1 | ! |
---|
2 | ! $Header$ |
---|
3 | ! |
---|
4 | SUBROUTINE conccm (dtime,paprs,pplay,t,q,conv_q, |
---|
5 | s d_t, d_q, rain, snow, kbascm, ktopcm) |
---|
6 | c |
---|
7 | USE dimphy |
---|
8 | IMPLICIT none |
---|
9 | c====================================================================== |
---|
10 | c Auteur(s): Z.X. Li (LMD/CNRS) date: le 14 mars 1996 |
---|
11 | c Objet: Schema simple (avec flux de masse) pour la convection |
---|
12 | c (schema standard du modele NCAR CCM2) |
---|
13 | c====================================================================== |
---|
14 | cym#include "dimensions.h" |
---|
15 | cym#include "dimphy.h" |
---|
16 | #include "YOMCST.h" |
---|
17 | #include "YOETHF.h" |
---|
18 | c |
---|
19 | c Entree: |
---|
20 | REAL dtime ! pas d'integration |
---|
21 | REAL paprs(klon,klev+1) ! pression inter-couche (Pa) |
---|
22 | REAL pplay(klon,klev) ! pression au milieu de couche (Pa) |
---|
23 | REAL t(klon,klev) ! temperature (K) |
---|
24 | REAL q(klon,klev) ! humidite specifique (g/g) |
---|
25 | REAL conv_q(klon,klev) ! taux de convergence humidite (g/g/s) |
---|
26 | c Sortie: |
---|
27 | REAL d_t(klon,klev) ! incrementation temperature |
---|
28 | REAL d_q(klon,klev) ! incrementation vapeur |
---|
29 | REAL rain(klon) ! pluie (mm/s) |
---|
30 | REAL snow(klon) ! neige (mm/s) |
---|
31 | INTEGER kbascm(klon) ! niveau du bas de convection |
---|
32 | INTEGER ktopcm(klon) ! niveau du haut de convection |
---|
33 | c |
---|
34 | REAL pt(klon,klev) |
---|
35 | REAL pq(klon,klev) |
---|
36 | REAL pres(klon,klev) |
---|
37 | REAL dp(klon,klev) |
---|
38 | REAL zgeom(klon,klev) |
---|
39 | REAL cmfprs(klon) |
---|
40 | REAL cmfprt(klon) |
---|
41 | INTEGER ntop(klon) |
---|
42 | INTEGER nbas(klon) |
---|
43 | INTEGER i, k |
---|
44 | REAL zlvdcp, zlsdcp, zdelta, zz, za, zb |
---|
45 | c |
---|
46 | LOGICAL usekuo ! utiliser convection profonde (schema Kuo) |
---|
47 | PARAMETER (usekuo=.TRUE.) |
---|
48 | c |
---|
49 | REAL d_t_bis(klon,klev) |
---|
50 | REAL d_q_bis(klon,klev) |
---|
51 | REAL rain_bis(klon) |
---|
52 | REAL snow_bis(klon) |
---|
53 | INTEGER ibas_bis(klon) |
---|
54 | INTEGER itop_bis(klon) |
---|
55 | REAL d_ql_bis(klon,klev) |
---|
56 | REAL rneb_bis(klon,klev) |
---|
57 | c |
---|
58 | c initialiser les variables de sortie (pour securite) |
---|
59 | DO i = 1, klon |
---|
60 | rain(i) = 0.0 |
---|
61 | snow(i) = 0.0 |
---|
62 | kbascm(i) = 0 |
---|
63 | ktopcm(i) = 0 |
---|
64 | ENDDO |
---|
65 | DO k = 1, klev |
---|
66 | DO i = 1, klon |
---|
67 | d_t(i,k) = 0.0 |
---|
68 | d_q(i,k) = 0.0 |
---|
69 | ENDDO |
---|
70 | ENDDO |
---|
71 | c |
---|
72 | c preparer les variables d'entree (attention: l'ordre des niveaux |
---|
73 | c verticaux augmente du haut vers le bas) |
---|
74 | DO k = 1, klev |
---|
75 | DO i = 1, klon |
---|
76 | pt(i,k) = t(i,klev-k+1) |
---|
77 | pq(i,k) = q(i,klev-k+1) |
---|
78 | pres(i,k) = pplay(i,klev-k+1) |
---|
79 | dp(i,k) = paprs(i,klev+1-k)-paprs(i,klev+1-k+1) |
---|
80 | ENDDO |
---|
81 | ENDDO |
---|
82 | DO i = 1, klon |
---|
83 | zgeom(i,klev) = RD * t(i,1) / (0.5*(paprs(i,1)+pplay(i,1))) |
---|
84 | . * (paprs(i,1)-pplay(i,1)) |
---|
85 | ENDDO |
---|
86 | DO k = 2, klev |
---|
87 | DO i = 1, klon |
---|
88 | zgeom(i,klev+1-k) = zgeom(i,klev+1-k+1) |
---|
89 | . + RD * 0.5*(t(i,k-1)+t(i,k)) / paprs(i,k) |
---|
90 | . * (pplay(i,k-1)-pplay(i,k)) |
---|
91 | ENDDO |
---|
92 | ENDDO |
---|
93 | c |
---|
94 | CALL cmfmca(dtime, pres, dp, zgeom, pt, pq, |
---|
95 | $ cmfprt, cmfprs, ntop, nbas) |
---|
96 | C |
---|
97 | DO k = 1, klev |
---|
98 | DO i = 1, klon |
---|
99 | d_q(i,klev+1-k) = pq(i,k) - q(i,klev+1-k) |
---|
100 | d_t(i,klev+1-k) = pt(i,k) - t(i,klev+1-k) |
---|
101 | ENDDO |
---|
102 | ENDDO |
---|
103 | c |
---|
104 | DO i = 1, klon |
---|
105 | rain(i) = cmfprt(i) * rhoh2o |
---|
106 | snow(i) = cmfprs(i) * rhoh2o |
---|
107 | kbascm(i) = klev+1 - nbas(i) |
---|
108 | ktopcm(i) = klev+1 - ntop(i) |
---|
109 | ENDDO |
---|
110 | c |
---|
111 | IF (usekuo) THEN |
---|
112 | CALL conkuo(dtime, paprs, pplay, t, q, conv_q, |
---|
113 | s d_t_bis, d_q_bis, d_ql_bis, rneb_bis, |
---|
114 | s rain_bis, snow_bis, ibas_bis, itop_bis) |
---|
115 | DO k = 1, klev |
---|
116 | DO i = 1, klon |
---|
117 | d_t(i,k) = d_t(i,k) + d_t_bis(i,k) |
---|
118 | d_q(i,k) = d_q(i,k) + d_q_bis(i,k) |
---|
119 | ENDDO |
---|
120 | ENDDO |
---|
121 | DO i = 1, klon |
---|
122 | rain(i) = rain(i) + rain_bis(i) |
---|
123 | snow(i) = snow(i) + snow_bis(i) |
---|
124 | kbascm(i) = MIN(kbascm(i),ibas_bis(i)) |
---|
125 | ktopcm(i) = MAX(ktopcm(i),itop_bis(i)) |
---|
126 | ENDDO |
---|
127 | DO k = 1, klev ! eau liquide convective est |
---|
128 | DO i = 1, klon ! dispersee dans l'air |
---|
129 | zlvdcp=RLVTT/RCPD/(1.0+RVTMP2*q(i,k)) |
---|
130 | zlsdcp=RLSTT/RCPD/(1.0+RVTMP2*q(i,k)) |
---|
131 | zdelta = MAX(0.,SIGN(1.,RTT-t(i,k))) |
---|
132 | zz = d_ql_bis(i,k) ! re-evap. de l'eau liquide |
---|
133 | zb = MAX(0.0,zz) |
---|
134 | za = - MAX(0.0,zz) * (zlvdcp*(1.-zdelta)+zlsdcp*zdelta) |
---|
135 | d_t(i,k) = d_t(i,k) + za |
---|
136 | d_q(i,k) = d_q(i,k) + zb |
---|
137 | ENDDO |
---|
138 | ENDDO |
---|
139 | ENDIF |
---|
140 | c |
---|
141 | RETURN |
---|
142 | END |
---|
143 | SUBROUTINE cmfmca(deltat, p, dp, gz, |
---|
144 | $ tb, shb, |
---|
145 | $ cmfprt, cmfprs, cnt, cnb) |
---|
146 | USE dimphy |
---|
147 | IMPLICIT none |
---|
148 | C----------------------------------------------------------------------- |
---|
149 | C Moist convective mass flux procedure: |
---|
150 | C If stratification is unstable to nonentraining parcel ascent, |
---|
151 | C complete an adjustment making use of a simple cloud model |
---|
152 | C |
---|
153 | C Code generalized to allow specification of parcel ("updraft") |
---|
154 | C properties, as well as convective transport of an arbitrary |
---|
155 | C number of passive constituents (see cmrb array). |
---|
156 | C----------------------------Code History------------------------------- |
---|
157 | C Original version: J. J. Hack, March 22, 1990 |
---|
158 | C Standardized: J. Rosinski, June 1992 |
---|
159 | C Reviewed: J. Hack, G. Taylor, August 1992 |
---|
160 | c Adaptation au LMD: Z.X. Li, mars 1996 (reference: Hack 1994, |
---|
161 | c J. Geophys. Res. vol 99, D3, 5551-5568). J'ai |
---|
162 | c introduit les constantes et les fonctions thermo- |
---|
163 | c dynamiques du Centre Europeen. J'ai elimine le |
---|
164 | c re-indicage du code en esperant que cela pourra |
---|
165 | c simplifier la lecture et la comprehension. |
---|
166 | C----------------------------------------------------------------------- |
---|
167 | cym#include "dimensions.h" |
---|
168 | cym#include "dimphy.h" |
---|
169 | INTEGER pcnst ! nombre de traceurs passifs |
---|
170 | PARAMETER (pcnst=1) |
---|
171 | C------------------------------Arguments-------------------------------- |
---|
172 | C Input arguments |
---|
173 | C |
---|
174 | REAL deltat ! time step (seconds) |
---|
175 | REAL p(klon,klev) ! pressure |
---|
176 | REAL dp(klon,klev) ! delta-p |
---|
177 | REAL gz(klon,klev) ! geopotential (a partir du sol) |
---|
178 | c |
---|
179 | REAL thtap(klon) ! PBL perturbation theta |
---|
180 | REAL shp(klon) ! PBL perturbation specific humidity |
---|
181 | REAL pblh(klon) ! PBL height (provided by PBL routine) |
---|
182 | REAL cmrp(klon,pcnst) ! constituent perturbations in PBL |
---|
183 | c |
---|
184 | c Updated arguments: |
---|
185 | c |
---|
186 | REAL tb(klon,klev) ! temperature (t bar) |
---|
187 | REAL shb(klon,klev) ! specific humidity (sh bar) |
---|
188 | REAL cmrb(klon,klev,pcnst) ! constituent mixing ratios (cmr bar) |
---|
189 | C |
---|
190 | C Output arguments |
---|
191 | C |
---|
192 | REAL cmfdt(klon,klev) ! dT/dt due to moist convection |
---|
193 | REAL cmfdq(klon,klev) ! dq/dt due to moist convection |
---|
194 | REAL cmfmc(klon,klev ) ! moist convection cloud mass flux |
---|
195 | REAL cmfdqr(klon,klev) ! dq/dt due to convective rainout |
---|
196 | REAL cmfsl(klon,klev ) ! convective lw static energy flux |
---|
197 | REAL cmflq(klon,klev ) ! convective total water flux |
---|
198 | REAL cmfprt(klon) ! convective precipitation rate |
---|
199 | REAL cmfprs(klon) ! convective snowfall rate |
---|
200 | REAL qc(klon,klev) ! dq/dt due to rainout terms |
---|
201 | INTEGER cnt(klon) ! top level of convective activity |
---|
202 | INTEGER cnb(klon) ! bottom level of convective activity |
---|
203 | C------------------------------Parameters------------------------------- |
---|
204 | REAL c0 ! rain water autoconversion coefficient |
---|
205 | PARAMETER (c0=1.0e-4) |
---|
206 | REAL dzmin ! minimum convective depth for precipitation |
---|
207 | PARAMETER (dzmin=0.0) |
---|
208 | REAL betamn ! minimum overshoot parameter |
---|
209 | PARAMETER (betamn=0.10) |
---|
210 | REAL cmftau ! characteristic adjustment time scale |
---|
211 | PARAMETER (cmftau=3600.) |
---|
212 | INTEGER limcnv ! top interface level limit for convection |
---|
213 | PARAMETER (limcnv=1) |
---|
214 | REAL tpmax ! maximum acceptable t perturbation (degrees C) |
---|
215 | PARAMETER (tpmax=1.50) |
---|
216 | REAL shpmax ! maximum acceptable q perturbation (g/g) |
---|
217 | PARAMETER (shpmax=1.50e-3) |
---|
218 | REAL tiny ! arbitrary small num used in transport estimates |
---|
219 | PARAMETER (tiny=1.0e-36) |
---|
220 | REAL eps ! convergence criteria (machine dependent) |
---|
221 | PARAMETER (eps=1.0e-13) |
---|
222 | REAL tmelt ! freezing point of water(req'd for rain vs snow) |
---|
223 | PARAMETER (tmelt=273.15) |
---|
224 | REAL ssfac ! supersaturation bound (detrained air) |
---|
225 | PARAMETER (ssfac=1.001) |
---|
226 | C |
---|
227 | C---------------------------Local workspace----------------------------- |
---|
228 | REAL gam(klon,klev) ! L/cp (d(qsat)/dT) |
---|
229 | REAL sb(klon,klev) ! dry static energy (s bar) |
---|
230 | REAL hb(klon,klev) ! moist static energy (h bar) |
---|
231 | REAL shbs(klon,klev) ! sat. specific humidity (sh bar star) |
---|
232 | REAL hbs(klon,klev) ! sat. moist static energy (h bar star) |
---|
233 | REAL shbh(klon,klev+1) ! specific humidity on interfaces |
---|
234 | REAL sbh(klon,klev+1) ! s bar on interfaces |
---|
235 | REAL hbh(klon,klev+1) ! h bar on interfaces |
---|
236 | REAL cmrh(klon,klev+1) ! interface constituent mixing ratio |
---|
237 | REAL prec(klon) ! instantaneous total precipitation |
---|
238 | REAL dzcld(klon) ! depth of convective layer (m) |
---|
239 | REAL beta(klon) ! overshoot parameter (fraction) |
---|
240 | REAL betamx ! local maximum on overshoot |
---|
241 | REAL eta(klon) ! convective mass flux (kg/m^2 s) |
---|
242 | REAL etagdt ! eta*grav*deltat |
---|
243 | REAL cldwtr(klon) ! cloud water (mass) |
---|
244 | REAL rnwtr(klon) ! rain water (mass) |
---|
245 | REAL sc (klon) ! dry static energy ("in-cloud") |
---|
246 | REAL shc (klon) ! specific humidity ("in-cloud") |
---|
247 | REAL hc (klon) ! moist static energy ("in-cloud") |
---|
248 | REAL cmrc(klon) ! constituent mix rat ("in-cloud") |
---|
249 | REAL dq1(klon) ! shb convective change (lower lvl) |
---|
250 | REAL dq2(klon) ! shb convective change (mid level) |
---|
251 | REAL dq3(klon) ! shb convective change (upper lvl) |
---|
252 | REAL ds1(klon) ! sb convective change (lower lvl) |
---|
253 | REAL ds2(klon) ! sb convective change (mid level) |
---|
254 | REAL ds3(klon) ! sb convective change (upper lvl) |
---|
255 | REAL dcmr1(klon) ! cmrb convective change (lower lvl) |
---|
256 | REAL dcmr2(klon) ! cmrb convective change (mid level) |
---|
257 | REAL dcmr3(klon) ! cmrb convective change (upper lvl) |
---|
258 | REAL flotab(klon) ! hc - hbs (mesure d'instabilite) |
---|
259 | LOGICAL ldcum(klon) ! .true. si la convection existe |
---|
260 | LOGICAL etagt0 ! true if eta > 0.0 |
---|
261 | REAL dt ! current 2 delta-t (model time step) |
---|
262 | REAL cats ! modified characteristic adj. time |
---|
263 | REAL rdt ! 1./dt |
---|
264 | REAL qprime ! modified specific humidity pert. |
---|
265 | REAL tprime ! modified thermal perturbation |
---|
266 | REAL pblhgt ! bounded pbl height (max[pblh,1m]) |
---|
267 | REAL fac1 ! intermediate scratch variable |
---|
268 | REAL shprme ! intermediate specific humidity pert. |
---|
269 | REAL qsattp ! saturation mixing ratio for |
---|
270 | C ! thermally perturbed PBL parcels |
---|
271 | REAL dz ! local layer depth |
---|
272 | REAL b1 ! bouyancy measure in detrainment lvl |
---|
273 | REAL b2 ! bouyancy measure in condensation lvl |
---|
274 | REAL g ! bounded vertical gradient of hb |
---|
275 | REAL tmass ! total mass available for convective exchange |
---|
276 | REAL denom ! intermediate scratch variable |
---|
277 | REAL qtest1! used in negative q test (middle lvl) |
---|
278 | REAL qtest2! used in negative q test (lower lvl) |
---|
279 | REAL fslkp ! flux lw static energy (bot interface) |
---|
280 | REAL fslkm ! flux lw static energy (top interface) |
---|
281 | REAL fqlkp ! flux total water (bottom interface) |
---|
282 | REAL fqlkm ! flux total water (top interface) |
---|
283 | REAL botflx! bottom constituent mixing ratio flux |
---|
284 | REAL topflx! top constituent mixing ratio flux |
---|
285 | REAL efac1 ! ratio cmrb to convectively induced change (bot lvl) |
---|
286 | REAL efac2 ! ratio cmrb to convectively induced change (mid lvl) |
---|
287 | REAL efac3 ! ratio cmrb to convectively induced change (top lvl) |
---|
288 | c |
---|
289 | INTEGER i,k ! indices horizontal et vertical |
---|
290 | INTEGER km1 ! k-1 (index offset) |
---|
291 | INTEGER kp1 ! k+1 (index offset) |
---|
292 | INTEGER m ! constituent index |
---|
293 | INTEGER ktp ! temporary index used to track top |
---|
294 | INTEGER is ! nombre de points a ajuster |
---|
295 | C |
---|
296 | REAL tmp1, tmp2, tmp3, tmp4 |
---|
297 | REAL zx_t, zx_p, zx_q, zx_qs, zx_gam |
---|
298 | REAL zcor, zdelta, zcvm5 |
---|
299 | C |
---|
300 | REAL qhalf, sh1, sh2, shbs1, shbs2 |
---|
301 | #include "YOMCST.h" |
---|
302 | #include "YOETHF.h" |
---|
303 | #include "FCTTRE.h" |
---|
304 | qhalf(sh1,sh2,shbs1,shbs2) = MIN(MAX(sh1,sh2), |
---|
305 | $ (shbs2*sh1 + shbs1*sh2)/(shbs1+shbs2)) |
---|
306 | C |
---|
307 | C----------------------------------------------------------------------- |
---|
308 | c pas de traceur pour l'instant |
---|
309 | DO m = 1, pcnst |
---|
310 | DO k = 1, klev |
---|
311 | DO i = 1, klon |
---|
312 | cmrb(i,k,m) = 0.0 |
---|
313 | ENDDO |
---|
314 | ENDDO |
---|
315 | ENDDO |
---|
316 | c |
---|
317 | c Les perturbations de la couche limite sont zero pour l'instant |
---|
318 | c |
---|
319 | DO m = 1, pcnst |
---|
320 | DO i = 1, klon |
---|
321 | cmrp(i,m) = 0.0 |
---|
322 | ENDDO |
---|
323 | ENDDO |
---|
324 | DO i = 1, klon |
---|
325 | thtap(i) = 0.0 |
---|
326 | shp(i) = 0.0 |
---|
327 | pblh(i) = 1.0 |
---|
328 | ENDDO |
---|
329 | C |
---|
330 | C Ensure that characteristic adjustment time scale (cmftau) assumed |
---|
331 | C in estimate of eta isn't smaller than model time scale (deltat) |
---|
332 | C |
---|
333 | dt = deltat |
---|
334 | cats = MAX(dt,cmftau) |
---|
335 | rdt = 1.0/dt |
---|
336 | C |
---|
337 | C Compute sb,hb,shbs,hbs |
---|
338 | C |
---|
339 | DO k = 1, klev |
---|
340 | DO i = 1, klon |
---|
341 | zx_t = tb(i,k) |
---|
342 | zx_p = p(i,k) |
---|
343 | zx_q = shb(i,k) |
---|
344 | zdelta=MAX(0.,SIGN(1.,RTT-zx_t)) |
---|
345 | zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta |
---|
346 | zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*zx_q) |
---|
347 | zx_qs= r2es * FOEEW(zx_t,zdelta)/zx_p |
---|
348 | zx_qs=MIN(0.5,zx_qs) |
---|
349 | zcor=1./(1.-retv*zx_qs) |
---|
350 | zx_qs=zx_qs*zcor |
---|
351 | zx_gam = FOEDE(zx_t,zdelta,zcvm5,zx_qs,zcor) |
---|
352 | shbs(i,k) = zx_qs |
---|
353 | gam(i,k) = zx_gam |
---|
354 | ENDDO |
---|
355 | ENDDO |
---|
356 | C |
---|
357 | DO k=limcnv,klev |
---|
358 | DO i=1,klon |
---|
359 | sb (i,k) = RCPD*tb(i,k) + gz(i,k) |
---|
360 | hb (i,k) = sb(i,k) + RLVTT*shb(i,k) |
---|
361 | hbs(i,k) = sb(i,k) + RLVTT*shbs(i,k) |
---|
362 | ENDDO |
---|
363 | ENDDO |
---|
364 | C |
---|
365 | C Compute sbh, shbh |
---|
366 | C |
---|
367 | DO k=limcnv+1,klev |
---|
368 | km1 = k - 1 |
---|
369 | DO i=1,klon |
---|
370 | sbh (i,k) =0.5*(sb(i,km1) + sb(i,k)) |
---|
371 | shbh(i,k) =qhalf(shb(i,km1),shb(i,k),shbs(i,km1),shbs(i,k)) |
---|
372 | hbh (i,k) =sbh(i,k) + RLVTT*shbh(i,k) |
---|
373 | ENDDO |
---|
374 | ENDDO |
---|
375 | C |
---|
376 | C Specify properties at top of model (not used, but filling anyway) |
---|
377 | C |
---|
378 | DO i=1,klon |
---|
379 | sbh (i,limcnv) = sb(i,limcnv) |
---|
380 | shbh(i,limcnv) = shb(i,limcnv) |
---|
381 | hbh (i,limcnv) = hb(i,limcnv) |
---|
382 | ENDDO |
---|
383 | C |
---|
384 | C Zero vertically independent control, tendency & diagnostic arrays |
---|
385 | C |
---|
386 | DO i=1,klon |
---|
387 | prec(i) = 0.0 |
---|
388 | dzcld(i) = 0.0 |
---|
389 | cnb(i) = 0 |
---|
390 | cnt(i) = klev+1 |
---|
391 | ENDDO |
---|
392 | |
---|
393 | DO k = 1, klev |
---|
394 | DO i = 1,klon |
---|
395 | cmfdt(i,k) = 0. |
---|
396 | cmfdq(i,k) = 0. |
---|
397 | cmfdqr(i,k) = 0. |
---|
398 | cmfmc(i,k) = 0. |
---|
399 | cmfsl(i,k) = 0. |
---|
400 | cmflq(i,k) = 0. |
---|
401 | ENDDO |
---|
402 | ENDDO |
---|
403 | C |
---|
404 | C Begin moist convective mass flux adjustment procedure. |
---|
405 | C Formalism ensures that negative cloud liquid water can never occur |
---|
406 | C |
---|
407 | DO 70 k=klev-1,limcnv+1,-1 |
---|
408 | km1 = k - 1 |
---|
409 | kp1 = k + 1 |
---|
410 | DO 10 i=1,klon |
---|
411 | eta (i) = 0.0 |
---|
412 | beta (i) = 0.0 |
---|
413 | ds1 (i) = 0.0 |
---|
414 | ds2 (i) = 0.0 |
---|
415 | ds3 (i) = 0.0 |
---|
416 | dq1 (i) = 0.0 |
---|
417 | dq2 (i) = 0.0 |
---|
418 | dq3 (i) = 0.0 |
---|
419 | C |
---|
420 | C Specification of "cloud base" conditions |
---|
421 | C |
---|
422 | qprime = 0.0 |
---|
423 | tprime = 0.0 |
---|
424 | C |
---|
425 | C Assign tprime within the PBL to be proportional to the quantity |
---|
426 | C thtap (which will be bounded by tpmax), passed to this routine by |
---|
427 | C the PBL routine. Don't allow perturbation to produce a dry |
---|
428 | C adiabatically unstable parcel. Assign qprime within the PBL to be |
---|
429 | C an appropriately modified value of the quantity shp (which will be |
---|
430 | C bounded by shpmax) passed to this routine by the PBL routine. The |
---|
431 | C quantity qprime should be less than the local saturation value |
---|
432 | C (qsattp=qsat[t+tprime,p]). In both cases, thtap and shp are |
---|
433 | C linearly reduced toward zero as the PBL top is approached. |
---|
434 | C |
---|
435 | pblhgt = MAX(pblh(i),1.0) |
---|
436 | IF (gz(i,kp1)/RG.LE.pblhgt .AND. dzcld(i).EQ.0.0) THEN |
---|
437 | fac1 = MAX(0.0,1.0-gz(i,kp1)/RG/pblhgt) |
---|
438 | tprime = MIN(thtap(i),tpmax)*fac1 |
---|
439 | qsattp = shbs(i,kp1) + RCPD/RLVTT*gam(i,kp1)*tprime |
---|
440 | shprme = MIN(MIN(shp(i),shpmax)*fac1, |
---|
441 | $ MAX(qsattp-shb(i,kp1),0.0)) |
---|
442 | qprime = MAX(qprime,shprme) |
---|
443 | ELSE |
---|
444 | tprime = 0.0 |
---|
445 | qprime = 0.0 |
---|
446 | ENDIF |
---|
447 | C |
---|
448 | C Specify "updraft" (in-cloud) thermodynamic properties |
---|
449 | C |
---|
450 | sc (i) = sb (i,kp1) + RCPD*tprime |
---|
451 | shc(i) = shb(i,kp1) + qprime |
---|
452 | hc (i) = sc (i ) + RLVTT*shc(i) |
---|
453 | flotab(i) = hc(i) - hbs(i,k) |
---|
454 | dz = dp(i,k)*RD*tb(i,k)/RG/p(i,k) |
---|
455 | IF (flotab(i).gt.0.0) THEN |
---|
456 | dzcld(i) = dzcld(i) + dz |
---|
457 | ELSE |
---|
458 | dzcld(i) = 0.0 |
---|
459 | ENDIF |
---|
460 | 10 CONTINUE |
---|
461 | C |
---|
462 | C Check on moist convective instability |
---|
463 | C |
---|
464 | is = 0 |
---|
465 | DO i = 1, klon |
---|
466 | IF (flotab(i).GT.0.0) THEN |
---|
467 | ldcum(i) = .TRUE. |
---|
468 | is = is + 1 |
---|
469 | ELSE |
---|
470 | ldcum(i) = .FALSE. |
---|
471 | ENDIF |
---|
472 | ENDDO |
---|
473 | C |
---|
474 | IF (is.EQ.0) THEN |
---|
475 | DO i=1,klon |
---|
476 | dzcld(i) = 0.0 |
---|
477 | ENDDO |
---|
478 | GOTO 70 |
---|
479 | ENDIF |
---|
480 | C |
---|
481 | C Current level just below top level => no overshoot |
---|
482 | C |
---|
483 | IF (k.le.limcnv+1) THEN |
---|
484 | DO i=1,klon |
---|
485 | IF (ldcum(i)) THEN |
---|
486 | cldwtr(i) = sb(i,k)-sc(i)+flotab(i)/(1.0+gam(i,k)) |
---|
487 | cldwtr(i) = MAX(0.0,cldwtr(i)) |
---|
488 | beta(i) = 0.0 |
---|
489 | ENDIF |
---|
490 | ENDDO |
---|
491 | GOTO 20 |
---|
492 | ENDIF |
---|
493 | C |
---|
494 | C First guess at overshoot parameter using crude buoyancy closure |
---|
495 | C 10% overshoot assumed as a minimum and 1-c0*dz maximum to start |
---|
496 | C If pre-existing supersaturation in detrainment layer, beta=0 |
---|
497 | C cldwtr is temporarily equal to RLVTT*l (l=> liquid water) |
---|
498 | C |
---|
499 | DO i=1,klon |
---|
500 | IF (ldcum(i)) THEN |
---|
501 | cldwtr(i) = sb(i,k)-sc(i)+flotab(i)/(1.0+gam(i,k)) |
---|
502 | cldwtr(i) = MAX(0.0,cldwtr(i)) |
---|
503 | betamx = 1.0 - c0*MAX(0.0,(dzcld(i)-dzmin)) |
---|
504 | b1 = (hc(i) - hbs(i,km1))*dp(i,km1) |
---|
505 | b2 = (hc(i) - hbs(i,k ))*dp(i,k ) |
---|
506 | beta(i) = MAX(betamn,MIN(betamx, 1.0+b1/b2)) |
---|
507 | IF (hbs(i,km1).le.hb(i,km1)) beta(i) = 0.0 |
---|
508 | ENDIF |
---|
509 | ENDDO |
---|
510 | C |
---|
511 | C Bound maximum beta to ensure physically realistic solutions |
---|
512 | C |
---|
513 | C First check constrains beta so that eta remains positive |
---|
514 | C (assuming that eta is already positive for beta equal zero) |
---|
515 | c La premiere contrainte de beta est que le flux eta doit etre positif. |
---|
516 | C |
---|
517 | DO i=1,klon |
---|
518 | IF (ldcum(i)) THEN |
---|
519 | tmp1 = (1.0+gam(i,k))*(sc(i)-sbh(i,kp1) + cldwtr(i)) |
---|
520 | $ - (hbh(i,kp1)-hc(i))*dp(i,k)/dp(i,kp1) |
---|
521 | tmp2 = (1.0+gam(i,k))*(sc(i)-sbh(i,k)) |
---|
522 | IF ((beta(i)*tmp2-tmp1).GT.0.0) THEN |
---|
523 | betamx = 0.99*(tmp1/tmp2) |
---|
524 | beta(i) = MAX(0.0,MIN(betamx,beta(i))) |
---|
525 | ENDIF |
---|
526 | C |
---|
527 | C Second check involves supersaturation of "detrainment layer" |
---|
528 | C small amount of supersaturation acceptable (by ssfac factor) |
---|
529 | c La 2e contrainte est que la convection ne doit pas sursaturer |
---|
530 | c la "detrainment layer", Neanmoins, une petite sursaturation |
---|
531 | c est acceptee (facteur ssfac). |
---|
532 | C |
---|
533 | IF (hb(i,km1).lt.hbs(i,km1)) THEN |
---|
534 | tmp1 = (1.0+gam(i,k))*(sc(i)-sbh(i,kp1) + cldwtr(i)) |
---|
535 | $ - (hbh(i,kp1)-hc(i))*dp(i,k)/dp(i,kp1) |
---|
536 | tmp1 = tmp1/dp(i,k) |
---|
537 | tmp2 = gam(i,km1)*(sbh(i,k)-sc(i) + cldwtr(i)) - |
---|
538 | $ hbh(i,k) + hc(i) - sc(i) + sbh(i,k) |
---|
539 | tmp3 = (1.0+gam(i,k))*(sc(i)-sbh(i,k))/dp(i,k) |
---|
540 | tmp4 = (dt/cats)*(hc(i)-hbs(i,k))*tmp2 |
---|
541 | $ / (dp(i,km1)*(hbs(i,km1)-hb(i,km1))) + tmp3 |
---|
542 | IF ((beta(i)*tmp4-tmp1).GT.0.0) THEN |
---|
543 | betamx = ssfac*(tmp1/tmp4) |
---|
544 | beta(i) = MAX(0.0,MIN(betamx,beta(i))) |
---|
545 | ENDIF |
---|
546 | ELSE |
---|
547 | beta(i) = 0.0 |
---|
548 | ENDIF |
---|
549 | C |
---|
550 | C Third check to avoid introducing 2 delta x thermodynamic |
---|
551 | C noise in the vertical ... constrain adjusted h (or theta e) |
---|
552 | C so that the adjustment doesn't contribute to "kinks" in h |
---|
553 | C |
---|
554 | g = MIN(0.0,hb(i,k)-hb(i,km1)) |
---|
555 | tmp3 = (hb(i,k)-hb(i,km1)-g)*(cats/dt) / (hc(i)-hbs(i,k)) |
---|
556 | tmp1 = (1.0+gam(i,k))*(sc(i)-sbh(i,kp1) + cldwtr(i)) |
---|
557 | $ - (hbh(i,kp1)-hc(i))*dp(i,k)/dp(i,kp1) |
---|
558 | tmp1 = tmp1/dp(i,k) |
---|
559 | tmp1 = tmp3*tmp1 + (hc(i) - hbh(i,kp1))/dp(i,k) |
---|
560 | tmp2 = tmp3*(1.0+gam(i,k))*(sc(i)-sbh(i,k))/dp(i,k) |
---|
561 | $ + (hc(i)-hbh(i,k)-cldwtr(i)) |
---|
562 | $ *(1.0/dp(i,k)+1.0/dp(i,kp1)) |
---|
563 | IF ((beta(i)*tmp2-tmp1).GT.0.0) THEN |
---|
564 | betamx = 0.0 |
---|
565 | IF (tmp2.NE.0.0) betamx = tmp1/tmp2 |
---|
566 | beta(i) = MAX(0.0,MIN(betamx,beta(i))) |
---|
567 | ENDIF |
---|
568 | ENDIF |
---|
569 | ENDDO |
---|
570 | C |
---|
571 | C Calculate mass flux required for stabilization. |
---|
572 | C |
---|
573 | C Ensure that the convective mass flux, eta, is positive by |
---|
574 | C setting negative values of eta to zero.. |
---|
575 | C Ensure that estimated mass flux cannot move more than the |
---|
576 | C minimum of total mass contained in either layer k or layer k+1. |
---|
577 | C Also test for other pathological cases that result in non- |
---|
578 | C physical states and adjust eta accordingly. |
---|
579 | C |
---|
580 | 20 CONTINUE |
---|
581 | DO i=1,klon |
---|
582 | IF (ldcum(i)) THEN |
---|
583 | beta(i) = MAX(0.0,beta(i)) |
---|
584 | tmp1 = hc(i) - hbs(i,k) |
---|
585 | tmp2 = ((1.0+gam(i,k))*(sc(i)-sbh(i,kp1)+cldwtr(i)) - |
---|
586 | $ beta(i)*(1.0+gam(i,k))*(sc(i)-sbh(i,k)))/dp(i,k) - |
---|
587 | $ (hbh(i,kp1)-hc(i))/dp(i,kp1) |
---|
588 | eta(i) = tmp1/(tmp2*RG*cats) |
---|
589 | tmass = MIN(dp(i,k),dp(i,kp1))/RG |
---|
590 | IF (eta(i).GT.tmass*rdt .OR. eta(i).LE.0.0) eta(i) = 0.0 |
---|
591 | C |
---|
592 | C Check on negative q in top layer (bound beta) |
---|
593 | C |
---|
594 | IF(shc(i)-shbh(i,k).LT.0.0 .AND. beta(i)*eta(i).NE.0.0)THEN |
---|
595 | denom = eta(i)*RG*dt*(shc(i) - shbh(i,k))/dp(i,km1) |
---|
596 | beta(i) = MAX(0.0,MIN(-0.999*shb(i,km1)/denom,beta(i))) |
---|
597 | ENDIF |
---|
598 | C |
---|
599 | C Check on negative q in middle layer (zero eta) |
---|
600 | C |
---|
601 | qtest1 = shb(i,k) + eta(i)*RG*dt*((shc(i) - shbh(i,kp1)) - |
---|
602 | $ (1.0 - beta(i))*cldwtr(i)/RLVTT - |
---|
603 | $ beta(i)*(shc(i) - shbh(i,k)))/dp(i,k) |
---|
604 | IF (qtest1.le.0.0) eta(i) = 0.0 |
---|
605 | C |
---|
606 | C Check on negative q in lower layer (bound eta) |
---|
607 | C |
---|
608 | fac1 = -(shbh(i,kp1) - shc(i))/dp(i,kp1) |
---|
609 | qtest2 = shb(i,kp1) - eta(i)*RG*dt*fac1 |
---|
610 | IF (qtest2 .lt. 0.0) THEN |
---|
611 | eta(i) = 0.99*shb(i,kp1)/(RG*dt*fac1) |
---|
612 | ENDIF |
---|
613 | ENDIF |
---|
614 | ENDDO |
---|
615 | C |
---|
616 | C |
---|
617 | C Calculate cloud water, rain water, and thermodynamic changes |
---|
618 | C |
---|
619 | DO 30 i=1,klon |
---|
620 | IF (ldcum(i)) THEN |
---|
621 | etagdt = eta(i)*RG*dt |
---|
622 | cldwtr(i) = etagdt*cldwtr(i)/RLVTT/RG |
---|
623 | rnwtr(i) = (1.0 - beta(i))*cldwtr(i) |
---|
624 | ds1(i) = etagdt*(sbh(i,kp1) - sc(i))/dp(i,kp1) |
---|
625 | dq1(i) = etagdt*(shbh(i,kp1) - shc(i))/dp(i,kp1) |
---|
626 | ds2(i) = (etagdt*(sc(i) - sbh(i,kp1)) + |
---|
627 | $ RLVTT*RG*cldwtr(i) - beta(i)*etagdt* |
---|
628 | $ (sc(i) - sbh(i,k)))/dp(i,k) |
---|
629 | dq2(i) = (etagdt*(shc(i) - shbh(i,kp1)) - |
---|
630 | $ RG*rnwtr(i) - beta(i)*etagdt* |
---|
631 | $ (shc(i) - shbh(i,k)))/dp(i,k) |
---|
632 | ds3(i) = beta(i)*(etagdt*(sc(i) - sbh(i,k)) - |
---|
633 | $ RLVTT*RG*cldwtr(i))/dp(i,km1) |
---|
634 | dq3(i) = beta(i)*etagdt*(shc(i) - shbh(i,k))/dp(i,km1) |
---|
635 | C |
---|
636 | C Isolate convective fluxes for later diagnostics |
---|
637 | C |
---|
638 | fslkp = eta(i)*(sc(i) - sbh(i,kp1)) |
---|
639 | fslkm = beta(i)*(eta(i)*(sc(i) - sbh(i,k)) - |
---|
640 | $ RLVTT*cldwtr(i)*rdt) |
---|
641 | fqlkp = eta(i)*(shc(i) - shbh(i,kp1)) |
---|
642 | fqlkm = beta(i)*eta(i)*(shc(i) - shbh(i,k)) |
---|
643 | C |
---|
644 | C |
---|
645 | C Update thermodynamic profile (update sb, hb, & hbs later) |
---|
646 | C |
---|
647 | tb (i,kp1) = tb(i,kp1) + ds1(i) / RCPD |
---|
648 | tb (i,k ) = tb(i,k ) + ds2(i) / RCPD |
---|
649 | tb (i,km1) = tb(i,km1) + ds3(i) / RCPD |
---|
650 | shb(i,kp1) = shb(i,kp1) + dq1(i) |
---|
651 | shb(i,k ) = shb(i,k ) + dq2(i) |
---|
652 | shb(i,km1) = shb(i,km1) + dq3(i) |
---|
653 | prec(i) = prec(i) + rnwtr(i)/rhoh2o |
---|
654 | C |
---|
655 | C Update diagnostic information for final budget |
---|
656 | C Tracking temperature & specific humidity tendencies, |
---|
657 | C rainout term, convective mass flux, convective liquid |
---|
658 | C water static energy flux, and convective total water flux |
---|
659 | C |
---|
660 | cmfdt (i,kp1) = cmfdt (i,kp1) + ds1(i)/RCPD*rdt |
---|
661 | cmfdt (i,k ) = cmfdt (i,k ) + ds2(i)/RCPD*rdt |
---|
662 | cmfdt (i,km1) = cmfdt (i,km1) + ds3(i)/RCPD*rdt |
---|
663 | cmfdq (i,kp1) = cmfdq (i,kp1) + dq1(i)*rdt |
---|
664 | cmfdq (i,k ) = cmfdq (i,k ) + dq2(i)*rdt |
---|
665 | cmfdq (i,km1) = cmfdq (i,km1) + dq3(i)*rdt |
---|
666 | cmfdqr(i,k ) = cmfdqr(i,k ) + (RG*rnwtr(i)/dp(i,k))*rdt |
---|
667 | cmfmc (i,kp1) = cmfmc (i,kp1) + eta(i) |
---|
668 | cmfmc (i,k ) = cmfmc (i,k ) + beta(i)*eta(i) |
---|
669 | cmfsl (i,kp1) = cmfsl (i,kp1) + fslkp |
---|
670 | cmfsl (i,k ) = cmfsl (i,k ) + fslkm |
---|
671 | cmflq (i,kp1) = cmflq (i,kp1) + RLVTT*fqlkp |
---|
672 | cmflq (i,k ) = cmflq (i,k ) + RLVTT*fqlkm |
---|
673 | qc (i,k ) = (RG*rnwtr(i)/dp(i,k))*rdt |
---|
674 | ENDIF |
---|
675 | 30 CONTINUE |
---|
676 | C |
---|
677 | C Next, convectively modify passive constituents |
---|
678 | C |
---|
679 | DO 50 m=1,pcnst |
---|
680 | DO 40 i=1,klon |
---|
681 | IF (ldcum(i)) THEN |
---|
682 | C |
---|
683 | C If any of the reported values of the constituent is negative in |
---|
684 | C the three adjacent levels, nothing will be done to the profile |
---|
685 | C |
---|
686 | IF ((cmrb(i,kp1,m).LT.0.0) .OR. |
---|
687 | $ (cmrb(i,k,m).LT.0.0) .OR. |
---|
688 | $ (cmrb(i,km1,m).LT.0.0)) GOTO 40 |
---|
689 | C |
---|
690 | C Specify constituent interface values (linear interpolation) |
---|
691 | C |
---|
692 | cmrh(i,k ) = 0.5*(cmrb(i,km1,m) + cmrb(i,k ,m)) |
---|
693 | cmrh(i,kp1) = 0.5*(cmrb(i,k ,m) + cmrb(i,kp1,m)) |
---|
694 | C |
---|
695 | C Specify perturbation properties of constituents in PBL |
---|
696 | C |
---|
697 | pblhgt = MAX(pblh(i),1.0) |
---|
698 | IF (gz(i,kp1)/RG.LE.pblhgt .AND. dzcld(i).EQ.0.) THEN |
---|
699 | fac1 = MAX(0.0,1.0-gz(i,kp1)/RG/pblhgt) |
---|
700 | cmrc(i) = cmrb(i,kp1,m) + cmrp(i,m)*fac1 |
---|
701 | ELSE |
---|
702 | cmrc(i) = cmrb(i,kp1,m) |
---|
703 | ENDIF |
---|
704 | C |
---|
705 | C Determine fluxes, flux divergence => changes due to convection |
---|
706 | C Logic must be included to avoid producing negative values. A bit |
---|
707 | C messy since there are no a priori assumptions about profiles. |
---|
708 | C Tendency is modified (reduced) when pending disaster detected. |
---|
709 | C |
---|
710 | etagdt = eta(i)*RG*dt |
---|
711 | botflx = etagdt*(cmrc(i) - cmrh(i,kp1)) |
---|
712 | topflx = beta(i)*etagdt*(cmrc(i)-cmrh(i,k)) |
---|
713 | dcmr1(i) = -botflx/dp(i,kp1) |
---|
714 | efac1 = 1.0 |
---|
715 | efac2 = 1.0 |
---|
716 | efac3 = 1.0 |
---|
717 | C |
---|
718 | IF (cmrb(i,kp1,m)+dcmr1(i) .LT. 0.0) THEN |
---|
719 | efac1 = MAX(tiny,ABS(cmrb(i,kp1,m)/dcmr1(i)) - eps) |
---|
720 | ENDIF |
---|
721 | C |
---|
722 | IF (efac1.EQ.tiny .OR. efac1.GT.1.0) efac1 = 0.0 |
---|
723 | dcmr1(i) = -efac1*botflx/dp(i,kp1) |
---|
724 | dcmr2(i) = (efac1*botflx - topflx)/dp(i,k) |
---|
725 | C |
---|
726 | IF (cmrb(i,k,m)+dcmr2(i) .LT. 0.0) THEN |
---|
727 | efac2 = MAX(tiny,ABS(cmrb(i,k ,m)/dcmr2(i)) - eps) |
---|
728 | ENDIF |
---|
729 | C |
---|
730 | IF (efac2.EQ.tiny .OR. efac2.GT.1.0) efac2 = 0.0 |
---|
731 | dcmr2(i) = (efac1*botflx - efac2*topflx)/dp(i,k) |
---|
732 | dcmr3(i) = efac2*topflx/dp(i,km1) |
---|
733 | C |
---|
734 | IF (cmrb(i,km1,m)+dcmr3(i) .LT. 0.0) THEN |
---|
735 | efac3 = MAX(tiny,ABS(cmrb(i,km1,m)/dcmr3(i)) - eps) |
---|
736 | ENDIF |
---|
737 | C |
---|
738 | IF (efac3.EQ.tiny .OR. efac3.GT.1.0) efac3 = 0.0 |
---|
739 | efac3 = MIN(efac2,efac3) |
---|
740 | dcmr2(i) = (efac1*botflx - efac3*topflx)/dp(i,k) |
---|
741 | dcmr3(i) = efac3*topflx/dp(i,km1) |
---|
742 | C |
---|
743 | cmrb(i,kp1,m) = cmrb(i,kp1,m) + dcmr1(i) |
---|
744 | cmrb(i,k ,m) = cmrb(i,k ,m) + dcmr2(i) |
---|
745 | cmrb(i,km1,m) = cmrb(i,km1,m) + dcmr3(i) |
---|
746 | ENDIF |
---|
747 | 40 CONTINUE |
---|
748 | 50 CONTINUE ! end of m=1,pcnst loop |
---|
749 | C |
---|
750 | IF (k.EQ.limcnv+1) GOTO 60 ! on ne pourra plus glisser |
---|
751 | c |
---|
752 | c Dans la procedure de glissage ascendant, les variables thermo- |
---|
753 | c dynamiques des couches k et km1 servent au calcul des couches |
---|
754 | c superieures. Elles ont donc besoin d'une mise-a-jour. |
---|
755 | C |
---|
756 | DO i = 1, klon |
---|
757 | IF (ldcum(i)) THEN |
---|
758 | zx_t = tb(i,k) |
---|
759 | zx_p = p(i,k) |
---|
760 | zx_q = shb(i,k) |
---|
761 | zdelta=MAX(0.,SIGN(1.,RTT-zx_t)) |
---|
762 | zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta |
---|
763 | zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*zx_q) |
---|
764 | zx_qs= r2es * FOEEW(zx_t,zdelta)/zx_p |
---|
765 | zx_qs=MIN(0.5,zx_qs) |
---|
766 | zcor=1./(1.-retv*zx_qs) |
---|
767 | zx_qs=zx_qs*zcor |
---|
768 | zx_gam = FOEDE(zx_t,zdelta,zcvm5,zx_qs,zcor) |
---|
769 | shbs(i,k) = zx_qs |
---|
770 | gam(i,k) = zx_gam |
---|
771 | c |
---|
772 | zx_t = tb(i,km1) |
---|
773 | zx_p = p(i,km1) |
---|
774 | zx_q = shb(i,km1) |
---|
775 | zdelta=MAX(0.,SIGN(1.,RTT-zx_t)) |
---|
776 | zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta |
---|
777 | zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*zx_q) |
---|
778 | zx_qs= r2es * FOEEW(zx_t,zdelta)/zx_p |
---|
779 | zx_qs=MIN(0.5,zx_qs) |
---|
780 | zcor=1./(1.-retv*zx_qs) |
---|
781 | zx_qs=zx_qs*zcor |
---|
782 | zx_gam = FOEDE(zx_t,zdelta,zcvm5,zx_qs,zcor) |
---|
783 | shbs(i,km1) = zx_qs |
---|
784 | gam(i,km1) = zx_gam |
---|
785 | C |
---|
786 | sb (i,k ) = sb(i,k ) + ds2(i) |
---|
787 | sb (i,km1) = sb(i,km1) + ds3(i) |
---|
788 | hb (i,k ) = sb(i,k ) + RLVTT*shb(i,k) |
---|
789 | hb (i,km1) = sb(i,km1) + RLVTT*shb(i,km1) |
---|
790 | hbs(i,k ) = sb(i,k ) + RLVTT*shbs(i,k ) |
---|
791 | hbs(i,km1) = sb(i,km1) + RLVTT*shbs(i,km1) |
---|
792 | C |
---|
793 | sbh (i,k) = 0.5*(sb(i,k) + sb(i,km1)) |
---|
794 | shbh(i,k) = qhalf(shb(i,km1),shb(i,k) |
---|
795 | $ ,shbs(i,km1),shbs(i,k)) |
---|
796 | hbh (i,k) = sbh(i,k) + RLVTT*shbh(i,k) |
---|
797 | sbh (i,km1) = 0.5*(sb(i,km1) + sb(i,k-2)) |
---|
798 | shbh(i,km1) = qhalf(shb(i,k-2),shb(i,km1), |
---|
799 | $ shbs(i,k-2),shbs(i,km1)) |
---|
800 | hbh (i,km1) = sbh(i,km1) + RLVTT*shbh(i,km1) |
---|
801 | ENDIF |
---|
802 | ENDDO |
---|
803 | C |
---|
804 | C Ensure that dzcld is reset if convective mass flux zero |
---|
805 | C specify the current vertical extent of the convective activity |
---|
806 | C top of convective layer determined by size of overshoot param. |
---|
807 | C |
---|
808 | 60 CONTINUE |
---|
809 | DO i=1,klon |
---|
810 | etagt0 = eta(i).gt.0.0 |
---|
811 | IF (.not.etagt0) dzcld(i) = 0.0 |
---|
812 | IF (etagt0 .and. beta(i).gt.betamn) THEN |
---|
813 | ktp = km1 |
---|
814 | ELSE |
---|
815 | ktp = k |
---|
816 | ENDIF |
---|
817 | IF (etagt0) THEN |
---|
818 | cnt(i) = MIN(cnt(i),ktp) |
---|
819 | cnb(i) = MAX(cnb(i),k) |
---|
820 | ENDIF |
---|
821 | ENDDO |
---|
822 | 70 CONTINUE ! end of k loop |
---|
823 | C |
---|
824 | C determine whether precipitation, prec, is frozen (snow) or not |
---|
825 | C |
---|
826 | DO i=1,klon |
---|
827 | IF (tb(i,klev).LT.tmelt .AND. tb(i,klev-1).lt.tmelt) THEN |
---|
828 | cmfprs(i) = prec(i)*rdt |
---|
829 | ELSE |
---|
830 | cmfprt(i) = prec(i)*rdt |
---|
831 | ENDIF |
---|
832 | ENDDO |
---|
833 | C |
---|
834 | RETURN ! we're all done ... return to calling procedure |
---|
835 | END |
---|