[524] | 1 | ! |
---|
[1279] | 2 | ! $Id: integrd.F 1403 2010-07-01 09:02:53Z lguez $ |
---|
[524] | 3 | ! |
---|
| 4 | SUBROUTINE integrd |
---|
| 5 | $ ( nq,vcovm1,ucovm1,tetam1,psm1,massem1, |
---|
| 6 | $ dv,du,dteta,dq,dp,vcov,ucov,teta,q,ps,masse,phis,finvmaold ) |
---|
| 7 | |
---|
[1403] | 8 | USE control_mod |
---|
| 9 | |
---|
[524] | 10 | IMPLICIT NONE |
---|
| 11 | |
---|
| 12 | |
---|
| 13 | c======================================================================= |
---|
| 14 | c |
---|
| 15 | c Auteur: P. Le Van |
---|
| 16 | c ------- |
---|
| 17 | c |
---|
| 18 | c objet: |
---|
| 19 | c ------ |
---|
| 20 | c |
---|
| 21 | c Incrementation des tendances dynamiques |
---|
| 22 | c |
---|
| 23 | c======================================================================= |
---|
| 24 | c----------------------------------------------------------------------- |
---|
| 25 | c Declarations: |
---|
| 26 | c ------------- |
---|
| 27 | |
---|
| 28 | #include "dimensions.h" |
---|
| 29 | #include "paramet.h" |
---|
| 30 | #include "comconst.h" |
---|
| 31 | #include "comgeom.h" |
---|
| 32 | #include "comvert.h" |
---|
| 33 | #include "logic.h" |
---|
| 34 | #include "temps.h" |
---|
| 35 | #include "serre.h" |
---|
| 36 | |
---|
| 37 | c Arguments: |
---|
| 38 | c ---------- |
---|
| 39 | |
---|
| 40 | INTEGER nq |
---|
| 41 | |
---|
| 42 | REAL vcov(ip1jm,llm),ucov(ip1jmp1,llm),teta(ip1jmp1,llm) |
---|
| 43 | REAL q(ip1jmp1,llm,nq) |
---|
| 44 | REAL ps(ip1jmp1),masse(ip1jmp1,llm),phis(ip1jmp1) |
---|
| 45 | |
---|
| 46 | REAL vcovm1(ip1jm,llm),ucovm1(ip1jmp1,llm) |
---|
| 47 | REAL tetam1(ip1jmp1,llm),psm1(ip1jmp1),massem1(ip1jmp1,llm) |
---|
| 48 | |
---|
| 49 | REAL dv(ip1jm,llm),du(ip1jmp1,llm) |
---|
| 50 | REAL dteta(ip1jmp1,llm),dp(ip1jmp1) |
---|
| 51 | REAL dq(ip1jmp1,llm,nq), finvmaold(ip1jmp1,llm) |
---|
| 52 | |
---|
| 53 | c Local: |
---|
| 54 | c ------ |
---|
| 55 | |
---|
| 56 | REAL vscr( ip1jm ),uscr( ip1jmp1 ),hscr( ip1jmp1 ),pscr(ip1jmp1) |
---|
| 57 | REAL massescr( ip1jmp1,llm ), finvmasse(ip1jmp1,llm) |
---|
| 58 | REAL p(ip1jmp1,llmp1) |
---|
| 59 | REAL tpn,tps,tppn(iim),tpps(iim) |
---|
| 60 | REAL qpn,qps,qppn(iim),qpps(iim) |
---|
| 61 | REAL deltap( ip1jmp1,llm ) |
---|
| 62 | |
---|
| 63 | INTEGER l,ij,iq |
---|
| 64 | |
---|
| 65 | REAL SSUM |
---|
| 66 | |
---|
| 67 | c----------------------------------------------------------------------- |
---|
| 68 | |
---|
| 69 | DO l = 1,llm |
---|
| 70 | DO ij = 1,iip1 |
---|
| 71 | ucov( ij , l) = 0. |
---|
| 72 | ucov( ij +ip1jm, l) = 0. |
---|
| 73 | uscr( ij ) = 0. |
---|
| 74 | uscr( ij +ip1jm ) = 0. |
---|
| 75 | ENDDO |
---|
| 76 | ENDDO |
---|
| 77 | |
---|
| 78 | |
---|
| 79 | c ............ integration de ps .............. |
---|
| 80 | |
---|
| 81 | CALL SCOPY(ip1jmp1*llm, masse, 1, massescr, 1) |
---|
| 82 | |
---|
| 83 | DO 2 ij = 1,ip1jmp1 |
---|
| 84 | pscr (ij) = ps(ij) |
---|
| 85 | ps (ij) = psm1(ij) + dt * dp(ij) |
---|
| 86 | 2 CONTINUE |
---|
| 87 | c |
---|
| 88 | DO ij = 1,ip1jmp1 |
---|
| 89 | IF( ps(ij).LT.0. ) THEN |
---|
| 90 | PRINT*,' Au point ij = ',ij, ' , pression sol neg. ', ps(ij) |
---|
| 91 | STOP' dans integrd' |
---|
| 92 | ENDIF |
---|
| 93 | ENDDO |
---|
| 94 | c |
---|
| 95 | DO ij = 1, iim |
---|
| 96 | tppn(ij) = aire( ij ) * ps( ij ) |
---|
| 97 | tpps(ij) = aire(ij+ip1jm) * ps(ij+ip1jm) |
---|
| 98 | ENDDO |
---|
| 99 | tpn = SSUM(iim,tppn,1)/apoln |
---|
| 100 | tps = SSUM(iim,tpps,1)/apols |
---|
| 101 | DO ij = 1, iip1 |
---|
| 102 | ps( ij ) = tpn |
---|
| 103 | ps(ij+ip1jm) = tps |
---|
| 104 | ENDDO |
---|
| 105 | c |
---|
| 106 | c ... Calcul de la nouvelle masse d'air au dernier temps integre t+1 ... |
---|
| 107 | c |
---|
| 108 | CALL pression ( ip1jmp1, ap, bp, ps, p ) |
---|
| 109 | CALL massdair ( p , masse ) |
---|
| 110 | |
---|
| 111 | CALL SCOPY( ijp1llm , masse, 1, finvmasse, 1 ) |
---|
| 112 | CALL filtreg( finvmasse, jjp1, llm, -2, 2, .TRUE., 1 ) |
---|
| 113 | c |
---|
| 114 | |
---|
| 115 | c ............ integration de ucov, vcov, h .............. |
---|
| 116 | |
---|
| 117 | DO 10 l = 1,llm |
---|
| 118 | |
---|
| 119 | DO 4 ij = iip2,ip1jm |
---|
| 120 | uscr( ij ) = ucov( ij,l ) |
---|
| 121 | ucov( ij,l ) = ucovm1( ij,l ) + dt * du( ij,l ) |
---|
| 122 | 4 CONTINUE |
---|
| 123 | |
---|
| 124 | DO 5 ij = 1,ip1jm |
---|
| 125 | vscr( ij ) = vcov( ij,l ) |
---|
| 126 | vcov( ij,l ) = vcovm1( ij,l ) + dt * dv( ij,l ) |
---|
| 127 | 5 CONTINUE |
---|
| 128 | |
---|
| 129 | DO 6 ij = 1,ip1jmp1 |
---|
| 130 | hscr( ij ) = teta(ij,l) |
---|
| 131 | teta ( ij,l ) = tetam1(ij,l) * massem1(ij,l) / masse(ij,l) |
---|
| 132 | $ + dt * dteta(ij,l) / masse(ij,l) |
---|
| 133 | 6 CONTINUE |
---|
| 134 | |
---|
| 135 | c .... Calcul de la valeur moyenne, unique aux poles pour teta ...... |
---|
| 136 | c |
---|
| 137 | c |
---|
| 138 | DO ij = 1, iim |
---|
| 139 | tppn(ij) = aire( ij ) * teta( ij ,l) |
---|
| 140 | tpps(ij) = aire(ij+ip1jm) * teta(ij+ip1jm,l) |
---|
| 141 | ENDDO |
---|
| 142 | tpn = SSUM(iim,tppn,1)/apoln |
---|
| 143 | tps = SSUM(iim,tpps,1)/apols |
---|
| 144 | |
---|
| 145 | DO ij = 1, iip1 |
---|
| 146 | teta( ij ,l) = tpn |
---|
| 147 | teta(ij+ip1jm,l) = tps |
---|
| 148 | ENDDO |
---|
| 149 | c |
---|
| 150 | |
---|
| 151 | IF(leapf) THEN |
---|
| 152 | CALL SCOPY ( ip1jmp1, uscr(1), 1, ucovm1(1, l), 1 ) |
---|
| 153 | CALL SCOPY ( ip1jm, vscr(1), 1, vcovm1(1, l), 1 ) |
---|
| 154 | CALL SCOPY ( ip1jmp1, hscr(1), 1, tetam1(1, l), 1 ) |
---|
| 155 | END IF |
---|
| 156 | |
---|
| 157 | 10 CONTINUE |
---|
| 158 | |
---|
| 159 | |
---|
| 160 | c |
---|
| 161 | c ....... integration de q ...... |
---|
| 162 | c |
---|
| 163 | c$$$ IF( iadv(1).NE.3.AND.iadv(2).NE.3 ) THEN |
---|
| 164 | c$$$c |
---|
| 165 | c$$$ IF( forward. OR . leapf ) THEN |
---|
| 166 | c$$$ DO iq = 1,2 |
---|
| 167 | c$$$ DO l = 1,llm |
---|
| 168 | c$$$ DO ij = 1,ip1jmp1 |
---|
| 169 | c$$$ q(ij,l,iq) = ( q(ij,l,iq)*finvmaold(ij,l) + dtvr *dq(ij,l,iq) )/ |
---|
| 170 | c$$$ $ finvmasse(ij,l) |
---|
| 171 | c$$$ ENDDO |
---|
| 172 | c$$$ ENDDO |
---|
| 173 | c$$$ ENDDO |
---|
| 174 | c$$$ ELSE |
---|
| 175 | c$$$ DO iq = 1,2 |
---|
| 176 | c$$$ DO l = 1,llm |
---|
| 177 | c$$$ DO ij = 1,ip1jmp1 |
---|
| 178 | c$$$ q( ij,l,iq ) = q( ij,l,iq ) * finvmaold(ij,l) / finvmasse(ij,l) |
---|
| 179 | c$$$ ENDDO |
---|
| 180 | c$$$ ENDDO |
---|
| 181 | c$$$ ENDDO |
---|
| 182 | c$$$ |
---|
| 183 | c$$$ END IF |
---|
| 184 | c$$$c |
---|
| 185 | c$$$ ENDIF |
---|
| 186 | |
---|
[1279] | 187 | if (planet_type.eq."earth") then |
---|
| 188 | ! Earth-specific treatment of first 2 tracers (water) |
---|
| 189 | DO l = 1, llm |
---|
| 190 | DO ij = 1, ip1jmp1 |
---|
| 191 | deltap(ij,l) = p(ij,l) - p(ij,l+1) |
---|
| 192 | ENDDO |
---|
[524] | 193 | ENDDO |
---|
| 194 | |
---|
[1279] | 195 | CALL qminimum( q, nq, deltap ) |
---|
| 196 | endif ! of if (planet_type.eq."earth") |
---|
| 197 | |
---|
[524] | 198 | c |
---|
| 199 | c ..... Calcul de la valeur moyenne, unique aux poles pour q ..... |
---|
| 200 | c |
---|
| 201 | |
---|
| 202 | DO iq = 1, nq |
---|
| 203 | DO l = 1, llm |
---|
| 204 | |
---|
| 205 | DO ij = 1, iim |
---|
| 206 | qppn(ij) = aire( ij ) * q( ij ,l,iq) |
---|
| 207 | qpps(ij) = aire(ij+ip1jm) * q(ij+ip1jm,l,iq) |
---|
| 208 | ENDDO |
---|
| 209 | qpn = SSUM(iim,qppn,1)/apoln |
---|
| 210 | qps = SSUM(iim,qpps,1)/apols |
---|
| 211 | |
---|
| 212 | DO ij = 1, iip1 |
---|
| 213 | q( ij ,l,iq) = qpn |
---|
| 214 | q(ij+ip1jm,l,iq) = qps |
---|
| 215 | ENDDO |
---|
| 216 | |
---|
| 217 | ENDDO |
---|
| 218 | ENDDO |
---|
| 219 | |
---|
| 220 | |
---|
| 221 | CALL SCOPY( ijp1llm , finvmasse, 1, finvmaold, 1 ) |
---|
| 222 | c |
---|
| 223 | c |
---|
| 224 | c ..... FIN de l'integration de q ....... |
---|
| 225 | |
---|
| 226 | 15 continue |
---|
| 227 | |
---|
| 228 | c ................................................................. |
---|
| 229 | |
---|
| 230 | |
---|
| 231 | IF( leapf ) THEN |
---|
| 232 | CALL SCOPY ( ip1jmp1 , pscr , 1, psm1 , 1 ) |
---|
| 233 | CALL SCOPY ( ip1jmp1*llm, massescr, 1, massem1, 1 ) |
---|
| 234 | END IF |
---|
| 235 | |
---|
| 236 | RETURN |
---|
| 237 | END |
---|