1 | MODULE climb_hq_mod |
---|
2 | ! |
---|
3 | ! Module to solve the verctical diffusion of "q" and "H"; |
---|
4 | ! specific humidity and potential energi. |
---|
5 | ! |
---|
6 | USE dimphy |
---|
7 | |
---|
8 | IMPLICIT NONE |
---|
9 | SAVE |
---|
10 | PRIVATE |
---|
11 | PUBLIC :: climb_hq_down, climb_hq_up |
---|
12 | |
---|
13 | REAL, DIMENSION(:,:), ALLOCATABLE :: gamaq, gamah |
---|
14 | !$OMP THREADPRIVATE(gamaq,gamah) |
---|
15 | REAL, DIMENSION(:,:), ALLOCATABLE :: Ccoef_Q, Dcoef_Q |
---|
16 | !$OMP THREADPRIVATE(Ccoef_Q, Dcoef_Q) |
---|
17 | REAL, DIMENSION(:,:), ALLOCATABLE :: Ccoef_H, Dcoef_H |
---|
18 | !$OMP THREADPRIVATE(Ccoef_H, Dcoef_H) |
---|
19 | REAL, DIMENSION(:,:), ALLOCATABLE :: Kcoefhq |
---|
20 | !$OMP THREADPRIVATE(Kcoefhq) |
---|
21 | |
---|
22 | CONTAINS |
---|
23 | ! |
---|
24 | !**************************************************************************************** |
---|
25 | ! |
---|
26 | SUBROUTINE climb_hq_down(knon, coefhq, paprs, pplay, & |
---|
27 | delp, temp, q, dtime, & |
---|
28 | petAcoef, peqAcoef, petBcoef, peqBcoef) |
---|
29 | |
---|
30 | INCLUDE "YOMCST.inc" |
---|
31 | ! This routine calculates recursivly the coefficients C and D |
---|
32 | ! for the quantity X=[Q,H] in equation X(k) = C(k) + D(k)*X(k-1), where k is |
---|
33 | ! the index of the vertical layer. |
---|
34 | ! |
---|
35 | ! Input arguments |
---|
36 | !**************************************************************************************** |
---|
37 | INTEGER, INTENT(IN) :: knon |
---|
38 | REAL, DIMENSION(klon,klev), INTENT(IN) :: coefhq |
---|
39 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay |
---|
40 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs |
---|
41 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp, delp ! temperature |
---|
42 | REAL, DIMENSION(klon,klev), INTENT(IN) :: q |
---|
43 | REAL, INTENT(IN) :: dtime |
---|
44 | |
---|
45 | ! Output arguments |
---|
46 | !**************************************************************************************** |
---|
47 | REAL, DIMENSION(klon), INTENT(OUT) :: petAcoef |
---|
48 | REAL, DIMENSION(klon), INTENT(OUT) :: peqAcoef |
---|
49 | REAL, DIMENSION(klon), INTENT(OUT) :: petBcoef |
---|
50 | REAL, DIMENSION(klon), INTENT(OUT) :: peqBcoef |
---|
51 | |
---|
52 | ! Local variables |
---|
53 | !**************************************************************************************** |
---|
54 | REAL, DIMENSION(klon,klev) :: dels, local_H |
---|
55 | REAL, DIMENSION(klon) :: psref, delz, pkh |
---|
56 | INTEGER :: k, i, ierr |
---|
57 | |
---|
58 | ! Include |
---|
59 | !**************************************************************************************** |
---|
60 | INCLUDE "compbl.h" |
---|
61 | |
---|
62 | |
---|
63 | !**************************************************************************************** |
---|
64 | ! 1) |
---|
65 | ! Allocation |
---|
66 | ! |
---|
67 | !**************************************************************************************** |
---|
68 | |
---|
69 | ALLOCATE(Ccoef_Q(klon,klev), STAT=ierr) |
---|
70 | IF ( ierr /= 0 ) PRINT*,' pb in allloc Ccoef_Q, ierr=', ierr |
---|
71 | |
---|
72 | ALLOCATE(Dcoef_Q(klon,klev), STAT=ierr) |
---|
73 | IF ( ierr /= 0 ) PRINT*,' pb in allloc Dcoef_Q, ierr=', ierr |
---|
74 | |
---|
75 | ALLOCATE(Ccoef_H(klon,klev), STAT=ierr) |
---|
76 | IF ( ierr /= 0 ) PRINT*,' pb in allloc Ccoef_H, ierr=', ierr |
---|
77 | |
---|
78 | ALLOCATE(Dcoef_H(klon,klev), STAT=ierr) |
---|
79 | IF ( ierr /= 0 ) PRINT*,' pb in allloc Dcoef_H, ierr=', ierr |
---|
80 | |
---|
81 | ALLOCATE(Kcoefhq(klon,klev), STAT=ierr) |
---|
82 | IF ( ierr /= 0 ) PRINT*,' pb in allloc Kcoefhq, ierr=', ierr |
---|
83 | |
---|
84 | ALLOCATE(gamaq(1:klon,2:klev), STAT=ierr) |
---|
85 | IF ( ierr /= 0 ) PRINT*,' pb in allloc gamaq, ierr=', ierr |
---|
86 | |
---|
87 | ALLOCATE(gamah(1:klon,2:klev), STAT=ierr) |
---|
88 | IF ( ierr /= 0 ) PRINT*,' pb in allloc gamah, ierr=', ierr |
---|
89 | |
---|
90 | |
---|
91 | !**************************************************************************************** |
---|
92 | ! 2) |
---|
93 | ! Definition of the coeficient K |
---|
94 | ! |
---|
95 | !**************************************************************************************** |
---|
96 | Kcoefhq(:,:) = 0.0 |
---|
97 | DO k = 2, klev |
---|
98 | DO i = 1, knon |
---|
99 | Kcoefhq(i,k) = & |
---|
100 | coefhq(i,k)*RG /(pplay(i,k-1)-pplay(i,k)) & |
---|
101 | *(paprs(i,k)*2/(temp(i,k)+temp(i,k-1))/RD)**2 |
---|
102 | Kcoefhq(i,k) = Kcoefhq(i,k) * dtime*RG |
---|
103 | ENDDO |
---|
104 | ENDDO |
---|
105 | |
---|
106 | !**************************************************************************************** |
---|
107 | ! 3) |
---|
108 | ! Calculation of gama for "Q" and "H" |
---|
109 | ! |
---|
110 | !**************************************************************************************** |
---|
111 | ! surface pressure is used as reference |
---|
112 | psref(:) = paprs(:,1) |
---|
113 | |
---|
114 | ! definition of start value for gama |
---|
115 | IF (iflag_pbl == 1) THEN |
---|
116 | gamaq(:,:) = 0.0 |
---|
117 | gamah(:,:) = -1.0e-03 |
---|
118 | gamah(:,2) = -2.5e-03 |
---|
119 | ELSE |
---|
120 | gamaq(:,:) = 0.0 |
---|
121 | gamah(:,:) = 0.0 |
---|
122 | ENDIF |
---|
123 | |
---|
124 | ! calculation of gama |
---|
125 | DO k = 2, klev |
---|
126 | DO i = 1, knon |
---|
127 | delz(i) = RD * (temp(i,k-1)+temp(i,k)) / & |
---|
128 | 2.0 / RG / paprs(i,k) * (pplay(i,k-1)-pplay(i,k)) |
---|
129 | pkh(i) = (psref(i)/paprs(i,k))**RKAPPA |
---|
130 | |
---|
131 | gamaq(i,k) = gamaq(i,k) * delz(i) |
---|
132 | gamah(i,k) = gamah(i,k) * delz(i) * RCPD * pkh(i) |
---|
133 | ENDDO |
---|
134 | ENDDO |
---|
135 | |
---|
136 | !**************************************************************************************** |
---|
137 | ! 4) |
---|
138 | ! Calculte the coefficients C and D for specific humidity, q |
---|
139 | ! |
---|
140 | !**************************************************************************************** |
---|
141 | dels(:,:) = delp(:,:) |
---|
142 | |
---|
143 | CALL calc_coef(knon, Kcoefhq(:,:), gamaq(:,:), dels(:,:), q(:,:), & |
---|
144 | Ccoef_Q(:,:), Dcoef_Q(:,:)) |
---|
145 | |
---|
146 | !**************************************************************************************** |
---|
147 | ! 5) |
---|
148 | ! Calculte the coefficients C and D for potentiel entalpie, H |
---|
149 | ! |
---|
150 | !**************************************************************************************** |
---|
151 | dels(:,:) = 0.0 |
---|
152 | local_H(:,:) = 0.0 |
---|
153 | |
---|
154 | DO k=1,klev |
---|
155 | DO i = 1, knon |
---|
156 | dels(i,k) = (pplay(i,k)/psref(i))**RKAPPA * delp(i,k) |
---|
157 | local_H(i,k) = RCPD * temp(i,k) * & |
---|
158 | (psref(i)/pplay(i,k))**RKAPPA |
---|
159 | ENDDO |
---|
160 | ENDDO |
---|
161 | |
---|
162 | |
---|
163 | CALL calc_coef(knon, Kcoefhq(:,:), gamah(:,:), dels(:,:), local_H(:,:), & |
---|
164 | Ccoef_H(:,:), Dcoef_H(:,:)) |
---|
165 | |
---|
166 | !**************************************************************************************** |
---|
167 | ! 6) |
---|
168 | ! Return the first layer in output variables |
---|
169 | ! |
---|
170 | !**************************************************************************************** |
---|
171 | petAcoef(1:knon) = Ccoef_H(1:knon,1) |
---|
172 | peqAcoef(1:knon) = Ccoef_Q(1:knon,1) |
---|
173 | petBcoef(1:knon) = Dcoef_H(1:knon,1) |
---|
174 | peqBcoef(1:knon) = Dcoef_Q(1:knon,1) |
---|
175 | |
---|
176 | END SUBROUTINE climb_hq_down |
---|
177 | ! |
---|
178 | !**************************************************************************************** |
---|
179 | ! |
---|
180 | SUBROUTINE calc_coef(knon, Kcoef, gama, dels, X, Ccoef, Dcoef) |
---|
181 | ! |
---|
182 | ! Calculate the coefficients C and D in : X(k) = C(k) + D(k)*X(k-1) |
---|
183 | ! where X is H or Q, and k the vertical level k=1,klev |
---|
184 | ! |
---|
185 | INCLUDE "YOMCST.inc" |
---|
186 | ! Input arguments |
---|
187 | !**************************************************************************************** |
---|
188 | INTEGER, INTENT(IN) :: knon |
---|
189 | REAL, DIMENSION(klon,klev), INTENT(IN) :: Kcoef, dels |
---|
190 | REAL, DIMENSION(klon,klev), INTENT(IN) :: X |
---|
191 | REAL, DIMENSION(klon,2:klev), INTENT(IN) :: gama |
---|
192 | |
---|
193 | ! Output arguments |
---|
194 | !**************************************************************************************** |
---|
195 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Ccoef |
---|
196 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Dcoef |
---|
197 | |
---|
198 | ! Local variables |
---|
199 | !**************************************************************************************** |
---|
200 | INTEGER :: k, i |
---|
201 | REAL :: buf |
---|
202 | |
---|
203 | !**************************************************************************************** |
---|
204 | ! Niveau au sommet, k=klev |
---|
205 | ! |
---|
206 | !**************************************************************************************** |
---|
207 | Ccoef(:,:) = 0.0 |
---|
208 | Dcoef(:,:) = 0.0 |
---|
209 | |
---|
210 | DO i = 1, knon |
---|
211 | buf = dels(i,klev) + Kcoef(i,klev) |
---|
212 | |
---|
213 | Ccoef(i,klev) = (X(i,klev)*dels(i,klev) - Kcoef(i,klev)*gama(i,klev))/buf |
---|
214 | Dcoef(i,klev) = Kcoef(i,klev)/buf |
---|
215 | END DO |
---|
216 | |
---|
217 | |
---|
218 | !**************************************************************************************** |
---|
219 | ! Niveau (klev-1) <= k <= 2 |
---|
220 | ! |
---|
221 | !**************************************************************************************** |
---|
222 | |
---|
223 | DO k=(klev-1),2,-1 |
---|
224 | DO i = 1, knon |
---|
225 | buf = dels(i,k) + Kcoef(i,k) + Kcoef(i,k+1)*(1.-Dcoef(i,k+1)) |
---|
226 | Ccoef(i,k) = (X(i,k)*dels(i,k) + Kcoef(i,k+1)*Ccoef(i,k+1) + & |
---|
227 | Kcoef(i,k+1)*gama(i,k+1) - Kcoef(i,k)*gama(i,k))/buf |
---|
228 | Dcoef(i,k) = Kcoef(i,k)/buf |
---|
229 | END DO |
---|
230 | END DO |
---|
231 | |
---|
232 | !**************************************************************************************** |
---|
233 | ! Niveau k=1 |
---|
234 | ! |
---|
235 | !**************************************************************************************** |
---|
236 | |
---|
237 | DO i = 1, knon |
---|
238 | buf = dels(i,1) + Kcoef(i,2)*(1.-Dcoef(i,2)) |
---|
239 | Ccoef(i,1) = (X(i,1)*dels(i,1) + Kcoef(i,2)*(gama(i,2)+Ccoef(i,2)))/buf |
---|
240 | Dcoef(i,1) = -1. * RG / buf |
---|
241 | END DO |
---|
242 | |
---|
243 | END SUBROUTINE calc_coef |
---|
244 | ! |
---|
245 | !**************************************************************************************** |
---|
246 | ! |
---|
247 | SUBROUTINE climb_hq_up(knon, dtime, t_old, q_old, & |
---|
248 | flx_q1, flx_t1, paprs, pplay, & |
---|
249 | flux_q, flux_h, d_q, d_t) |
---|
250 | ! |
---|
251 | ! This routine calculates the flux and tendency of the specific humidity q and |
---|
252 | ! the potential engergi H. |
---|
253 | ! The quantities q and H are calculated according to |
---|
254 | ! X(k) = C(k) + D(k)*X(k-1) for X=[q,H], where the coefficients |
---|
255 | ! C and D are known from before and k is index of the vertical layer. |
---|
256 | ! |
---|
257 | INCLUDE "YOMCST.inc" |
---|
258 | ! Input arguments |
---|
259 | !**************************************************************************************** |
---|
260 | INTEGER, INTENT(IN) :: knon |
---|
261 | REAL, INTENT(IN) :: dtime |
---|
262 | REAL, DIMENSION(klon,klev), INTENT(IN) :: t_old, q_old |
---|
263 | REAL, DIMENSION(klon), INTENT(IN) :: flx_q1, flx_t1 |
---|
264 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs |
---|
265 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay |
---|
266 | |
---|
267 | ! Output arguments |
---|
268 | !**************************************************************************************** |
---|
269 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: flux_q, flux_h, d_q, d_t |
---|
270 | |
---|
271 | ! Local variables |
---|
272 | !**************************************************************************************** |
---|
273 | REAL, DIMENSION(klon,klev) :: zx_pkh, zx_pkf |
---|
274 | REAL, DIMENSION(klon,klev) :: h_new, q_new |
---|
275 | REAL, DIMENSION(klon) :: psref |
---|
276 | INTEGER :: k, i |
---|
277 | |
---|
278 | !**************************************************************************************** |
---|
279 | ! 1) |
---|
280 | ! Definition of some variables |
---|
281 | ! |
---|
282 | !**************************************************************************************** |
---|
283 | flux_q(:,:) = 0.0 |
---|
284 | flux_h(:,:) = 0.0 |
---|
285 | d_q(:,:) = 0.0 |
---|
286 | d_t(:,:) = 0.0 |
---|
287 | |
---|
288 | psref(1:knon) = paprs(1:knon,1) |
---|
289 | |
---|
290 | DO k = 1, klev |
---|
291 | DO i = 1, knon |
---|
292 | zx_pkh(i,k) = (psref(i)/paprs(i,k))**RKAPPA |
---|
293 | zx_pkf(i,k) = (psref(i)/pplay(i,k))**RKAPPA |
---|
294 | END DO |
---|
295 | END DO |
---|
296 | !**************************************************************************************** |
---|
297 | ! 2) |
---|
298 | ! Calculation of Q and H |
---|
299 | ! |
---|
300 | !**************************************************************************************** |
---|
301 | |
---|
302 | !- First layer |
---|
303 | q_new(1:knon,1) = Ccoef_Q(1:knon,1) + Dcoef_Q(1:knon,1)*flx_q1(1:knon)*dtime |
---|
304 | h_new(1:knon,1) = Ccoef_H(1:knon,1) + Dcoef_H(1:knon,1)*flx_t1(1:knon)*dtime |
---|
305 | |
---|
306 | !- All the rest layers |
---|
307 | DO k = 2, klev |
---|
308 | DO i = 1, knon |
---|
309 | q_new(i,k) = Ccoef_Q(i,k) + Dcoef_Q(i,k)*q_new(i,k-1) |
---|
310 | h_new(i,k) = Ccoef_H(i,k) + Dcoef_H(i,k)*h_new(i,k-1) |
---|
311 | END DO |
---|
312 | END DO |
---|
313 | !**************************************************************************************** |
---|
314 | ! 3) |
---|
315 | ! Calculation of the flux for Q and H |
---|
316 | ! |
---|
317 | !**************************************************************************************** |
---|
318 | |
---|
319 | !- The flux at first layer, k=1 |
---|
320 | flux_q(1:knon,1)=flx_q1(1:knon) |
---|
321 | flux_h(1:knon,1)=flx_t1(1:knon) |
---|
322 | |
---|
323 | !- The flux at all layers above surface |
---|
324 | DO k = 2, klev |
---|
325 | DO i = 1, knon |
---|
326 | flux_q(i,k) = (Kcoefhq(i,k)/RG/dtime) * & |
---|
327 | (q_new(i,k)-q_new(i,k-1)+gamaq(i,k)) |
---|
328 | |
---|
329 | flux_h(i,k) = (Kcoefhq(i,k)/RG/dtime) * & |
---|
330 | (h_new(i,k)-h_new(i,k-1)+gamah(i,k)) / & |
---|
331 | zx_pkh(i,k) |
---|
332 | END DO |
---|
333 | END DO |
---|
334 | |
---|
335 | !**************************************************************************************** |
---|
336 | ! 4) |
---|
337 | ! Calculation of tendency for Q and H |
---|
338 | ! |
---|
339 | !**************************************************************************************** |
---|
340 | |
---|
341 | DO k = 1, klev |
---|
342 | DO i = 1, knon |
---|
343 | d_t(i,k) = h_new(i,k)/zx_pkf(i,k)/RCPD - t_old(i,k) |
---|
344 | d_q(i,k) = q_new(i,k) - q_old(i,k) |
---|
345 | END DO |
---|
346 | END DO |
---|
347 | |
---|
348 | !**************************************************************************************** |
---|
349 | ! Some deallocations |
---|
350 | ! |
---|
351 | !**************************************************************************************** |
---|
352 | DEALLOCATE(Ccoef_Q, Dcoef_Q, Ccoef_H, Dcoef_H) |
---|
353 | DEALLOCATE(gamaq, gamah) |
---|
354 | DEALLOCATE(Kcoefhq) |
---|
355 | |
---|
356 | |
---|
357 | END SUBROUTINE climb_hq_up |
---|
358 | ! |
---|
359 | !**************************************************************************************** |
---|
360 | ! |
---|
361 | END MODULE climb_hq_mod |
---|
362 | |
---|
363 | |
---|
364 | |
---|
365 | |
---|
366 | |
---|