[1403] | 1 | ! |
---|
| 2 | ! $Id $ |
---|
| 3 | ! |
---|
[630] | 4 | SUBROUTINE exner_hyb_p ( ngrid, ps, p,alpha,beta, pks, pk, pkf ) |
---|
| 5 | c |
---|
| 6 | c Auteurs : P.Le Van , Fr. Hourdin . |
---|
| 7 | c .......... |
---|
| 8 | c |
---|
| 9 | c .... ngrid, ps,p sont des argum.d'entree au sous-prog ... |
---|
| 10 | c .... alpha,beta, pks,pk,pkf sont des argum.de sortie au sous-prog ... |
---|
| 11 | c |
---|
| 12 | c ************************************************************************ |
---|
| 13 | c Calcule la fonction d'Exner pk = Cp * p ** kappa , aux milieux des |
---|
| 14 | c couches . Pk(l) sera calcule aux milieux des couches l ,entre les |
---|
| 15 | c pressions p(l) et p(l+1) ,definis aux interfaces des llm couches . |
---|
| 16 | c ************************************************************************ |
---|
| 17 | c .. N.B : Au sommet de l'atmosphere, p(llm+1) = 0. , et ps et pks sont |
---|
| 18 | c la pression et la fonction d'Exner au sol . |
---|
| 19 | c |
---|
| 20 | c -------- z |
---|
| 21 | c A partir des relations ( 1 ) p*dz(pk) = kappa *pk*dz(p) et |
---|
| 22 | c ( 2 ) pk(l) = alpha(l)+ beta(l)*pk(l-1) |
---|
| 23 | c ( voir note de Fr.Hourdin ) , |
---|
| 24 | c |
---|
| 25 | c on determine successivement , du haut vers le bas des couches, les |
---|
| 26 | c coef. alpha(llm),beta(llm) .,.,alpha(l),beta(l),,,alpha(2),beta(2), |
---|
| 27 | c puis pk(ij,1). Ensuite ,on calcule,du bas vers le haut des couches, |
---|
| 28 | c pk(ij,l) donne par la relation (2), pour l = 2 a l = llm . |
---|
| 29 | c |
---|
| 30 | c |
---|
| 31 | USE parallel |
---|
| 32 | IMPLICIT NONE |
---|
| 33 | c |
---|
| 34 | #include "dimensions.h" |
---|
| 35 | #include "paramet.h" |
---|
| 36 | #include "comconst.h" |
---|
| 37 | #include "comgeom.h" |
---|
| 38 | #include "comvert.h" |
---|
| 39 | #include "serre.h" |
---|
| 40 | |
---|
| 41 | INTEGER ngrid |
---|
| 42 | REAL p(ngrid,llmp1),pk(ngrid,llm),pkf(ngrid,llm) |
---|
| 43 | REAL ps(ngrid),pks(ngrid), alpha(ngrid,llm),beta(ngrid,llm) |
---|
| 44 | |
---|
| 45 | c .... variables locales ... |
---|
| 46 | |
---|
| 47 | INTEGER l, ij |
---|
| 48 | REAL unpl2k,dellta |
---|
| 49 | |
---|
| 50 | REAL ppn(iim),pps(iim) |
---|
| 51 | REAL xpn, xps |
---|
| 52 | REAL SSUM |
---|
[764] | 53 | EXTERNAL SSUM |
---|
[630] | 54 | INTEGER ije,ijb,jje,jjb |
---|
| 55 | c |
---|
[1403] | 56 | c$OMP BARRIER |
---|
| 57 | |
---|
| 58 | if (llm.eq.1) then |
---|
| 59 | ! Specific behaviour for Shallow Water (1 vertical layer) case |
---|
| 60 | |
---|
| 61 | ! Sanity checks |
---|
| 62 | if (kappa.ne.1) then |
---|
| 63 | call abort_gcm("exner_hyb", |
---|
| 64 | & "kappa!=1 , but running in Shallow Water mode!!",42) |
---|
| 65 | endif |
---|
| 66 | if (cpp.ne.r) then |
---|
| 67 | call abort_gcm("exner_hyb", |
---|
| 68 | & "cpp!=r , but running in Shallow Water mode!!",42) |
---|
| 69 | endif |
---|
| 70 | |
---|
| 71 | ! Compute pks(:),pk(:),pkf(:) |
---|
| 72 | ijb=ij_begin |
---|
| 73 | ije=ij_end |
---|
| 74 | !$OMP DO SCHEDULE(STATIC) |
---|
| 75 | DO ij=ijb, ije |
---|
| 76 | pks(ij)=(cpp/preff)*ps(ij) |
---|
| 77 | pk(ij,1) = .5*pks(ij) |
---|
| 78 | pkf(ij,1)=pk(ij,1) |
---|
| 79 | ENDDO |
---|
| 80 | !$OMP ENDDO |
---|
| 81 | |
---|
| 82 | !$OMP MASTER |
---|
| 83 | if (pole_nord) then |
---|
| 84 | DO ij = 1, iim |
---|
| 85 | ppn(ij) = aire( ij ) * pks( ij ) |
---|
| 86 | ENDDO |
---|
| 87 | xpn = SSUM(iim,ppn,1) /apoln |
---|
| 88 | |
---|
| 89 | DO ij = 1, iip1 |
---|
| 90 | pks( ij ) = xpn |
---|
| 91 | pk(ij,1) = .5*pks(ij) |
---|
| 92 | pkf(ij,1)=pk(ij,1) |
---|
| 93 | ENDDO |
---|
| 94 | endif |
---|
| 95 | |
---|
| 96 | if (pole_sud) then |
---|
| 97 | DO ij = 1, iim |
---|
| 98 | pps(ij) = aire(ij+ip1jm) * pks(ij+ip1jm ) |
---|
| 99 | ENDDO |
---|
| 100 | xps = SSUM(iim,pps,1) /apols |
---|
| 101 | |
---|
| 102 | DO ij = 1, iip1 |
---|
| 103 | pks( ij+ip1jm ) = xps |
---|
| 104 | pk(ij+ip1jm,1)=.5*pks(ij+ip1jm) |
---|
| 105 | pkf(ij+ip1jm,1)=pk(ij+ip1jm,1) |
---|
| 106 | ENDDO |
---|
| 107 | endif |
---|
| 108 | !$OMP END MASTER |
---|
| 109 | |
---|
| 110 | jjb=jj_begin |
---|
| 111 | jje=jj_end |
---|
| 112 | CALL filtreg_p ( pkf,jjb,jje, jmp1, llm, 2, 1, .TRUE., 1 ) |
---|
| 113 | |
---|
| 114 | ! our work is done, exit routine |
---|
| 115 | return |
---|
| 116 | endif ! of if (llm.eq.1) |
---|
| 117 | |
---|
| 118 | |
---|
[630] | 119 | unpl2k = 1.+ 2.* kappa |
---|
| 120 | c |
---|
| 121 | ijb=ij_begin |
---|
| 122 | ije=ij_end |
---|
[774] | 123 | |
---|
[985] | 124 | c$OMP DO SCHEDULE(STATIC) |
---|
[630] | 125 | DO ij = ijb, ije |
---|
| 126 | pks(ij) = cpp * ( ps(ij)/preff ) ** kappa |
---|
| 127 | ENDDO |
---|
[985] | 128 | c$OMP ENDDO |
---|
| 129 | c Synchro OPENMP ici |
---|
[630] | 130 | |
---|
[985] | 131 | c$OMP MASTER |
---|
[630] | 132 | if (pole_nord) then |
---|
| 133 | DO ij = 1, iim |
---|
| 134 | ppn(ij) = aire( ij ) * pks( ij ) |
---|
| 135 | ENDDO |
---|
| 136 | xpn = SSUM(iim,ppn,1) /apoln |
---|
| 137 | |
---|
| 138 | DO ij = 1, iip1 |
---|
| 139 | pks( ij ) = xpn |
---|
| 140 | ENDDO |
---|
| 141 | endif |
---|
| 142 | |
---|
| 143 | if (pole_sud) then |
---|
| 144 | DO ij = 1, iim |
---|
| 145 | pps(ij) = aire(ij+ip1jm) * pks(ij+ip1jm ) |
---|
| 146 | ENDDO |
---|
| 147 | xps = SSUM(iim,pps,1) /apols |
---|
| 148 | |
---|
| 149 | DO ij = 1, iip1 |
---|
| 150 | pks( ij+ip1jm ) = xps |
---|
| 151 | ENDDO |
---|
| 152 | endif |
---|
[985] | 153 | c$OMP END MASTER |
---|
[630] | 154 | c |
---|
| 155 | c |
---|
| 156 | c .... Calcul des coeff. alpha et beta pour la couche l = llm .. |
---|
| 157 | c |
---|
[985] | 158 | c$OMP DO SCHEDULE(STATIC) |
---|
[630] | 159 | DO ij = ijb,ije |
---|
| 160 | alpha(ij,llm) = 0. |
---|
| 161 | beta (ij,llm) = 1./ unpl2k |
---|
| 162 | ENDDO |
---|
[985] | 163 | c$OMP ENDDO NOWAIT |
---|
[630] | 164 | c |
---|
| 165 | c ... Calcul des coeff. alpha et beta pour l = llm-1 a l = 2 ... |
---|
| 166 | c |
---|
| 167 | DO l = llm -1 , 2 , -1 |
---|
| 168 | c |
---|
[985] | 169 | c$OMP DO SCHEDULE(STATIC) |
---|
[630] | 170 | DO ij = ijb, ije |
---|
| 171 | dellta = p(ij,l)* unpl2k + p(ij,l+1)* ( beta(ij,l+1)-unpl2k ) |
---|
| 172 | alpha(ij,l) = - p(ij,l+1) / dellta * alpha(ij,l+1) |
---|
| 173 | beta (ij,l) = p(ij,l ) / dellta |
---|
| 174 | ENDDO |
---|
[985] | 175 | c$OMP ENDDO NOWAIT |
---|
[630] | 176 | c |
---|
| 177 | ENDDO |
---|
[774] | 178 | |
---|
[630] | 179 | c |
---|
| 180 | c *********************************************************************** |
---|
| 181 | c ..... Calcul de pk pour la couche 1 , pres du sol .... |
---|
| 182 | c |
---|
[985] | 183 | c$OMP DO SCHEDULE(STATIC) |
---|
[630] | 184 | DO ij = ijb, ije |
---|
| 185 | pk(ij,1) = ( p(ij,1)*pks(ij) - 0.5*alpha(ij,2)*p(ij,2) ) / |
---|
| 186 | * ( p(ij,1)* (1.+kappa) + 0.5*( beta(ij,2)-unpl2k )* p(ij,2) ) |
---|
| 187 | ENDDO |
---|
[985] | 188 | c$OMP ENDDO NOWAIT |
---|
[630] | 189 | c |
---|
| 190 | c ..... Calcul de pk(ij,l) , pour l = 2 a l = llm ........ |
---|
| 191 | c |
---|
| 192 | DO l = 2, llm |
---|
[985] | 193 | c$OMP DO SCHEDULE(STATIC) |
---|
[630] | 194 | DO ij = ijb, ije |
---|
| 195 | pk(ij,l) = alpha(ij,l) + beta(ij,l) * pk(ij,l-1) |
---|
| 196 | ENDDO |
---|
[985] | 197 | c$OMP ENDDO NOWAIT |
---|
[630] | 198 | ENDDO |
---|
| 199 | c |
---|
| 200 | c |
---|
| 201 | c CALL SCOPY ( ngrid * llm, pk, 1, pkf, 1 ) |
---|
[985] | 202 | DO l = 1, llm |
---|
| 203 | c$OMP DO SCHEDULE(STATIC) |
---|
| 204 | DO ij = ijb, ije |
---|
| 205 | pkf(ij,l)=pk(ij,l) |
---|
| 206 | ENDDO |
---|
| 207 | c$OMP ENDDO NOWAIT |
---|
| 208 | ENDDO |
---|
| 209 | |
---|
[774] | 210 | c$OMP BARRIER |
---|
[630] | 211 | |
---|
| 212 | jjb=jj_begin |
---|
| 213 | jje=jj_end |
---|
| 214 | CALL filtreg_p ( pkf,jjb,jje, jmp1, llm, 2, 1, .TRUE., 1 ) |
---|
| 215 | |
---|
| 216 | |
---|
| 217 | RETURN |
---|
| 218 | END |
---|