[1108] | 1 | MODULE filtreg_mod |
---|
[1086] | 2 | |
---|
| 3 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: matriceun,matriceus,matricevn |
---|
| 4 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: matricevs,matrinvn,matrinvs |
---|
| 5 | |
---|
| 6 | CONTAINS |
---|
| 7 | |
---|
| 8 | SUBROUTINE inifilr |
---|
| 9 | ! |
---|
| 10 | ! ... H. Upadhyaya, O.Sharma ... |
---|
| 11 | ! |
---|
| 12 | IMPLICIT NONE |
---|
| 13 | ! |
---|
| 14 | ! version 3 ..... |
---|
| 15 | |
---|
| 16 | ! Correction le 28/10/97 P. Le Van . |
---|
| 17 | ! ------------------------------------------------------------------- |
---|
| 18 | #include "dimensions.h" |
---|
| 19 | #include "paramet.h" |
---|
| 20 | ! ------------------------------------------------------------------- |
---|
| 21 | #include "comgeom.h" |
---|
| 22 | #include "coefils.h" |
---|
| 23 | #include "logic.h" |
---|
| 24 | #include "serre.h" |
---|
| 25 | |
---|
| 26 | REAL dlonu(iim),dlatu(jjm) |
---|
| 27 | REAL rlamda( iim ), eignvl( iim ) |
---|
| 28 | ! |
---|
| 29 | |
---|
| 30 | REAL lamdamax,pi,cof |
---|
| 31 | INTEGER i,j,modemax,imx,k,kf,ii |
---|
| 32 | REAL dymin,dxmin,colat0 |
---|
| 33 | REAL eignft(iim,iim), coff |
---|
| 34 | |
---|
| 35 | LOGICAL, SAVE :: first_call_inifilr = .TRUE. |
---|
| 36 | |
---|
| 37 | #ifdef CRAY |
---|
| 38 | INTEGER ISMIN |
---|
| 39 | EXTERNAL ISMIN |
---|
| 40 | INTEGER iymin |
---|
| 41 | INTEGER ixmineq |
---|
| 42 | #endif |
---|
| 43 | EXTERNAL inifgn |
---|
| 44 | ! |
---|
| 45 | ! ------------------------------------------------------------ |
---|
| 46 | ! This routine computes the eigenfunctions of the laplacien |
---|
| 47 | ! on the stretched grid, and the filtering coefficients |
---|
| 48 | ! |
---|
| 49 | ! We designate: |
---|
| 50 | ! eignfn eigenfunctions of the discrete laplacien |
---|
| 51 | ! eigenvl eigenvalues |
---|
| 52 | ! jfiltn indexof the last scalar line filtered in NH |
---|
| 53 | ! jfilts index of the first line filtered in SH |
---|
| 54 | ! modfrst index of the mode from WHERE modes are filtered |
---|
| 55 | ! modemax maximum number of modes ( im ) |
---|
| 56 | ! coefil filtering coefficients ( lamda_max*COS(rlat)/lamda ) |
---|
| 57 | ! sdd SQRT( dx ) |
---|
| 58 | ! |
---|
| 59 | ! the modes are filtered from modfrst to modemax |
---|
| 60 | ! |
---|
| 61 | !----------------------------------------------------------- |
---|
| 62 | ! |
---|
| 63 | |
---|
| 64 | pi = 2. * ASIN( 1. ) |
---|
| 65 | |
---|
| 66 | DO i = 1,iim |
---|
| 67 | dlonu(i) = xprimu( i ) |
---|
| 68 | ENDDO |
---|
| 69 | ! |
---|
| 70 | CALL inifgn(eignvl) |
---|
| 71 | ! |
---|
| 72 | PRINT *,' EIGNVL ' |
---|
| 73 | PRINT 250,eignvl |
---|
| 74 | 250 FORMAT( 1x,5e13.6) |
---|
| 75 | ! |
---|
| 76 | ! compute eigenvalues and eigenfunctions |
---|
| 77 | ! |
---|
| 78 | ! |
---|
| 79 | !................................................................. |
---|
| 80 | ! |
---|
| 81 | ! compute the filtering coefficients for scalar lines and |
---|
| 82 | ! meridional wind v-lines |
---|
| 83 | ! |
---|
| 84 | ! we filter all those latitude lines WHERE coefil < 1 |
---|
| 85 | ! NO FILTERING AT POLES |
---|
| 86 | ! |
---|
| 87 | ! colat0 is to be used when alpha (stretching coefficient) |
---|
| 88 | ! is set equal to zero for the regular grid CASE |
---|
| 89 | ! |
---|
| 90 | ! ....... Calcul de colat0 ......... |
---|
| 91 | ! ..... colat0 = minimum de ( 0.5, min dy/ min dx ) ... |
---|
| 92 | ! |
---|
| 93 | ! |
---|
| 94 | DO j = 1,jjm |
---|
| 95 | dlatu( j ) = rlatu( j ) - rlatu( j+1 ) |
---|
| 96 | ENDDO |
---|
| 97 | ! |
---|
| 98 | #ifdef CRAY |
---|
| 99 | iymin = ISMIN( jjm, dlatu, 1 ) |
---|
| 100 | ixmineq = ISMIN( iim, dlonu, 1 ) |
---|
| 101 | dymin = dlatu( iymin ) |
---|
| 102 | dxmin = dlonu( ixmineq ) |
---|
| 103 | #else |
---|
| 104 | dxmin = dlonu(1) |
---|
| 105 | DO i = 2, iim |
---|
| 106 | dxmin = MIN( dxmin,dlonu(i) ) |
---|
| 107 | ENDDO |
---|
| 108 | dymin = dlatu(1) |
---|
| 109 | DO j = 2, jjm |
---|
| 110 | dymin = MIN( dymin,dlatu(j) ) |
---|
| 111 | ENDDO |
---|
| 112 | #endif |
---|
| 113 | ! |
---|
| 114 | ! |
---|
| 115 | colat0 = MIN( 0.5, dymin/dxmin ) |
---|
| 116 | ! |
---|
| 117 | IF( .NOT.fxyhypb.AND.ysinus ) THEN |
---|
| 118 | colat0 = 0.6 |
---|
| 119 | ! ...... a revoir pour ysinus ! ....... |
---|
| 120 | alphax = 0. |
---|
| 121 | ENDIF |
---|
| 122 | ! |
---|
| 123 | PRINT 50, colat0,alphax |
---|
| 124 | 50 FORMAT(/15x,' Inifilr colat0 alphax ',2e16.7) |
---|
| 125 | ! |
---|
| 126 | IF(alphax.EQ.1. ) THEN |
---|
| 127 | PRINT *,' Inifilr alphax doit etre < a 1. Corriger ' |
---|
| 128 | STOP |
---|
| 129 | ENDIF |
---|
| 130 | ! |
---|
| 131 | lamdamax = iim / ( pi * colat0 * ( 1. - alphax ) ) |
---|
| 132 | |
---|
| 133 | ! ... Correction le 28/10/97 ( P.Le Van ) .. |
---|
| 134 | ! |
---|
| 135 | DO i = 2,iim |
---|
| 136 | rlamda( i ) = lamdamax/ SQRT( ABS( eignvl(i) ) ) |
---|
| 137 | ENDDO |
---|
| 138 | ! |
---|
| 139 | |
---|
| 140 | DO j = 1,jjm |
---|
| 141 | DO i = 1,iim |
---|
| 142 | coefilu( i,j ) = 0.0 |
---|
| 143 | coefilv( i,j ) = 0.0 |
---|
| 144 | coefilu2( i,j ) = 0.0 |
---|
| 145 | coefilv2( i,j ) = 0.0 |
---|
| 146 | ENDDO |
---|
| 147 | ENDDO |
---|
| 148 | |
---|
| 149 | ! |
---|
| 150 | ! ... Determination de jfiltnu,jfiltnv,jfiltsu,jfiltsv .... |
---|
| 151 | ! ......................................................... |
---|
| 152 | ! |
---|
| 153 | modemax = iim |
---|
| 154 | |
---|
| 155 | !!!! imx = modemax - 4 * (modemax/iim) |
---|
| 156 | |
---|
| 157 | imx = iim |
---|
| 158 | ! |
---|
| 159 | PRINT *,' TRUNCATION AT ',imx |
---|
| 160 | ! |
---|
| 161 | DO j = 2, jjm/2+1 |
---|
| 162 | cof = COS( rlatu(j) )/ colat0 |
---|
| 163 | IF ( cof .LT. 1. ) THEN |
---|
| 164 | IF( rlamda(imx) * COS(rlatu(j) ).LT.1. ) jfiltnu= j |
---|
| 165 | ENDIF |
---|
| 166 | |
---|
| 167 | cof = COS( rlatu(jjp1-j+1) )/ colat0 |
---|
| 168 | IF ( cof .LT. 1. ) THEN |
---|
| 169 | IF( rlamda(imx) * COS(rlatu(jjp1-j+1) ).LT.1. ) & |
---|
| 170 | jfiltsu= jjp1-j+1 |
---|
| 171 | ENDIF |
---|
| 172 | ENDDO |
---|
| 173 | ! |
---|
| 174 | DO j = 1, jjm/2 |
---|
| 175 | cof = COS( rlatv(j) )/ colat0 |
---|
| 176 | IF ( cof .LT. 1. ) THEN |
---|
| 177 | IF( rlamda(imx) * COS(rlatv(j) ).LT.1. ) jfiltnv= j |
---|
| 178 | ENDIF |
---|
| 179 | |
---|
| 180 | cof = COS( rlatv(jjm-j+1) )/ colat0 |
---|
| 181 | IF ( cof .LT. 1. ) THEN |
---|
| 182 | IF( rlamda(imx) * COS(rlatv(jjm-j+1) ).LT.1. ) & |
---|
| 183 | jfiltsv= jjm-j+1 |
---|
| 184 | ENDIF |
---|
| 185 | ENDDO |
---|
| 186 | ! |
---|
| 187 | |
---|
| 188 | IF ( jfiltnu.LE.0 ) jfiltnu=1 |
---|
| 189 | IF( jfiltnu.GT. jjm/2 +1 ) THEN |
---|
| 190 | PRINT *,' jfiltnu en dehors des valeurs acceptables ' ,jfiltnu |
---|
| 191 | STOP |
---|
| 192 | ENDIF |
---|
| 193 | |
---|
| 194 | IF( jfiltsu.LE.0) jfiltsu=1 |
---|
| 195 | IF( jfiltsu.GT. jjm +1 ) THEN |
---|
| 196 | PRINT *,' jfiltsu en dehors des valeurs acceptables ' ,jfiltsu |
---|
| 197 | STOP |
---|
| 198 | ENDIF |
---|
| 199 | |
---|
| 200 | IF( jfiltnv.LE.0) jfiltnv=1 |
---|
| 201 | IF( jfiltnv.GT. jjm/2 ) THEN |
---|
| 202 | PRINT *,' jfiltnv en dehors des valeurs acceptables ' ,jfiltnv |
---|
| 203 | STOP |
---|
| 204 | ENDIF |
---|
| 205 | |
---|
| 206 | IF( jfiltsv.LE.0) jfiltsv=1 |
---|
| 207 | IF( jfiltsv.GT. jjm ) THEN |
---|
| 208 | PRINT *,' jfiltsv en dehors des valeurs acceptables ' ,jfiltsv |
---|
| 209 | STOP |
---|
| 210 | ENDIF |
---|
| 211 | |
---|
| 212 | PRINT *,' jfiltnv jfiltsv jfiltnu jfiltsu ' , & |
---|
| 213 | jfiltnv,jfiltsv,jfiltnu,jfiltsu |
---|
| 214 | |
---|
| 215 | IF(first_call_inifilr) THEN |
---|
| 216 | ALLOCATE(matriceun(iim,iim,jfiltnu)) |
---|
| 217 | ALLOCATE(matriceus(iim,iim,jfiltsu)) |
---|
| 218 | ALLOCATE(matricevn(iim,iim,jfiltnv)) |
---|
| 219 | ALLOCATE(matricevs(iim,iim,jfiltsv)) |
---|
| 220 | ALLOCATE( matrinvn(iim,iim,jfiltnu)) |
---|
| 221 | ALLOCATE( matrinvs(iim,iim,jfiltsu)) |
---|
| 222 | first_call_inifilr = .FALSE. |
---|
| 223 | ENDIF |
---|
| 224 | |
---|
| 225 | ! |
---|
| 226 | ! ... Determination de coefilu,coefilv,n=modfrstu,modfrstv .... |
---|
| 227 | !................................................................ |
---|
| 228 | ! |
---|
| 229 | ! |
---|
| 230 | DO j = 1,jjm |
---|
| 231 | modfrstu( j ) = iim |
---|
| 232 | modfrstv( j ) = iim |
---|
| 233 | ENDDO |
---|
| 234 | ! |
---|
| 235 | DO j = 2,jfiltnu |
---|
| 236 | DO k = 2,modemax |
---|
| 237 | cof = rlamda(k) * COS( rlatu(j) ) |
---|
| 238 | IF ( cof .LT. 1. ) GOTO 82 |
---|
| 239 | ENDDO |
---|
| 240 | GOTO 84 |
---|
| 241 | 82 modfrstu( j ) = k |
---|
| 242 | ! |
---|
| 243 | kf = modfrstu( j ) |
---|
| 244 | DO k = kf , modemax |
---|
| 245 | cof = rlamda(k) * COS( rlatu(j) ) |
---|
| 246 | coefilu(k,j) = cof - 1. |
---|
| 247 | coefilu2(k,j) = cof*cof - 1. |
---|
| 248 | ENDDO |
---|
| 249 | 84 CONTINUE |
---|
| 250 | ENDDO |
---|
| 251 | ! |
---|
| 252 | ! |
---|
| 253 | DO j = 1,jfiltnv |
---|
| 254 | ! |
---|
| 255 | DO k = 2,modemax |
---|
| 256 | cof = rlamda(k) * COS( rlatv(j) ) |
---|
| 257 | IF ( cof .LT. 1. ) GOTO 87 |
---|
| 258 | ENDDO |
---|
| 259 | GOTO 89 |
---|
| 260 | 87 modfrstv( j ) = k |
---|
| 261 | ! |
---|
| 262 | kf = modfrstv( j ) |
---|
| 263 | DO k = kf , modemax |
---|
| 264 | cof = rlamda(k) * COS( rlatv(j) ) |
---|
| 265 | coefilv(k,j) = cof - 1. |
---|
| 266 | coefilv2(k,j) = cof*cof - 1. |
---|
| 267 | ENDDO |
---|
| 268 | 89 CONTINUE |
---|
| 269 | ENDDO |
---|
| 270 | ! |
---|
| 271 | DO j = jfiltsu,jjm |
---|
| 272 | DO k = 2,modemax |
---|
| 273 | cof = rlamda(k) * COS( rlatu(j) ) |
---|
| 274 | IF ( cof .LT. 1. ) GOTO 92 |
---|
| 275 | ENDDO |
---|
| 276 | GOTO 94 |
---|
| 277 | 92 modfrstu( j ) = k |
---|
| 278 | ! |
---|
| 279 | kf = modfrstu( j ) |
---|
| 280 | DO k = kf , modemax |
---|
| 281 | cof = rlamda(k) * COS( rlatu(j) ) |
---|
| 282 | coefilu(k,j) = cof - 1. |
---|
| 283 | coefilu2(k,j) = cof*cof - 1. |
---|
| 284 | ENDDO |
---|
| 285 | 94 CONTINUE |
---|
| 286 | ENDDO |
---|
| 287 | ! |
---|
| 288 | DO j = jfiltsv,jjm |
---|
| 289 | DO k = 2,modemax |
---|
| 290 | cof = rlamda(k) * COS( rlatv(j) ) |
---|
| 291 | IF ( cof .LT. 1. ) GOTO 97 |
---|
| 292 | ENDDO |
---|
| 293 | GOTO 99 |
---|
| 294 | 97 modfrstv( j ) = k |
---|
| 295 | ! |
---|
| 296 | kf = modfrstv( j ) |
---|
| 297 | DO k = kf , modemax |
---|
| 298 | cof = rlamda(k) * COS( rlatv(j) ) |
---|
| 299 | coefilv(k,j) = cof - 1. |
---|
| 300 | coefilv2(k,j) = cof*cof - 1. |
---|
| 301 | ENDDO |
---|
| 302 | 99 CONTINUE |
---|
| 303 | ENDDO |
---|
| 304 | ! |
---|
| 305 | |
---|
| 306 | IF(jfiltnv.GE.jjm/2 .OR. jfiltnu.GE.jjm/2)THEN |
---|
| 307 | |
---|
| 308 | IF(jfiltnv.EQ.jfiltsv)jfiltsv=1+jfiltnv |
---|
| 309 | IF(jfiltnu.EQ.jfiltsu)jfiltsu=1+jfiltnu |
---|
| 310 | |
---|
| 311 | PRINT *,'jfiltnv jfiltsv jfiltnu jfiltsu' , & |
---|
| 312 | jfiltnv,jfiltsv,jfiltnu,jfiltsu |
---|
| 313 | ENDIF |
---|
| 314 | |
---|
| 315 | PRINT *,' Modes premiers v ' |
---|
| 316 | PRINT 334,modfrstv |
---|
| 317 | PRINT *,' Modes premiers u ' |
---|
| 318 | PRINT 334,modfrstu |
---|
| 319 | |
---|
| 320 | ! |
---|
| 321 | ! ................................................................... |
---|
| 322 | ! |
---|
| 323 | ! ... Calcul de la matrice filtre 'matriceu' pour les champs situes |
---|
| 324 | ! sur la grille scalaire ........ |
---|
| 325 | ! ................................................................... |
---|
| 326 | ! |
---|
| 327 | DO j = 2, jfiltnu |
---|
| 328 | |
---|
| 329 | DO i=1,iim |
---|
| 330 | coff = coefilu(i,j) |
---|
| 331 | IF( i.LT.modfrstu(j) ) coff = 0. |
---|
| 332 | DO k=1,iim |
---|
| 333 | eignft(i,k) = eignfnv(k,i) * coff |
---|
| 334 | ENDDO |
---|
| 335 | ENDDO |
---|
| 336 | #ifdef CRAY |
---|
| 337 | CALL MXM( eignfnv,iim,eignft,iim,matriceun(1,1,j),iim ) |
---|
| 338 | #else |
---|
| 339 | #ifdef BLAS |
---|
| 340 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
| 341 | eignfnv, iim, eignft, iim, 0.0, matriceun(1,1,j), iim) |
---|
| 342 | #else |
---|
| 343 | DO k = 1, iim |
---|
| 344 | DO i = 1, iim |
---|
| 345 | matriceun(i,k,j) = 0.0 |
---|
| 346 | DO ii = 1, iim |
---|
| 347 | matriceun(i,k,j) = matriceun(i,k,j) & |
---|
| 348 | + eignfnv(i,ii)*eignft(ii,k) |
---|
| 349 | ENDDO |
---|
| 350 | ENDDO |
---|
| 351 | ENDDO |
---|
| 352 | #endif |
---|
| 353 | #endif |
---|
| 354 | |
---|
| 355 | ENDDO |
---|
| 356 | |
---|
| 357 | DO j = jfiltsu, jjm |
---|
| 358 | |
---|
| 359 | DO i=1,iim |
---|
| 360 | coff = coefilu(i,j) |
---|
| 361 | IF( i.LT.modfrstu(j) ) coff = 0. |
---|
| 362 | DO k=1,iim |
---|
| 363 | eignft(i,k) = eignfnv(k,i) * coff |
---|
| 364 | ENDDO |
---|
| 365 | ENDDO |
---|
| 366 | #ifdef CRAY |
---|
| 367 | CALL MXM(eignfnv,iim,eignft,iim,matriceus(1,1,j-jfiltsu+1),iim) |
---|
| 368 | #else |
---|
| 369 | #ifdef BLAS |
---|
| 370 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
| 371 | eignfnv, iim, eignft, iim, 0.0, & |
---|
| 372 | matriceus(1,1,j-jfiltsu+1), iim) |
---|
| 373 | #else |
---|
| 374 | DO k = 1, iim |
---|
| 375 | DO i = 1, iim |
---|
| 376 | matriceus(i,k,j-jfiltsu+1) = 0.0 |
---|
| 377 | DO ii = 1, iim |
---|
| 378 | matriceus(i,k,j-jfiltsu+1) = matriceus(i,k,j-jfiltsu+1) & |
---|
| 379 | + eignfnv(i,ii)*eignft(ii,k) |
---|
| 380 | ENDDO |
---|
| 381 | ENDDO |
---|
| 382 | ENDDO |
---|
| 383 | #endif |
---|
| 384 | #endif |
---|
| 385 | |
---|
| 386 | ENDDO |
---|
| 387 | |
---|
| 388 | ! ................................................................... |
---|
| 389 | ! |
---|
| 390 | ! ... Calcul de la matrice filtre 'matricev' pour les champs situes |
---|
| 391 | ! sur la grille de V ou de Z ........ |
---|
| 392 | ! ................................................................... |
---|
| 393 | ! |
---|
| 394 | DO j = 1, jfiltnv |
---|
| 395 | |
---|
| 396 | DO i = 1, iim |
---|
| 397 | coff = coefilv(i,j) |
---|
| 398 | IF( i.LT.modfrstv(j) ) coff = 0. |
---|
| 399 | DO k = 1, iim |
---|
| 400 | eignft(i,k) = eignfnu(k,i) * coff |
---|
| 401 | ENDDO |
---|
| 402 | ENDDO |
---|
| 403 | #ifdef CRAY |
---|
| 404 | CALL MXM( eignfnu,iim,eignft,iim,matricevn(1,1,j),iim ) |
---|
| 405 | #else |
---|
| 406 | #ifdef BLAS |
---|
| 407 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
| 408 | eignfnu, iim, eignft, iim, 0.0, matricevn(1,1,j), iim) |
---|
| 409 | #else |
---|
| 410 | DO k = 1, iim |
---|
| 411 | DO i = 1, iim |
---|
| 412 | matricevn(i,k,j) = 0.0 |
---|
| 413 | DO ii = 1, iim |
---|
| 414 | matricevn(i,k,j) = matricevn(i,k,j) & |
---|
| 415 | + eignfnu(i,ii)*eignft(ii,k) |
---|
| 416 | ENDDO |
---|
| 417 | ENDDO |
---|
| 418 | ENDDO |
---|
| 419 | #endif |
---|
| 420 | #endif |
---|
| 421 | |
---|
| 422 | ENDDO |
---|
| 423 | |
---|
| 424 | DO j = jfiltsv, jjm |
---|
| 425 | |
---|
| 426 | DO i = 1, iim |
---|
| 427 | coff = coefilv(i,j) |
---|
| 428 | IF( i.LT.modfrstv(j) ) coff = 0. |
---|
| 429 | DO k = 1, iim |
---|
| 430 | eignft(i,k) = eignfnu(k,i) * coff |
---|
| 431 | ENDDO |
---|
| 432 | ENDDO |
---|
| 433 | #ifdef CRAY |
---|
| 434 | CALL MXM(eignfnu,iim,eignft,iim,matricevs(1,1,j-jfiltsv+1),iim) |
---|
| 435 | #else |
---|
| 436 | #ifdef BLAS |
---|
| 437 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
| 438 | eignfnu, iim, eignft, iim, 0.0, & |
---|
| 439 | matricevs(1,1,j-jfiltsv+1), iim) |
---|
| 440 | #else |
---|
| 441 | DO k = 1, iim |
---|
| 442 | DO i = 1, iim |
---|
| 443 | matricevs(i,k,j-jfiltsv+1) = 0.0 |
---|
| 444 | DO ii = 1, iim |
---|
| 445 | matricevs(i,k,j-jfiltsv+1) = matricevs(i,k,j-jfiltsv+1) & |
---|
| 446 | + eignfnu(i,ii)*eignft(ii,k) |
---|
| 447 | ENDDO |
---|
| 448 | ENDDO |
---|
| 449 | ENDDO |
---|
| 450 | #endif |
---|
| 451 | #endif |
---|
| 452 | |
---|
| 453 | ENDDO |
---|
| 454 | |
---|
| 455 | ! ................................................................... |
---|
| 456 | ! |
---|
| 457 | ! ... Calcul de la matrice filtre 'matrinv' pour les champs situes |
---|
| 458 | ! sur la grille scalaire , pour le filtre inverse ........ |
---|
| 459 | ! ................................................................... |
---|
| 460 | ! |
---|
| 461 | DO j = 2, jfiltnu |
---|
| 462 | |
---|
| 463 | DO i = 1,iim |
---|
| 464 | coff = coefilu(i,j)/ ( 1. + coefilu(i,j) ) |
---|
| 465 | IF( i.LT.modfrstu(j) ) coff = 0. |
---|
| 466 | DO k=1,iim |
---|
| 467 | eignft(i,k) = eignfnv(k,i) * coff |
---|
| 468 | ENDDO |
---|
| 469 | ENDDO |
---|
| 470 | #ifdef CRAY |
---|
| 471 | CALL MXM( eignfnv,iim,eignft,iim,matrinvn(1,1,j),iim ) |
---|
| 472 | #else |
---|
| 473 | #ifdef BLAS |
---|
| 474 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
| 475 | eignfnv, iim, eignft, iim, 0.0, matrinvn(1,1,j), iim) |
---|
| 476 | #else |
---|
| 477 | DO k = 1, iim |
---|
| 478 | DO i = 1, iim |
---|
| 479 | matrinvn(i,k,j) = 0.0 |
---|
| 480 | DO ii = 1, iim |
---|
| 481 | matrinvn(i,k,j) = matrinvn(i,k,j) & |
---|
| 482 | + eignfnv(i,ii)*eignft(ii,k) |
---|
| 483 | ENDDO |
---|
| 484 | ENDDO |
---|
| 485 | ENDDO |
---|
| 486 | #endif |
---|
| 487 | #endif |
---|
| 488 | |
---|
| 489 | ENDDO |
---|
| 490 | |
---|
| 491 | DO j = jfiltsu, jjm |
---|
| 492 | |
---|
| 493 | DO i = 1,iim |
---|
| 494 | coff = coefilu(i,j) / ( 1. + coefilu(i,j) ) |
---|
| 495 | IF( i.LT.modfrstu(j) ) coff = 0. |
---|
| 496 | DO k=1,iim |
---|
| 497 | eignft(i,k) = eignfnv(k,i) * coff |
---|
| 498 | ENDDO |
---|
| 499 | ENDDO |
---|
| 500 | #ifdef CRAY |
---|
| 501 | CALL MXM(eignfnv,iim,eignft,iim,matrinvs(1,1,j-jfiltsu+1),iim) |
---|
| 502 | #else |
---|
| 503 | #ifdef BLAS |
---|
| 504 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
| 505 | eignfnv, iim, eignft, iim, 0.0, matrinvs(1,1,j-jfiltsu+1), iim) |
---|
| 506 | #else |
---|
| 507 | DO k = 1, iim |
---|
| 508 | DO i = 1, iim |
---|
| 509 | matrinvs(i,k,j-jfiltsu+1) = 0.0 |
---|
| 510 | DO ii = 1, iim |
---|
| 511 | matrinvs(i,k,j-jfiltsu+1) = matrinvs(i,k,j-jfiltsu+1) & |
---|
| 512 | + eignfnv(i,ii)*eignft(ii,k) |
---|
| 513 | ENDDO |
---|
| 514 | ENDDO |
---|
| 515 | ENDDO |
---|
| 516 | #endif |
---|
| 517 | #endif |
---|
| 518 | |
---|
| 519 | ENDDO |
---|
| 520 | |
---|
| 521 | ! ................................................................... |
---|
| 522 | |
---|
| 523 | ! |
---|
| 524 | 334 FORMAT(1x,24i3) |
---|
| 525 | 755 FORMAT(1x,6f10.3,i3) |
---|
| 526 | |
---|
| 527 | RETURN |
---|
| 528 | END SUBROUTINE inifilr |
---|
| 529 | |
---|
[1108] | 530 | END MODULE filtreg_mod |
---|