[879] | 1 | SUBROUTINE concvl (iflag_con,iflag_clos, |
---|
| 2 | . dtime,paprs,pplay, |
---|
[1146] | 3 | . t,q,t_wake,q_wake,s_wake,u,v,tra,ntra, |
---|
[879] | 4 | . ALE,ALP,work1,work2, |
---|
| 5 | . d_t,d_q,d_u,d_v,d_tra, |
---|
| 6 | . rain, snow, kbas, ktop, sigd, |
---|
[1398] | 7 | . cbmf,upwd,dnwd,dnwdbis,Ma,mip,Vprecip, |
---|
[879] | 8 | . cape,cin,tvp,Tconv,iflag, |
---|
[524] | 9 | . pbase,bbase,dtvpdt1,dtvpdq1,dplcldt,dplcldr, |
---|
[879] | 10 | . qcondc,wd,pmflxr,pmflxs, |
---|
| 11 | . da,phi,mp,dd_t,dd_q,lalim_conv,wght_th) |
---|
| 12 | *************************************************************** |
---|
| 13 | * * |
---|
| 14 | * CONCVL * |
---|
| 15 | * * |
---|
| 16 | * * |
---|
| 17 | * written by : Sandrine Bony-Lena, 17/05/2003, 11.16.04 * |
---|
| 18 | * modified by : * |
---|
| 19 | *************************************************************** |
---|
| 20 | * |
---|
[524] | 21 | c |
---|
[940] | 22 | USE dimphy |
---|
[1146] | 23 | USE infotrac, ONLY : nbtr |
---|
[524] | 24 | IMPLICIT none |
---|
| 25 | c====================================================================== |
---|
[879] | 26 | c Auteur(s): S. Bony-Lena (LMD/CNRS) date: ??? |
---|
[524] | 27 | c Objet: schema de convection de Emanuel (1991) interface |
---|
| 28 | c====================================================================== |
---|
| 29 | c Arguments: |
---|
| 30 | c dtime--input-R-pas d'integration (s) |
---|
| 31 | c s-------input-R-la valeur "s" pour chaque couche |
---|
| 32 | c sigs----input-R-la valeur "sigma" de chaque couche |
---|
| 33 | c sig-----input-R-la valeur de "sigma" pour chaque niveau |
---|
| 34 | c psolpa--input-R-la pression au sol (en Pa) |
---|
| 35 | C pskapa--input-R-exponentiel kappa de psolpa |
---|
| 36 | c h-------input-R-enthalpie potentielle (Cp*T/P**kappa) |
---|
| 37 | c q-------input-R-vapeur d'eau (en kg/kg) |
---|
| 38 | c |
---|
| 39 | c work*: input et output: deux variables de travail, |
---|
| 40 | c on peut les mettre a 0 au debut |
---|
| 41 | c ALE-----input-R-energie disponible pour soulevement |
---|
[879] | 42 | c ALP-----input-R-puissance disponible pour soulevement |
---|
[524] | 43 | c |
---|
| 44 | C d_h-----output-R-increment de l'enthalpie potentielle (h) |
---|
| 45 | c d_q-----output-R-increment de la vapeur d'eau |
---|
| 46 | c rain----output-R-la pluie (mm/s) |
---|
| 47 | c snow----output-R-la neige (mm/s) |
---|
| 48 | c upwd----output-R-saturated updraft mass flux (kg/m**2/s) |
---|
| 49 | c dnwd----output-R-saturated downdraft mass flux (kg/m**2/s) |
---|
| 50 | c dnwd0---output-R-unsaturated downdraft mass flux (kg/m**2/s) |
---|
[879] | 51 | c Ma------output-R-adiabatic ascent mass flux (kg/m2/s) |
---|
| 52 | c mip-----output-R-mass flux shed by adiabatic ascent (kg/m2/s) |
---|
| 53 | c Vprecip-output-R-vertical profile of precipitations (kg/m2/s) |
---|
| 54 | c Tconv---output-R-environment temperature seen by convective scheme (K) |
---|
[524] | 55 | c Cape----output-R-CAPE (J/kg) |
---|
[879] | 56 | c Cin ----output-R-CIN (J/kg) |
---|
[524] | 57 | c Tvp-----output-R-Temperature virtuelle d'une parcelle soulevee |
---|
| 58 | c adiabatiquement a partir du niveau 1 (K) |
---|
| 59 | c deltapb-output-R-distance entre LCL et base de la colonne (<0 ; Pa) |
---|
| 60 | c Ice_flag-input-L-TRUE->prise en compte de la thermodynamique de la glace |
---|
[879] | 61 | c dd_t-----output-R-increment de la temperature du aux descentes precipitantes |
---|
| 62 | c dd_q-----output-R-increment de la vapeur d'eau du aux desc precip |
---|
[524] | 63 | c====================================================================== |
---|
| 64 | c |
---|
| 65 | #include "dimensions.h" |
---|
| 66 | c |
---|
[879] | 67 | INTEGER iflag_con,iflag_clos |
---|
[524] | 68 | c |
---|
| 69 | REAL dtime, paprs(klon,klev+1),pplay(klon,klev) |
---|
| 70 | REAL t(klon,klev),q(klon,klev),u(klon,klev),v(klon,klev) |
---|
[879] | 71 | REAL t_wake(klon,klev),q_wake(klon,klev) |
---|
[1146] | 72 | Real s_wake(klon) |
---|
| 73 | REAL tra(klon,klev,nbtr) |
---|
[524] | 74 | INTEGER ntra |
---|
[879] | 75 | REAL work1(klon,klev),work2(klon,klev),ptop2(klon) |
---|
[619] | 76 | REAL pmflxr(klon,klev+1),pmflxs(klon,klev+1) |
---|
[879] | 77 | REAL ALE(klon),ALP(klon) |
---|
[524] | 78 | c |
---|
| 79 | REAL d_t(klon,klev),d_q(klon,klev),d_u(klon,klev),d_v(klon,klev) |
---|
[879] | 80 | REAL dd_t(klon,klev),dd_q(klon,klev) |
---|
[1146] | 81 | REAL d_tra(klon,klev,nbtr) |
---|
[524] | 82 | REAL rain(klon),snow(klon) |
---|
| 83 | c |
---|
| 84 | INTEGER kbas(klon),ktop(klon) |
---|
| 85 | REAL em_ph(klon,klev+1),em_p(klon,klev) |
---|
| 86 | REAL upwd(klon,klev),dnwd(klon,klev),dnwdbis(klon,klev) |
---|
[1334] | 87 | |
---|
| 88 | !! REAL Ma(klon,klev), mip(klon,klev),Vprecip(klon,klev) !jyg |
---|
| 89 | REAL Ma(klon,klev), mip(klon,klev),Vprecip(klon,klev+1) !jyg |
---|
| 90 | |
---|
[619] | 91 | real da(klon,klev),phi(klon,klev,klev),mp(klon,klev) |
---|
[879] | 92 | REAL cape(klon),cin(klon),tvp(klon,klev) |
---|
| 93 | REAL Tconv(klon,klev) |
---|
| 94 | c |
---|
| 95 | cCR:test: on passe lentr et alim_star des thermiques |
---|
| 96 | INTEGER lalim_conv(klon) |
---|
| 97 | REAL wght_th(klon,klev) |
---|
| 98 | REAL em_sig1feed ! sigma at lower bound of feeding layer |
---|
| 99 | REAL em_sig2feed ! sigma at upper bound of feeding layer |
---|
| 100 | REAL em_wght(klev) ! weight density determining the feeding mixture |
---|
| 101 | con enleve le save |
---|
| 102 | c SAVE em_sig1feed,em_sig2feed,em_wght |
---|
| 103 | c |
---|
[524] | 104 | INTEGER iflag(klon) |
---|
| 105 | REAL rflag(klon) |
---|
| 106 | REAL pbase(klon),bbase(klon) |
---|
| 107 | REAL dtvpdt1(klon,klev),dtvpdq1(klon,klev) |
---|
| 108 | REAL dplcldt(klon),dplcldr(klon) |
---|
| 109 | REAL qcondc(klon,klev) |
---|
| 110 | REAL wd(klon) |
---|
[879] | 111 | REAL Plim1(klon),Plim2(klon),asupmax(klon,klev) |
---|
| 112 | REAL supmax0(klon),asupmaxmin(klon) |
---|
[524] | 113 | c |
---|
[879] | 114 | REAL sigd(klon) |
---|
[524] | 115 | REAL zx_t,zdelta,zx_qs,zcor |
---|
| 116 | c |
---|
[963] | 117 | ! INTEGER iflag_mix |
---|
| 118 | ! SAVE iflag_mix |
---|
[524] | 119 | INTEGER noff, minorig |
---|
| 120 | INTEGER i,k,itra |
---|
[879] | 121 | REAL qs(klon,klev),qs_wake(klon,klev) |
---|
[1398] | 122 | REAL cbmf(klon) |
---|
[940] | 123 | cLF SAVE cbmf |
---|
[1398] | 124 | cIM/JYG REAL, SAVE, ALLOCATABLE :: cbmf(:) |
---|
| 125 | ccc$OMP THREADPRIVATE(cbmf)! |
---|
[940] | 126 | REAL cbmflast(klon) |
---|
[524] | 127 | INTEGER ifrst |
---|
| 128 | SAVE ifrst |
---|
| 129 | DATA ifrst /0/ |
---|
[766] | 130 | c$OMP THREADPRIVATE(ifrst) |
---|
| 131 | |
---|
[879] | 132 | c |
---|
| 133 | C Variables supplementaires liees au bilan d'energie |
---|
| 134 | c Real paire(klon) |
---|
[940] | 135 | cLF Real ql(klon,klev) |
---|
[879] | 136 | c Save paire |
---|
[940] | 137 | cLF Save ql |
---|
| 138 | cLF Real t1(klon,klev),q1(klon,klev) |
---|
| 139 | cLF Save t1,q1 |
---|
[879] | 140 | c Data paire /1./ |
---|
[940] | 141 | REAL, SAVE, ALLOCATABLE :: ql(:,:), q1(:,:), t1(:,:) |
---|
| 142 | c$OMP THREADPRIVATE(ql, q1, t1) |
---|
[879] | 143 | c |
---|
| 144 | C Variables liees au bilan d'energie et d'enthalpi |
---|
| 145 | REAL ztsol(klon) |
---|
| 146 | REAL h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot |
---|
| 147 | $ , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot |
---|
| 148 | SAVE h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot |
---|
| 149 | $ , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot |
---|
[987] | 150 | c$OMP THREADPRIVATE(h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot) |
---|
| 151 | c$OMP THREADPRIVATE(h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot) |
---|
[879] | 152 | REAL d_h_vcol, d_h_dair, d_qt, d_qw, d_ql, d_qs, d_ec |
---|
| 153 | REAL d_h_vcol_phy |
---|
| 154 | REAL fs_bound, fq_bound |
---|
| 155 | SAVE d_h_vcol_phy |
---|
[987] | 156 | c$OMP THREADPRIVATE(d_h_vcol_phy) |
---|
[879] | 157 | REAL zero_v(klon) |
---|
| 158 | CHARACTER*15 ztit |
---|
| 159 | INTEGER ip_ebil ! PRINT level for energy conserv. diag. |
---|
| 160 | SAVE ip_ebil |
---|
| 161 | DATA ip_ebil/2/ |
---|
[987] | 162 | c$OMP THREADPRIVATE(ip_ebil) |
---|
[879] | 163 | INTEGER if_ebil ! level for energy conserv. dignostics |
---|
| 164 | SAVE if_ebil |
---|
| 165 | DATA if_ebil/2/ |
---|
[987] | 166 | c$OMP THREADPRIVATE(if_ebil) |
---|
[879] | 167 | c+jld ec_conser |
---|
| 168 | REAL d_t_ec(klon,klev) ! tendance du a la conersion Ec -> E thermique |
---|
| 169 | REAL ZRCPD |
---|
| 170 | c-jld ec_conser |
---|
[940] | 171 | cLF |
---|
[973] | 172 | INTEGER nloc |
---|
[940] | 173 | logical, save :: first=.true. |
---|
[987] | 174 | c$OMP THREADPRIVATE(first) |
---|
| 175 | INTEGER, SAVE :: itap, igout |
---|
| 176 | c$OMP THREADPRIVATE(itap, igout) |
---|
[879] | 177 | c |
---|
[524] | 178 | #include "YOMCST.h" |
---|
[879] | 179 | #include "YOMCST2.h" |
---|
[524] | 180 | #include "YOETHF.h" |
---|
| 181 | #include "FCTTRE.h" |
---|
[973] | 182 | #include "iniprint.h" |
---|
[524] | 183 | c |
---|
[940] | 184 | if (first) then |
---|
| 185 | c Allocate some variables LF 04/2008 |
---|
| 186 | c |
---|
[1398] | 187 | cIM/JYG allocate(cbmf(klon)) |
---|
[940] | 188 | allocate(ql(klon,klev)) |
---|
| 189 | allocate(t1(klon,klev)) |
---|
| 190 | allocate(q1(klon,klev)) |
---|
[973] | 191 | itap=0 |
---|
| 192 | igout=klon/2+1/klon |
---|
[940] | 193 | endif |
---|
[973] | 194 | c Incrementer le compteur de la physique |
---|
| 195 | itap = itap + 1 |
---|
[879] | 196 | |
---|
| 197 | c Copy T into Tconv |
---|
| 198 | DO k = 1,klev |
---|
| 199 | DO i = 1,klon |
---|
| 200 | Tconv(i,k) = T(i,k) |
---|
| 201 | ENDDO |
---|
| 202 | ENDDO |
---|
[524] | 203 | c |
---|
[879] | 204 | IF (if_ebil.ge.1) THEN |
---|
| 205 | DO i=1,klon |
---|
| 206 | ztsol(i) = t(i,1) |
---|
| 207 | zero_v(i)=0. |
---|
| 208 | Do k = 1,klev |
---|
| 209 | ql(i,k) = 0. |
---|
| 210 | ENDDO |
---|
| 211 | END DO |
---|
| 212 | END IF |
---|
| 213 | c |
---|
[559] | 214 | cym |
---|
| 215 | snow(:)=0 |
---|
| 216 | |
---|
[940] | 217 | c IF (ifrst .EQ. 0) THEN |
---|
| 218 | c ifrst = 1 |
---|
| 219 | if (first) then |
---|
| 220 | first=.false. |
---|
[879] | 221 | c |
---|
| 222 | C=========================================================================== |
---|
| 223 | C READ IN PARAMETERS FOR THE CLOSURE AND THE MIXING DISTRIBUTION |
---|
| 224 | C=========================================================================== |
---|
| 225 | C |
---|
| 226 | if (iflag_con.eq.3) then |
---|
[963] | 227 | c CALL cv3_inicp() |
---|
| 228 | CALL cv3_inip() |
---|
[879] | 229 | endif |
---|
| 230 | c |
---|
| 231 | C=========================================================================== |
---|
| 232 | C READ IN PARAMETERS FOR CONVECTIVE INHIBITION BY TROPOS. DRYNESS |
---|
| 233 | C=========================================================================== |
---|
| 234 | C |
---|
[987] | 235 | cc$$$ open (56,file='supcrit.data') |
---|
| 236 | cc$$$ read (56,*) Supcrit1, Supcrit2 |
---|
| 237 | cc$$$ close (56) |
---|
[879] | 238 | c |
---|
| 239 | print*, 'supcrit1, supcrit2' ,supcrit1, supcrit2 |
---|
| 240 | C |
---|
| 241 | C=========================================================================== |
---|
| 242 | C Initialisation pour les bilans d'eau et d'energie |
---|
| 243 | C=========================================================================== |
---|
| 244 | IF (if_ebil.ge.1) d_h_vcol_phy=0. |
---|
| 245 | c |
---|
[524] | 246 | DO i = 1, klon |
---|
| 247 | cbmf(i) = 0. |
---|
[973] | 248 | sigd(i) = 0. |
---|
[524] | 249 | ENDDO |
---|
[879] | 250 | ENDIF !(ifrst .EQ. 0) |
---|
[524] | 251 | |
---|
| 252 | DO k = 1, klev+1 |
---|
| 253 | DO i=1,klon |
---|
| 254 | em_ph(i,k) = paprs(i,k) / 100.0 |
---|
[1334] | 255 | pmflxr(i,k)=0. |
---|
[619] | 256 | pmflxs(i,k)=0. |
---|
[524] | 257 | ENDDO |
---|
| 258 | ENDDO |
---|
| 259 | c |
---|
| 260 | DO k = 1, klev |
---|
| 261 | DO i=1,klon |
---|
| 262 | em_p(i,k) = pplay(i,k) / 100.0 |
---|
| 263 | ENDDO |
---|
| 264 | ENDDO |
---|
[879] | 265 | c |
---|
| 266 | ! |
---|
| 267 | ! Feeding layer |
---|
| 268 | ! |
---|
| 269 | em_sig1feed = 1. |
---|
| 270 | em_sig2feed = 0.97 |
---|
| 271 | c em_sig2feed = 0.8 |
---|
| 272 | ! Relative Weight densities |
---|
| 273 | do k=1,klev |
---|
| 274 | em_wght(k)=1. |
---|
| 275 | end do |
---|
| 276 | cCRtest: couche alim des tehrmiques ponderee par a* |
---|
| 277 | c DO i = 1, klon |
---|
| 278 | c do k=1,lalim_conv(i) |
---|
| 279 | c em_wght(k)=wght_th(i,k) |
---|
| 280 | c print*,'em_wght=',em_wght(k),wght_th(i,k) |
---|
| 281 | c end do |
---|
| 282 | c END DO |
---|
[524] | 283 | |
---|
| 284 | if (iflag_con .eq. 4) then |
---|
| 285 | DO k = 1, klev |
---|
| 286 | DO i = 1, klon |
---|
| 287 | zx_t = t(i,k) |
---|
| 288 | zdelta=MAX(0.,SIGN(1.,rtt-zx_t)) |
---|
| 289 | zx_qs= MIN(0.5 , r2es * FOEEW(zx_t,zdelta)/em_p(i,k)/100.0) |
---|
| 290 | zcor=1./(1.-retv*zx_qs) |
---|
| 291 | qs(i,k)=zx_qs*zcor |
---|
| 292 | ENDDO |
---|
[879] | 293 | DO i = 1, klon |
---|
| 294 | zx_t = t_wake(i,k) |
---|
| 295 | zdelta=MAX(0.,SIGN(1.,rtt-zx_t)) |
---|
| 296 | zx_qs= MIN(0.5 , r2es * FOEEW(zx_t,zdelta)/em_p(i,k)/100.0) |
---|
| 297 | zcor=1./(1.-retv*zx_qs) |
---|
| 298 | qs_wake(i,k)=zx_qs*zcor |
---|
| 299 | ENDDO |
---|
[524] | 300 | ENDDO |
---|
| 301 | else ! iflag_con=3 (modif de puristes qui fait la diffce pour la convergence numerique) |
---|
| 302 | DO k = 1, klev |
---|
| 303 | DO i = 1, klon |
---|
| 304 | zx_t = t(i,k) |
---|
| 305 | zdelta=MAX(0.,SIGN(1.,rtt-zx_t)) |
---|
| 306 | zx_qs= r2es * FOEEW(zx_t,zdelta)/em_p(i,k)/100.0 |
---|
| 307 | zx_qs= MIN(0.5,zx_qs) |
---|
| 308 | zcor=1./(1.-retv*zx_qs) |
---|
| 309 | zx_qs=zx_qs*zcor |
---|
| 310 | qs(i,k)=zx_qs |
---|
| 311 | ENDDO |
---|
[879] | 312 | DO i = 1, klon |
---|
| 313 | zx_t = t_wake(i,k) |
---|
| 314 | zdelta=MAX(0.,SIGN(1.,rtt-zx_t)) |
---|
| 315 | zx_qs= r2es * FOEEW(zx_t,zdelta)/em_p(i,k)/100.0 |
---|
| 316 | zx_qs= MIN(0.5,zx_qs) |
---|
| 317 | zcor=1./(1.-retv*zx_qs) |
---|
| 318 | zx_qs=zx_qs*zcor |
---|
| 319 | qs_wake(i,k)=zx_qs |
---|
| 320 | ENDDO |
---|
[524] | 321 | ENDDO |
---|
| 322 | endif ! iflag_con |
---|
| 323 | c |
---|
| 324 | C------------------------------------------------------------------ |
---|
| 325 | |
---|
| 326 | C Main driver for convection: |
---|
[879] | 327 | C iflag_con=3 -> nvlle version de KE (JYG) |
---|
| 328 | C iflag_con = 30 -> equivalent to convect3 |
---|
[524] | 329 | C iflag_con = 4 -> equivalent to convect1/2 |
---|
[879] | 330 | c |
---|
| 331 | c |
---|
| 332 | if (iflag_con.eq.30) then |
---|
[524] | 333 | |
---|
| 334 | CALL cv_driver(klon,klev,klev+1,ntra,iflag_con, |
---|
| 335 | : t,q,qs,u,v,tra, |
---|
| 336 | $ em_p,em_ph,iflag, |
---|
| 337 | $ d_t,d_q,d_u,d_v,d_tra,rain, |
---|
[1334] | 338 | !! $ pmflxr,cbmf,work1,work2, !jyg |
---|
| 339 | $ Vprecip,cbmf,work1,work2, !jyg |
---|
[619] | 340 | $ kbas,ktop, |
---|
| 341 | $ dtime,Ma,upwd,dnwd,dnwdbis,qcondc,wd,cape, |
---|
| 342 | $ da,phi,mp) |
---|
[1398] | 343 | c |
---|
| 344 | DO i = 1,klon |
---|
| 345 | cbmf(i) = Ma(i,kbas(i)) |
---|
| 346 | ENDDO |
---|
| 347 | c |
---|
[879] | 348 | else |
---|
[524] | 349 | |
---|
[940] | 350 | cLF necessary for gathered fields |
---|
| 351 | nloc=klon |
---|
| 352 | CALL cva_driver(klon,klev,klev+1,ntra,nloc, |
---|
[879] | 353 | $ iflag_con,iflag_mix,iflag_clos,dtime, |
---|
[1146] | 354 | : t,q,qs,t_wake,q_wake,qs_wake,s_wake,u,v,tra, |
---|
[879] | 355 | $ em_p,em_ph, |
---|
| 356 | . ALE,ALP, |
---|
| 357 | . em_sig1feed,em_sig2feed,em_wght, |
---|
| 358 | . iflag,d_t,d_q,d_u,d_v,d_tra,rain,kbas,ktop, |
---|
| 359 | $ cbmf,work1,work2,ptop2,sigd, |
---|
| 360 | $ Ma,mip,Vprecip,upwd,dnwd,dnwdbis,qcondc,wd, |
---|
| 361 | $ cape,cin,tvp, |
---|
| 362 | $ dd_t,dd_q,Plim1,Plim2,asupmax,supmax0, |
---|
| 363 | $ asupmaxmin,lalim_conv) |
---|
| 364 | endif |
---|
[524] | 365 | C------------------------------------------------------------------ |
---|
| 366 | |
---|
| 367 | DO i = 1,klon |
---|
| 368 | rain(i) = rain(i)/86400. |
---|
| 369 | rflag(i)=iflag(i) |
---|
| 370 | ENDDO |
---|
| 371 | |
---|
| 372 | DO k = 1, klev |
---|
| 373 | DO i = 1, klon |
---|
| 374 | d_t(i,k) = dtime*d_t(i,k) |
---|
| 375 | d_q(i,k) = dtime*d_q(i,k) |
---|
| 376 | d_u(i,k) = dtime*d_u(i,k) |
---|
| 377 | d_v(i,k) = dtime*d_v(i,k) |
---|
| 378 | ENDDO |
---|
| 379 | ENDDO |
---|
[879] | 380 | c |
---|
| 381 | if (iflag_con.eq.30) then |
---|
[619] | 382 | DO itra = 1,ntra |
---|
| 383 | DO k = 1, klev |
---|
| 384 | DO i = 1, klon |
---|
| 385 | d_tra(i,k,itra) =dtime*d_tra(i,k,itra) |
---|
| 386 | ENDDO |
---|
| 387 | ENDDO |
---|
[879] | 388 | ENDDO |
---|
| 389 | endif |
---|
| 390 | |
---|
| 391 | DO k = 1, klev |
---|
| 392 | DO i = 1, klon |
---|
| 393 | t1(i,k) = t(i,k)+ d_t(i,k) |
---|
| 394 | q1(i,k) = q(i,k)+ d_q(i,k) |
---|
| 395 | ENDDO |
---|
| 396 | ENDDO |
---|
[1334] | 397 | c !jyg |
---|
| 398 | c--Separation neige/pluie (pour diagnostics) !jyg |
---|
| 399 | DO k = 1, klev !jyg |
---|
| 400 | DO i = 1, klon !jyg |
---|
| 401 | IF (t1(i,k).LT.RTT) THEN !jyg |
---|
| 402 | pmflxs(i,k)=Vprecip(i,k) !jyg |
---|
| 403 | ELSE !jyg |
---|
| 404 | pmflxr(i,k)=Vprecip(i,k) !jyg |
---|
| 405 | ENDIF !jyg |
---|
| 406 | ENDDO !jyg |
---|
| 407 | ENDDO !jyg |
---|
[879] | 408 | c |
---|
| 409 | cc IF (if_ebil.ge.2) THEN |
---|
| 410 | cc ztit='after convect' |
---|
| 411 | cc CALL diagetpq(paire,ztit,ip_ebil,2,2,dtime |
---|
| 412 | cc e , t1,q1,ql,qs,u,v,paprs,pplay |
---|
| 413 | cc s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
| 414 | cc call diagphy(paire,ztit,ip_ebil |
---|
| 415 | cc e , zero_v, zero_v, zero_v, zero_v, zero_v |
---|
| 416 | cc e , zero_v, rain, zero_v, ztsol |
---|
| 417 | cc e , d_h_vcol, d_qt, d_ec |
---|
| 418 | cc s , fs_bound, fq_bound ) |
---|
| 419 | cc END IF |
---|
| 420 | C |
---|
| 421 | c |
---|
[524] | 422 | c les traceurs ne sont pas mis dans cette version de convect4: |
---|
| 423 | if (iflag_con.eq.4) then |
---|
| 424 | DO itra = 1,ntra |
---|
| 425 | DO k = 1, klev |
---|
| 426 | DO i = 1, klon |
---|
| 427 | d_tra(i,k,itra) = 0. |
---|
| 428 | ENDDO |
---|
| 429 | ENDDO |
---|
| 430 | ENDDO |
---|
| 431 | endif |
---|
[938] | 432 | c print*, 'concvl->: dd_t,dd_q ',dd_t(1,1),dd_q(1,1) |
---|
[879] | 433 | |
---|
[970] | 434 | DO k = 1, klev |
---|
| 435 | DO i = 1, klon |
---|
| 436 | dtvpdt1(i,k) = 0. |
---|
| 437 | dtvpdq1(i,k) = 0. |
---|
| 438 | ENDDO |
---|
| 439 | ENDDO |
---|
| 440 | DO i = 1, klon |
---|
| 441 | dplcldt(i) = 0. |
---|
| 442 | dplcldr(i) = 0. |
---|
| 443 | ENDDO |
---|
[973] | 444 | c |
---|
| 445 | if(prt_level.GE.20) THEN |
---|
| 446 | DO k=1,klev |
---|
| 447 | ! print*,'physiq apres_add_con i k it d_u d_v d_t d_q qdl0',igout |
---|
| 448 | ! .,k,itap,d_u_con(igout,k) ,d_v_con(igout,k), d_t_con(igout,k), |
---|
| 449 | ! .d_q_con(igout,k),dql0(igout,k) |
---|
| 450 | ! print*,'phys apres_add_con itap Ma cin ALE ALP wak t q undi t q' |
---|
| 451 | ! .,itap,Ma(igout,k),cin(igout),ALE(igout), ALP(igout), |
---|
| 452 | ! . t_wake(igout,k),q_wake(igout,k),t_undi(igout,k),q_undi(igout,k) |
---|
| 453 | ! print*,'phy apres_add_con itap CON rain snow EMA wk1 wk2 Vpp mip' |
---|
| 454 | ! .,itap,rain_con(igout),snow_con(igout),ema_work1(igout,k), |
---|
| 455 | ! .ema_work2(igout,k),Vprecip(igout,k), mip(igout,k) |
---|
| 456 | ! print*,'phy apres_add_con itap upwd dnwd dnwd0 cape tvp Tconv ' |
---|
| 457 | ! .,itap,upwd(igout,k),dnwd(igout,k),dnwd0(igout,k),cape(igout), |
---|
| 458 | ! .tvp(igout,k),Tconv(igout,k) |
---|
| 459 | ! print*,'phy apres_add_con itap dtvpdt dtvdq dplcl dplcldr qcondc' |
---|
| 460 | ! .,itap,dtvpdt1(igout,k),dtvpdq1(igout,k),dplcldt(igout), |
---|
| 461 | ! .dplcldr(igout),qcondc(igout,k) |
---|
| 462 | ! print*,'phy apres_add_con itap wd pmflxr Kpmflxr Kp1 Kpmflxs Kp1' |
---|
| 463 | ! .,itap,wd(igout),pmflxr(igout,k),pmflxr(igout,k+1),pmflxs(igout,k) |
---|
| 464 | ! .,pmflxs(igout,k+1) |
---|
| 465 | ! print*,'phy apres_add_con itap da phi mp ftd fqd lalim wgth', |
---|
| 466 | ! .itap,da(igout,k),phi(igout,k,k),mp(igout,k),ftd(igout,k), |
---|
| 467 | ! . fqd(igout,k),lalim_conv(igout),wght_th(igout,k) |
---|
| 468 | ENDDO |
---|
| 469 | endif !(prt_level.EQ.20) THEN |
---|
| 470 | c |
---|
[524] | 471 | RETURN |
---|
| 472 | END |
---|
| 473 | |
---|