |
---|
| 985 | c convect3: no approximation: |
---|
| 986 | tp(i,k)=(ah0(i)-gz(i,k)-alv*qg)/(cpd+(cl-cpd)*qnk(i)) |
---|
| 987 | |
---|
| 988 | clw(i,k)=qnk(i)-qg |
---|
| 989 | clw(i,k)=max(0.0,clw(i,k)) |
---|
| 990 | rg=qg/(1.-qnk(i)) |
---|
| 991 | c ori tvp(i,k)=tp(i,k)*(1.+rg*epsi) |
---|
| 992 | c convect3: (qg utilise au lieu du vrai mixing ratio rg): |
---|
| 993 | tvp(i,k)=tp(i,k)*(1.+qg/eps-qnk(i)) ! whole thing |
---|
| 994 | endif |
---|
| 995 | 290 continue |
---|
| 996 | 300 continue |
---|
| 997 | c |
---|
| 998 | !===================================================================== |
---|
| 999 | ! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
---|
| 1000 | ! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
| 1001 | ! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
---|
| 1002 | !===================================================================== |
---|
| 1003 | c |
---|
| 1004 | c ori do 320 k=minorig+1,nl |
---|
| 1005 | do 320 k=1,nl ! convect3 |
---|
| 1006 | do 310 i=1,ncum |
---|
| 1007 | pden=ptcrit-pbcrit |
---|
| 1008 | ep(i,k)=(plcl(i)-p(i,k)-pbcrit)/pden*epmax |
---|
| 1009 | ep(i,k)=amax1(ep(i,k),0.0) |
---|
| 1010 | ep(i,k)=amin1(ep(i,k),epmax) |
---|
| 1011 | sigp(i,k)=spfac |
---|
| 1012 | c ori if(k.ge.(nk(i)+1))then |
---|
| 1013 | c ori tca=tp(i,k)-t0 |
---|
| 1014 | c ori if(tca.ge.0.0)then |
---|
| 1015 | c ori elacrit=elcrit |
---|
| 1016 | c ori else |
---|
| 1017 | c ori elacrit=elcrit*(1.0-tca/tlcrit) |
---|
| 1018 | c ori endif |
---|
| 1019 | c ori elacrit=max(elacrit,0.0) |
---|
| 1020 | c ori ep(i,k)=1.0-elacrit/max(clw(i,k),1.0e-8) |
---|
| 1021 | c ori ep(i,k)=max(ep(i,k),0.0 ) |
---|
| 1022 | c ori ep(i,k)=min(ep(i,k),1.0 ) |
---|
| 1023 | c ori sigp(i,k)=sigs |
---|
| 1024 | c ori endif |
---|
| 1025 | 310 continue |
---|
| 1026 | 320 continue |
---|
| 1027 | c |
---|
| 1028 | !===================================================================== |
---|
| 1029 | ! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
---|
| 1030 | ! --- VIRTUAL TEMPERATURE |
---|
| 1031 | !===================================================================== |
---|
| 1032 | c |
---|
| 1033 | c dans convect3, tvp est calcule en une seule fois, et sans retirer |
---|
| 1034 | c l'eau condensee (~> reversible CAPE) |
---|
| 1035 | c |
---|
| 1036 | c ori do 340 k=minorig+1,nl |
---|
| 1037 | c ori do 330 i=1,ncum |
---|
| 1038 | c ori if(k.ge.(icb(i)+1))then |
---|
| 1039 | c ori tvp(i,k)=tvp(i,k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) |
---|
| 1040 | c oric print*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
---|
| 1041 | c oric print*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
---|
| 1042 | c ori endif |
---|
| 1043 | c ori 330 continue |
---|
| 1044 | c ori 340 continue |
---|
| 1045 | |
---|
| 1046 | c ori do 350 i=1,ncum |
---|
| 1047 | c ori tvp(i,nlp)=tvp(i,nl)-(gz(i,nlp)-gz(i,nl))/cpd |
---|
| 1048 | c ori 350 continue |
---|
| 1049 | |
---|
| 1050 | do 350 i=1,ncum ! convect3 |
---|
| 1051 | tp(i,nlp)=tp(i,nl) ! convect3 |
---|
| 1052 | 350 continue ! convect3 |
---|
| 1053 | c |
---|
| 1054 | c===================================================================== |
---|
| 1055 | c --- EFFECTIVE VERTICAL PROFILE OF BUOYANCY (convect3 only): |
---|
| 1056 | c===================================================================== |
---|
| 1057 | |
---|
| 1058 | c-- this is for convect3 only: |
---|
| 1059 | |
---|
| 1060 | c first estimate of buoyancy: |
---|
| 1061 | |
---|
| 1062 | do 500 i=1,ncum |
---|
| 1063 | do 501 k=1,nl |
---|
| 1064 | buoy(i,k)=tvp(i,k)-tv(i,k) |
---|
| 1065 | 501 continue |
---|
| 1066 | 500 continue |
---|
| 1067 | |
---|
| 1068 | c set buoyancy=buoybase for all levels below base |
---|
| 1069 | c for safety, set buoy(icb)=buoybase |
---|
| 1070 | |
---|
| 1071 | do 505 i=1,ncum |
---|
| 1072 | do 506 k=1,nl |
---|
| 1073 | if((k.ge.icb(i)).and.(k.le.nl).and.(p(i,k).ge.pbase(i)))then |
---|
| 1074 | buoy(i,k)=buoybase(i) |
---|
| 1075 | endif |
---|
| 1076 | 506 continue |
---|
| 1077 | cIM cf. CRio/JYG 270807 buoy(icb(i),k)=buoybase(i) |
---|
| 1078 | buoy(i,icb(i))=buoybase(i) |
---|
| 1079 | 505 continue |
---|
| 1080 | |
---|
| 1081 | c-- end convect3 |
---|
| 1082 | |
---|
| 1083 | c===================================================================== |
---|
| 1084 | c --- FIND THE FIRST MODEL LEVEL (INB) ABOVE THE PARCEL'S |
---|
| 1085 | c --- LEVEL OF NEUTRAL BUOYANCY |
---|
| 1086 | c===================================================================== |
---|
| 1087 | c |
---|
| 1088 | c-- this is for convect3 only: |
---|
| 1089 | |
---|
| 1090 | do 510 i=1,ncum |
---|
| 1091 | inb(i)=nl-1 |
---|
| 1092 | 510 continue |
---|
| 1093 | |
---|
| 1094 | do 530 i=1,ncum |
---|
| 1095 | do 535 k=1,nl-1 |
---|
| 1096 | if ((k.ge.icb(i)).and.(buoy(i,k).lt.dtovsh)) then |
---|
| 1097 | inb(i)=MIN(inb(i),k) |
---|
| 1098 | endif |
---|
| 1099 | 535 continue |
---|
| 1100 | 530 continue |
---|
| 1101 | |
---|
| 1102 | c-- end convect3 |
---|
| 1103 | |
---|
| 1104 | c ori do 510 i=1,ncum |
---|
| 1105 | c ori cape(i)=0.0 |
---|
| 1106 | c ori capem(i)=0.0 |
---|
| 1107 | c ori inb(i)=icb(i)+1 |
---|
| 1108 | c ori inb1(i)=inb(i) |
---|
| 1109 | c ori 510 continue |
---|
| 1110 | c |
---|
| 1111 | c Originial Code |
---|
| 1112 | c |
---|
| 1113 | c do 530 k=minorig+1,nl-1 |
---|
| 1114 | c do 520 i=1,ncum |
---|
| 1115 | c if(k.ge.(icb(i)+1))then |
---|
| 1116 | c by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 1117 | c byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 1118 | c cape(i)=cape(i)+by |
---|
| 1119 | c if(by.ge.0.0)inb1(i)=k+1 |
---|
| 1120 | c if(cape(i).gt.0.0)then |
---|
| 1121 | c inb(i)=k+1 |
---|
| 1122 | c capem(i)=cape(i) |
---|
| 1123 | c endif |
---|
| 1124 | c endif |
---|
| 1125 | c520 continue |
---|
| 1126 | c530 continue |
---|
| 1127 | c do 540 i=1,ncum |
---|
| 1128 | c byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
---|
| 1129 | c cape(i)=capem(i)+byp |
---|
| 1130 | c defrac=capem(i)-cape(i) |
---|
| 1131 | c defrac=max(defrac,0.001) |
---|
| 1132 | c frac(i)=-cape(i)/defrac |
---|
| 1133 | c frac(i)=min(frac(i),1.0) |
---|
| 1134 | c frac(i)=max(frac(i),0.0) |
---|
| 1135 | c540 continue |
---|
| 1136 | c |
---|
| 1137 | c K Emanuel fix |
---|
| 1138 | c |
---|
| 1139 | c call zilch(byp,ncum) |
---|
| 1140 | c do 530 k=minorig+1,nl-1 |
---|
| 1141 | c do 520 i=1,ncum |
---|
| 1142 | c if(k.ge.(icb(i)+1))then |
---|
| 1143 | c by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 1144 | c cape(i)=cape(i)+by |
---|
| 1145 | c if(by.ge.0.0)inb1(i)=k+1 |
---|
| 1146 | c if(cape(i).gt.0.0)then |
---|
| 1147 | c inb(i)=k+1 |
---|
| 1148 | c capem(i)=cape(i) |
---|
| 1149 | c byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 1150 | c endif |
---|
| 1151 | c endif |
---|
| 1152 | c520 continue |
---|
| 1153 | c530 continue |
---|
| 1154 | c do 540 i=1,ncum |
---|
| 1155 | c inb(i)=max(inb(i),inb1(i)) |
---|
| 1156 | c cape(i)=capem(i)+byp(i) |
---|
| 1157 | c defrac=capem(i)-cape(i) |
---|
| 1158 | c defrac=max(defrac,0.001) |
---|
| 1159 | c frac(i)=-cape(i)/defrac |
---|
| 1160 | c frac(i)=min(frac(i),1.0) |
---|
| 1161 | c frac(i)=max(frac(i),0.0) |
---|
| 1162 | c540 continue |
---|
| 1163 | c |
---|
| 1164 | c J Teixeira fix |
---|
| 1165 | c |
---|
| 1166 | c ori call zilch(byp,ncum) |
---|
| 1167 | c ori do 515 i=1,ncum |
---|
| 1168 | c ori lcape(i)=.true. |
---|
| 1169 | c ori 515 continue |
---|
| 1170 | c ori do 530 k=minorig+1,nl-1 |
---|
| 1171 | c ori do 520 i=1,ncum |
---|
| 1172 | c ori if(cape(i).lt.0.0)lcape(i)=.false. |
---|
| 1173 | c ori if((k.ge.(icb(i)+1)).and.lcape(i))then |
---|
| 1174 | c ori by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 1175 | c ori byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 1176 | c ori cape(i)=cape(i)+by |
---|
| 1177 | c ori if(by.ge.0.0)inb1(i)=k+1 |
---|
| 1178 | c ori if(cape(i).gt.0.0)then |
---|
| 1179 | c ori inb(i)=k+1 |
---|
| 1180 | c ori capem(i)=cape(i) |
---|
| 1181 | c ori endif |
---|
| 1182 | c ori endif |
---|
| 1183 | c ori 520 continue |
---|
| 1184 | c ori 530 continue |
---|
| 1185 | c ori do 540 i=1,ncum |
---|
| 1186 | c ori cape(i)=capem(i)+byp(i) |
---|
| 1187 | c ori defrac=capem(i)-cape(i) |
---|
| 1188 | c ori defrac=max(defrac,0.001) |
---|
| 1189 | c ori frac(i)=-cape(i)/defrac |
---|
| 1190 | c ori frac(i)=min(frac(i),1.0) |
---|
| 1191 | c ori frac(i)=max(frac(i),0.0) |
---|
| 1192 | c ori 540 continue |
---|
| 1193 | c |
---|
| 1194 | c===================================================================== |
---|
| 1195 | c --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
---|
| 1196 | c===================================================================== |
---|
| 1197 | c |
---|
| 1198 | cym do i=1,ncum*nlp |
---|
| 1199 | cym hp(i,1)=h(i,1) |
---|
| 1200 | cym enddo |
---|
| 1201 | |
---|
| 1202 | do k=1,nlp |
---|
| 1203 | do i=1,ncum |
---|
| 1204 | hp(i,k)=h(i,k) |
---|
| 1205 | enddo |
---|
| 1206 | enddo |
---|
| 1207 | |
---|
| 1208 | do 600 k=minorig+1,nl |
---|
| 1209 | do 590 i=1,ncum |
---|
| 1210 | if((k.ge.icb(i)).and.(k.le.inb(i)))then |
---|
| 1211 | hp(i,k)=h(i,nk(i))+(lv(i,k)+(cpd-cpv)*t(i,k))*ep(i,k)*clw(i,k) |
---|
| 1212 | endif |
---|
| 1213 | 590 continue |
---|
| 1214 | 600 continue |
---|
| 1215 | |
---|
| 1216 | return |
---|
| 1217 | end |
---|
| 1218 | |
---|
| 1219 | SUBROUTINE cv30_closure(nloc,ncum,nd,icb,inb |
---|
| 1220 | : ,pbase,p,ph,tv,buoy |
---|
| 1221 | o ,sig,w0,cape,m) |
---|
| 1222 | implicit none |
---|
| 1223 | |
---|
| 1224 | !=================================================================== |
---|
| 1225 | ! --- CLOSURE OF CONVECT3 |
---|
| 1226 | ! |
---|
| 1227 | ! vectorization: S. Bony |
---|
| 1228 | !=================================================================== |
---|
| 1229 | |
---|
| 1230 | #include "cvthermo.h" |
---|
| 1231 | #include "cv30param.h" |
---|
| 1232 | |
---|
| 1233 | c input: |
---|
| 1234 | integer ncum, nd, nloc |
---|
| 1235 | integer icb(nloc), inb(nloc) |
---|
| 1236 | real pbase(nloc) |
---|
| 1237 | real p(nloc,nd), ph(nloc,nd+1) |
---|
| 1238 | real tv(nloc,nd), buoy(nloc,nd) |
---|
| 1239 | |
---|
| 1240 | c input/output: |
---|
| 1241 | real sig(nloc,nd), w0(nloc,nd) |
---|
| 1242 | |
---|
| 1243 | c output: |
---|
| 1244 | real cape(nloc) |
---|
| 1245 | real m(nloc,nd) |
---|
| 1246 | |
---|
| 1247 | c local variables: |
---|
| 1248 | integer i, j, k, icbmax |
---|
| 1249 | real deltap, fac, w, amu |
---|
| 1250 | real dtmin(nloc,nd), sigold(nloc,nd) |
---|
| 1251 | |
---|
| 1252 | |
---|
| 1253 | c ------------------------------------------------------- |
---|
| 1254 | c -- Initialization |
---|
| 1255 | c ------------------------------------------------------- |
---|
| 1256 | |
---|
| 1257 | do k=1,nl |
---|
| 1258 | do i=1,ncum |
---|
| 1259 | m(i,k)=0.0 |
---|
| 1260 | enddo |
---|
| 1261 | enddo |
---|
| 1262 | |
---|
| 1263 | c ------------------------------------------------------- |
---|
| 1264 | c -- Reset sig(i) and w0(i) for i>inb and i<icb |
---|
| 1265 | c ------------------------------------------------------- |
---|
| 1266 | |
---|
| 1267 | c update sig and w0 above LNB: |
---|
| 1268 | |
---|
| 1269 | do 100 k=1,nl-1 |
---|
| 1270 | do 110 i=1,ncum |
---|
| 1271 | if ((inb(i).lt.(nl-1)).and.(k.ge.(inb(i)+1)))then |
---|
| 1272 | sig(i,k)=beta*sig(i,k) |
---|
| 1273 | : +2.*alpha*buoy(i,inb(i))*ABS(buoy(i,inb(i))) |
---|
| 1274 | sig(i,k)=AMAX1(sig(i,k),0.0) |
---|
| 1275 | w0(i,k)=beta*w0(i,k) |
---|
| 1276 | endif |
---|
| 1277 | 110 continue |
---|
| 1278 | 100 continue |
---|
| 1279 | |
---|
| 1280 | c compute icbmax: |
---|
| 1281 | |
---|
| 1282 | icbmax=2 |
---|
| 1283 | do 200 i=1,ncum |
---|
| 1284 | icbmax=MAX(icbmax,icb(i)) |
---|
| 1285 | 200 continue |
---|
| 1286 | |
---|
| 1287 | c update sig and w0 below cloud base: |
---|
| 1288 | |
---|
| 1289 | do 300 k=1,icbmax |
---|
| 1290 | do 310 i=1,ncum |
---|
| 1291 | if (k.le.icb(i))then |
---|
| 1292 | sig(i,k)=beta*sig(i,k)-2.*alpha*buoy(i,icb(i))*buoy(i,icb(i)) |
---|
| 1293 | sig(i,k)=amax1(sig(i,k),0.0) |
---|
| 1294 | w0(i,k)=beta*w0(i,k) |
---|
| 1295 | endif |
---|
| 1296 | 310 continue |
---|
| 1297 | 300 continue |
---|
| 1298 | |
---|
| 1299 | c! if(inb.lt.(nl-1))then |
---|
| 1300 | c! do 85 i=inb+1,nl-1 |
---|
| 1301 | c! sig(i)=beta*sig(i)+2.*alpha*buoy(inb)* |
---|
| 1302 | c! 1 abs(buoy(inb)) |
---|
| 1303 | c! sig(i)=amax1(sig(i),0.0) |
---|
| 1304 | c! w0(i)=beta*w0(i) |
---|
| 1305 | c! 85 continue |
---|
| 1306 | c! end if |
---|
| 1307 | |
---|
| 1308 | c! do 87 i=1,icb |
---|
| 1309 | c! sig(i)=beta*sig(i)-2.*alpha*buoy(icb)*buoy(icb) |
---|
| 1310 | c! sig(i)=amax1(sig(i),0.0) |
---|
| 1311 | c! w0(i)=beta*w0(i) |
---|
| 1312 | c! 87 continue |
---|
| 1313 | |
---|
| 1314 | c ------------------------------------------------------------- |
---|
| 1315 | c -- Reset fractional areas of updrafts and w0 at initial time |
---|
| 1316 | c -- and after 10 time steps of no convection |
---|
| 1317 | c ------------------------------------------------------------- |
---|
| 1318 | |
---|
| 1319 | do 400 k=1,nl-1 |
---|
| 1320 | do 410 i=1,ncum |
---|
| 1321 | if (sig(i,nd).lt.1.5.or.sig(i,nd).gt.12.0)then |
---|
| 1322 | sig(i,k)=0.0 |
---|
| 1323 | w0(i,k)=0.0 |
---|
| 1324 | endif |
---|
| 1325 | 410 continue |
---|
| 1326 | 400 continue |
---|
| 1327 | |
---|
| 1328 | c ------------------------------------------------------------- |
---|
| 1329 | c -- Calculate convective available potential energy (cape), |
---|
| 1330 | c -- vertical velocity (w), fractional area covered by |
---|
| 1331 | c -- undilute updraft (sig), and updraft mass flux (m) |
---|
| 1332 | c ------------------------------------------------------------- |
---|
| 1333 | |
---|
| 1334 | do 500 i=1,ncum |
---|
| 1335 | cape(i)=0.0 |
---|
| 1336 | 500 continue |
---|
| 1337 | |
---|
| 1338 | c compute dtmin (minimum buoyancy between ICB and given level k): |
---|
| 1339 | |
---|
| 1340 | do i=1,ncum |
---|
| 1341 | do k=1,nl |
---|
| 1342 | dtmin(i,k)=100.0 |
---|
| 1343 | enddo |
---|
| 1344 | enddo |
---|
| 1345 | |
---|
| 1346 | do 550 i=1,ncum |
---|
| 1347 | do 560 k=1,nl |
---|
| 1348 | do 570 j=minorig,nl |
---|
| 1349 | if ( (k.ge.(icb(i)+1)).and.(k.le.inb(i)).and. |
---|
| 1350 | : (j.ge.icb(i)).and.(j.le.(k-1)) )then |
---|
| 1351 | dtmin(i,k)=AMIN1(dtmin(i,k),buoy(i,j)) |
---|
| 1352 | endif |
---|
| 1353 | 570 continue |
---|
| 1354 | 560 continue |
---|
| 1355 | 550 continue |
---|
| 1356 | |
---|
| 1357 | c the interval on which cape is computed starts at pbase : |
---|
| 1358 | |
---|
| 1359 | do 600 k=1,nl |
---|
| 1360 | do 610 i=1,ncum |
---|
| 1361 | |
---|
| 1362 | if ((k.ge.(icb(i)+1)).and.(k.le.inb(i))) then |
---|
| 1363 | |
---|
| 1364 | deltap = MIN(pbase(i),ph(i,k-1))-MIN(pbase(i),ph(i,k)) |
---|
| 1365 | cape(i)=cape(i)+rrd*buoy(i,k-1)*deltap/p(i,k-1) |
---|
| 1366 | cape(i)=AMAX1(0.0,cape(i)) |
---|
| 1367 | sigold(i,k)=sig(i,k) |
---|
| 1368 | |
---|
| 1369 | c dtmin(i,k)=100.0 |
---|
| 1370 | c do 97 j=icb(i),k-1 ! mauvaise vectorisation |
---|
| 1371 | c dtmin(i,k)=AMIN1(dtmin(i,k),buoy(i,j)) |
---|
| 1372 | c 97 continue |
---|
| 1373 | |
---|
| 1374 | sig(i,k)=beta*sig(i,k)+alpha*dtmin(i,k)*ABS(dtmin(i,k)) |
---|
| 1375 | sig(i,k)=amax1(sig(i,k),0.0) |
---|
| 1376 | sig(i,k)=amin1(sig(i,k),0.01) |
---|
| 1377 | fac=AMIN1(((dtcrit-dtmin(i,k))/dtcrit),1.0) |
---|
| 1378 | w=(1.-beta)*fac*SQRT(cape(i))+beta*w0(i,k) |
---|
| 1379 | amu=0.5*(sig(i,k)+sigold(i,k))*w |
---|
| 1380 | m(i,k)=amu*0.007*p(i,k)*(ph(i,k)-ph(i,k+1))/tv(i,k) |
---|
| 1381 | w0(i,k)=w |
---|
| 1382 | endif |
---|
| 1383 | |
---|
| 1384 | 610 continue |
---|
| 1385 | 600 continue |
---|
| 1386 | |
---|
| 1387 | do 700 i=1,ncum |
---|
| 1388 | w0(i,icb(i))=0.5*w0(i,icb(i)+1) |
---|
| 1389 | m(i,icb(i))=0.5*m(i,icb(i)+1) |
---|
| 1390 | : *(ph(i,icb(i))-ph(i,icb(i)+1)) |
---|
| 1391 | : /(ph(i,icb(i)+1)-ph(i,icb(i)+2)) |
---|
| 1392 | sig(i,icb(i))=sig(i,icb(i)+1) |
---|
| 1393 | sig(i,icb(i)-1)=sig(i,icb(i)) |
---|
| 1394 | 700 continue |
---|
| 1395 | |
---|
| 1396 | |
---|
| 1397 | c! cape=0.0 |
---|
| 1398 | c! do 98 i=icb+1,inb |
---|
| 1399 | c! deltap = min(pbase,ph(i-1))-min(pbase,ph(i)) |
---|
| 1400 | c! cape=cape+rrd*buoy(i-1)*deltap/p(i-1) |
---|
| 1401 | c! dcape=rrd*buoy(i-1)*deltap/p(i-1) |
---|
| 1402 | c! dlnp=deltap/p(i-1) |
---|
| 1403 | c! cape=amax1(0.0,cape) |
---|
| 1404 | c! sigold=sig(i) |
---|
| 1405 | |
---|
| 1406 | c! dtmin=100.0 |
---|
| 1407 | c! do 97 j=icb,i-1 |
---|
| 1408 | c! dtmin=amin1(dtmin,buoy(j)) |
---|
| 1409 | c! 97 continue |
---|
| 1410 | |
---|
| 1411 | c! sig(i)=beta*sig(i)+alpha*dtmin*abs(dtmin) |
---|
| 1412 | c! sig(i)=amax1(sig(i),0.0) |
---|
| 1413 | c! sig(i)=amin1(sig(i),0.01) |
---|
| 1414 | c! fac=amin1(((dtcrit-dtmin)/dtcrit),1.0) |
---|
| 1415 | c! w=(1.-beta)*fac*sqrt(cape)+beta*w0(i) |
---|
| 1416 | c! amu=0.5*(sig(i)+sigold)*w |
---|
| 1417 | c! m(i)=amu*0.007*p(i)*(ph(i)-ph(i+1))/tv(i) |
---|
| 1418 | c! w0(i)=w |
---|
| 1419 | c! 98 continue |
---|
| 1420 | c! w0(icb)=0.5*w0(icb+1) |
---|
| 1421 | c! m(icb)=0.5*m(icb+1)*(ph(icb)-ph(icb+1))/(ph(icb+1)-ph(icb+2)) |
---|
| 1422 | c! sig(icb)=sig(icb+1) |
---|
| 1423 | c! sig(icb-1)=sig(icb) |
---|
| 1424 | |
---|
| 1425 | return |
---|
| 1426 | end |
---|
| 1427 | |
---|
| 1428 | SUBROUTINE cv30_mixing(nloc,ncum,nd,na,ntra,icb,nk,inb |
---|
| 1429 | : ,ph,t,rr,rs,u,v,tra,h,lv,qnk |
---|
| 1430 | : ,hp,tv,tvp,ep,clw,m,sig |
---|
| 1431 | : ,ment,qent,uent,vent,sij,elij,ments,qents,traent) |
---|
| 1432 | implicit none |
---|
| 1433 | |
---|
| 1434 | !--------------------------------------------------------------------- |
---|
| 1435 | ! a faire: |
---|
| 1436 | ! - changer rr(il,1) -> qnk(il) |
---|
| 1437 | ! - vectorisation de la partie normalisation des flux (do 789...) |
---|
| 1438 | !--------------------------------------------------------------------- |
---|
| 1439 | |
---|
| 1440 | #include "cvthermo.h" |
---|
| 1441 | #include "cv30param.h" |
---|
| 1442 | |
---|
| 1443 | c inputs: |
---|
| 1444 | integer ncum, nd, na, ntra, nloc |
---|
| 1445 | integer icb(nloc), inb(nloc), nk(nloc) |
---|
| 1446 | real sig(nloc,nd) |
---|
| 1447 | real qnk(nloc) |
---|
| 1448 | real ph(nloc,nd+1) |
---|
| 1449 | real t(nloc,nd), rr(nloc,nd), rs(nloc,nd) |
---|
| 1450 | real u(nloc,nd), v(nloc,nd) |
---|
| 1451 | real tra(nloc,nd,ntra) ! input of convect3 |
---|
| 1452 | real lv(nloc,na), h(nloc,na), hp(nloc,na) |
---|
| 1453 | real tv(nloc,na), tvp(nloc,na), ep(nloc,na), clw(nloc,na) |
---|
| 1454 | real m(nloc,na) ! input of convect3 |
---|
| 1455 | |
---|
| 1456 | c outputs: |
---|
| 1457 | real ment(nloc,na,na), qent(nloc,na,na) |
---|
| 1458 | real uent(nloc,na,na), vent(nloc,na,na) |
---|
| 1459 | real sij(nloc,na,na), elij(nloc,na,na) |
---|
| 1460 | real traent(nloc,nd,nd,ntra) |
---|
| 1461 | real ments(nloc,nd,nd), qents(nloc,nd,nd) |
---|
| 1462 | real sigij(nloc,nd,nd) |
---|
| 1463 | |
---|
| 1464 | c local variables: |
---|
| 1465 | integer i, j, k, il, im, jm |
---|
| 1466 | integer num1, num2 |
---|
| 1467 | integer nent(nloc,na) |
---|
| 1468 | real rti, bf2, anum, denom, dei, altem, cwat, stemp, qp |
---|
| 1469 | real alt, smid, sjmin, sjmax, delp, delm |
---|
| 1470 | real asij(nloc), smax(nloc), scrit(nloc) |
---|
| 1471 | real asum(nloc,nd),bsum(nloc,nd),csum(nloc,nd) |
---|
| 1472 | real wgh |
---|
| 1473 | real zm(nloc,na) |
---|
| 1474 | logical lwork(nloc) |
---|
| 1475 | |
---|
| 1476 | c===================================================================== |
---|
| 1477 | c --- INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
---|
| 1478 | c===================================================================== |
---|
| 1479 | |
---|
| 1480 | c ori do 360 i=1,ncum*nlp |
---|
| 1481 | do 361 j=1,nl |
---|
| 1482 | do 360 i=1,ncum |
---|
| 1483 | nent(i,j)=0 |
---|
| 1484 | c in convect3, m is computed in cv3_closure |
---|
| 1485 | c ori m(i,1)=0.0 |
---|
| 1486 | 360 continue |
---|
| 1487 | 361 continue |
---|
| 1488 | |
---|
| 1489 | c ori do 400 k=1,nlp |
---|
| 1490 | c ori do 390 j=1,nlp |
---|
| 1491 | do 400 j=1,nl |
---|
| 1492 | do 390 k=1,nl |
---|
| 1493 | do 385 i=1,ncum |
---|
| 1494 | qent(i,k,j)=rr(i,j) |
---|
| 1495 | uent(i,k,j)=u(i,j) |
---|
| 1496 | vent(i,k,j)=v(i,j) |
---|
| 1497 | elij(i,k,j)=0.0 |
---|
| 1498 | cym ment(i,k,j)=0.0 |
---|
| 1499 | cym sij(i,k,j)=0.0 |
---|
| 1500 | 385 continue |
---|
| 1501 | 390 continue |
---|
| 1502 | 400 continue |
---|
| 1503 | |
---|
| 1504 | cym |
---|
| 1505 | ment(1:ncum,1:nd,1:nd)=0.0 |
---|
| 1506 | sij(1:ncum,1:nd,1:nd)=0.0 |
---|
| 1507 | |
---|
| 1508 | c do k=1,ntra |
---|
| 1509 | c do j=1,nd ! instead nlp |
---|
| 1510 | c do i=1,nd ! instead nlp |
---|
| 1511 | c do il=1,ncum |
---|
| 1512 | c traent(il,i,j,k)=tra(il,j,k) |
---|
| 1513 | c enddo |
---|
| 1514 | c enddo |
---|
| 1515 | c enddo |
---|
| 1516 | c enddo |
---|
| 1517 | zm(:,:)=0. |
---|
| 1518 | |
---|
| 1519 | c===================================================================== |
---|
| 1520 | c --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
---|
| 1521 | c --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
---|
| 1522 | c --- FRACTION (sij) |
---|
| 1523 | c===================================================================== |
---|
| 1524 | |
---|
| 1525 | do 750 i=minorig+1, nl |
---|
| 1526 | |
---|
| 1527 | do 710 j=minorig,nl |
---|
| 1528 | do 700 il=1,ncum |
---|
| 1529 | if( (i.ge.icb(il)).and.(i.le.inb(il)).and. |
---|
| 1530 | : (j.ge.(icb(il)-1)).and.(j.le.inb(il)))then |
---|
| 1531 | |
---|
| 1532 | rti=rr(il,1)-ep(il,i)*clw(il,i) |
---|
| 1533 | bf2=1.+lv(il,j)*lv(il,j)*rs(il,j)/(rrv*t(il,j)*t(il,j)*cpd) |
---|
| 1534 | anum=h(il,j)-hp(il,i)+(cpv-cpd)*t(il,j)*(rti-rr(il,j)) |
---|
| 1535 | denom=h(il,i)-hp(il,i)+(cpd-cpv)*(rr(il,i)-rti)*t(il,j) |
---|
| 1536 | dei=denom |
---|
| 1537 | if(abs(dei).lt.0.01)dei=0.01 |
---|
| 1538 | sij(il,i,j)=anum/dei |
---|
| 1539 | sij(il,i,i)=1.0 |
---|
| 1540 | altem=sij(il,i,j)*rr(il,i)+(1.-sij(il,i,j))*rti-rs(il,j) |
---|
| 1541 | altem=altem/bf2 |
---|
| 1542 | cwat=clw(il,j)*(1.-ep(il,j)) |
---|
| 1543 | stemp=sij(il,i,j) |
---|
| 1544 | if((stemp.lt.0.0.or.stemp.gt.1.0.or.altem.gt.cwat) |
---|
| 1545 | : .and.j.gt.i)then |
---|
| 1546 | anum=anum-lv(il,j)*(rti-rs(il,j)-cwat*bf2) |
---|
| 1547 | denom=denom+lv(il,j)*(rr(il,i)-rti) |
---|
| 1548 | if(abs(denom).lt.0.01)denom=0.01 |
---|
| 1549 | sij(il,i,j)=anum/denom |
---|
| 1550 | altem=sij(il,i,j)*rr(il,i)+(1.-sij(il,i,j))*rti-rs(il,j) |
---|
| 1551 | altem=altem-(bf2-1.)*cwat |
---|
| 1552 | end if |
---|
| 1553 | if(sij(il,i,j).gt.0.0.and.sij(il,i,j).lt.0.95)then |
---|
| 1554 | qent(il,i,j)=sij(il,i,j)*rr(il,i)+(1.-sij(il,i,j))*rti |
---|
| 1555 | uent(il,i,j)=sij(il,i,j)*u(il,i)+(1.-sij(il,i,j))*u(il,nk(il)) |
---|
| 1556 | vent(il,i,j)=sij(il,i,j)*v(il,i)+(1.-sij(il,i,j))*v(il,nk(il)) |
---|
| 1557 | c!!! do k=1,ntra |
---|
| 1558 | c!!! traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
---|
| 1559 | c!!! : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
---|
| 1560 | c!!! end do |
---|
| 1561 | elij(il,i,j)=altem |
---|
| 1562 | elij(il,i,j)=amax1(0.0,elij(il,i,j)) |
---|
| 1563 | ment(il,i,j)=m(il,i)/(1.-sij(il,i,j)) |
---|
| 1564 | nent(il,i)=nent(il,i)+1 |
---|
| 1565 | end if |
---|
| 1566 | sij(il,i,j)=amax1(0.0,sij(il,i,j)) |
---|
| 1567 | sij(il,i,j)=amin1(1.0,sij(il,i,j)) |
---|
| 1568 | endif ! new |
---|
| 1569 | 700 continue |
---|
| 1570 | 710 continue |
---|
| 1571 | |
---|
| 1572 | c do k=1,ntra |
---|
| 1573 | c do j=minorig,nl |
---|
| 1574 | c do il=1,ncum |
---|
| 1575 | c if( (i.ge.icb(il)).and.(i.le.inb(il)).and. |
---|
| 1576 | c : (j.ge.(icb(il)-1)).and.(j.le.inb(il)))then |
---|
| 1577 | c traent(il,i,j,k)=sij(il,i,j)*tra(il,i,k) |
---|
| 1578 | c : +(1.-sij(il,i,j))*tra(il,nk(il),k) |
---|
| 1579 | c endif |
---|
| 1580 | c enddo |
---|
| 1581 | c enddo |
---|
| 1582 | c enddo |
---|
| 1583 | |
---|
| 1584 | c |
---|
| 1585 | c *** if no air can entrain at level i assume that updraft detrains *** |
---|
| 1586 | c *** at that level and calculate detrained air flux and properties *** |
---|
| 1587 | c |
---|
| 1588 | |
---|
| 1589 | c@ do 170 i=icb(il),inb(il) |
---|
| 1590 | |
---|
| 1591 | do 740 il=1,ncum |
---|
| 1592 | if ((i.ge.icb(il)).and.(i.le.inb(il)).and.(nent(il,i).eq.0)) then |
---|
| 1593 | c@ if(nent(il,i).eq.0)then |
---|
| 1594 | ment(il,i,i)=m(il,i) |
---|
| 1595 | qent(il,i,i)=rr(il,nk(il))-ep(il,i)*clw(il,i) |
---|
| 1596 | uent(il,i,i)=u(il,nk(il)) |
---|
| 1597 | vent(il,i,i)=v(il,nk(il)) |
---|
| 1598 | elij(il,i,i)=clw(il,i) |
---|
| 1599 | cMAF sij(il,i,i)=1.0 |
---|
| 1600 | sij(il,i,i)=0.0 |
---|
| 1601 | end if |
---|
| 1602 | 740 continue |
---|
| 1603 | 750 continue |
---|
| 1604 | |
---|
| 1605 | c do j=1,ntra |
---|
| 1606 | c do i=minorig+1,nl |
---|
| 1607 | c do il=1,ncum |
---|
| 1608 | c if (i.ge.icb(il) .and. i.le.inb(il) .and. nent(il,i).eq.0) then |
---|
| 1609 | c traent(il,i,i,j)=tra(il,nk(il),j) |
---|
| 1610 | c endif |
---|
| 1611 | c enddo |
---|
| 1612 | c enddo |
---|
| 1613 | c enddo |
---|
| 1614 | |
---|
| 1615 | do 100 j=minorig,nl |
---|
| 1616 | do 101 i=minorig,nl |
---|
| 1617 | do 102 il=1,ncum |
---|
| 1618 | if ((j.ge.(icb(il)-1)).and.(j.le.inb(il)) |
---|
| 1619 | : .and.(i.ge.icb(il)).and.(i.le.inb(il)))then |
---|
| 1620 | sigij(il,i,j)=sij(il,i,j) |
---|
| 1621 | endif |
---|
| 1622 | 102 continue |
---|
| 1623 | 101 continue |
---|
| 1624 | 100 continue |
---|
| 1625 | c@ enddo |
---|
| 1626 | |
---|
| 1627 | c@170 continue |
---|
| 1628 | |
---|
| 1629 | c===================================================================== |
---|
| 1630 | c --- NORMALIZE ENTRAINED AIR MASS FLUXES |
---|
| 1631 | c --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
---|
| 1632 | c===================================================================== |
---|
| 1633 | |
---|
| 1634 | cym call zilch(asum,ncum*nd) |
---|
| 1635 | cym call zilch(bsum,ncum*nd) |
---|
| 1636 | cym call zilch(csum,ncum*nd) |
---|
| 1637 | call zilch(asum,nloc*nd) |
---|
| 1638 | call zilch(csum,nloc*nd) |
---|
| 1639 | call zilch(csum,nloc*nd) |
---|
| 1640 | |
---|
| 1641 | do il=1,ncum |
---|
| 1642 | lwork(il) = .FALSE. |
---|
| 1643 | enddo |
---|
| 1644 | |
---|
| 1645 | DO 789 i=minorig+1,nl |
---|
| 1646 | |
---|
| 1647 | num1=0 |
---|
| 1648 | do il=1,ncum |
---|
| 1649 | if ( i.ge.icb(il) .and. i.le.inb(il) ) num1=num1+1 |
---|
| 1650 | enddo |
---|
| 1651 | if (num1.le.0) goto 789 |
---|
| 1652 | |
---|
| 1653 | |
---|
| 1654 | do 781 il=1,ncum |
---|
| 1655 | if ( i.ge.icb(il) .and. i.le.inb(il) ) then |
---|
| 1656 | lwork(il)=(nent(il,i).ne.0) |
---|
| 1657 | qp=rr(il,1)-ep(il,i)*clw(il,i) |
---|
| 1658 | anum=h(il,i)-hp(il,i)-lv(il,i)*(qp-rs(il,i)) |
---|
| 1659 | : +(cpv-cpd)*t(il,i)*(qp-rr(il,i)) |
---|
| 1660 | denom=h(il,i)-hp(il,i)+lv(il,i)*(rr(il,i)-qp) |
---|
| 1661 | : +(cpd-cpv)*t(il,i)*(rr(il,i)-qp) |
---|
| 1662 | if(abs(denom).lt.0.01)denom=0.01 |
---|
| 1663 | scrit(il)=anum/denom |
---|
| 1664 | alt=qp-rs(il,i)+scrit(il)*(rr(il,i)-qp) |
---|
| 1665 | if(scrit(il).le.0.0.or.alt.le.0.0)scrit(il)=1.0 |
---|
| 1666 | smax(il)=0.0 |
---|
| 1667 | asij(il)=0.0 |
---|
| 1668 | endif |
---|
| 1669 | 781 continue |
---|
| 1670 | |
---|
| 1671 | do 175 j=nl,minorig,-1 |
---|
| 1672 | |
---|
| 1673 | num2=0 |
---|
| 1674 | do il=1,ncum |
---|
| 1675 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. |
---|
| 1676 | : j.ge.(icb(il)-1) .and. j.le.inb(il) |
---|
| 1677 | : .and. lwork(il) ) num2=num2+1 |
---|
| 1678 | enddo |
---|
| 1679 | if (num2.le.0) goto 175 |
---|
| 1680 | |
---|
| 1681 | do 782 il=1,ncum |
---|
| 1682 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. |
---|
| 1683 | : j.ge.(icb(il)-1) .and. j.le.inb(il) |
---|
| 1684 | : .and. lwork(il) ) then |
---|
| 1685 | |
---|
| 1686 | if(sij(il,i,j).gt.1.0e-16.and.sij(il,i,j).lt.0.95)then |
---|
| 1687 | wgh=1.0 |
---|
| 1688 | if(j.gt.i)then |
---|
| 1689 | sjmax=amax1(sij(il,i,j+1),smax(il)) |
---|
| 1690 | sjmax=amin1(sjmax,scrit(il)) |
---|
| 1691 | smax(il)=amax1(sij(il,i,j),smax(il)) |
---|
| 1692 | sjmin=amax1(sij(il,i,j-1),smax(il)) |
---|
| 1693 | sjmin=amin1(sjmin,scrit(il)) |
---|
| 1694 | if(sij(il,i,j).lt.(smax(il)-1.0e-16))wgh=0.0 |
---|
| 1695 | smid=amin1(sij(il,i,j),scrit(il)) |
---|
| 1696 | else |
---|
| 1697 | sjmax=amax1(sij(il,i,j+1),scrit(il)) |
---|
| 1698 | smid=amax1(sij(il,i,j),scrit(il)) |
---|
| 1699 | sjmin=0.0 |
---|
| 1700 | if(j.gt.1)sjmin=sij(il,i,j-1) |
---|
| 1701 | sjmin=amax1(sjmin,scrit(il)) |
---|
| 1702 | endif |
---|
| 1703 | delp=abs(sjmax-smid) |
---|
| 1704 | delm=abs(sjmin-smid) |
---|
| 1705 | asij(il)=asij(il)+wgh*(delp+delm) |
---|
| 1706 | ment(il,i,j)=ment(il,i,j)*(delp+delm)*wgh |
---|
| 1707 | endif |
---|
| 1708 | endif |
---|
| 1709 | 782 continue |
---|
| 1710 | |
---|
| 1711 | 175 continue |
---|
| 1712 | |
---|
| 1713 | do il=1,ncum |
---|
| 1714 | if (i.ge.icb(il).and.i.le.inb(il).and.lwork(il)) then |
---|
| 1715 | asij(il)=amax1(1.0e-16,asij(il)) |
---|
| 1716 | asij(il)=1.0/asij(il) |
---|
| 1717 | asum(il,i)=0.0 |
---|
| 1718 | bsum(il,i)=0.0 |
---|
| 1719 | csum(il,i)=0.0 |
---|
| 1720 | endif |
---|
| 1721 | enddo |
---|
| 1722 | |
---|
| 1723 | do 180 j=minorig,nl |
---|
| 1724 | do il=1,ncum |
---|
| 1725 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
| 1726 | : .and. j.ge.(icb(il)-1) .and. j.le.inb(il) ) then |
---|
| 1727 | ment(il,i,j)=ment(il,i,j)*asij(il) |
---|
| 1728 | endif |
---|
| 1729 | enddo |
---|
| 1730 | 180 continue |
---|
| 1731 | |
---|
| 1732 | do 190 j=minorig,nl |
---|
| 1733 | do il=1,ncum |
---|
| 1734 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
| 1735 | : .and. j.ge.(icb(il)-1) .and. j.le.inb(il) ) then |
---|
| 1736 | asum(il,i)=asum(il,i)+ment(il,i,j) |
---|
| 1737 | ment(il,i,j)=ment(il,i,j)*sig(il,j) |
---|
| 1738 | bsum(il,i)=bsum(il,i)+ment(il,i,j) |
---|
| 1739 | endif |
---|
| 1740 | enddo |
---|
| 1741 | 190 continue |
---|
| 1742 | |
---|
| 1743 | do il=1,ncum |
---|
| 1744 | if (i.ge.icb(il).and.i.le.inb(il).and.lwork(il)) then |
---|
| 1745 | bsum(il,i)=amax1(bsum(il,i),1.0e-16) |
---|
| 1746 | bsum(il,i)=1.0/bsum(il,i) |
---|
| 1747 | endif |
---|
| 1748 | enddo |
---|
| 1749 | |
---|
| 1750 | do 195 j=minorig,nl |
---|
| 1751 | do il=1,ncum |
---|
| 1752 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
| 1753 | : .and. j.ge.(icb(il)-1) .and. j.le.inb(il) ) then |
---|
| 1754 | ment(il,i,j)=ment(il,i,j)*asum(il,i)*bsum(il,i) |
---|
| 1755 | endif |
---|
| 1756 | enddo |
---|
| 1757 | 195 continue |
---|
| 1758 | |
---|
| 1759 | do 197 j=minorig,nl |
---|
| 1760 | do il=1,ncum |
---|
| 1761 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
| 1762 | : .and. j.ge.(icb(il)-1) .and. j.le.inb(il) ) then |
---|
| 1763 | csum(il,i)=csum(il,i)+ment(il,i,j) |
---|
| 1764 | endif |
---|
| 1765 | enddo |
---|
| 1766 | 197 continue |
---|
| 1767 | |
---|
| 1768 | do il=1,ncum |
---|
| 1769 | if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
| 1770 | : .and. csum(il,i).lt.m(il,i) ) then |
---|
| 1771 | nent(il,i)=0 |
---|
| 1772 | ment(il,i,i)=m(il,i) |
---|
| 1773 | qent(il,i,i)=rr(il,1)-ep(il,i)*clw(il,i) |
---|
| 1774 | uent(il,i,i)=u(il,nk(il)) |
---|
| 1775 | vent(il,i,i)=v(il,nk(il)) |
---|
| 1776 | elij(il,i,i)=clw(il,i) |
---|
| 1777 | cMAF sij(il,i,i)=1.0 |
---|
| 1778 | sij(il,i,i)=0.0 |
---|
| 1779 | endif |
---|
| 1780 | enddo ! il |
---|
| 1781 | |
---|
| 1782 | c do j=1,ntra |
---|
| 1783 | c do il=1,ncum |
---|
| 1784 | c if ( i.ge.icb(il) .and. i.le.inb(il) .and. lwork(il) |
---|
| 1785 | c : .and. csum(il,i).lt.m(il,i) ) then |
---|
| 1786 | c traent(il,i,i,j)=tra(il,nk(il),j) |
---|
| 1787 | c endif |
---|
| 1788 | c enddo |
---|
| 1789 | c enddo |
---|
| 1790 | 789 continue |
---|
| 1791 | c |
---|
| 1792 | c MAF: renormalisation de MENT |
---|
| 1793 | do jm=1,nd |
---|
| 1794 | do im=1,nd |
---|
| 1795 | do il=1,ncum |
---|
| 1796 | zm(il,im)=zm(il,im)+(1.-sij(il,im,jm))*ment(il,im,jm) |
---|
| 1797 | end do |
---|
| 1798 | end do |
---|
| 1799 | end do |
---|
| 1800 | c |
---|
| 1801 | do jm=1,nd |
---|
| 1802 | do im=1,nd |
---|
| 1803 | do il=1,ncum |
---|
| 1804 | if(zm(il,im).ne.0.) then |
---|
| 1805 | ment(il,im,jm)=ment(il,im,jm)*m(il,im)/zm(il,im) |
---|
| 1806 | endif |
---|
| 1807 | end do |
---|
| 1808 | end do |
---|
| 1809 | end do |
---|
| 1810 | c |
---|
| 1811 | do jm=1,nd |
---|
| 1812 | do im=1,nd |
---|
| 1813 | do 999 il=1,ncum |
---|
| 1814 | qents(il,im,jm)=qent(il,im,jm) |
---|
| 1815 | ments(il,im,jm)=ment(il,im,jm) |
---|
| 1816 | 999 continue |
---|
| 1817 | enddo |
---|
| 1818 | enddo |
---|
| 1819 | |
---|
| 1820 | return |
---|
| 1821 | end |
---|
| 1822 | |
---|
| 1823 | |
---|
| 1824 | SUBROUTINE cv30_unsat(nloc,ncum,nd,na,ntra,icb,inb |
---|
| 1825 | : ,t,rr,rs,gz,u,v,tra,p,ph |
---|
| 1826 | : ,th,tv,lv,cpn,ep,sigp,clw |
---|
| 1827 | : ,m,ment,elij,delt,plcl |
---|
| 1828 | : ,mp,rp,up,vp,trap,wt,water,evap,b) |
---|
| 1829 | implicit none |
---|
| 1830 | |
---|
| 1831 | |
---|
| 1832 | #include "cvthermo.h" |
---|
| 1833 | #include "cv30param.h" |
---|
| 1834 | #include "cvflag.h" |
---|
| 1835 | |
---|
| 1836 | c inputs: |
---|
| 1837 | integer ncum, nd, na, ntra, nloc |
---|
| 1838 | integer icb(nloc), inb(nloc) |
---|
| 1839 | real delt, plcl(nloc) |
---|
| 1840 | real t(nloc,nd), rr(nloc,nd), rs(nloc,nd) |
---|
| 1841 | real u(nloc,nd), v(nloc,nd) |
---|
| 1842 | real tra(nloc,nd,ntra) |
---|
| 1843 | real p(nloc,nd), ph(nloc,nd+1) |
---|
| 1844 | real th(nloc,na), gz(nloc,na) |
---|
| 1845 | real lv(nloc,na), ep(nloc,na), sigp(nloc,na), clw(nloc,na) |
---|
| 1846 | real cpn(nloc,na), tv(nloc,na) |
---|
| 1847 | real m(nloc,na), ment(nloc,na,na), elij(nloc,na,na) |
---|
| 1848 | |
---|
| 1849 | c outputs: |
---|
| 1850 | real mp(nloc,na), rp(nloc,na), up(nloc,na), vp(nloc,na) |
---|
| 1851 | real water(nloc,na), evap(nloc,na), wt(nloc,na) |
---|
| 1852 | real trap(nloc,na,ntra) |
---|
| 1853 | real b(nloc,na) |
---|
| 1854 | |
---|
| 1855 | c local variables |
---|
| 1856 | integer i,j,k,il,num1 |
---|
| 1857 | real tinv, delti |
---|
| 1858 | real awat, afac, afac1, afac2, bfac |
---|
| 1859 | real pr1, pr2, sigt, b6, c6, revap, tevap, delth |
---|
| 1860 | real amfac, amp2, xf, tf, fac2, ur, sru, fac, d, af, bf |
---|
| 1861 | real ampmax |
---|
| 1862 | real lvcp(nloc,na) |
---|
| 1863 | real wdtrain(nloc) |
---|
| 1864 | logical lwork(nloc) |
---|
| 1865 | |
---|
| 1866 | |
---|
| 1867 | c------------------------------------------------------ |
---|
| 1868 | |
---|
| 1869 | delti = 1./delt |
---|
| 1870 | tinv=1./3. |
---|
| 1871 | |
---|
| 1872 | mp(:,:)=0. |
---|
| 1873 | |
---|
| 1874 | do i=1,nl |
---|
| 1875 | do il=1,ncum |
---|
| 1876 | mp(il,i)=0.0 |
---|
| 1877 | rp(il,i)=rr(il,i) |
---|
| 1878 | up(il,i)=u(il,i) |
---|
| 1879 | vp(il,i)=v(il,i) |
---|
| 1880 | wt(il,i)=0.001 |
---|
| 1881 | water(il,i)=0.0 |
---|
| 1882 | evap(il,i)=0.0 |
---|
| 1883 | b(il,i)=0.0 |
---|
| 1884 | lvcp(il,i)=lv(il,i)/cpn(il,i) |
---|
| 1885 | enddo |
---|
| 1886 | enddo |
---|
| 1887 | |
---|
| 1888 | c do k=1,ntra |
---|
| 1889 | c do i=1,nd |
---|
| 1890 | c do il=1,ncum |
---|
| 1891 | c trap(il,i,k)=tra(il,i,k) |
---|
| 1892 | c enddo |
---|
| 1893 | c enddo |
---|
| 1894 | c enddo |
---|
| 1895 | |
---|
| 1896 | c |
---|
| 1897 | c *** check whether ep(inb)=0, if so, skip precipitating *** |
---|
| 1898 | c *** downdraft calculation *** |
---|
| 1899 | c |
---|
| 1900 | |
---|
| 1901 | do il=1,ncum |
---|
| 1902 | lwork(il)=.TRUE. |
---|
| 1903 | if(ep(il,inb(il)).lt.0.0001)lwork(il)=.FALSE. |
---|
| 1904 | enddo |
---|
| 1905 | |
---|
| 1906 | call zilch(wdtrain,ncum) |
---|
| 1907 | |
---|
| 1908 | DO 400 i=nl+1,1,-1 |
---|
| 1909 | |
---|
| 1910 | num1=0 |
---|
| 1911 | do il=1,ncum |
---|
| 1912 | if ( i.le.inb(il) .and. lwork(il) ) num1=num1+1 |
---|
| 1913 | enddo |
---|
| 1914 | if (num1.le.0) goto 400 |
---|
| 1915 | |
---|
| 1916 | c |
---|
| 1917 | c *** integrate liquid water equation to find condensed water *** |
---|
| 1918 | c *** and condensed water flux *** |
---|
| 1919 | c |
---|
| 1920 | |
---|
| 1921 | c |
---|
| 1922 | c *** begin downdraft loop *** |
---|
| 1923 | c |
---|
| 1924 | |
---|
| 1925 | c |
---|
| 1926 | c *** calculate detrained precipitation *** |
---|
| 1927 | c |
---|
| 1928 | do il=1,ncum |
---|
| 1929 | if (i.le.inb(il) .and. lwork(il)) then |
---|
| 1930 | if (cvflag_grav) then |
---|
| 1931 | wdtrain(il)=grav*ep(il,i)*m(il,i)*clw(il,i) |
---|
| 1932 | else |
---|
| 1933 | wdtrain(il)=10.0*ep(il,i)*m(il,i)*clw(il,i) |
---|
| 1934 | endif |
---|
| 1935 | endif |
---|
| 1936 | enddo |
---|
| 1937 | |
---|
| 1938 | if(i.gt.1)then |
---|
| 1939 | do 320 j=1,i-1 |
---|
| 1940 | do il=1,ncum |
---|
| 1941 | if (i.le.inb(il) .and. lwork(il)) then |
---|
| 1942 | awat=elij(il,j,i)-(1.-ep(il,i))*clw(il,i) |
---|
| 1943 | awat=amax1(awat,0.0) |
---|
| 1944 | if (cvflag_grav) then |
---|
| 1945 | wdtrain(il)=wdtrain(il)+grav*awat*ment(il,j,i) |
---|
| 1946 | else |
---|
| 1947 | wdtrain(il)=wdtrain(il)+10.0*awat*ment(il,j,i) |
---|
| 1948 | endif |
---|
| 1949 | endif |
---|
| 1950 | enddo |
---|
| 1951 | 320 continue |
---|
| 1952 | endif |
---|
| 1953 | |
---|
| 1954 | c |
---|
| 1955 | c *** find rain water and evaporation using provisional *** |
---|
| 1956 | c *** estimates of rp(i)and rp(i-1) *** |
---|
| 1957 | c |
---|
| 1958 | |
---|
| 1959 | do 999 il=1,ncum |
---|
| 1960 | |
---|
| 1961 | if (i.le.inb(il) .and. lwork(il)) then |
---|
| 1962 | |
---|
| 1963 | wt(il,i)=45.0 |
---|
| 1964 | |
---|
| 1965 | if(i.lt.inb(il))then |
---|
| 1966 | rp(il,i)=rp(il,i+1) |
---|
| 1967 | : +(cpd*(t(il,i+1)-t(il,i))+gz(il,i+1)-gz(il,i))/lv(il,i) |
---|
| 1968 | rp(il,i)=0.5*(rp(il,i)+rr(il,i)) |
---|
| 1969 | endif |
---|
| 1970 | rp(il,i)=amax1(rp(il,i),0.0) |
---|
| 1971 | rp(il,i)=amin1(rp(il,i),rs(il,i)) |
---|
| 1972 | rp(il,inb(il))=rr(il,inb(il)) |
---|
| 1973 | |
---|
| 1974 | if(i.eq.1)then |
---|
| 1975 | afac=p(il,1)*(rs(il,1)-rp(il,1))/(1.0e4+2000.0*p(il,1)*rs(il,1)) |
---|
| 1976 | else |
---|
| 1977 | rp(il,i-1)=rp(il,i) |
---|
| 1978 | : +(cpd*(t(il,i)-t(il,i-1))+gz(il,i)-gz(il,i-1))/lv(il,i) |
---|
| 1979 | rp(il,i-1)=0.5*(rp(il,i-1)+rr(il,i-1)) |
---|
| 1980 | rp(il,i-1)=amin1(rp(il,i-1),rs(il,i-1)) |
---|
| 1981 | rp(il,i-1)=amax1(rp(il,i-1),0.0) |
---|
| 1982 | afac1=p(il,i)*(rs(il,i)-rp(il,i))/(1.0e4+2000.0*p(il,i)*rs(il,i)) |
---|
| 1983 | afac2=p(il,i-1)*(rs(il,i-1)-rp(il,i-1)) |
---|
| 1984 | : /(1.0e4+2000.0*p(il,i-1)*rs(il,i-1)) |
---|
| 1985 | afac=0.5*(afac1+afac2) |
---|
| 1986 | endif |
---|
| 1987 | if(i.eq.inb(il))afac=0.0 |
---|
| 1988 | afac=amax1(afac,0.0) |
---|
| 1989 | bfac=1./(sigd*wt(il,i)) |
---|
| 1990 | c |
---|
| 1991 | cjyg1 |
---|
| 1992 | ccc sigt=1.0 |
---|
| 1993 | ccc if(i.ge.icb)sigt=sigp(i) |
---|
| 1994 | c prise en compte de la variation progressive de sigt dans |
---|
| 1995 | c les couches icb et icb-1: |
---|
| 1996 | c pour plcl<ph(i+1), pr1=0 & pr2=1 |
---|
| 1997 | c pour plcl>ph(i), pr1=1 & pr2=0 |
---|
| 1998 | c pour ph(i+1)<plcl<ph(i), pr1 est la proportion a cheval |
---|
| 1999 | c sur le nuage, et pr2 est la proportion sous la base du |
---|
| 2000 | c nuage. |
---|
| 2001 | pr1=(plcl(il)-ph(il,i+1))/(ph(il,i)-ph(il,i+1)) |
---|
| 2002 | pr1=max(0.,min(1.,pr1)) |
---|
| 2003 | pr2=(ph(il,i)-plcl(il))/(ph(il,i)-ph(il,i+1)) |
---|
| 2004 | pr2=max(0.,min(1.,pr2)) |
---|
| 2005 | sigt=sigp(il,i)*pr1+pr2 |
---|
| 2006 | cjyg2 |
---|
| 2007 | c |
---|
| 2008 | b6=bfac*50.*sigd*(ph(il,i)-ph(il,i+1))*sigt*afac |
---|
| 2009 | c6=water(il,i+1)+bfac*wdtrain(il) |
---|
| 2010 | : -50.*sigd*bfac*(ph(il,i)-ph(il,i+1))*evap(il,i+1) |
---|
| 2011 | if(c6.gt.0.0)then |
---|
| 2012 | revap=0.5*(-b6+sqrt(b6*b6+4.*c6)) |
---|
| 2013 | evap(il,i)=sigt*afac*revap |
---|
| 2014 | water(il,i)=revap*revap |
---|
| 2015 | else |
---|
| 2016 | evap(il,i)=-evap(il,i+1) |
---|
| 2017 | : +0.02*(wdtrain(il)+sigd*wt(il,i)*water(il,i+1)) |
---|
| 2018 | : /(sigd*(ph(il,i)-ph(il,i+1))) |
---|
| 2019 | end if |
---|
| 2020 | c |
---|
| 2021 | c *** calculate precipitating downdraft mass flux under *** |
---|
| 2022 | c *** hydrostatic approximation *** |
---|
| 2023 | c |
---|
| 2024 | if (i.ne.1) then |
---|
| 2025 | |
---|
| 2026 | tevap=amax1(0.0,evap(il,i)) |
---|
| 2027 | delth=amax1(0.001,(th(il,i)-th(il,i-1))) |
---|
| 2028 | if (cvflag_grav) then |
---|
| 2029 | mp(il,i)=100.*ginv*lvcp(il,i)*sigd*tevap |
---|
| 2030 | : *(p(il,i-1)-p(il,i))/delth |
---|
| 2031 | else |
---|
| 2032 | mp(il,i)=10.*lvcp(il,i)*sigd*tevap*(p(il,i-1)-p(il,i))/delth |
---|
| 2033 | endif |
---|
| 2034 | c |
---|
| 2035 | c *** if hydrostatic assumption fails, *** |
---|
| 2036 | c *** solve cubic difference equation for downdraft theta *** |
---|
| 2037 | c *** and mass flux from two simultaneous differential eqns *** |
---|
| 2038 | c |
---|
| 2039 | amfac=sigd*sigd*70.0*ph(il,i)*(p(il,i-1)-p(il,i)) |
---|
| 2040 | : *(th(il,i)-th(il,i-1))/(tv(il,i)*th(il,i)) |
---|
| 2041 | amp2=abs(mp(il,i+1)*mp(il,i+1)-mp(il,i)*mp(il,i)) |
---|
| 2042 | if(amp2.gt.(0.1*amfac))then |
---|
| 2043 | xf=100.0*sigd*sigd*sigd*(ph(il,i)-ph(il,i+1)) |
---|
| 2044 | tf=b(il,i)-5.0*(th(il,i)-th(il,i-1))*t(il,i) |
---|
| 2045 | : /(lvcp(il,i)*sigd*th(il,i)) |
---|
| 2046 | af=xf*tf+mp(il,i+1)*mp(il,i+1)*tinv |
---|
| 2047 | bf=2.*(tinv*mp(il,i+1))**3+tinv*mp(il,i+1)*xf*tf |
---|
| 2048 | : +50.*(p(il,i-1)-p(il,i))*xf*tevap |
---|
| 2049 | fac2=1.0 |
---|
| 2050 | if(bf.lt.0.0)fac2=-1.0 |
---|
| 2051 | bf=abs(bf) |
---|
| 2052 | ur=0.25*bf*bf-af*af*af*tinv*tinv*tinv |
---|
| 2053 | if(ur.ge.0.0)then |
---|
| 2054 | sru=sqrt(ur) |
---|
| 2055 | fac=1.0 |
---|
| 2056 | if((0.5*bf-sru).lt.0.0)fac=-1.0 |
---|
| 2057 | mp(il,i)=mp(il,i+1)*tinv+(0.5*bf+sru)**tinv |
---|
| 2058 | : +fac*(abs(0.5*bf-sru))**tinv |
---|
| 2059 | else |
---|
| 2060 | d=atan(2.*sqrt(-ur)/(bf+1.0e-28)) |
---|
| 2061 | if(fac2.lt.0.0)d=3.14159-d |
---|
| 2062 | mp(il,i)=mp(il,i+1)*tinv+2.*sqrt(af*tinv)*cos(d*tinv) |
---|
| 2063 | endif |
---|
| 2064 | mp(il,i)=amax1(0.0,mp(il,i)) |
---|
| 2065 | |
---|
| 2066 | if (cvflag_grav) then |
---|
| 2067 | Cjyg : il y a vraisemblablement une erreur dans la ligne 2 suivante: |
---|
| 2068 | C il faut diviser par (mp(il,i)*sigd*grav) et non par (mp(il,i)+sigd*0.1). |
---|
| 2069 | C Et il faut bien revoir les facteurs 100. |
---|
| 2070 | b(il,i-1)=b(il,i)+100.0*(p(il,i-1)-p(il,i))*tevap |
---|
| 2071 | 2 /(mp(il,i)+sigd*0.1) |
---|
| 2072 | 3 -10.0*(th(il,i)-th(il,i-1))*t(il,i)/(lvcp(il,i)*sigd*th(il,i)) |
---|
| 2073 | else |
---|
| 2074 | b(il,i-1)=b(il,i)+100.0*(p(il,i-1)-p(il,i))*tevap |
---|
| 2075 | 2 /(mp(il,i)+sigd*0.1) |
---|
| 2076 | 3 -10.0*(th(il,i)-th(il,i-1))*t(il,i)/(lvcp(il,i)*sigd*th(il,i)) |
---|
| 2077 | endif |
---|
| 2078 | b(il,i-1)=amax1(b(il,i-1),0.0) |
---|
| 2079 | endif |
---|
| 2080 | c |
---|
| 2081 | c *** limit magnitude of mp(i) to meet cfl condition *** |
---|
| 2082 | c |
---|
| 2083 | ampmax=2.0*(ph(il,i)-ph(il,i+1))*delti |
---|
| 2084 | amp2=2.0*(ph(il,i-1)-ph(il,i))*delti |
---|
| 2085 | ampmax=amin1(ampmax,amp2) |
---|
| 2086 | mp(il,i)=amin1(mp(il,i),ampmax) |
---|
| 2087 | c |
---|
| 2088 | c *** force mp to decrease linearly to zero *** |
---|
| 2089 | c *** between cloud base and the surface *** |
---|
| 2090 | c |
---|
| 2091 | if(p(il,i).gt.p(il,icb(il)))then |
---|
| 2092 | mp(il,i)=mp(il,icb(il))*(p(il,1)-p(il,i))/(p(il,1)-p(il,icb(il))) |
---|
| 2093 | endif |
---|
| 2094 | |
---|
| 2095 | 360 continue |
---|
| 2096 | endif ! i.eq.1 |
---|
| 2097 | c |
---|
| 2098 | c *** find mixing ratio of precipitating downdraft *** |
---|
| 2099 | c |
---|
| 2100 | |
---|
| 2101 | if (i.ne.inb(il)) then |
---|
| 2102 | |
---|
| 2103 | rp(il,i)=rr(il,i) |
---|
| 2104 | |
---|
| 2105 | if(mp(il,i).gt.mp(il,i+1))then |
---|
| 2106 | |
---|
| 2107 | if (cvflag_grav) then |
---|
| 2108 | rp(il,i)=rp(il,i+1)*mp(il,i+1)+rr(il,i)*(mp(il,i)-mp(il,i+1)) |
---|
| 2109 | : +100.*ginv*0.5*sigd*(ph(il,i)-ph(il,i+1)) |
---|
| 2110 | : *(evap(il,i+1)+evap(il,i)) |
---|
| 2111 | else |
---|
| 2112 | rp(il,i)=rp(il,i+1)*mp(il,i+1)+rr(il,i)*(mp(il,i)-mp(il,i+1)) |
---|
| 2113 | : +5.*sigd*(ph(il,i)-ph(il,i+1)) |
---|
| 2114 | : *(evap(il,i+1)+evap(il,i)) |
---|
| 2115 | endif |
---|
| 2116 | rp(il,i)=rp(il,i)/mp(il,i) |
---|
| 2117 | up(il,i)=up(il,i+1)*mp(il,i+1)+u(il,i)*(mp(il,i)-mp(il,i+1)) |
---|
| 2118 | up(il,i)=up(il,i)/mp(il,i) |
---|
| 2119 | vp(il,i)=vp(il,i+1)*mp(il,i+1)+v(il,i)*(mp(il,i)-mp(il,i+1)) |
---|
| 2120 | vp(il,i)=vp(il,i)/mp(il,i) |
---|
| 2121 | |
---|
| 2122 | c do j=1,ntra |
---|
| 2123 | c trap(il,i,j)=trap(il,i+1,j)*mp(il,i+1) |
---|
| 2124 | ctestmaf : +trap(il,i,j)*(mp(il,i)-mp(il,i+1)) |
---|
| 2125 | c : +tra(il,i,j)*(mp(il,i)-mp(il,i+1)) |
---|
| 2126 | c trap(il,i,j)=trap(il,i,j)/mp(il,i) |
---|
| 2127 | c end do |
---|
| 2128 | |
---|
| 2129 | else |
---|
| 2130 | |
---|
| 2131 | if(mp(il,i+1).gt.1.0e-16)then |
---|
| 2132 | if (cvflag_grav) then |
---|
| 2133 | rp(il,i)=rp(il,i+1) |
---|
| 2134 | : +100.*ginv*0.5*sigd*(ph(il,i)-ph(il,i+1)) |
---|
| 2135 | : *(evap(il,i+1)+evap(il,i))/mp(il,i+1) |
---|
| 2136 | else |
---|
| 2137 | rp(il,i)=rp(il,i+1) |
---|
| 2138 | : +5.*sigd*(ph(il,i)-ph(il,i+1)) |
---|
| 2139 | : *(evap(il,i+1)+evap(il,i))/mp(il,i+1) |
---|
| 2140 | endif |
---|
| 2141 | up(il,i)=up(il,i+1) |
---|
| 2142 | vp(il,i)=vp(il,i+1) |
---|
| 2143 | |
---|
| 2144 | c do j=1,ntra |
---|
| 2145 | c trap(il,i,j)=trap(il,i+1,j) |
---|
| 2146 | c end do |
---|
| 2147 | |
---|
| 2148 | endif |
---|
| 2149 | endif |
---|
| 2150 | rp(il,i)=amin1(rp(il,i),rs(il,i)) |
---|
| 2151 | rp(il,i)=amax1(rp(il,i),0.0) |
---|
| 2152 | |
---|
| 2153 | endif |
---|
| 2154 | endif |
---|
| 2155 | 999 continue |
---|
| 2156 | |
---|
| 2157 | 400 continue |
---|
| 2158 | |
---|
| 2159 | return |
---|
| 2160 | end |
---|
| 2161 | |
---|
| 2162 | SUBROUTINE cv30_yield(nloc,ncum,nd,na,ntra |
---|
| 2163 | : ,icb,inb,delt |
---|
| 2164 | : ,t,rr,u,v,tra,gz,p,ph,h,hp,lv,cpn,th |
---|
| 2165 | : ,ep,clw,m,tp,mp,rp,up,vp,trap |
---|
| 2166 | : ,wt,water,evap,b |
---|
| 2167 | : ,ment,qent,uent,vent,nent,elij,traent,sig |
---|
| 2168 | : ,tv,tvp |
---|
| 2169 | : ,iflag,precip,VPrecip,ft,fr,fu,fv,ftra |
---|
| 2170 | : ,upwd,dnwd,dnwd0,ma,mike,tls,tps,qcondc,wd) |
---|
| 2171 | implicit none |
---|
| 2172 | |
---|
| 2173 | #include "cvthermo.h" |
---|
| 2174 | #include "cv30param.h" |
---|
| 2175 | #include "cvflag.h" |
---|
| 2176 | #include "conema3.h" |
---|
| 2177 | |
---|
| 2178 | c inputs: |
---|
| 2179 | integer ncum,nd,na,ntra,nloc |
---|
| 2180 | integer icb(nloc), inb(nloc) |
---|
| 2181 | real delt |
---|
| 2182 | real t(nloc,nd), rr(nloc,nd), u(nloc,nd), v(nloc,nd) |
---|
| 2183 | real tra(nloc,nd,ntra), sig(nloc,nd) |
---|
| 2184 | real gz(nloc,na), ph(nloc,nd+1), h(nloc,na), hp(nloc,na) |
---|
| 2185 | real th(nloc,na), p(nloc,nd), tp(nloc,na) |
---|
| 2186 | real lv(nloc,na), cpn(nloc,na), ep(nloc,na), clw(nloc,na) |
---|
| 2187 | real m(nloc,na), mp(nloc,na), rp(nloc,na), up(nloc,na) |
---|
| 2188 | real vp(nloc,na), wt(nloc,nd), trap(nloc,nd,ntra) |
---|
| 2189 | real water(nloc,na), evap(nloc,na), b(nloc,na) |
---|
| 2190 | real ment(nloc,na,na), qent(nloc,na,na), uent(nloc,na,na) |
---|
| 2191 | cym real vent(nloc,na,na), nent(nloc,na), elij(nloc,na,na) |
---|
| 2192 | real vent(nloc,na,na), elij(nloc,na,na) |
---|
| 2193 | integer nent(nloc,na) |
---|
| 2194 | real traent(nloc,na,na,ntra) |
---|
| 2195 | real tv(nloc,nd), tvp(nloc,nd) |
---|
| 2196 | |
---|
| 2197 | c input/output: |
---|
| 2198 | integer iflag(nloc) |
---|
| 2199 | |
---|
| 2200 | c outputs: |
---|
| 2201 | real precip(nloc) |
---|
| 2202 | real VPrecip(nloc,nd+1) |
---|
| 2203 | real ft(nloc,nd), fr(nloc,nd), fu(nloc,nd), fv(nloc,nd) |
---|
| 2204 | real ftra(nloc,nd,ntra) |
---|
| 2205 | real upwd(nloc,nd), dnwd(nloc,nd), ma(nloc,nd) |
---|
| 2206 | real dnwd0(nloc,nd), mike(nloc,nd) |
---|
| 2207 | real tls(nloc,nd), tps(nloc,nd) |
---|
| 2208 | real qcondc(nloc,nd) ! cld |
---|
| 2209 | real wd(nloc) ! gust |
---|
| 2210 | |
---|
| 2211 | c local variables: |
---|
| 2212 | integer i,k,il,n,j,num1 |
---|
| 2213 | real rat, awat, delti |
---|
| 2214 | real ax, bx, cx, dx, ex |
---|
| 2215 | real cpinv, rdcp, dpinv |
---|
| 2216 | real lvcp(nloc,na), mke(nloc,na) |
---|
| 2217 | real am(nloc), work(nloc), ad(nloc), amp1(nloc) |
---|
| 2218 | c!! real up1(nloc), dn1(nloc) |
---|
| 2219 | real up1(nloc,nd,nd), dn1(nloc,nd,nd) |
---|
| 2220 | real asum(nloc), bsum(nloc), csum(nloc), dsum(nloc) |
---|
| 2221 | real qcond(nloc,nd), nqcond(nloc,nd), wa(nloc,nd) ! cld |
---|
| 2222 | real siga(nloc,nd), sax(nloc,nd), mac(nloc,nd) ! cld |
---|
| 2223 | |
---|
| 2224 | |
---|
| 2225 | c------------------------------------------------------------- |
---|
| 2226 | |
---|
| 2227 | c initialization: |
---|
| 2228 | |
---|
| 2229 | delti = 1.0/delt |
---|
| 2230 | |
---|
| 2231 | do il=1,ncum |
---|
| 2232 | precip(il)=0.0 |
---|
| 2233 | wd(il)=0.0 ! gust |
---|
| 2234 | VPrecip(il,nd+1)=0. |
---|
| 2235 | enddo |
---|
| 2236 | |
---|
| 2237 | do i=1,nd |
---|
| 2238 | do il=1,ncum |
---|
| 2239 | VPrecip(il,i)=0.0 |
---|
| 2240 | ft(il,i)=0.0 |
---|
| 2241 | fr(il,i)=0.0 |
---|
| 2242 | fu(il,i)=0.0 |
---|
| 2243 | fv(il,i)=0.0 |
---|
| 2244 | qcondc(il,i)=0.0 ! cld |
---|
| 2245 | qcond(il,i)=0.0 ! cld |
---|
| 2246 | nqcond(il,i)=0.0 ! cld |
---|
| 2247 | enddo |
---|
| 2248 | enddo |
---|
| 2249 | |
---|
| 2250 | c do j=1,ntra |
---|
| 2251 | c do i=1,nd |
---|
| 2252 | c do il=1,ncum |
---|
| 2253 | c ftra(il,i,j)=0.0 |
---|
| 2254 | c enddo |
---|
| 2255 | c enddo |
---|
| 2256 | c enddo |
---|
| 2257 | |
---|
| 2258 | do i=1,nl |
---|
| 2259 | do il=1,ncum |
---|
| 2260 | lvcp(il,i)=lv(il,i)/cpn(il,i) |
---|
| 2261 | enddo |
---|
| 2262 | enddo |
---|
| 2263 | |
---|
| 2264 | |
---|
| 2265 | c |
---|
| 2266 | c *** calculate surface precipitation in mm/day *** |
---|
| 2267 | c |
---|
| 2268 | do il=1,ncum |
---|
| 2269 | if(ep(il,inb(il)).ge.0.0001)then |
---|
| 2270 | if (cvflag_grav) then |
---|
| 2271 | precip(il)=wt(il,1)*sigd*water(il,1)*86400.*1000./(rowl*grav) |
---|
| 2272 | else |
---|
| 2273 | precip(il)=wt(il,1)*sigd*water(il,1)*8640. |
---|
| 2274 | endif |
---|
| 2275 | endif |
---|
| 2276 | enddo |
---|
| 2277 | |
---|
| 2278 | C *** CALCULATE VERTICAL PROFILE OF PRECIPITATIONs IN kg/m2/s === |
---|
| 2279 | C |
---|
| 2280 | c MAF rajout pour lessivage |
---|
| 2281 | do k=1,nl |
---|
| 2282 | do il=1,ncum |
---|
| 2283 | if (k.le.inb(il)) then |
---|
| 2284 | if (cvflag_grav) then |
---|
| 2285 | VPrecip(il,k) = wt(il,k)*sigd*water(il,k)/grav |
---|
| 2286 | else |
---|
| 2287 | VPrecip(il,k) = wt(il,k)*sigd*water(il,k)/10. |
---|
| 2288 | endif |
---|
| 2289 | endif |
---|
| 2290 | end do |
---|
| 2291 | end do |
---|
| 2292 | C |
---|
| 2293 | c |
---|
| 2294 | c *** Calculate downdraft velocity scale *** |
---|
| 2295 | c *** NE PAS UTILISER POUR L'INSTANT *** |
---|
| 2296 | c |
---|
| 2297 | c! do il=1,ncum |
---|
| 2298 | c! wd(il)=betad*abs(mp(il,icb(il)))*0.01*rrd*t(il,icb(il)) |
---|
| 2299 | c! : /(sigd*p(il,icb(il))) |
---|
| 2300 | c! enddo |
---|
| 2301 | |
---|
| 2302 | c |
---|
| 2303 | c *** calculate tendencies of lowest level potential temperature *** |
---|
| 2304 | c *** and mixing ratio *** |
---|
| 2305 | c |
---|
| 2306 | do il=1,ncum |
---|
| 2307 | work(il)=1.0/(ph(il,1)-ph(il,2)) |
---|
| 2308 | am(il)=0.0 |
---|
| 2309 | enddo |
---|
| 2310 | |
---|
| 2311 | do k=2,nl |
---|
| 2312 | do il=1,ncum |
---|
| 2313 | if (k.le.inb(il)) then |
---|
| 2314 | am(il)=am(il)+m(il,k) |
---|
| 2315 | endif |
---|
| 2316 | enddo |
---|
| 2317 | enddo |
---|
| 2318 | |
---|
| 2319 | do il=1,ncum |
---|
| 2320 | |
---|
| 2321 | c convect3 if((0.1*dpinv*am).ge.delti)iflag(il)=4 |
---|
| 2322 | if (cvflag_grav) then |
---|
| 2323 | if((0.01*grav*work(il)*am(il)).ge.delti)iflag(il)=1!consist vect |
---|
| 2324 | ft(il,1)=0.01*grav*work(il)*am(il)*(t(il,2)-t(il,1) |
---|
| 2325 | : +(gz(il,2)-gz(il,1))/cpn(il,1)) |
---|
| 2326 | else |
---|
| 2327 | if((0.1*work(il)*am(il)).ge.delti)iflag(il)=1 !consistency vect |
---|
| 2328 | ft(il,1)=0.1*work(il)*am(il)*(t(il,2)-t(il,1) |
---|
| 2329 | : +(gz(il,2)-gz(il,1))/cpn(il,1)) |
---|
| 2330 | endif |
---|
| 2331 | |
---|
| 2332 | ft(il,1)=ft(il,1)-0.5*lvcp(il,1)*sigd*(evap(il,1)+evap(il,2)) |
---|
| 2333 | |
---|
| 2334 | if (cvflag_grav) then |
---|
| 2335 | ft(il,1)=ft(il,1)-0.009*grav*sigd*mp(il,2) |
---|
| 2336 | : *t(il,1)*b(il,1)*work(il) |
---|
| 2337 | else |
---|
| 2338 | ft(il,1)=ft(il,1)-0.09*sigd*mp(il,2)*t(il,1)*b(il,1)*work(il) |
---|
| 2339 | endif |
---|
| 2340 | |
---|
| 2341 | ft(il,1)=ft(il,1)+0.01*sigd*wt(il,1)*(cl-cpd)*water(il,2)*(t(il,2) |
---|
| 2342 | :-t(il,1))*work(il)/cpn(il,1) |
---|
| 2343 | |
---|
| 2344 | if (cvflag_grav) then |
---|
| 2345 | Cjyg1 Correction pour mieux conserver l'eau (conformite avec CONVECT4.3) |
---|
| 2346 | c (sb: pour l'instant, on ne fait que le chgt concernant grav, pas evap) |
---|
| 2347 | fr(il,1)=0.01*grav*mp(il,2)*(rp(il,2)-rr(il,1))*work(il) |
---|
| 2348 | : +sigd*0.5*(evap(il,1)+evap(il,2)) |
---|
| 2349 | c+tard : +sigd*evap(il,1) |
---|
| 2350 | |
---|
| 2351 | fr(il,1)=fr(il,1)+0.01*grav*am(il)*(rr(il,2)-rr(il,1))*work(il) |
---|
| 2352 | |
---|
| 2353 | fu(il,1)=fu(il,1)+0.01*grav*work(il)*(mp(il,2)*(up(il,2)-u(il,1)) |
---|
| 2354 | : +am(il)*(u(il,2)-u(il,1))) |
---|
| 2355 | fv(il,1)=fv(il,1)+0.01*grav*work(il)*(mp(il,2)*(vp(il,2)-v(il,1)) |
---|
| 2356 | : +am(il)*(v(il,2)-v(il,1))) |
---|
| 2357 | else ! cvflag_grav |
---|
| 2358 | fr(il,1)=0.1*mp(il,2)*(rp(il,2)-rr(il,1))*work(il) |
---|
| 2359 | : +sigd*0.5*(evap(il,1)+evap(il,2)) |
---|
| 2360 | fr(il,1)=fr(il,1)+0.1*am(il)*(rr(il,2)-rr(il,1))*work(il) |
---|
| 2361 | fu(il,1)=fu(il,1)+0.1*work(il)*(mp(il,2)*(up(il,2)-u(il,1)) |
---|
| 2362 | : +am(il)*(u(il,2)-u(il,1))) |
---|
| 2363 | fv(il,1)=fv(il,1)+0.1*work(il)*(mp(il,2)*(vp(il,2)-v(il,1)) |
---|
| 2364 | : +am(il)*(v(il,2)-v(il,1))) |
---|
| 2365 | endif ! cvflag_grav |
---|
| 2366 | |
---|
| 2367 | enddo ! il |
---|
| 2368 | |
---|
| 2369 | c do j=1,ntra |
---|
| 2370 | c do il=1,ncum |
---|
| 2371 | c if (cvflag_grav) then |
---|
| 2372 | c ftra(il,1,j)=ftra(il,1,j)+0.01*grav*work(il) |
---|
| 2373 | c : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
---|
| 2374 | c : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
---|
| 2375 | c else |
---|
| 2376 | c ftra(il,1,j)=ftra(il,1,j)+0.1*work(il) |
---|
| 2377 | c : *(mp(il,2)*(trap(il,2,j)-tra(il,1,j)) |
---|
| 2378 | c : +am(il)*(tra(il,2,j)-tra(il,1,j))) |
---|
| 2379 | c endif |
---|
| 2380 | c enddo |
---|
| 2381 | c enddo |
---|
| 2382 | |
---|
| 2383 | do j=2,nl |
---|
| 2384 | do il=1,ncum |
---|
| 2385 | if (j.le.inb(il)) then |
---|
| 2386 | if (cvflag_grav) then |
---|
| 2387 | fr(il,1)=fr(il,1) |
---|
| 2388 | : +0.01*grav*work(il)*ment(il,j,1)*(qent(il,j,1)-rr(il,1)) |
---|
| 2389 | fu(il,1)=fu(il,1) |
---|
| 2390 | : +0.01*grav*work(il)*ment(il,j,1)*(uent(il,j,1)-u(il,1)) |
---|
| 2391 | fv(il,1)=fv(il,1) |
---|
| 2392 | : +0.01*grav*work(il)*ment(il,j,1)*(vent(il,j,1)-v(il,1)) |
---|
| 2393 | else ! cvflag_grav |
---|
| 2394 | fr(il,1)=fr(il,1) |
---|
| 2395 | : +0.1*work(il)*ment(il,j,1)*(qent(il,j,1)-rr(il,1)) |
---|
| 2396 | fu(il,1)=fu(il,1) |
---|
| 2397 | : +0.1*work(il)*ment(il,j,1)*(uent(il,j,1)-u(il,1)) |
---|
| 2398 | fv(il,1)=fv(il,1) |
---|
| 2399 | : +0.1*work(il)*ment(il,j,1)*(vent(il,j,1)-v(il,1)) |
---|
| 2400 | endif ! cvflag_grav |
---|
| 2401 | endif ! j |
---|
| 2402 | enddo |
---|
| 2403 | enddo |
---|
| 2404 | |
---|
| 2405 | c do k=1,ntra |
---|
| 2406 | c do j=2,nl |
---|
| 2407 | c do il=1,ncum |
---|
| 2408 | c if (j.le.inb(il)) then |
---|
| 2409 | |
---|
| 2410 | c if (cvflag_grav) then |
---|
| 2411 | c ftra(il,1,k)=ftra(il,1,k)+0.01*grav*work(il)*ment(il,j,1) |
---|
| 2412 | c : *(traent(il,j,1,k)-tra(il,1,k)) |
---|
| 2413 | c else |
---|
| 2414 | c ftra(il,1,k)=ftra(il,1,k)+0.1*work(il)*ment(il,j,1) |
---|
| 2415 | c : *(traent(il,j,1,k)-tra(il,1,k)) |
---|
| 2416 | c endif |
---|
| 2417 | |
---|
| 2418 | c endif |
---|
| 2419 | c enddo |
---|
| 2420 | c enddo |
---|
| 2421 | c enddo |
---|
| 2422 | |
---|
| 2423 | c |
---|
| 2424 | c *** calculate tendencies of potential temperature and mixing ratio *** |
---|
| 2425 | c *** at levels above the lowest level *** |
---|
| 2426 | c |
---|
| 2427 | c *** first find the net saturated updraft and downdraft mass fluxes *** |
---|
| 2428 | c *** through each level *** |
---|
| 2429 | c |
---|
| 2430 | |
---|
| 2431 | do 500 i=2,nl+1 ! newvecto: mettre nl au lieu nl+1? |
---|
| 2432 | |
---|
| 2433 | num1=0 |
---|
| 2434 | do il=1,ncum |
---|
| 2435 | if(i.le.inb(il))num1=num1+1 |
---|
| 2436 | enddo |
---|
| 2437 | if(num1.le.0)go to 500 |
---|
| 2438 | |
---|
| 2439 | call zilch(amp1,ncum) |
---|
| 2440 | call zilch(ad,ncum) |
---|
| 2441 | |
---|
| 2442 | do 440 k=i+1,nl+1 |
---|
| 2443 | do 441 il=1,ncum |
---|
| 2444 | if (i.le.inb(il) .and. k.le.(inb(il)+1)) then |
---|
| 2445 | amp1(il)=amp1(il)+m(il,k) |
---|
| 2446 | endif |
---|
| 2447 | 441 continue |
---|
| 2448 | 440 continue |
---|
| 2449 | |
---|
| 2450 | do 450 k=1,i |
---|
| 2451 | do 451 j=i+1,nl+1 |
---|
| 2452 | do 452 il=1,ncum |
---|
| 2453 | if (i.le.inb(il) .and. j.le.(inb(il)+1)) then |
---|
| 2454 | amp1(il)=amp1(il)+ment(il,k,j) |
---|
| 2455 | endif |
---|
| 2456 | 452 continue |
---|
| 2457 | 451 continue |
---|
| 2458 | 450 continue |
---|
| 2459 | |
---|
| 2460 | do 470 k=1,i-1 |
---|
| 2461 | do 471 j=i,nl+1 ! newvecto: nl au lieu nl+1? |
---|
| 2462 | do 472 il=1,ncum |
---|
| 2463 | if (i.le.inb(il) .and. j.le.inb(il)) then |
---|
| 2464 | ad(il)=ad(il)+ment(il,j,k) |
---|
| 2465 | endif |
---|
| 2466 | 472 continue |
---|
| 2467 | 471 continue |
---|
| 2468 | 470 continue |
---|
| 2469 | |
---|
| 2470 | do 1350 il=1,ncum |
---|
| 2471 | if (i.le.inb(il)) then |
---|
| 2472 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2473 | cpinv=1.0/cpn(il,i) |
---|
| 2474 | |
---|
| 2475 | c convect3 if((0.1*dpinv*amp1).ge.delti)iflag(il)=4 |
---|
| 2476 | if (cvflag_grav) then |
---|
| 2477 | if((0.01*grav*dpinv*amp1(il)).ge.delti)iflag(il)=1 ! vecto |
---|
| 2478 | else |
---|
| 2479 | if((0.1*dpinv*amp1(il)).ge.delti)iflag(il)=1 ! vecto |
---|
| 2480 | endif |
---|
| 2481 | |
---|
| 2482 | if (cvflag_grav) then |
---|
| 2483 | ft(il,i)=0.01*grav*dpinv*(amp1(il)*(t(il,i+1)-t(il,i) |
---|
| 2484 | : +(gz(il,i+1)-gz(il,i))*cpinv) |
---|
| 2485 | : -ad(il)*(t(il,i)-t(il,i-1)+(gz(il,i)-gz(il,i-1))*cpinv)) |
---|
| 2486 | : -0.5*sigd*lvcp(il,i)*(evap(il,i)+evap(il,i+1)) |
---|
| 2487 | rat=cpn(il,i-1)*cpinv |
---|
| 2488 | ft(il,i)=ft(il,i)-0.009*grav*sigd*(mp(il,i+1)*t(il,i)*b(il,i) |
---|
| 2489 | : -mp(il,i)*t(il,i-1)*rat*b(il,i-1))*dpinv |
---|
| 2490 | ft(il,i)=ft(il,i)+0.01*grav*dpinv*ment(il,i,i)*(hp(il,i)-h(il,i) |
---|
| 2491 | : +t(il,i)*(cpv-cpd)*(rr(il,i)-qent(il,i,i)))*cpinv |
---|
| 2492 | else ! cvflag_grav |
---|
| 2493 | ft(il,i)=0.1*dpinv*(amp1(il)*(t(il,i+1)-t(il,i) |
---|
| 2494 | : +(gz(il,i+1)-gz(il,i))*cpinv) |
---|
| 2495 | : -ad(il)*(t(il,i)-t(il,i-1)+(gz(il,i)-gz(il,i-1))*cpinv)) |
---|
| 2496 | : -0.5*sigd*lvcp(il,i)*(evap(il,i)+evap(il,i+1)) |
---|
| 2497 | rat=cpn(il,i-1)*cpinv |
---|
| 2498 | ft(il,i)=ft(il,i)-0.09*sigd*(mp(il,i+1)*t(il,i)*b(il,i) |
---|
| 2499 | : -mp(il,i)*t(il,i-1)*rat*b(il,i-1))*dpinv |
---|
| 2500 | ft(il,i)=ft(il,i)+0.1*dpinv*ment(il,i,i)*(hp(il,i)-h(il,i) |
---|
| 2501 | : +t(il,i)*(cpv-cpd)*(rr(il,i)-qent(il,i,i)))*cpinv |
---|
| 2502 | endif ! cvflag_grav |
---|
| 2503 | |
---|
| 2504 | |
---|
| 2505 | ft(il,i)=ft(il,i)+0.01*sigd*wt(il,i)*(cl-cpd)*water(il,i+1) |
---|
| 2506 | : *(t(il,i+1)-t(il,i))*dpinv*cpinv |
---|
| 2507 | |
---|
| 2508 | if (cvflag_grav) then |
---|
| 2509 | fr(il,i)=0.01*grav*dpinv*(amp1(il)*(rr(il,i+1)-rr(il,i)) |
---|
| 2510 | : -ad(il)*(rr(il,i)-rr(il,i-1))) |
---|
| 2511 | fu(il,i)=fu(il,i)+0.01*grav*dpinv*(amp1(il)*(u(il,i+1)-u(il,i)) |
---|
| 2512 | : -ad(il)*(u(il,i)-u(il,i-1))) |
---|
| 2513 | fv(il,i)=fv(il,i)+0.01*grav*dpinv*(amp1(il)*(v(il,i+1)-v(il,i)) |
---|
| 2514 | : -ad(il)*(v(il,i)-v(il,i-1))) |
---|
| 2515 | else ! cvflag_grav |
---|
| 2516 | fr(il,i)=0.1*dpinv*(amp1(il)*(rr(il,i+1)-rr(il,i)) |
---|
| 2517 | : -ad(il)*(rr(il,i)-rr(il,i-1))) |
---|
| 2518 | fu(il,i)=fu(il,i)+0.1*dpinv*(amp1(il)*(u(il,i+1)-u(il,i)) |
---|
| 2519 | : -ad(il)*(u(il,i)-u(il,i-1))) |
---|
| 2520 | fv(il,i)=fv(il,i)+0.1*dpinv*(amp1(il)*(v(il,i+1)-v(il,i)) |
---|
| 2521 | : -ad(il)*(v(il,i)-v(il,i-1))) |
---|
| 2522 | endif ! cvflag_grav |
---|
| 2523 | |
---|
| 2524 | endif ! i |
---|
| 2525 | 1350 continue |
---|
| 2526 | |
---|
| 2527 | c do k=1,ntra |
---|
| 2528 | c do il=1,ncum |
---|
| 2529 | c if (i.le.inb(il)) then |
---|
| 2530 | c dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2531 | c cpinv=1.0/cpn(il,i) |
---|
| 2532 | c if (cvflag_grav) then |
---|
| 2533 | c ftra(il,i,k)=ftra(il,i,k)+0.01*grav*dpinv |
---|
| 2534 | c : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
---|
| 2535 | c : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
---|
| 2536 | c else |
---|
| 2537 | c ftra(il,i,k)=ftra(il,i,k)+0.1*dpinv |
---|
| 2538 | c : *(amp1(il)*(tra(il,i+1,k)-tra(il,i,k)) |
---|
| 2539 | c : -ad(il)*(tra(il,i,k)-tra(il,i-1,k))) |
---|
| 2540 | c endif |
---|
| 2541 | c endif |
---|
| 2542 | c enddo |
---|
| 2543 | c enddo |
---|
| 2544 | |
---|
| 2545 | do 480 k=1,i-1 |
---|
| 2546 | do 1370 il=1,ncum |
---|
| 2547 | if (i.le.inb(il)) then |
---|
| 2548 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2549 | cpinv=1.0/cpn(il,i) |
---|
| 2550 | |
---|
| 2551 | awat=elij(il,k,i)-(1.-ep(il,i))*clw(il,i) |
---|
| 2552 | awat=amax1(awat,0.0) |
---|
| 2553 | |
---|
| 2554 | if (cvflag_grav) then |
---|
| 2555 | fr(il,i)=fr(il,i) |
---|
| 2556 | : +0.01*grav*dpinv*ment(il,k,i)*(qent(il,k,i)-awat-rr(il,i)) |
---|
| 2557 | fu(il,i)=fu(il,i) |
---|
| 2558 | : +0.01*grav*dpinv*ment(il,k,i)*(uent(il,k,i)-u(il,i)) |
---|
| 2559 | fv(il,i)=fv(il,i) |
---|
| 2560 | : +0.01*grav*dpinv*ment(il,k,i)*(vent(il,k,i)-v(il,i)) |
---|
| 2561 | else ! cvflag_grav |
---|
| 2562 | fr(il,i)=fr(il,i) |
---|
| 2563 | : +0.1*dpinv*ment(il,k,i)*(qent(il,k,i)-awat-rr(il,i)) |
---|
| 2564 | fu(il,i)=fu(il,i) |
---|
| 2565 | : +0.01*grav*dpinv*ment(il,k,i)*(uent(il,k,i)-u(il,i)) |
---|
| 2566 | fv(il,i)=fv(il,i) |
---|
| 2567 | : +0.1*dpinv*ment(il,k,i)*(vent(il,k,i)-v(il,i)) |
---|
| 2568 | endif ! cvflag_grav |
---|
| 2569 | |
---|
| 2570 | c (saturated updrafts resulting from mixing) ! cld |
---|
| 2571 | qcond(il,i)=qcond(il,i)+(elij(il,k,i)-awat) ! cld |
---|
| 2572 | nqcond(il,i)=nqcond(il,i)+1. ! cld |
---|
| 2573 | endif ! i |
---|
| 2574 | 1370 continue |
---|
| 2575 | 480 continue |
---|
| 2576 | |
---|
| 2577 | c do j=1,ntra |
---|
| 2578 | c do k=1,i-1 |
---|
| 2579 | c do il=1,ncum |
---|
| 2580 | c if (i.le.inb(il)) then |
---|
| 2581 | c dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2582 | c cpinv=1.0/cpn(il,i) |
---|
| 2583 | c if (cvflag_grav) then |
---|
| 2584 | c ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
---|
| 2585 | c : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
| 2586 | c else |
---|
| 2587 | c ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
---|
| 2588 | c : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
| 2589 | c endif |
---|
| 2590 | c endif |
---|
| 2591 | c enddo |
---|
| 2592 | c enddo |
---|
| 2593 | c enddo |
---|
| 2594 | |
---|
| 2595 | do 490 k=i,nl+1 |
---|
| 2596 | do 1380 il=1,ncum |
---|
| 2597 | if (i.le.inb(il) .and. k.le.inb(il)) then |
---|
| 2598 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2599 | cpinv=1.0/cpn(il,i) |
---|
| 2600 | |
---|
| 2601 | if (cvflag_grav) then |
---|
| 2602 | fr(il,i)=fr(il,i) |
---|
| 2603 | : +0.01*grav*dpinv*ment(il,k,i)*(qent(il,k,i)-rr(il,i)) |
---|
| 2604 | fu(il,i)=fu(il,i) |
---|
| 2605 | : +0.01*grav*dpinv*ment(il,k,i)*(uent(il,k,i)-u(il,i)) |
---|
| 2606 | fv(il,i)=fv(il,i) |
---|
| 2607 | : +0.01*grav*dpinv*ment(il,k,i)*(vent(il,k,i)-v(il,i)) |
---|
| 2608 | else ! cvflag_grav |
---|
| 2609 | fr(il,i)=fr(il,i) |
---|
| 2610 | : +0.1*dpinv*ment(il,k,i)*(qent(il,k,i)-rr(il,i)) |
---|
| 2611 | fu(il,i)=fu(il,i) |
---|
| 2612 | : +0.1*dpinv*ment(il,k,i)*(uent(il,k,i)-u(il,i)) |
---|
| 2613 | fv(il,i)=fv(il,i) |
---|
| 2614 | : +0.1*dpinv*ment(il,k,i)*(vent(il,k,i)-v(il,i)) |
---|
| 2615 | endif ! cvflag_grav |
---|
| 2616 | endif ! i and k |
---|
| 2617 | 1380 continue |
---|
| 2618 | 490 continue |
---|
| 2619 | |
---|
| 2620 | c do j=1,ntra |
---|
| 2621 | c do k=i,nl+1 |
---|
| 2622 | c do il=1,ncum |
---|
| 2623 | c if (i.le.inb(il) .and. k.le.inb(il)) then |
---|
| 2624 | c dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2625 | c cpinv=1.0/cpn(il,i) |
---|
| 2626 | c if (cvflag_grav) then |
---|
| 2627 | c ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv*ment(il,k,i) |
---|
| 2628 | c : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
| 2629 | c else |
---|
| 2630 | c ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv*ment(il,k,i) |
---|
| 2631 | c : *(traent(il,k,i,j)-tra(il,i,j)) |
---|
| 2632 | c endif |
---|
| 2633 | c endif ! i and k |
---|
| 2634 | c enddo |
---|
| 2635 | c enddo |
---|
| 2636 | c enddo |
---|
| 2637 | |
---|
| 2638 | do 1400 il=1,ncum |
---|
| 2639 | if (i.le.inb(il)) then |
---|
| 2640 | dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2641 | cpinv=1.0/cpn(il,i) |
---|
| 2642 | |
---|
| 2643 | if (cvflag_grav) then |
---|
| 2644 | c sb: on ne fait pas encore la correction permettant de mieux |
---|
| 2645 | c conserver l'eau: |
---|
| 2646 | fr(il,i)=fr(il,i)+0.5*sigd*(evap(il,i)+evap(il,i+1)) |
---|
| 2647 | : +0.01*grav*(mp(il,i+1)*(rp(il,i+1)-rr(il,i))-mp(il,i) |
---|
| 2648 | : *(rp(il,i)-rr(il,i-1)))*dpinv |
---|
| 2649 | |
---|
| 2650 | fu(il,i)=fu(il,i)+0.01*grav*(mp(il,i+1)*(up(il,i+1)-u(il,i)) |
---|
| 2651 | : -mp(il,i)*(up(il,i)-u(il,i-1)))*dpinv |
---|
| 2652 | fv(il,i)=fv(il,i)+0.01*grav*(mp(il,i+1)*(vp(il,i+1)-v(il,i)) |
---|
| 2653 | : -mp(il,i)*(vp(il,i)-v(il,i-1)))*dpinv |
---|
| 2654 | else ! cvflag_grav |
---|
| 2655 | fr(il,i)=fr(il,i)+0.5*sigd*(evap(il,i)+evap(il,i+1)) |
---|
| 2656 | : +0.1*(mp(il,i+1)*(rp(il,i+1)-rr(il,i))-mp(il,i) |
---|
| 2657 | : *(rp(il,i)-rr(il,i-1)))*dpinv |
---|
| 2658 | fu(il,i)=fu(il,i)+0.1*(mp(il,i+1)*(up(il,i+1)-u(il,i)) |
---|
| 2659 | : -mp(il,i)*(up(il,i)-u(il,i-1)))*dpinv |
---|
| 2660 | fv(il,i)=fv(il,i)+0.1*(mp(il,i+1)*(vp(il,i+1)-v(il,i)) |
---|
| 2661 | : -mp(il,i)*(vp(il,i)-v(il,i-1)))*dpinv |
---|
| 2662 | endif ! cvflag_grav |
---|
| 2663 | |
---|
| 2664 | endif ! i |
---|
| 2665 | 1400 continue |
---|
| 2666 | |
---|
| 2667 | c sb: interface with the cloud parameterization: ! cld |
---|
| 2668 | |
---|
| 2669 | do k=i+1,nl |
---|
| 2670 | do il=1,ncum |
---|
| 2671 | if (k.le.inb(il) .and. i.le.inb(il)) then ! cld |
---|
| 2672 | C (saturated downdrafts resulting from mixing) ! cld |
---|
| 2673 | qcond(il,i)=qcond(il,i)+elij(il,k,i) ! cld |
---|
| 2674 | nqcond(il,i)=nqcond(il,i)+1. ! cld |
---|
| 2675 | endif ! cld |
---|
| 2676 | enddo ! cld |
---|
| 2677 | enddo ! cld |
---|
| 2678 | |
---|
| 2679 | C (particular case: no detraining level is found) ! cld |
---|
| 2680 | do il=1,ncum ! cld |
---|
| 2681 | if (i.le.inb(il) .and. nent(il,i).eq.0) then ! cld |
---|
| 2682 | qcond(il,i)=qcond(il,i)+(1.-ep(il,i))*clw(il,i) ! cld |
---|
| 2683 | nqcond(il,i)=nqcond(il,i)+1. ! cld |
---|
| 2684 | endif ! cld |
---|
| 2685 | enddo ! cld |
---|
| 2686 | |
---|
| 2687 | do il=1,ncum ! cld |
---|
| 2688 | if (i.le.inb(il) .and. nqcond(il,i).ne.0.) then ! cld |
---|
| 2689 | qcond(il,i)=qcond(il,i)/nqcond(il,i) ! cld |
---|
| 2690 | endif ! cld |
---|
| 2691 | enddo |
---|
| 2692 | |
---|
| 2693 | c do j=1,ntra |
---|
| 2694 | c do il=1,ncum |
---|
| 2695 | c if (i.le.inb(il)) then |
---|
| 2696 | c dpinv=1.0/(ph(il,i)-ph(il,i+1)) |
---|
| 2697 | c cpinv=1.0/cpn(il,i) |
---|
| 2698 | |
---|
| 2699 | c if (cvflag_grav) then |
---|
| 2700 | c ftra(il,i,j)=ftra(il,i,j)+0.01*grav*dpinv |
---|
| 2701 | c : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
---|
| 2702 | c : -mp(il,i)*(trap(il,i,j)-tra(il,i-1,j))) |
---|
| 2703 | c else |
---|
| 2704 | c ftra(il,i,j)=ftra(il,i,j)+0.1*dpinv |
---|
| 2705 | c : *(mp(il,i+1)*(trap(il,i+1,j)-tra(il,i,j)) |
---|
| 2706 | c : -mp(il,i)*(trap(il,i,j)-tra(il,i-1,j))) |
---|
| 2707 | c endif |
---|
| 2708 | c endif ! i |
---|
| 2709 | c enddo |
---|
| 2710 | c enddo |
---|
| 2711 | |
---|
| 2712 | 500 continue |
---|
| 2713 | |
---|
| 2714 | |
---|
| 2715 | c *** move the detrainment at level inb down to level inb-1 *** |
---|
| 2716 | c *** in such a way as to preserve the vertically *** |
---|
| 2717 | c *** integrated enthalpy and water tendencies *** |
---|
| 2718 | c |
---|
| 2719 | do 503 il=1,ncum |
---|
| 2720 | |
---|
| 2721 | ax=0.1*ment(il,inb(il),inb(il))*(hp(il,inb(il))-h(il,inb(il)) |
---|
| 2722 | : +t(il,inb(il))*(cpv-cpd) |
---|
| 2723 | : *(rr(il,inb(il))-qent(il,inb(il),inb(il)))) |
---|
| 2724 | : /(cpn(il,inb(il))*(ph(il,inb(il))-ph(il,inb(il)+1))) |
---|
| 2725 | ft(il,inb(il))=ft(il,inb(il))-ax |
---|
| 2726 | ft(il,inb(il)-1)=ft(il,inb(il)-1)+ax*cpn(il,inb(il)) |
---|
| 2727 | : *(ph(il,inb(il))-ph(il,inb(il)+1))/(cpn(il,inb(il)-1) |
---|
| 2728 | : *(ph(il,inb(il)-1)-ph(il,inb(il)))) |
---|
| 2729 | |
---|
| 2730 | bx=0.1*ment(il,inb(il),inb(il))*(qent(il,inb(il),inb(il)) |
---|
| 2731 | : -rr(il,inb(il)))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 2732 | fr(il,inb(il))=fr(il,inb(il))-bx |
---|
| 2733 | fr(il,inb(il)-1)=fr(il,inb(il)-1) |
---|
| 2734 | : +bx*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 2735 | : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
| 2736 | |
---|
| 2737 | cx=0.1*ment(il,inb(il),inb(il))*(uent(il,inb(il),inb(il)) |
---|
| 2738 | : -u(il,inb(il)))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 2739 | fu(il,inb(il))=fu(il,inb(il))-cx |
---|
| 2740 | fu(il,inb(il)-1)=fu(il,inb(il)-1) |
---|
| 2741 | : +cx*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 2742 | : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
| 2743 | |
---|
| 2744 | dx=0.1*ment(il,inb(il),inb(il))*(vent(il,inb(il),inb(il)) |
---|
| 2745 | : -v(il,inb(il)))/(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 2746 | fv(il,inb(il))=fv(il,inb(il))-dx |
---|
| 2747 | fv(il,inb(il)-1)=fv(il,inb(il)-1) |
---|
| 2748 | : +dx*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 2749 | : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
| 2750 | |
---|
| 2751 | 503 continue |
---|
| 2752 | |
---|
| 2753 | c do j=1,ntra |
---|
| 2754 | c do il=1,ncum |
---|
| 2755 | c ex=0.1*ment(il,inb(il),inb(il)) |
---|
| 2756 | c : *(traent(il,inb(il),inb(il),j)-tra(il,inb(il),j)) |
---|
| 2757 | c : /(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 2758 | c ftra(il,inb(il),j)=ftra(il,inb(il),j)-ex |
---|
| 2759 | c ftra(il,inb(il)-1,j)=ftra(il,inb(il)-1,j) |
---|
| 2760 | c : +ex*(ph(il,inb(il))-ph(il,inb(il)+1)) |
---|
| 2761 | c : /(ph(il,inb(il)-1)-ph(il,inb(il))) |
---|
| 2762 | c enddo |
---|
| 2763 | c enddo |
---|
| 2764 | |
---|
| 2765 | c |
---|
| 2766 | c *** homoginize tendencies below cloud base *** |
---|
| 2767 | c |
---|
| 2768 | c |
---|
| 2769 | do il=1,ncum |
---|
| 2770 | asum(il)=0.0 |
---|
| 2771 | bsum(il)=0.0 |
---|
| 2772 | csum(il)=0.0 |
---|
| 2773 | dsum(il)=0.0 |
---|
| 2774 | enddo |
---|
| 2775 | |
---|
| 2776 | do i=1,nl |
---|
| 2777 | do il=1,ncum |
---|
| 2778 | if (i.le.(icb(il)-1)) then |
---|
| 2779 | asum(il)=asum(il)+ft(il,i)*(ph(il,i)-ph(il,i+1)) |
---|
| 2780 | bsum(il)=bsum(il)+fr(il,i)*(lv(il,i)+(cl-cpd)*(t(il,i)-t(il,1))) |
---|
| 2781 | : *(ph(il,i)-ph(il,i+1)) |
---|
| 2782 | csum(il)=csum(il)+(lv(il,i)+(cl-cpd)*(t(il,i)-t(il,1))) |
---|
| 2783 | : *(ph(il,i)-ph(il,i+1)) |
---|
| 2784 | dsum(il)=dsum(il)+t(il,i)*(ph(il,i)-ph(il,i+1))/th(il,i) |
---|
| 2785 | endif |
---|
| 2786 | enddo |
---|
| 2787 | enddo |
---|
| 2788 | |
---|
| 2789 | c!!! do 700 i=1,icb(il)-1 |
---|
| 2790 | do i=1,nl |
---|
| 2791 | do il=1,ncum |
---|
| 2792 | if (i.le.(icb(il)-1)) then |
---|
| 2793 | ft(il,i)=asum(il)*t(il,i)/(th(il,i)*dsum(il)) |
---|
| 2794 | fr(il,i)=bsum(il)/csum(il) |
---|
| 2795 | endif |
---|
| 2796 | enddo |
---|
| 2797 | enddo |
---|
| 2798 | |
---|
| 2799 | c |
---|
| 2800 | c *** reset counter and return *** |
---|
| 2801 | c |
---|
| 2802 | do il=1,ncum |
---|
| 2803 | sig(il,nd)=2.0 |
---|
| 2804 | enddo |
---|
| 2805 | |
---|
| 2806 | |
---|
| 2807 | do i=1,nd |
---|
| 2808 | do il=1,ncum |
---|
| 2809 | upwd(il,i)=0.0 |
---|
| 2810 | dnwd(il,i)=0.0 |
---|
| 2811 | enddo |
---|
| 2812 | enddo |
---|
| 2813 | |
---|
| 2814 | do i=1,nl |
---|
| 2815 | do il=1,ncum |
---|
| 2816 | dnwd0(il,i)=-mp(il,i) |
---|
| 2817 | enddo |
---|
| 2818 | enddo |
---|
| 2819 | do i=nl+1,nd |
---|
| 2820 | do il=1,ncum |
---|
| 2821 | dnwd0(il,i)=0. |
---|
| 2822 | enddo |
---|
| 2823 | enddo |
---|
| 2824 | |
---|
| 2825 | |
---|
| 2826 | do i=1,nl |
---|
| 2827 | do il=1,ncum |
---|
| 2828 | if (i.ge.icb(il) .and. i.le.inb(il)) then |
---|
| 2829 | upwd(il,i)=0.0 |
---|
| 2830 | dnwd(il,i)=0.0 |
---|
| 2831 | endif |
---|
| 2832 | enddo |
---|
| 2833 | enddo |
---|
| 2834 | |
---|
| 2835 | do i=1,nl |
---|
| 2836 | do k=1,nl |
---|
| 2837 | do il=1,ncum |
---|
| 2838 | up1(il,k,i)=0.0 |
---|
| 2839 | dn1(il,k,i)=0.0 |
---|
| 2840 | enddo |
---|
| 2841 | enddo |
---|
| 2842 | enddo |
---|
| 2843 | |
---|
| 2844 | do i=1,nl |
---|
| 2845 | do k=i,nl |
---|
| 2846 | do n=1,i-1 |
---|
| 2847 | do il=1,ncum |
---|
| 2848 | if (i.ge.icb(il).and.i.le.inb(il).and.k.le.inb(il)) then |
---|
| 2849 | up1(il,k,i)=up1(il,k,i)+ment(il,n,k) |
---|
| 2850 | dn1(il,k,i)=dn1(il,k,i)-ment(il,k,n) |
---|
| 2851 | endif |
---|
| 2852 | enddo |
---|
| 2853 | enddo |
---|
| 2854 | enddo |
---|
| 2855 | enddo |
---|
| 2856 | |
---|
| 2857 | do i=2,nl |
---|
| 2858 | do k=i,nl |
---|
| 2859 | do il=1,ncum |
---|
| 2860 | ctest if (i.ge.icb(il).and.i.le.inb(il).and.k.le.inb(il)) then |
---|
| 2861 | if (i.le.inb(il).and.k.le.inb(il)) then |
---|
| 2862 | upwd(il,i)=upwd(il,i)+m(il,k)+up1(il,k,i) |
---|
| 2863 | dnwd(il,i)=dnwd(il,i)+dn1(il,k,i) |
---|
| 2864 | endif |
---|
| 2865 | enddo |
---|
| 2866 | enddo |
---|
| 2867 | enddo |
---|
| 2868 | |
---|
| 2869 | |
---|
| 2870 | c!!! DO il=1,ncum |
---|
| 2871 | c!!! do i=icb(il),inb(il) |
---|
| 2872 | c!!! |
---|
| 2873 | c!!! upwd(il,i)=0.0 |
---|
| 2874 | c!!! dnwd(il,i)=0.0 |
---|
| 2875 | c!!! do k=i,inb(il) |
---|
| 2876 | c!!! up1=0.0 |
---|
| 2877 | c!!! dn1=0.0 |
---|
| 2878 | c!!! do n=1,i-1 |
---|
| 2879 | c!!! up1=up1+ment(il,n,k) |
---|
| 2880 | c!!! dn1=dn1-ment(il,k,n) |
---|
| 2881 | c!!! enddo |
---|
| 2882 | c!!! upwd(il,i)=upwd(il,i)+m(il,k)+up1 |
---|
| 2883 | c!!! dnwd(il,i)=dnwd(il,i)+dn1 |
---|
| 2884 | c!!! enddo |
---|
| 2885 | c!!! enddo |
---|
| 2886 | c!!! |
---|
| 2887 | c!!! ENDDO |
---|
| 2888 | |
---|
| 2889 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 2890 | c determination de la variation de flux ascendant entre |
---|
| 2891 | c deux niveau non dilue mike |
---|
| 2892 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 2893 | |
---|
| 2894 | do i=1,nl |
---|
| 2895 | do il=1,ncum |
---|
| 2896 | mike(il,i)=m(il,i) |
---|
| 2897 | enddo |
---|
| 2898 | enddo |
---|
| 2899 | |
---|
| 2900 | do i=nl+1,nd |
---|
| 2901 | do il=1,ncum |
---|
| 2902 | mike(il,i)=0. |
---|
| 2903 | enddo |
---|
| 2904 | enddo |
---|
| 2905 | |
---|
| 2906 | do i=1,nd |
---|
| 2907 | do il=1,ncum |
---|
| 2908 | ma(il,i)=0 |
---|
| 2909 | enddo |
---|
| 2910 | enddo |
---|
| 2911 | |
---|
| 2912 | do i=1,nl |
---|
| 2913 | do j=i,nl |
---|
| 2914 | do il=1,ncum |
---|
| 2915 | ma(il,i)=ma(il,i)+m(il,j) |
---|
| 2916 | enddo |
---|
| 2917 | enddo |
---|
| 2918 | enddo |
---|
| 2919 | |
---|
| 2920 | do i=nl+1,nd |
---|
| 2921 | do il=1,ncum |
---|
| 2922 | ma(il,i)=0. |
---|
| 2923 | enddo |
---|
| 2924 | enddo |
---|
| 2925 | |
---|
| 2926 | do i=1,nl |
---|
| 2927 | do il=1,ncum |
---|
| 2928 | if (i.le.(icb(il)-1)) then |
---|
| 2929 | ma(il,i)=0 |
---|
| 2930 | endif |
---|
| 2931 | enddo |
---|
| 2932 | enddo |
---|
| 2933 | |
---|
| 2934 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 2935 | c icb represente de niveau ou se trouve la |
---|
| 2936 | c base du nuage , et inb le top du nuage |
---|
| 2937 | cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
| 2938 | |
---|
| 2939 | do i=1,nd |
---|
| 2940 | do il=1,ncum |
---|
| 2941 | mke(il,i)=upwd(il,i)+dnwd(il,i) |
---|
| 2942 | enddo |
---|
| 2943 | enddo |
---|
| 2944 | |
---|
| 2945 | do i=1,nd |
---|
| 2946 | DO 999 il=1,ncum |
---|
| 2947 | rdcp=(rrd*(1.-rr(il,i))-rr(il,i)*rrv) |
---|
| 2948 | : /(cpd*(1.-rr(il,i))+rr(il,i)*cpv) |
---|
| 2949 | tls(il,i)=t(il,i)*(1000.0/p(il,i))**rdcp |
---|
| 2950 | tps(il,i)=tp(il,i) |
---|
| 2951 | 999 CONTINUE |
---|
| 2952 | enddo |
---|
| 2953 | |
---|
| 2954 | c |
---|
| 2955 | c *** diagnose the in-cloud mixing ratio *** ! cld |
---|
| 2956 | c *** of condensed water *** ! cld |
---|
| 2957 | c ! cld |
---|
| 2958 | |
---|
| 2959 | do i=1,nd ! cld |
---|
| 2960 | do il=1,ncum ! cld |
---|
| 2961 | mac(il,i)=0.0 ! cld |
---|
| 2962 | wa(il,i)=0.0 ! cld |
---|
| 2963 | siga(il,i)=0.0 ! cld |
---|
| 2964 | sax(il,i)=0.0 ! cld |
---|
| 2965 | enddo ! cld |
---|
| 2966 | enddo ! cld |
---|
| 2967 | |
---|
| 2968 | do i=minorig, nl ! cld |
---|
| 2969 | do k=i+1,nl+1 ! cld |
---|
| 2970 | do il=1,ncum ! cld |
---|
| 2971 | if (i.le.inb(il) .and. k.le.(inb(il)+1)) then ! cld |
---|
| 2972 | mac(il,i)=mac(il,i)+m(il,k) ! cld |
---|
| 2973 | endif ! cld |
---|
| 2974 | enddo ! cld |
---|
| 2975 | enddo ! cld |
---|
| 2976 | enddo ! cld |
---|
| 2977 | |
---|
| 2978 | do i=1,nl ! cld |
---|
| 2979 | do j=1,i ! cld |
---|
| 2980 | do il=1,ncum ! cld |
---|
| 2981 | if (i.ge.icb(il) .and. i.le.(inb(il)-1) ! cld |
---|
| 2982 | : .and. j.ge.icb(il) ) then ! cld |
---|
| 2983 | sax(il,i)=sax(il,i)+rrd*(tvp(il,j)-tv(il,j)) ! cld |
---|
| 2984 | : *(ph(il,j)-ph(il,j+1))/p(il,j) ! cld |
---|
| 2985 | endif ! cld |
---|
| 2986 | enddo ! cld |
---|
| 2987 | enddo ! cld |
---|
| 2988 | enddo ! cld |
---|
| 2989 | |
---|
| 2990 | do i=1,nl ! cld |
---|
| 2991 | do il=1,ncum ! cld |
---|
| 2992 | if (i.ge.icb(il) .and. i.le.(inb(il)-1) ! cld |
---|
| 2993 | : .and. sax(il,i).gt.0.0 ) then ! cld |
---|
| 2994 | wa(il,i)=sqrt(2.*sax(il,i)) ! cld |
---|
| 2995 | endif ! cld |
---|
| 2996 | enddo ! cld |
---|
| 2997 | enddo ! cld |
---|
| 2998 | |
---|
| 2999 | do i=1,nl ! cld |
---|
| 3000 | do il=1,ncum ! cld |
---|
| 3001 | if (wa(il,i).gt.0.0) ! cld |
---|
| 3002 | : siga(il,i)=mac(il,i)/wa(il,i) ! cld |
---|
| 3003 | : *rrd*tvp(il,i)/p(il,i)/100./delta ! cld |
---|
| 3004 | siga(il,i) = min(siga(il,i),1.0) ! cld |
---|
| 3005 | cIM cf. FH |
---|
| 3006 | if (iflag_clw.eq.0) then |
---|
| 3007 | qcondc(il,i)=siga(il,i)*clw(il,i)*(1.-ep(il,i)) ! cld |
---|
| 3008 | : + (1.-siga(il,i))*qcond(il,i) ! cld |
---|
| 3009 | else if (iflag_clw.eq.1) then |
---|
| 3010 | qcondc(il,i)=qcond(il,i) ! cld |
---|
| 3011 | endif |
---|
| 3012 | |
---|
| 3013 | enddo ! cld |
---|
| 3014 | enddo ! cld |
---|
| 3015 | |
---|
| 3016 | return |
---|
| 3017 | end |
---|
| 3018 | |
---|
| 3019 | SUBROUTINE cv30_tracer(nloc,len,ncum,nd,na, |
---|
| 3020 | & ment,sij,da,phi) |
---|
| 3021 | implicit none |
---|
| 3022 | c inputs: |
---|
| 3023 | integer ncum, nd, na, nloc,len |
---|
| 3024 | real ment(nloc,na,na),sij(nloc,na,na) |
---|
| 3025 | c ouputs: |
---|
| 3026 | real da(nloc,na),phi(nloc,na,na) |
---|
| 3027 | c local variables: |
---|
| 3028 | integer i,j,k |
---|
| 3029 | c |
---|
| 3030 | da(:,:)=0. |
---|
| 3031 | c |
---|
| 3032 | do j=1,na |
---|
| 3033 | do k=1,na |
---|
| 3034 | do i=1,ncum |
---|
| 3035 | da(i,j)=da(i,j)+(1.-sij(i,k,j))*ment(i,k,j) |
---|
| 3036 | phi(i,j,k)=sij(i,k,j)*ment(i,k,j) |
---|
| 3037 | c print *,'da',j,k,da(i,j),sij(i,k,j),ment(i,k,j) |
---|
| 3038 | end do |
---|
| 3039 | end do |
---|
| 3040 | end do |
---|
| 3041 | |
---|
| 3042 | return |
---|
| 3043 | end |
---|
| 3044 | |
---|
| 3045 | |
---|
| 3046 | SUBROUTINE cv30_uncompress(nloc,len,ncum,nd,ntra,idcum |
---|
| 3047 | : ,iflag |
---|
| 3048 | : ,precip,VPrecip,sig,w0 |
---|
| 3049 | : ,ft,fq,fu,fv,ftra |
---|
| 3050 | : ,inb |
---|
| 3051 | : ,Ma,upwd,dnwd,dnwd0,qcondc,wd,cape |
---|
| 3052 | : ,da,phi,mp |
---|
| 3053 | : ,iflag1 |
---|
| 3054 | : ,precip1,VPrecip1,sig1,w01 |
---|
| 3055 | : ,ft1,fq1,fu1,fv1,ftra1 |
---|
| 3056 | : ,inb1 |
---|
| 3057 | : ,Ma1,upwd1,dnwd1,dnwd01,qcondc1,wd1,cape1 |
---|
| 3058 | : ,da1,phi1,mp1) |
---|
| 3059 | implicit none |
---|
| 3060 | |
---|
| 3061 | #include "cv30param.h" |
---|
| 3062 | |
---|
| 3063 | c inputs: |
---|
| 3064 | integer len, ncum, nd, ntra, nloc |
---|
| 3065 | integer idcum(nloc) |
---|
| 3066 | integer iflag(nloc) |
---|
| 3067 | integer inb(nloc) |
---|
| 3068 | real precip(nloc) |
---|
| 3069 | real VPrecip(nloc,nd+1) |
---|
| 3070 | real sig(nloc,nd), w0(nloc,nd) |
---|
| 3071 | real ft(nloc,nd), fq(nloc,nd), fu(nloc,nd), fv(nloc,nd) |
---|
| 3072 | real ftra(nloc,nd,ntra) |
---|
| 3073 | real Ma(nloc,nd) |
---|
| 3074 | real upwd(nloc,nd),dnwd(nloc,nd),dnwd0(nloc,nd) |
---|
| 3075 | real qcondc(nloc,nd) |
---|
| 3076 | real wd(nloc),cape(nloc) |
---|
| 3077 | real da(nloc,nd),phi(nloc,nd,nd),mp(nloc,nd) |
---|
| 3078 | |
---|
| 3079 | c outputs: |
---|
| 3080 | integer iflag1(len) |
---|
| 3081 | integer inb1(len) |
---|
| 3082 | real precip1(len) |
---|
| 3083 | real VPrecip1(len,nd+1) |
---|
| 3084 | real sig1(len,nd), w01(len,nd) |
---|
| 3085 | real ft1(len,nd), fq1(len,nd), fu1(len,nd), fv1(len,nd) |
---|
| 3086 | real ftra1(len,nd,ntra) |
---|
| 3087 | real Ma1(len,nd) |
---|
| 3088 | real upwd1(len,nd),dnwd1(len,nd),dnwd01(len,nd) |
---|
| 3089 | real qcondc1(nloc,nd) |
---|
| 3090 | real wd1(nloc),cape1(nloc) |
---|
| 3091 | real da1(nloc,nd),phi1(nloc,nd,nd),mp1(nloc,nd) |
---|
| 3092 | |
---|
| 3093 | c local variables: |
---|
| 3094 | integer i,k,j |
---|
| 3095 | |
---|
| 3096 | do 2000 i=1,ncum |
---|
| 3097 | precip1(idcum(i))=precip(i) |
---|
| 3098 | iflag1(idcum(i))=iflag(i) |
---|
| 3099 | wd1(idcum(i))=wd(i) |
---|
| 3100 | inb1(idcum(i))=inb(i) |
---|
| 3101 | cape1(idcum(i))=cape(i) |
---|
| 3102 | 2000 continue |
---|
| 3103 | |
---|
| 3104 | do 2020 k=1,nl |
---|
| 3105 | do 2010 i=1,ncum |
---|
| 3106 | VPrecip1(idcum(i),k)=VPrecip(i,k) |
---|
| 3107 | sig1(idcum(i),k)=sig(i,k) |
---|
| 3108 | w01(idcum(i),k)=w0(i,k) |
---|
| 3109 | ft1(idcum(i),k)=ft(i,k) |
---|
| 3110 | fq1(idcum(i),k)=fq(i,k) |
---|
| 3111 | fu1(idcum(i),k)=fu(i,k) |
---|
| 3112 | fv1(idcum(i),k)=fv(i,k) |
---|
| 3113 | Ma1(idcum(i),k)=Ma(i,k) |
---|
| 3114 | upwd1(idcum(i),k)=upwd(i,k) |
---|
| 3115 | dnwd1(idcum(i),k)=dnwd(i,k) |
---|
| 3116 | dnwd01(idcum(i),k)=dnwd0(i,k) |
---|
| 3117 | qcondc1(idcum(i),k)=qcondc(i,k) |
---|
| 3118 | da1(idcum(i),k)=da(i,k) |
---|
| 3119 | mp1(idcum(i),k)=mp(i,k) |
---|
| 3120 | 2010 continue |
---|
| 3121 | 2020 continue |
---|
| 3122 | |
---|
| 3123 | do 2200 i=1,ncum |
---|
| 3124 | sig1(idcum(i),nd)=sig(i,nd) |
---|
| 3125 | 2200 continue |
---|
| 3126 | |
---|
| 3127 | |
---|
| 3128 | c do 2100 j=1,ntra |
---|
| 3129 | c do 2110 k=1,nd ! oct3 |
---|
| 3130 | c do 2120 i=1,ncum |
---|
| 3131 | c ftra1(idcum(i),k,j)=ftra(i,k,j) |
---|
| 3132 | c 2120 continue |
---|
| 3133 | c 2110 continue |
---|
| 3134 | c 2100 continue |
---|
| 3135 | do j=1,nd |
---|
| 3136 | do k=1,nd |
---|
| 3137 | do i=1,ncum |
---|
| 3138 | phi1(idcum(i),k,j)=phi(i,k,j) |
---|
| 3139 | end do |
---|
| 3140 | end do |
---|
| 3141 | end do |
---|
| 3142 | |
---|
| 3143 | return |
---|
| 3144 | end |
---|
| 3145 | |
---|