[868] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
| 4 | SUBROUTINE newmicro (paprs, pplay,ok_newmicro, |
---|
| 5 | . t, pqlwp, pclc, pcltau, pclemi, |
---|
| 6 | . pch, pcl, pcm, pct, pctlwp, |
---|
| 7 | s xflwp, xfiwp, xflwc, xfiwc, |
---|
| 8 | e ok_aie, |
---|
| 9 | e sulfate, sulfate_pi, |
---|
| 10 | e bl95_b0, bl95_b1, |
---|
| 11 | s cldtaupi, re, fl) |
---|
| 12 | USE dimphy |
---|
| 13 | IMPLICIT none |
---|
| 14 | c====================================================================== |
---|
| 15 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
---|
| 16 | c Objet: Calculer epaisseur optique et emmissivite des nuages |
---|
| 17 | c====================================================================== |
---|
| 18 | c Arguments: |
---|
| 19 | c t-------input-R-temperature |
---|
| 20 | c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) |
---|
| 21 | c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
---|
| 22 | c |
---|
| 23 | c ok_aie--input-L-apply aerosol indirect effect or not |
---|
| 24 | c sulfate-input-R-sulfate aerosol mass concentration [um/m^3] |
---|
| 25 | c sulfate_pi-input-R-dito, pre-industrial value |
---|
| 26 | c bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) |
---|
| 27 | c bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) |
---|
| 28 | c |
---|
| 29 | c cldtaupi-output-R-pre-industrial value of cloud optical thickness, |
---|
| 30 | c needed for the diagnostics of the aerosol indirect |
---|
| 31 | c radiative forcing (see radlwsw) |
---|
| 32 | c re------output-R-Cloud droplet effective radius multiplied by fl [um] |
---|
| 33 | c fl------output-R-Denominator to re, introduced to avoid problems in |
---|
| 34 | c the averaging of the output. fl is the fraction of liquid |
---|
| 35 | c water clouds within a grid cell |
---|
| 36 | c pcltau--output-R-epaisseur optique des nuages |
---|
| 37 | c pclemi--output-R-emissivite des nuages (0 a 1) |
---|
| 38 | c====================================================================== |
---|
| 39 | C |
---|
| 40 | #include "YOMCST.h" |
---|
| 41 | c |
---|
| 42 | cym#include "dimensions.h" |
---|
| 43 | cym#include "dimphy.h" |
---|
| 44 | #include "nuage.h" |
---|
| 45 | cIM cf. CR: include pour NOVLP et ZEPSEC |
---|
| 46 | #include "radepsi.h" |
---|
| 47 | #include "radopt.h" |
---|
| 48 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
| 49 | REAL t(klon,klev) |
---|
| 50 | c |
---|
| 51 | REAL pclc(klon,klev) |
---|
| 52 | REAL pqlwp(klon,klev) |
---|
| 53 | REAL pcltau(klon,klev), pclemi(klon,klev) |
---|
| 54 | c |
---|
| 55 | REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) |
---|
| 56 | c |
---|
| 57 | LOGICAL lo |
---|
| 58 | c |
---|
| 59 | REAL cetahb, cetamb |
---|
| 60 | PARAMETER (cetahb = 0.45, cetamb = 0.80) |
---|
| 61 | C |
---|
| 62 | INTEGER i, k |
---|
| 63 | cIM: 091003 REAL zflwp, zradef, zfice, zmsac |
---|
| 64 | REAL zflwp(klon), zradef, zfice, zmsac |
---|
| 65 | cIM: 091003 rajout |
---|
| 66 | REAL xflwp(klon), xfiwp(klon) |
---|
| 67 | REAL xflwc(klon,klev), xfiwc(klon,klev) |
---|
| 68 | c |
---|
| 69 | REAL radius, rad_chaud |
---|
| 70 | cc PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) |
---|
| 71 | ccc PARAMETER (rad_chaud=15.0, rad_froid=35.0) |
---|
| 72 | c sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) |
---|
| 73 | REAL coef, coef_froi, coef_chau |
---|
| 74 | PARAMETER (coef_chau=0.13, coef_froi=0.09) |
---|
| 75 | REAL seuil_neb, t_glace |
---|
| 76 | PARAMETER (seuil_neb=0.001, t_glace=273.0-15.0) |
---|
| 77 | INTEGER nexpo ! exponentiel pour glace/eau |
---|
| 78 | PARAMETER (nexpo=6) |
---|
| 79 | ccc PARAMETER (nexpo=1) |
---|
| 80 | |
---|
| 81 | c -- sb: |
---|
| 82 | logical ok_newmicro |
---|
| 83 | c parameter (ok_newmicro=.FALSE.) |
---|
| 84 | cIM: 091003 real rel, tc, rei, zfiwp |
---|
| 85 | real rel, tc, rei, zfiwp(klon) |
---|
| 86 | real k_liq, k_ice0, k_ice, DF |
---|
| 87 | parameter (k_liq=0.0903, k_ice0=0.005) ! units=m2/g |
---|
| 88 | parameter (DF=1.66) ! diffusivity factor |
---|
| 89 | c sb -- |
---|
| 90 | cjq for the aerosol indirect effect |
---|
| 91 | cjq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
| 92 | cjq |
---|
| 93 | LOGICAL ok_aie ! Apply AIE or not? |
---|
| 94 | LOGICAL ok_a1lwpdep ! a1 LWP dependent? |
---|
| 95 | |
---|
| 96 | REAL sulfate(klon, klev) ! sulfate aerosol mass concentration [ug m-3] |
---|
| 97 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
---|
| 98 | REAL re(klon, klev) ! cloud droplet effective radius [um] |
---|
| 99 | REAL sulfate_pi(klon, klev) ! sulfate aerosol mass concentration [ug m-3] (pre-industrial value) |
---|
| 100 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
---|
| 101 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
---|
| 102 | |
---|
| 103 | REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell) |
---|
| 104 | |
---|
| 105 | REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula |
---|
| 106 | |
---|
| 107 | REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag |
---|
| 108 | cjq-end |
---|
| 109 | cIM cf. CR:parametres supplementaires |
---|
| 110 | REAL zclear(klon) |
---|
| 111 | REAL zcloud(klon) |
---|
| 112 | c |
---|
| 113 | c Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
| 114 | c |
---|
| 115 | cIM inversion des DO |
---|
| 116 | DO i = 1, klon |
---|
| 117 | xflwp(i)=0. |
---|
| 118 | xfiwp(i)=0. |
---|
| 119 | cccccccccccc!CDIR NOVECTOR |
---|
| 120 | DO k = 1, klev |
---|
| 121 | c |
---|
| 122 | xflwc(i,k)=0. |
---|
| 123 | xfiwc(i,k)=0. |
---|
| 124 | c |
---|
| 125 | rad_chaud = rad_chau1 |
---|
| 126 | IF (k.LE.3) rad_chaud = rad_chau2 |
---|
| 127 | pclc(i,k) = MAX(pclc(i,k), seuil_neb) |
---|
| 128 | zflwp(i) = 1000.*pqlwp(i,k)/RG/pclc(i,k) |
---|
| 129 | . *(paprs(i,k)-paprs(i,k+1)) |
---|
| 130 | zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) |
---|
| 131 | zfice = MIN(MAX(zfice,0.0),1.0) |
---|
| 132 | zfice = zfice**nexpo |
---|
| 133 | radius = rad_chaud * (1.-zfice) + rad_froid * zfice |
---|
| 134 | coef = coef_chau * (1.-zfice) + coef_froi * zfice |
---|
| 135 | pcltau(i,k) = 3.0/2.0 * zflwp(i) / radius |
---|
| 136 | pclemi(i,k) = 1.0 - EXP( - coef * zflwp(i)) |
---|
| 137 | |
---|
| 138 | if (ok_newmicro) then |
---|
| 139 | |
---|
| 140 | c -- liquid/ice cloud water paths: |
---|
| 141 | |
---|
| 142 | zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) |
---|
| 143 | zfice = MIN(MAX(zfice,0.0),1.0) |
---|
| 144 | |
---|
| 145 | zflwp(i) = 1000.*(1.-zfice)*pqlwp(i,k)/pclc(i,k) |
---|
| 146 | : *(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 147 | zfiwp(i) = 1000.*zfice*pqlwp(i,k)/pclc(i,k) |
---|
| 148 | : *(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 149 | |
---|
| 150 | xflwp(i) = xflwp(i)+ (1.-zfice)*pqlwp(i,k) |
---|
| 151 | : *(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 152 | xfiwp(i) = xfiwp(i)+ zfice*pqlwp(i,k) |
---|
| 153 | : *(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 154 | |
---|
| 155 | cIM Total Liquid/Ice water content |
---|
| 156 | xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k) |
---|
| 157 | xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k) |
---|
| 158 | cIM In-Cloud Liquid/Ice water content |
---|
| 159 | c xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k)/pclc(i,k) |
---|
| 160 | c xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k)/pclc(i,k) |
---|
| 161 | |
---|
| 162 | c -- effective cloud droplet radius (microns): |
---|
| 163 | |
---|
| 164 | c for liquid water clouds: |
---|
| 165 | IF (ok_aie) THEN |
---|
| 166 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
| 167 | ! |
---|
| 168 | cdnc(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
| 169 | . log(MAX(sulfate(i,k),1.e-4))/log(10.))*1.e6 !-m-3 |
---|
| 170 | ! Cloud droplet number concentration (CDNC) is restricted |
---|
| 171 | ! to be within [20, 1000 cm^3] |
---|
| 172 | ! |
---|
| 173 | cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) |
---|
| 174 | ! |
---|
| 175 | ! |
---|
| 176 | cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
| 177 | . log(MAX(sulfate_pi(i,k),1.e-4))/log(10.))*1.e6 !-m-3 |
---|
| 178 | cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) |
---|
| 179 | ! |
---|
| 180 | ! |
---|
| 181 | ! air density: pplay(i,k) / (RD * zT(i,k)) |
---|
| 182 | ! factor 1.1: derive effective radius from volume-mean radius |
---|
| 183 | ! factor 1000 is the water density |
---|
| 184 | ! _chaud means that this is the CDR for liquid water clouds |
---|
| 185 | ! |
---|
| 186 | rad_chaud = |
---|
| 187 | . 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) ) |
---|
| 188 | . / (4./3. * RPI * 1000. * cdnc(i,k)) )**(1./3.) |
---|
| 189 | ! |
---|
| 190 | ! Convert to um. CDR shall be at least 3 um. |
---|
| 191 | ! |
---|
| 192 | c rad_chaud = MAX(rad_chaud*1.e6, 3.) |
---|
| 193 | rad_chaud = MAX(rad_chaud*1.e6, 5.) |
---|
| 194 | |
---|
| 195 | ! Pre-industrial cloud opt thickness |
---|
| 196 | ! |
---|
| 197 | ! "radius" is calculated as rad_chaud above (plus the |
---|
| 198 | ! ice cloud contribution) but using cdnc_pi instead of |
---|
| 199 | ! cdnc. |
---|
| 200 | radius = |
---|
| 201 | . 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) ) |
---|
| 202 | . / (4./3. * RPI * 1000. * cdnc_pi(i,k)) )**(1./3.) |
---|
| 203 | radius = MAX(radius*1.e6, 5.) |
---|
| 204 | |
---|
| 205 | tc = t(i,k)-273.15 |
---|
| 206 | rei = 0.71*tc + 61.29 |
---|
| 207 | if (tc.le.-81.4) rei = 3.5 |
---|
| 208 | if (zflwp(i).eq.0.) radius = 1. |
---|
| 209 | if (zfiwp(i).eq.0. .or. rei.le.0.) rei = 1. |
---|
| 210 | cldtaupi(i,k) = 3.0/2.0 * zflwp(i) / radius |
---|
| 211 | . + zfiwp(i) * (3.448e-03 + 2.431/rei) |
---|
| 212 | ENDIF ! ok_aie |
---|
| 213 | ! For output diagnostics |
---|
| 214 | ! |
---|
| 215 | ! Cloud droplet effective radius [um] |
---|
| 216 | ! |
---|
| 217 | ! we multiply here with f * xl (fraction of liquid water |
---|
| 218 | ! clouds in the grid cell) to avoid problems in the |
---|
| 219 | ! averaging of the output. |
---|
| 220 | ! In the output of IOIPSL, derive the real cloud droplet |
---|
| 221 | ! effective radius as re/fl |
---|
| 222 | ! |
---|
| 223 | fl(i,k) = pclc(i,k)*(1.-zfice) |
---|
| 224 | re(i,k) = rad_chaud*fl(i,k) |
---|
| 225 | |
---|
| 226 | c-jq end |
---|
| 227 | |
---|
| 228 | rel = rad_chaud |
---|
| 229 | c for ice clouds: as a function of the ambiant temperature |
---|
| 230 | c [formula used by Iacobellis and Somerville (2000), with an |
---|
| 231 | c asymptotical value of 3.5 microns at T<-81.4 C added to be |
---|
| 232 | c consistent with observations of Heymsfield et al. 1986]: |
---|
| 233 | tc = t(i,k)-273.15 |
---|
| 234 | rei = 0.71*tc + 61.29 |
---|
| 235 | if (tc.le.-81.4) rei = 3.5 |
---|
| 236 | |
---|
| 237 | c -- cloud optical thickness : |
---|
| 238 | |
---|
| 239 | c [for liquid clouds, traditional formula, |
---|
| 240 | c for ice clouds, Ebert & Curry (1992)] |
---|
| 241 | |
---|
| 242 | if (zflwp(i).eq.0.) rel = 1. |
---|
| 243 | if (zfiwp(i).eq.0. .or. rei.le.0.) rei = 1. |
---|
| 244 | pcltau(i,k) = 3.0/2.0 * ( zflwp(i)/rel ) |
---|
| 245 | . + zfiwp(i) * (3.448e-03 + 2.431/rei) |
---|
| 246 | |
---|
| 247 | c -- cloud infrared emissivity: |
---|
| 248 | |
---|
| 249 | c [the broadband infrared absorption coefficient is parameterized |
---|
| 250 | c as a function of the effective cld droplet radius] |
---|
| 251 | |
---|
| 252 | c Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): |
---|
| 253 | k_ice = k_ice0 + 1.0/rei |
---|
| 254 | |
---|
| 255 | pclemi(i,k) = 1.0 |
---|
| 256 | . - EXP( - coef_chau*zflwp(i) - DF*k_ice*zfiwp(i) ) |
---|
| 257 | |
---|
| 258 | endif ! ok_newmicro |
---|
| 259 | |
---|
| 260 | lo = (pclc(i,k) .LE. seuil_neb) |
---|
| 261 | IF (lo) pclc(i,k) = 0.0 |
---|
| 262 | IF (lo) pcltau(i,k) = 0.0 |
---|
| 263 | IF (lo) pclemi(i,k) = 0.0 |
---|
| 264 | |
---|
| 265 | IF (lo) cldtaupi(i,k) = 0.0 |
---|
| 266 | IF (.NOT.ok_aie) cldtaupi(i,k)=pcltau(i,k) |
---|
| 267 | ENDDO |
---|
| 268 | ENDDO |
---|
| 269 | ccc DO k = 1, klev |
---|
| 270 | ccc DO i = 1, klon |
---|
| 271 | ccc t(i,k) = t(i,k) |
---|
| 272 | ccc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) |
---|
| 273 | ccc lo = pclc(i,k) .GT. (2.*1.e-5) |
---|
| 274 | ccc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) |
---|
| 275 | ccc . /(rg*pclc(i,k)) |
---|
| 276 | ccc zradef = 10.0 + (1.-sigs(k))*45.0 |
---|
| 277 | ccc pcltau(i,k) = 1.5 * zflwp / zradef |
---|
| 278 | ccc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) |
---|
| 279 | ccc zmsac = 0.13*(1.0-zfice) + 0.08*zfice |
---|
| 280 | ccc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) |
---|
| 281 | ccc if (.NOT.lo) pclc(i,k) = 0.0 |
---|
| 282 | ccc if (.NOT.lo) pcltau(i,k) = 0.0 |
---|
| 283 | ccc if (.NOT.lo) pclemi(i,k) = 0.0 |
---|
| 284 | ccc ENDDO |
---|
| 285 | ccc ENDDO |
---|
| 286 | cccccc print*, 'pas de nuage dans le rayonnement' |
---|
| 287 | cccccc DO k = 1, klev |
---|
| 288 | cccccc DO i = 1, klon |
---|
| 289 | cccccc pclc(i,k) = 0.0 |
---|
| 290 | cccccc pcltau(i,k) = 0.0 |
---|
| 291 | cccccc pclemi(i,k) = 0.0 |
---|
| 292 | cccccc ENDDO |
---|
| 293 | cccccc ENDDO |
---|
| 294 | C |
---|
| 295 | C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
| 296 | C |
---|
| 297 | cIM cf. CR:test: calcul prenant ou non en compte le recouvrement |
---|
| 298 | cinitialisations |
---|
| 299 | DO i=1,klon |
---|
| 300 | zclear(i)=1. |
---|
| 301 | zcloud(i)=0. |
---|
| 302 | pch(i)=1.0 |
---|
| 303 | pcm(i) = 1.0 |
---|
| 304 | pcl(i) = 1.0 |
---|
| 305 | pctlwp(i) = 0.0 |
---|
| 306 | ENDDO |
---|
| 307 | C |
---|
| 308 | cIM cf CR DO k=1,klev |
---|
| 309 | DO k = klev, 1, -1 |
---|
| 310 | DO i = 1, klon |
---|
| 311 | pctlwp(i) = pctlwp(i) |
---|
| 312 | . + pqlwp(i,k)*(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 313 | cIM cf. CR |
---|
| 314 | IF (NOVLP.EQ.1) THEN |
---|
| 315 | zclear(i)=zclear(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
---|
| 316 | s /(1.-MIN(zcloud(i),1.-ZEPSEC)) |
---|
| 317 | pct(i)=1.-zclear(i) |
---|
| 318 | if (pplay(i,k).LE.cetahb*paprs(i,1)) then |
---|
| 319 | pch(i) = pch(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
---|
| 320 | s /(1.-MIN(zcloud(i),1.-ZEPSEC)) |
---|
| 321 | else if (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
---|
| 322 | . pplay(i,k).LE.cetamb*paprs(i,1)) then |
---|
| 323 | pcm(i) = pcm(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
---|
| 324 | s /(1.-MIN(zcloud(i),1.-ZEPSEC)) |
---|
| 325 | else if (pplay(i,k).GT.cetamb*paprs(i,1)) then |
---|
| 326 | pcl(i) = pcl(i)*(1.-MAX(pclc(i,k),zcloud(i))) |
---|
| 327 | s /(1.-MIN(zcloud(i),1.-ZEPSEC)) |
---|
| 328 | endif |
---|
| 329 | zcloud(i)=pclc(i,k) |
---|
| 330 | ELSE IF (NOVLP.EQ.2) THEN |
---|
| 331 | zcloud(i)=MAX(pclc(i,k),zcloud(i)) |
---|
| 332 | pct(i)=zcloud(i) |
---|
| 333 | if (pplay(i,k).LE.cetahb*paprs(i,1)) then |
---|
| 334 | pch(i) = MIN(pclc(i,k),pch(i)) |
---|
| 335 | else if (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
---|
| 336 | . pplay(i,k).LE.cetamb*paprs(i,1)) then |
---|
| 337 | pcm(i) = MIN(pclc(i,k),pcm(i)) |
---|
| 338 | else if (pplay(i,k).GT.cetamb*paprs(i,1)) then |
---|
| 339 | pcl(i) = MIN(pclc(i,k),pcl(i)) |
---|
| 340 | endif |
---|
| 341 | ELSE IF (NOVLP.EQ.3) THEN |
---|
| 342 | zclear(i)=zclear(i)*(1.-pclc(i,k)) |
---|
| 343 | pct(i)=1-zclear(i) |
---|
| 344 | if (pplay(i,k).LE.cetahb*paprs(i,1)) then |
---|
| 345 | pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
| 346 | else if (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
---|
| 347 | . pplay(i,k).LE.cetamb*paprs(i,1)) then |
---|
| 348 | pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
| 349 | else if (pplay(i,k).GT.cetamb*paprs(i,1)) then |
---|
| 350 | pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
| 351 | endif |
---|
| 352 | ENDIF |
---|
| 353 | ENDDO |
---|
| 354 | ENDDO |
---|
| 355 | C |
---|
| 356 | DO i = 1, klon |
---|
| 357 | cIM cf. CR pct(i)=1.-pct(i) |
---|
| 358 | pch(i)=1.-pch(i) |
---|
| 359 | pcm(i)=1.-pcm(i) |
---|
| 360 | pcl(i)=1.-pcl(i) |
---|
| 361 | ENDDO |
---|
| 362 | C |
---|
| 363 | RETURN |
---|
| 364 | END |
---|