[1262] | 1 | SUBROUTINE ICARUS( |
---|
| 2 | & debug, |
---|
| 3 | & debugcol, |
---|
| 4 | & npoints, |
---|
| 5 | & sunlit, |
---|
| 6 | & nlev, |
---|
| 7 | & ncol, |
---|
| 8 | & pfull, |
---|
| 9 | & phalf, |
---|
| 10 | & qv, |
---|
| 11 | & cc, |
---|
| 12 | & conv, |
---|
| 13 | & dtau_s, |
---|
| 14 | & dtau_c, |
---|
| 15 | & top_height, |
---|
| 16 | & top_height_direction, |
---|
| 17 | & overlap, |
---|
| 18 | & frac_out, |
---|
| 19 | & skt, |
---|
| 20 | & emsfc_lw, |
---|
| 21 | & at, |
---|
| 22 | & dem_s, |
---|
| 23 | & dem_c, |
---|
| 24 | & fq_isccp, |
---|
| 25 | & totalcldarea, |
---|
| 26 | & meanptop, |
---|
| 27 | & meantaucld, |
---|
| 28 | & meanalbedocld, |
---|
| 29 | & meantb, |
---|
| 30 | & meantbclr, |
---|
| 31 | & boxtau, |
---|
| 32 | & boxptop |
---|
| 33 | &) |
---|
| 34 | |
---|
[1414] | 35 | !$Id: icarus.f,v 4.1 2010/05/27 16:30:18 hadmw Exp $ |
---|
[1262] | 36 | |
---|
| 37 | ! *****************************COPYRIGHT**************************** |
---|
| 38 | ! (c) 2009, Lawrence Livermore National Security Limited Liability |
---|
| 39 | ! Corporation. |
---|
| 40 | ! All rights reserved. |
---|
| 41 | ! |
---|
| 42 | ! Redistribution and use in source and binary forms, with or without |
---|
| 43 | ! modification, are permitted provided that the |
---|
| 44 | ! following conditions are met: |
---|
| 45 | ! |
---|
| 46 | ! * Redistributions of source code must retain the above |
---|
| 47 | ! copyright notice, this list of conditions and the following |
---|
| 48 | ! disclaimer. |
---|
| 49 | ! * Redistributions in binary form must reproduce the above |
---|
| 50 | ! copyright notice, this list of conditions and the following |
---|
| 51 | ! disclaimer in the documentation and/or other materials |
---|
| 52 | ! provided with the distribution. |
---|
| 53 | ! * Neither the name of the Lawrence Livermore National Security |
---|
| 54 | ! Limited Liability Corporation nor the names of its |
---|
| 55 | ! contributors may be used to endorse or promote products |
---|
| 56 | ! derived from this software without specific prior written |
---|
| 57 | ! permission. |
---|
| 58 | ! |
---|
| 59 | ! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
---|
| 60 | ! "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
---|
| 61 | ! LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
---|
| 62 | ! A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
---|
| 63 | ! OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
---|
| 64 | ! SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
---|
| 65 | ! LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
---|
| 66 | ! DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
---|
| 67 | ! THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
---|
| 68 | ! (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
---|
| 69 | ! OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
---|
| 70 | ! |
---|
| 71 | ! *****************************COPYRIGHT******************************* |
---|
| 72 | ! *****************************COPYRIGHT******************************* |
---|
| 73 | ! *****************************COPYRIGHT******************************* |
---|
[1414] | 74 | ! *****************************COPYRIGHT******************************* |
---|
[1262] | 75 | |
---|
| 76 | implicit none |
---|
| 77 | |
---|
| 78 | ! NOTE: the maximum number of levels and columns is set by |
---|
| 79 | ! the following parameter statement |
---|
| 80 | |
---|
| 81 | INTEGER ncolprint |
---|
| 82 | |
---|
| 83 | ! ----- |
---|
| 84 | ! Input |
---|
| 85 | ! ----- |
---|
| 86 | |
---|
| 87 | INTEGER npoints ! number of model points in the horizontal |
---|
| 88 | INTEGER nlev ! number of model levels in column |
---|
| 89 | INTEGER ncol ! number of subcolumns |
---|
| 90 | |
---|
| 91 | INTEGER sunlit(npoints) ! 1 for day points, 0 for night time |
---|
| 92 | |
---|
| 93 | REAL pfull(npoints,nlev) |
---|
| 94 | ! pressure of full model levels (Pascals) |
---|
| 95 | ! pfull(npoints,1) is top level of model |
---|
| 96 | ! pfull(npoints,nlev) is bot of model |
---|
| 97 | |
---|
| 98 | REAL phalf(npoints,nlev+1) |
---|
| 99 | ! pressure of half model levels (Pascals) |
---|
| 100 | ! phalf(npoints,1) is top of model |
---|
| 101 | ! phalf(npoints,nlev+1) is the surface pressure |
---|
| 102 | |
---|
| 103 | REAL qv(npoints,nlev) |
---|
| 104 | ! water vapor specific humidity (kg vapor/ kg air) |
---|
| 105 | ! on full model levels |
---|
| 106 | |
---|
| 107 | REAL cc(npoints,nlev) |
---|
| 108 | ! input cloud cover in each model level (fraction) |
---|
| 109 | ! NOTE: This is the HORIZONTAL area of each |
---|
| 110 | ! grid box covered by clouds |
---|
| 111 | |
---|
| 112 | REAL conv(npoints,nlev) |
---|
| 113 | ! input convective cloud cover in each model |
---|
| 114 | ! level (fraction) |
---|
| 115 | ! NOTE: This is the HORIZONTAL area of each |
---|
| 116 | ! grid box covered by convective clouds |
---|
| 117 | |
---|
| 118 | REAL dtau_s(npoints,nlev) |
---|
| 119 | ! mean 0.67 micron optical depth of stratiform |
---|
| 120 | ! clouds in each model level |
---|
| 121 | ! NOTE: this the cloud optical depth of only the |
---|
| 122 | ! cloudy part of the grid box, it is not weighted |
---|
| 123 | ! with the 0 cloud optical depth of the clear |
---|
| 124 | ! part of the grid box |
---|
| 125 | |
---|
| 126 | REAL dtau_c(npoints,nlev) |
---|
| 127 | ! mean 0.67 micron optical depth of convective |
---|
| 128 | ! clouds in each |
---|
| 129 | ! model level. Same note applies as in dtau_s. |
---|
| 130 | |
---|
| 131 | INTEGER overlap ! overlap type |
---|
| 132 | ! 1=max |
---|
| 133 | ! 2=rand |
---|
| 134 | ! 3=max/rand |
---|
| 135 | |
---|
| 136 | INTEGER top_height ! 1 = adjust top height using both a computed |
---|
| 137 | ! infrared brightness temperature and the visible |
---|
| 138 | ! optical depth to adjust cloud top pressure. Note |
---|
| 139 | ! that this calculation is most appropriate to compare |
---|
| 140 | ! to ISCCP data during sunlit hours. |
---|
| 141 | ! 2 = do not adjust top height, that is cloud top |
---|
| 142 | ! pressure is the actual cloud top pressure |
---|
| 143 | ! in the model |
---|
| 144 | ! 3 = adjust top height using only the computed |
---|
| 145 | ! infrared brightness temperature. Note that this |
---|
| 146 | ! calculation is most appropriate to compare to ISCCP |
---|
| 147 | ! IR only algortihm (i.e. you can compare to nighttime |
---|
| 148 | ! ISCCP data with this option) |
---|
| 149 | |
---|
| 150 | INTEGER top_height_direction ! direction for finding atmosphere pressure level |
---|
| 151 | ! with interpolated temperature equal to the radiance |
---|
| 152 | ! determined cloud-top temperature |
---|
| 153 | ! |
---|
| 154 | ! 1 = find the *lowest* altitude (highest pressure) level |
---|
| 155 | ! with interpolated temperature equal to the radiance |
---|
| 156 | ! determined cloud-top temperature |
---|
| 157 | ! |
---|
| 158 | ! 2 = find the *highest* altitude (lowest pressure) level |
---|
| 159 | ! with interpolated temperature equal to the radiance |
---|
| 160 | ! determined cloud-top temperature |
---|
| 161 | ! |
---|
| 162 | ! ONLY APPLICABLE IF top_height EQUALS 1 or 3 |
---|
| 163 | ! ! |
---|
| 164 | ! 1 = old setting: matches all versions of |
---|
| 165 | ! ISCCP simulator with versions numbers 3.5.1 and lower |
---|
| 166 | ! |
---|
| 167 | ! 2 = default setting: for version numbers 4.0 and higher |
---|
| 168 | ! |
---|
| 169 | ! The following input variables are used only if top_height = 1 or top_height = 3 |
---|
| 170 | ! |
---|
| 171 | REAL skt(npoints) ! skin Temperature (K) |
---|
| 172 | REAL emsfc_lw ! 10.5 micron emissivity of surface (fraction) |
---|
| 173 | REAL at(npoints,nlev) ! temperature in each model level (K) |
---|
| 174 | REAL dem_s(npoints,nlev) ! 10.5 micron longwave emissivity of stratiform |
---|
| 175 | ! clouds in each |
---|
| 176 | ! model level. Same note applies as in dtau_s. |
---|
| 177 | REAL dem_c(npoints,nlev) ! 10.5 micron longwave emissivity of convective |
---|
| 178 | ! clouds in each |
---|
| 179 | ! model level. Same note applies as in dtau_s. |
---|
| 180 | |
---|
| 181 | REAL frac_out(npoints,ncol,nlev) ! boxes gridbox divided up into |
---|
| 182 | ! Equivalent of BOX in original version, but |
---|
| 183 | ! indexed by column then row, rather than |
---|
| 184 | ! by row then column |
---|
| 185 | |
---|
| 186 | |
---|
| 187 | |
---|
| 188 | ! ------ |
---|
| 189 | ! Output |
---|
| 190 | ! ------ |
---|
| 191 | |
---|
| 192 | REAL fq_isccp(npoints,7,7) ! the fraction of the model grid box covered by |
---|
| 193 | ! each of the 49 ISCCP D level cloud types |
---|
| 194 | |
---|
| 195 | REAL totalcldarea(npoints) ! the fraction of model grid box columns |
---|
| 196 | ! with cloud somewhere in them. NOTE: This diagnostic |
---|
| 197 | ! does not count model clouds with tau < isccp_taumin |
---|
| 198 | ! Thus this diagnostic does not equal the sum over all entries of fq_isccp. |
---|
| 199 | ! However, this diagnostic does equal the sum over entries of fq_isccp with |
---|
| 200 | ! itau = 2:7 (omitting itau = 1) |
---|
| 201 | |
---|
| 202 | |
---|
| 203 | ! The following three means are averages only over the cloudy areas with tau > isccp_taumin. |
---|
| 204 | ! If no clouds with tau > isccp_taumin are in grid box all three quantities should equal zero. |
---|
| 205 | |
---|
| 206 | REAL meanptop(npoints) ! mean cloud top pressure (mb) - linear averaging |
---|
| 207 | ! in cloud top pressure. |
---|
| 208 | |
---|
| 209 | REAL meantaucld(npoints) ! mean optical thickness |
---|
| 210 | ! linear averaging in albedo performed. |
---|
| 211 | |
---|
| 212 | real meanalbedocld(npoints) ! mean cloud albedo |
---|
| 213 | ! linear averaging in albedo performed |
---|
| 214 | |
---|
| 215 | real meantb(npoints) ! mean all-sky 10.5 micron brightness temperature |
---|
| 216 | |
---|
| 217 | real meantbclr(npoints) ! mean clear-sky 10.5 micron brightness temperature |
---|
| 218 | |
---|
| 219 | REAL boxtau(npoints,ncol) ! optical thickness in each column |
---|
| 220 | |
---|
| 221 | REAL boxptop(npoints,ncol) ! cloud top pressure (mb) in each column |
---|
| 222 | |
---|
| 223 | |
---|
| 224 | ! |
---|
| 225 | ! ------ |
---|
| 226 | ! Working variables added when program updated to mimic Mark Webb's PV-Wave code |
---|
| 227 | ! ------ |
---|
| 228 | |
---|
| 229 | REAL dem(npoints,ncol),bb(npoints) ! working variables for 10.5 micron longwave |
---|
| 230 | ! emissivity in part of |
---|
| 231 | ! gridbox under consideration |
---|
| 232 | |
---|
| 233 | REAL ptrop(npoints) |
---|
| 234 | REAL attrop(npoints) |
---|
| 235 | REAL attropmin (npoints) |
---|
| 236 | REAL atmax(npoints) |
---|
| 237 | REAL btcmin(npoints) |
---|
| 238 | REAL transmax(npoints) |
---|
| 239 | |
---|
| 240 | INTEGER i,j,ilev,ibox,itrop(npoints) |
---|
| 241 | INTEGER ipres(npoints) |
---|
| 242 | INTEGER itau(npoints),ilev2 |
---|
| 243 | INTEGER acc(nlev,ncol) |
---|
| 244 | INTEGER match(npoints,nlev-1) |
---|
| 245 | INTEGER nmatch(npoints) |
---|
| 246 | INTEGER levmatch(npoints,ncol) |
---|
| 247 | |
---|
| 248 | !variables needed for water vapor continuum absorption |
---|
| 249 | real fluxtop_clrsky(npoints),trans_layers_above_clrsky(npoints) |
---|
| 250 | real taumin(npoints) |
---|
| 251 | real dem_wv(npoints,nlev), wtmair, wtmh20, Navo, grav, pstd, t0 |
---|
| 252 | real press(npoints), dpress(npoints), atmden(npoints) |
---|
| 253 | real rvh20(npoints), wk(npoints), rhoave(npoints) |
---|
| 254 | real rh20s(npoints), rfrgn(npoints) |
---|
| 255 | real tmpexp(npoints),tauwv(npoints) |
---|
| 256 | |
---|
| 257 | character*1 cchar(6),cchar_realtops(6) |
---|
| 258 | integer icycle |
---|
| 259 | REAL tau(npoints,ncol) |
---|
| 260 | LOGICAL box_cloudy(npoints,ncol) |
---|
| 261 | REAL tb(npoints,ncol) |
---|
| 262 | REAL ptop(npoints,ncol) |
---|
| 263 | REAL emcld(npoints,ncol) |
---|
| 264 | REAL fluxtop(npoints,ncol) |
---|
| 265 | REAL trans_layers_above(npoints,ncol) |
---|
| 266 | real isccp_taumin,fluxtopinit(npoints),tauir(npoints) |
---|
| 267 | REAL albedocld(npoints,ncol) |
---|
| 268 | real boxarea |
---|
| 269 | integer debug ! set to non-zero value to print out inputs |
---|
| 270 | ! with step debug |
---|
| 271 | integer debugcol ! set to non-zero value to print out column |
---|
| 272 | ! decomposition with step debugcol |
---|
| 273 | integer rangevec(npoints),rangeerror |
---|
| 274 | |
---|
| 275 | integer index1(npoints),num1,jj,k1,k2 |
---|
| 276 | real rec2p13,tauchk,logp,logp1,logp2,atd |
---|
| 277 | real output_missing_value |
---|
| 278 | |
---|
| 279 | character*10 ftn09 |
---|
| 280 | |
---|
| 281 | DATA isccp_taumin / 0.3 / |
---|
| 282 | DATA output_missing_value / -1.E+30 / |
---|
| 283 | DATA cchar / ' ','-','1','+','I','+'/ |
---|
| 284 | DATA cchar_realtops / ' ',' ','1','1','I','I'/ |
---|
| 285 | |
---|
| 286 | ! ------ End duplicate definitions common to wrapper routine |
---|
| 287 | |
---|
| 288 | tauchk = -1.*log(0.9999999) |
---|
| 289 | rec2p13=1./2.13 |
---|
| 290 | |
---|
| 291 | ncolprint=0 |
---|
| 292 | |
---|
| 293 | if ( debug.ne.0 ) then |
---|
| 294 | j=1 |
---|
| 295 | write(6,'(a10)') 'j=' |
---|
| 296 | write(6,'(8I10)') j |
---|
| 297 | write(6,'(a10)') 'debug=' |
---|
| 298 | write(6,'(8I10)') debug |
---|
| 299 | write(6,'(a10)') 'debugcol=' |
---|
| 300 | write(6,'(8I10)') debugcol |
---|
| 301 | write(6,'(a10)') 'npoints=' |
---|
| 302 | write(6,'(8I10)') npoints |
---|
| 303 | write(6,'(a10)') 'nlev=' |
---|
| 304 | write(6,'(8I10)') nlev |
---|
| 305 | write(6,'(a10)') 'ncol=' |
---|
| 306 | write(6,'(8I10)') ncol |
---|
| 307 | write(6,'(a11)') 'top_height=' |
---|
| 308 | write(6,'(8I10)') top_height |
---|
| 309 | write(6,'(a21)') 'top_height_direction=' |
---|
| 310 | write(6,'(8I10)') top_height_direction |
---|
| 311 | write(6,'(a10)') 'overlap=' |
---|
| 312 | write(6,'(8I10)') overlap |
---|
| 313 | write(6,'(a10)') 'emsfc_lw=' |
---|
| 314 | write(6,'(8f10.2)') emsfc_lw |
---|
| 315 | do j=1,npoints,debug |
---|
| 316 | write(6,'(a10)') 'j=' |
---|
| 317 | write(6,'(8I10)') j |
---|
| 318 | write(6,'(a10)') 'sunlit=' |
---|
| 319 | write(6,'(8I10)') sunlit(j) |
---|
| 320 | write(6,'(a10)') 'pfull=' |
---|
| 321 | write(6,'(8f10.2)') (pfull(j,i),i=1,nlev) |
---|
| 322 | write(6,'(a10)') 'phalf=' |
---|
| 323 | write(6,'(8f10.2)') (phalf(j,i),i=1,nlev+1) |
---|
| 324 | write(6,'(a10)') 'qv=' |
---|
| 325 | write(6,'(8f10.3)') (qv(j,i),i=1,nlev) |
---|
| 326 | write(6,'(a10)') 'cc=' |
---|
| 327 | write(6,'(8f10.3)') (cc(j,i),i=1,nlev) |
---|
| 328 | write(6,'(a10)') 'conv=' |
---|
| 329 | write(6,'(8f10.2)') (conv(j,i),i=1,nlev) |
---|
| 330 | write(6,'(a10)') 'dtau_s=' |
---|
| 331 | write(6,'(8g12.5)') (dtau_s(j,i),i=1,nlev) |
---|
| 332 | write(6,'(a10)') 'dtau_c=' |
---|
| 333 | write(6,'(8f10.2)') (dtau_c(j,i),i=1,nlev) |
---|
| 334 | write(6,'(a10)') 'skt=' |
---|
| 335 | write(6,'(8f10.2)') skt(j) |
---|
| 336 | write(6,'(a10)') 'at=' |
---|
| 337 | write(6,'(8f10.2)') (at(j,i),i=1,nlev) |
---|
| 338 | write(6,'(a10)') 'dem_s=' |
---|
| 339 | write(6,'(8f10.3)') (dem_s(j,i),i=1,nlev) |
---|
| 340 | write(6,'(a10)') 'dem_c=' |
---|
| 341 | write(6,'(8f10.3)') (dem_c(j,i),i=1,nlev) |
---|
| 342 | enddo |
---|
| 343 | endif |
---|
| 344 | |
---|
| 345 | ! ---------------------------------------------------! |
---|
| 346 | |
---|
| 347 | if (ncolprint.ne.0) then |
---|
| 348 | do j=1,npoints,1000 |
---|
| 349 | write(6,'(a10)') 'j=' |
---|
| 350 | write(6,'(8I10)') j |
---|
| 351 | enddo |
---|
| 352 | endif |
---|
| 353 | |
---|
| 354 | if (top_height .eq. 1 .or. top_height .eq. 3) then |
---|
| 355 | |
---|
| 356 | do j=1,npoints |
---|
| 357 | ptrop(j)=5000. |
---|
| 358 | attropmin(j) = 400. |
---|
| 359 | atmax(j) = 0. |
---|
| 360 | attrop(j) = 120. |
---|
| 361 | itrop(j) = 1 |
---|
| 362 | enddo |
---|
| 363 | |
---|
| 364 | do 12 ilev=1,nlev |
---|
| 365 | do j=1,npoints |
---|
| 366 | if (pfull(j,ilev) .lt. 40000. .and. |
---|
| 367 | & pfull(j,ilev) .gt. 5000. .and. |
---|
| 368 | & at(j,ilev) .lt. attropmin(j)) then |
---|
| 369 | ptrop(j) = pfull(j,ilev) |
---|
| 370 | attropmin(j) = at(j,ilev) |
---|
| 371 | attrop(j) = attropmin(j) |
---|
| 372 | itrop(j)=ilev |
---|
| 373 | end if |
---|
| 374 | enddo |
---|
| 375 | 12 continue |
---|
| 376 | |
---|
[1414] | 377 | do 13 ilev=1,nlev |
---|
| 378 | do j=1,npoints |
---|
| 379 | if (at(j,ilev) .gt. atmax(j) .and. |
---|
| 380 | & ilev .ge. itrop(j)) atmax(j)=at(j,ilev) |
---|
| 381 | enddo |
---|
| 382 | 13 continue |
---|
| 383 | |
---|
[1262] | 384 | end if |
---|
| 385 | |
---|
| 386 | |
---|
| 387 | if (top_height .eq. 1 .or. top_height .eq. 3) then |
---|
| 388 | do j=1,npoints |
---|
| 389 | meantb(j) = 0. |
---|
| 390 | meantbclr(j) = 0. |
---|
| 391 | end do |
---|
| 392 | else |
---|
| 393 | do j=1,npoints |
---|
| 394 | meantb(j) = output_missing_value |
---|
| 395 | meantbclr(j) = output_missing_value |
---|
| 396 | end do |
---|
| 397 | end if |
---|
| 398 | |
---|
| 399 | ! -----------------------------------------------------! |
---|
| 400 | |
---|
| 401 | ! ---------------------------------------------------! |
---|
| 402 | |
---|
| 403 | do ilev=1,nlev |
---|
| 404 | do j=1,npoints |
---|
| 405 | |
---|
| 406 | rangevec(j)=0 |
---|
| 407 | |
---|
| 408 | if (cc(j,ilev) .lt. 0. .or. cc(j,ilev) .gt. 1.) then |
---|
| 409 | ! error = cloud fraction less than zero |
---|
| 410 | ! error = cloud fraction greater than 1 |
---|
| 411 | rangevec(j)=rangevec(j)+1 |
---|
| 412 | endif |
---|
| 413 | |
---|
| 414 | if (conv(j,ilev) .lt. 0. .or. conv(j,ilev) .gt. 1.) then |
---|
| 415 | ! ' error = convective cloud fraction less than zero' |
---|
| 416 | ! ' error = convective cloud fraction greater than 1' |
---|
| 417 | rangevec(j)=rangevec(j)+2 |
---|
| 418 | endif |
---|
| 419 | |
---|
| 420 | if (dtau_s(j,ilev) .lt. 0.) then |
---|
| 421 | ! ' error = stratiform cloud opt. depth less than zero' |
---|
| 422 | rangevec(j)=rangevec(j)+4 |
---|
| 423 | endif |
---|
| 424 | |
---|
| 425 | if (dtau_c(j,ilev) .lt. 0.) then |
---|
| 426 | ! ' error = convective cloud opt. depth less than zero' |
---|
| 427 | rangevec(j)=rangevec(j)+8 |
---|
| 428 | endif |
---|
| 429 | |
---|
| 430 | if (dem_s(j,ilev) .lt. 0. .or. dem_s(j,ilev) .gt. 1.) then |
---|
| 431 | ! ' error = stratiform cloud emissivity less than zero' |
---|
| 432 | ! ' error = stratiform cloud emissivity greater than 1' |
---|
| 433 | rangevec(j)=rangevec(j)+16 |
---|
| 434 | endif |
---|
| 435 | |
---|
| 436 | if (dem_c(j,ilev) .lt. 0. .or. dem_c(j,ilev) .gt. 1.) then |
---|
| 437 | ! ' error = convective cloud emissivity less than zero' |
---|
| 438 | ! ' error = convective cloud emissivity greater than 1' |
---|
| 439 | rangevec(j)=rangevec(j)+32 |
---|
| 440 | endif |
---|
| 441 | enddo |
---|
| 442 | |
---|
| 443 | rangeerror=0 |
---|
| 444 | do j=1,npoints |
---|
| 445 | rangeerror=rangeerror+rangevec(j) |
---|
| 446 | enddo |
---|
| 447 | |
---|
| 448 | if (rangeerror.ne.0) then |
---|
| 449 | write (6,*) 'Input variable out of range' |
---|
| 450 | write (6,*) 'rangevec:' |
---|
| 451 | write (6,*) rangevec |
---|
| 452 | call flush(6) |
---|
| 453 | STOP |
---|
| 454 | endif |
---|
| 455 | enddo |
---|
| 456 | |
---|
| 457 | ! |
---|
| 458 | ! ---------------------------------------------------! |
---|
| 459 | |
---|
| 460 | |
---|
| 461 | ! |
---|
| 462 | ! ---------------------------------------------------! |
---|
| 463 | ! COMPUTE CLOUD OPTICAL DEPTH FOR EACH COLUMN and |
---|
| 464 | ! put into vector tau |
---|
| 465 | |
---|
| 466 | !initialize tau and albedocld to zero |
---|
| 467 | do 15 ibox=1,ncol |
---|
| 468 | do j=1,npoints |
---|
| 469 | tau(j,ibox)=0. |
---|
| 470 | albedocld(j,ibox)=0. |
---|
| 471 | boxtau(j,ibox)=output_missing_value |
---|
| 472 | boxptop(j,ibox)=output_missing_value |
---|
| 473 | box_cloudy(j,ibox)=.false. |
---|
| 474 | enddo |
---|
| 475 | 15 continue |
---|
| 476 | |
---|
| 477 | !compute total cloud optical depth for each column |
---|
| 478 | do ilev=1,nlev |
---|
| 479 | !increment tau for each of the boxes |
---|
| 480 | do ibox=1,ncol |
---|
| 481 | do j=1,npoints |
---|
| 482 | if (frac_out(j,ibox,ilev).eq.1) then |
---|
| 483 | tau(j,ibox)=tau(j,ibox) |
---|
| 484 | & + dtau_s(j,ilev) |
---|
| 485 | endif |
---|
| 486 | if (frac_out(j,ibox,ilev).eq.2) then |
---|
| 487 | tau(j,ibox)=tau(j,ibox) |
---|
| 488 | & + dtau_c(j,ilev) |
---|
| 489 | end if |
---|
| 490 | enddo |
---|
| 491 | enddo ! ibox |
---|
| 492 | enddo ! ilev |
---|
| 493 | if (ncolprint.ne.0) then |
---|
| 494 | |
---|
| 495 | do j=1,npoints ,1000 |
---|
| 496 | write(6,'(a10)') 'j=' |
---|
| 497 | write(6,'(8I10)') j |
---|
| 498 | write(6,'(i2,1X,8(f7.2,1X))') |
---|
| 499 | & ilev, |
---|
| 500 | & (tau(j,ibox),ibox=1,ncolprint) |
---|
| 501 | enddo |
---|
| 502 | endif |
---|
| 503 | ! |
---|
| 504 | ! ---------------------------------------------------! |
---|
| 505 | |
---|
| 506 | |
---|
| 507 | |
---|
| 508 | ! |
---|
| 509 | ! ---------------------------------------------------! |
---|
| 510 | ! COMPUTE INFRARED BRIGHTNESS TEMPERUATRES |
---|
| 511 | ! AND CLOUD TOP TEMPERATURE SATELLITE SHOULD SEE |
---|
| 512 | ! |
---|
| 513 | ! again this is only done if top_height = 1 or 3 |
---|
| 514 | ! |
---|
| 515 | ! fluxtop is the 10.5 micron radiance at the top of the |
---|
| 516 | ! atmosphere |
---|
| 517 | ! trans_layers_above is the total transmissivity in the layers |
---|
| 518 | ! above the current layer |
---|
| 519 | ! fluxtop_clrsky(j) and trans_layers_above_clrsky(j) are the clear |
---|
| 520 | ! sky versions of these quantities. |
---|
| 521 | |
---|
| 522 | if (top_height .eq. 1 .or. top_height .eq. 3) then |
---|
| 523 | |
---|
| 524 | |
---|
| 525 | !---------------------------------------------------------------------- |
---|
| 526 | ! |
---|
| 527 | ! DO CLEAR SKY RADIANCE CALCULATION FIRST |
---|
| 528 | ! |
---|
| 529 | !compute water vapor continuum emissivity |
---|
| 530 | !this treatment follows Schwarkzopf and Ramasamy |
---|
| 531 | !JGR 1999,vol 104, pages 9467-9499. |
---|
| 532 | !the emissivity is calculated at a wavenumber of 955 cm-1, |
---|
| 533 | !or 10.47 microns |
---|
| 534 | wtmair = 28.9644 |
---|
| 535 | wtmh20 = 18.01534 |
---|
| 536 | Navo = 6.023E+23 |
---|
| 537 | grav = 9.806650E+02 |
---|
| 538 | pstd = 1.013250E+06 |
---|
| 539 | t0 = 296. |
---|
| 540 | if (ncolprint .ne. 0) |
---|
| 541 | & write(6,*) 'ilev pw (kg/m2) tauwv(j) dem_wv' |
---|
| 542 | do 125 ilev=1,nlev |
---|
| 543 | do j=1,npoints |
---|
| 544 | !press and dpress are dyne/cm2 = Pascals *10 |
---|
| 545 | press(j) = pfull(j,ilev)*10. |
---|
| 546 | dpress(j) = (phalf(j,ilev+1)-phalf(j,ilev))*10 |
---|
| 547 | !atmden = g/cm2 = kg/m2 / 10 |
---|
| 548 | atmden(j) = dpress(j)/grav |
---|
| 549 | rvh20(j) = qv(j,ilev)*wtmair/wtmh20 |
---|
| 550 | wk(j) = rvh20(j)*Navo*atmden(j)/wtmair |
---|
| 551 | rhoave(j) = (press(j)/pstd)*(t0/at(j,ilev)) |
---|
| 552 | rh20s(j) = rvh20(j)*rhoave(j) |
---|
| 553 | rfrgn(j) = rhoave(j)-rh20s(j) |
---|
| 554 | tmpexp(j) = exp(-0.02*(at(j,ilev)-t0)) |
---|
| 555 | tauwv(j) = wk(j)*1.e-20*( |
---|
| 556 | & (0.0224697*rh20s(j)*tmpexp(j)) + |
---|
| 557 | & (3.41817e-7*rfrgn(j)) )*0.98 |
---|
| 558 | dem_wv(j,ilev) = 1. - exp( -1. * tauwv(j)) |
---|
| 559 | enddo |
---|
| 560 | if (ncolprint .ne. 0) then |
---|
| 561 | do j=1,npoints ,1000 |
---|
| 562 | write(6,'(a10)') 'j=' |
---|
| 563 | write(6,'(8I10)') j |
---|
| 564 | write(6,'(i2,1X,3(f8.3,3X))') ilev, |
---|
| 565 | & qv(j,ilev)*(phalf(j,ilev+1)-phalf(j,ilev))/(grav/100.), |
---|
| 566 | & tauwv(j),dem_wv(j,ilev) |
---|
| 567 | enddo |
---|
| 568 | endif |
---|
| 569 | 125 continue |
---|
| 570 | |
---|
| 571 | !initialize variables |
---|
| 572 | do j=1,npoints |
---|
| 573 | fluxtop_clrsky(j) = 0. |
---|
| 574 | trans_layers_above_clrsky(j)=1. |
---|
| 575 | enddo |
---|
| 576 | |
---|
| 577 | do ilev=1,nlev |
---|
| 578 | do j=1,npoints |
---|
| 579 | |
---|
| 580 | ! Black body emission at temperature of the layer |
---|
| 581 | |
---|
| 582 | bb(j)=1 / ( exp(1307.27/at(j,ilev)) - 1. ) |
---|
| 583 | !bb(j)= 5.67e-8*at(j,ilev)**4 |
---|
| 584 | |
---|
| 585 | ! increase TOA flux by flux emitted from layer |
---|
| 586 | ! times total transmittance in layers above |
---|
| 587 | |
---|
| 588 | fluxtop_clrsky(j) = fluxtop_clrsky(j) |
---|
| 589 | & + dem_wv(j,ilev)*bb(j)*trans_layers_above_clrsky(j) |
---|
| 590 | |
---|
| 591 | ! update trans_layers_above with transmissivity |
---|
| 592 | ! from this layer for next time around loop |
---|
| 593 | |
---|
| 594 | trans_layers_above_clrsky(j)= |
---|
| 595 | & trans_layers_above_clrsky(j)*(1.-dem_wv(j,ilev)) |
---|
| 596 | |
---|
| 597 | |
---|
| 598 | enddo |
---|
| 599 | if (ncolprint.ne.0) then |
---|
| 600 | do j=1,npoints ,1000 |
---|
| 601 | write(6,'(a10)') 'j=' |
---|
| 602 | write(6,'(8I10)') j |
---|
| 603 | write (6,'(a)') 'ilev:' |
---|
| 604 | write (6,'(I2)') ilev |
---|
| 605 | |
---|
| 606 | write (6,'(a)') |
---|
| 607 | & 'emiss_layer,100.*bb(j),100.*f,total_trans:' |
---|
| 608 | write (6,'(4(f7.2,1X))') dem_wv(j,ilev),100.*bb(j), |
---|
| 609 | & 100.*fluxtop_clrsky(j),trans_layers_above_clrsky(j) |
---|
| 610 | enddo |
---|
| 611 | endif |
---|
| 612 | |
---|
| 613 | enddo !loop over level |
---|
| 614 | |
---|
| 615 | do j=1,npoints |
---|
| 616 | !add in surface emission |
---|
| 617 | bb(j)=1/( exp(1307.27/skt(j)) - 1. ) |
---|
| 618 | !bb(j)=5.67e-8*skt(j)**4 |
---|
| 619 | |
---|
| 620 | fluxtop_clrsky(j) = fluxtop_clrsky(j) + emsfc_lw * bb(j) |
---|
| 621 | & * trans_layers_above_clrsky(j) |
---|
| 622 | |
---|
| 623 | !clear sky brightness temperature |
---|
| 624 | meantbclr(j) = 1307.27/(log(1.+(1./fluxtop_clrsky(j)))) |
---|
| 625 | |
---|
| 626 | enddo |
---|
| 627 | |
---|
| 628 | if (ncolprint.ne.0) then |
---|
| 629 | do j=1,npoints ,1000 |
---|
| 630 | write(6,'(a10)') 'j=' |
---|
| 631 | write(6,'(8I10)') j |
---|
| 632 | write (6,'(a)') 'id:' |
---|
| 633 | write (6,'(a)') 'surface' |
---|
| 634 | |
---|
| 635 | write (6,'(a)') 'emsfc,100.*bb(j),100.*f,total_trans:' |
---|
| 636 | write (6,'(5(f7.2,1X))') emsfc_lw,100.*bb(j), |
---|
| 637 | & 100.*fluxtop_clrsky(j), |
---|
| 638 | & trans_layers_above_clrsky(j), meantbclr(j) |
---|
| 639 | enddo |
---|
| 640 | endif |
---|
| 641 | |
---|
| 642 | |
---|
| 643 | ! |
---|
| 644 | ! END OF CLEAR SKY CALCULATION |
---|
| 645 | ! |
---|
| 646 | !---------------------------------------------------------------- |
---|
| 647 | |
---|
| 648 | |
---|
| 649 | |
---|
| 650 | if (ncolprint.ne.0) then |
---|
| 651 | |
---|
| 652 | do j=1,npoints ,1000 |
---|
| 653 | write(6,'(a10)') 'j=' |
---|
| 654 | write(6,'(8I10)') j |
---|
| 655 | write (6,'(a)') 'ts:' |
---|
| 656 | write (6,'(8f7.2)') (skt(j),ibox=1,ncolprint) |
---|
| 657 | |
---|
| 658 | write (6,'(a)') 'ta_rev:' |
---|
| 659 | write (6,'(8f7.2)') |
---|
| 660 | & ((at(j,ilev2),ibox=1,ncolprint),ilev2=1,nlev) |
---|
| 661 | |
---|
| 662 | enddo |
---|
| 663 | endif |
---|
| 664 | !loop over columns |
---|
| 665 | do ibox=1,ncol |
---|
| 666 | do j=1,npoints |
---|
| 667 | fluxtop(j,ibox)=0. |
---|
| 668 | trans_layers_above(j,ibox)=1. |
---|
| 669 | enddo |
---|
| 670 | enddo |
---|
| 671 | |
---|
| 672 | do ilev=1,nlev |
---|
| 673 | do j=1,npoints |
---|
| 674 | ! Black body emission at temperature of the layer |
---|
| 675 | |
---|
| 676 | bb(j)=1 / ( exp(1307.27/at(j,ilev)) - 1. ) |
---|
| 677 | !bb(j)= 5.67e-8*at(j,ilev)**4 |
---|
| 678 | enddo |
---|
| 679 | |
---|
| 680 | do ibox=1,ncol |
---|
| 681 | do j=1,npoints |
---|
| 682 | |
---|
| 683 | ! emissivity for point in this layer |
---|
| 684 | if (frac_out(j,ibox,ilev).eq.1) then |
---|
| 685 | dem(j,ibox)= 1. - |
---|
| 686 | & ( (1. - dem_wv(j,ilev)) * (1. - dem_s(j,ilev)) ) |
---|
| 687 | else if (frac_out(j,ibox,ilev).eq.2) then |
---|
| 688 | dem(j,ibox)= 1. - |
---|
| 689 | & ( (1. - dem_wv(j,ilev)) * (1. - dem_c(j,ilev)) ) |
---|
| 690 | else |
---|
| 691 | dem(j,ibox)= dem_wv(j,ilev) |
---|
| 692 | end if |
---|
| 693 | |
---|
| 694 | |
---|
| 695 | ! increase TOA flux by flux emitted from layer |
---|
| 696 | ! times total transmittance in layers above |
---|
| 697 | |
---|
| 698 | fluxtop(j,ibox) = fluxtop(j,ibox) |
---|
| 699 | & + dem(j,ibox) * bb(j) |
---|
| 700 | & * trans_layers_above(j,ibox) |
---|
| 701 | |
---|
| 702 | ! update trans_layers_above with transmissivity |
---|
| 703 | ! from this layer for next time around loop |
---|
| 704 | |
---|
| 705 | trans_layers_above(j,ibox)= |
---|
| 706 | & trans_layers_above(j,ibox)*(1.-dem(j,ibox)) |
---|
| 707 | |
---|
| 708 | enddo ! j |
---|
| 709 | enddo ! ibox |
---|
| 710 | |
---|
| 711 | if (ncolprint.ne.0) then |
---|
| 712 | do j=1,npoints,1000 |
---|
| 713 | write (6,'(a)') 'ilev:' |
---|
| 714 | write (6,'(I2)') ilev |
---|
| 715 | |
---|
| 716 | write(6,'(a10)') 'j=' |
---|
| 717 | write(6,'(8I10)') j |
---|
| 718 | write (6,'(a)') 'emiss_layer:' |
---|
| 719 | write (6,'(8f7.2)') (dem(j,ibox),ibox=1,ncolprint) |
---|
| 720 | |
---|
| 721 | write (6,'(a)') '100.*bb(j):' |
---|
| 722 | write (6,'(8f7.2)') (100.*bb(j),ibox=1,ncolprint) |
---|
| 723 | |
---|
| 724 | write (6,'(a)') '100.*f:' |
---|
| 725 | write (6,'(8f7.2)') |
---|
| 726 | & (100.*fluxtop(j,ibox),ibox=1,ncolprint) |
---|
| 727 | |
---|
| 728 | write (6,'(a)') 'total_trans:' |
---|
| 729 | write (6,'(8f7.2)') |
---|
| 730 | & (trans_layers_above(j,ibox),ibox=1,ncolprint) |
---|
| 731 | enddo |
---|
| 732 | endif |
---|
| 733 | |
---|
| 734 | enddo ! ilev |
---|
| 735 | |
---|
| 736 | |
---|
| 737 | do j=1,npoints |
---|
| 738 | !add in surface emission |
---|
| 739 | bb(j)=1/( exp(1307.27/skt(j)) - 1. ) |
---|
| 740 | !bb(j)=5.67e-8*skt(j)**4 |
---|
| 741 | end do |
---|
| 742 | |
---|
| 743 | do ibox=1,ncol |
---|
| 744 | do j=1,npoints |
---|
| 745 | |
---|
| 746 | !add in surface emission |
---|
| 747 | |
---|
| 748 | fluxtop(j,ibox) = fluxtop(j,ibox) |
---|
| 749 | & + emsfc_lw * bb(j) |
---|
| 750 | & * trans_layers_above(j,ibox) |
---|
| 751 | |
---|
| 752 | end do |
---|
| 753 | end do |
---|
| 754 | |
---|
| 755 | !calculate mean infrared brightness temperature |
---|
| 756 | do ibox=1,ncol |
---|
| 757 | do j=1,npoints |
---|
| 758 | meantb(j) = meantb(j)+1307.27/(log(1.+(1./fluxtop(j,ibox)))) |
---|
| 759 | end do |
---|
| 760 | end do |
---|
| 761 | do j=1, npoints |
---|
| 762 | meantb(j) = meantb(j) / real(ncol) |
---|
| 763 | end do |
---|
| 764 | |
---|
| 765 | if (ncolprint.ne.0) then |
---|
| 766 | |
---|
| 767 | do j=1,npoints ,1000 |
---|
| 768 | write(6,'(a10)') 'j=' |
---|
| 769 | write(6,'(8I10)') j |
---|
| 770 | write (6,'(a)') 'id:' |
---|
| 771 | write (6,'(a)') 'surface' |
---|
| 772 | |
---|
| 773 | write (6,'(a)') 'emiss_layer:' |
---|
| 774 | write (6,'(8f7.2)') (dem(1,ibox),ibox=1,ncolprint) |
---|
| 775 | |
---|
| 776 | write (6,'(a)') '100.*bb(j):' |
---|
| 777 | write (6,'(8f7.2)') (100.*bb(j),ibox=1,ncolprint) |
---|
| 778 | |
---|
| 779 | write (6,'(a)') '100.*f:' |
---|
| 780 | write (6,'(8f7.2)') (100.*fluxtop(j,ibox),ibox=1,ncolprint) |
---|
| 781 | |
---|
| 782 | write (6,'(a)') 'meantb(j):' |
---|
| 783 | write (6,'(8f7.2)') (meantb(j),ibox=1,ncolprint) |
---|
| 784 | |
---|
| 785 | end do |
---|
| 786 | endif |
---|
| 787 | |
---|
| 788 | !now that you have the top of atmosphere radiance account |
---|
| 789 | !for ISCCP procedures to determine cloud top temperature |
---|
| 790 | |
---|
| 791 | !account for partially transmitting cloud recompute flux |
---|
| 792 | !ISCCP would see assuming a single layer cloud |
---|
| 793 | !note choice here of 2.13, as it is primarily ice |
---|
| 794 | !clouds which have partial emissivity and need the |
---|
| 795 | !adjustment performed in this section |
---|
| 796 | ! |
---|
| 797 | !If it turns out that the cloud brightness temperature |
---|
| 798 | !is greater than 260K, then the liquid cloud conversion |
---|
| 799 | !factor of 2.56 is used. |
---|
| 800 | ! |
---|
| 801 | !Note that this is discussed on pages 85-87 of |
---|
| 802 | !the ISCCP D level documentation (Rossow et al. 1996) |
---|
| 803 | |
---|
| 804 | do j=1,npoints |
---|
| 805 | !compute minimum brightness temperature and optical depth |
---|
| 806 | btcmin(j) = 1. / ( exp(1307.27/(attrop(j)-5.)) - 1. ) |
---|
| 807 | enddo |
---|
| 808 | do ibox=1,ncol |
---|
| 809 | do j=1,npoints |
---|
| 810 | transmax(j) = (fluxtop(j,ibox)-btcmin(j)) |
---|
| 811 | & /(fluxtop_clrsky(j)-btcmin(j)) |
---|
| 812 | !note that the initial setting of tauir(j) is needed so that |
---|
| 813 | !tauir(j) has a realistic value should the next if block be |
---|
| 814 | !bypassed |
---|
| 815 | tauir(j) = tau(j,ibox) * rec2p13 |
---|
| 816 | taumin(j) = -1. * log(max(min(transmax(j),0.9999999),0.001)) |
---|
| 817 | |
---|
| 818 | enddo |
---|
| 819 | |
---|
| 820 | if (top_height .eq. 1) then |
---|
| 821 | do j=1,npoints |
---|
| 822 | if (transmax(j) .gt. 0.001 .and. |
---|
| 823 | & transmax(j) .le. 0.9999999) then |
---|
| 824 | fluxtopinit(j) = fluxtop(j,ibox) |
---|
| 825 | tauir(j) = tau(j,ibox) *rec2p13 |
---|
| 826 | endif |
---|
| 827 | enddo |
---|
| 828 | do icycle=1,2 |
---|
| 829 | do j=1,npoints |
---|
| 830 | if (tau(j,ibox) .gt. (tauchk )) then |
---|
| 831 | if (transmax(j) .gt. 0.001 .and. |
---|
| 832 | & transmax(j) .le. 0.9999999) then |
---|
| 833 | emcld(j,ibox) = 1. - exp(-1. * tauir(j) ) |
---|
| 834 | fluxtop(j,ibox) = fluxtopinit(j) - |
---|
| 835 | & ((1.-emcld(j,ibox))*fluxtop_clrsky(j)) |
---|
| 836 | fluxtop(j,ibox)=max(1.E-06, |
---|
| 837 | & (fluxtop(j,ibox)/emcld(j,ibox))) |
---|
| 838 | tb(j,ibox)= 1307.27 |
---|
| 839 | & / (log(1. + (1./fluxtop(j,ibox)))) |
---|
| 840 | if (tb(j,ibox) .gt. 260.) then |
---|
| 841 | tauir(j) = tau(j,ibox) / 2.56 |
---|
| 842 | end if |
---|
| 843 | end if |
---|
| 844 | end if |
---|
| 845 | enddo |
---|
| 846 | enddo |
---|
| 847 | |
---|
| 848 | endif |
---|
| 849 | |
---|
| 850 | do j=1,npoints |
---|
| 851 | if (tau(j,ibox) .gt. (tauchk )) then |
---|
| 852 | !cloudy box |
---|
| 853 | !NOTE: tb is the cloud-top temperature not infrared brightness temperature |
---|
| 854 | !at this point in the code |
---|
| 855 | tb(j,ibox)= 1307.27/ (log(1. + (1./fluxtop(j,ibox)))) |
---|
| 856 | if (top_height.eq.1.and.tauir(j).lt.taumin(j)) then |
---|
| 857 | tb(j,ibox) = attrop(j) - 5. |
---|
| 858 | tau(j,ibox) = 2.13*taumin(j) |
---|
| 859 | end if |
---|
| 860 | else |
---|
| 861 | !clear sky brightness temperature |
---|
| 862 | tb(j,ibox) = meantbclr(j) |
---|
| 863 | end if |
---|
| 864 | enddo ! j |
---|
| 865 | enddo ! ibox |
---|
| 866 | |
---|
| 867 | if (ncolprint.ne.0) then |
---|
| 868 | |
---|
| 869 | do j=1,npoints,1000 |
---|
| 870 | write(6,'(a10)') 'j=' |
---|
| 871 | write(6,'(8I10)') j |
---|
| 872 | |
---|
| 873 | write (6,'(a)') 'attrop:' |
---|
| 874 | write (6,'(8f7.2)') (attrop(j)) |
---|
| 875 | |
---|
| 876 | write (6,'(a)') 'btcmin:' |
---|
| 877 | write (6,'(8f7.2)') (btcmin(j)) |
---|
| 878 | |
---|
| 879 | write (6,'(a)') 'fluxtop_clrsky*100:' |
---|
| 880 | write (6,'(8f7.2)') |
---|
| 881 | & (100.*fluxtop_clrsky(j)) |
---|
| 882 | |
---|
| 883 | write (6,'(a)') '100.*f_adj:' |
---|
| 884 | write (6,'(8f7.2)') (100.*fluxtop(j,ibox),ibox=1,ncolprint) |
---|
| 885 | |
---|
| 886 | write (6,'(a)') 'transmax:' |
---|
| 887 | write (6,'(8f7.2)') (transmax(ibox),ibox=1,ncolprint) |
---|
| 888 | |
---|
| 889 | write (6,'(a)') 'tau:' |
---|
| 890 | write (6,'(8f7.2)') (tau(j,ibox),ibox=1,ncolprint) |
---|
| 891 | |
---|
| 892 | write (6,'(a)') 'emcld:' |
---|
| 893 | write (6,'(8f7.2)') (emcld(j,ibox),ibox=1,ncolprint) |
---|
| 894 | |
---|
| 895 | write (6,'(a)') 'total_trans:' |
---|
| 896 | write (6,'(8f7.2)') |
---|
| 897 | & (trans_layers_above(j,ibox),ibox=1,ncolprint) |
---|
| 898 | |
---|
| 899 | write (6,'(a)') 'total_emiss:' |
---|
| 900 | write (6,'(8f7.2)') |
---|
| 901 | & (1.0-trans_layers_above(j,ibox),ibox=1,ncolprint) |
---|
| 902 | |
---|
| 903 | write (6,'(a)') 'total_trans:' |
---|
| 904 | write (6,'(8f7.2)') |
---|
| 905 | & (trans_layers_above(j,ibox),ibox=1,ncolprint) |
---|
| 906 | |
---|
| 907 | write (6,'(a)') 'ppout:' |
---|
| 908 | write (6,'(8f7.2)') (tb(j,ibox),ibox=1,ncolprint) |
---|
| 909 | enddo ! j |
---|
| 910 | endif |
---|
| 911 | |
---|
| 912 | end if |
---|
| 913 | |
---|
| 914 | ! ---------------------------------------------------! |
---|
| 915 | |
---|
| 916 | ! |
---|
| 917 | ! ---------------------------------------------------! |
---|
| 918 | ! DETERMINE CLOUD TOP PRESSURE |
---|
| 919 | ! |
---|
| 920 | ! again the 2 methods differ according to whether |
---|
| 921 | ! or not you use the physical cloud top pressure (top_height = 2) |
---|
| 922 | ! or the radiatively determined cloud top pressure (top_height = 1 or 3) |
---|
| 923 | ! |
---|
| 924 | |
---|
| 925 | !compute cloud top pressure |
---|
| 926 | do 30 ibox=1,ncol |
---|
| 927 | !segregate according to optical thickness |
---|
| 928 | if (top_height .eq. 1 .or. top_height .eq. 3) then |
---|
| 929 | !find level whose temperature |
---|
| 930 | !most closely matches brightness temperature |
---|
| 931 | do j=1,npoints |
---|
| 932 | nmatch(j)=0 |
---|
| 933 | enddo |
---|
| 934 | do 29 k1=1,nlev-1 |
---|
| 935 | if (top_height_direction .eq. 2) then |
---|
| 936 | ilev = nlev - k1 |
---|
| 937 | else |
---|
| 938 | ilev = k1 |
---|
| 939 | end if |
---|
| 940 | !cdir nodep |
---|
| 941 | do j=1,npoints |
---|
| 942 | if (ilev .ge. itrop(j)) then |
---|
| 943 | if ((at(j,ilev) .ge. tb(j,ibox) .and. |
---|
| 944 | & at(j,ilev+1) .le. tb(j,ibox)) .or. |
---|
| 945 | & (at(j,ilev) .le. tb(j,ibox) .and. |
---|
| 946 | & at(j,ilev+1) .ge. tb(j,ibox))) then |
---|
| 947 | nmatch(j)=nmatch(j)+1 |
---|
| 948 | match(j,nmatch(j))=ilev |
---|
| 949 | end if |
---|
| 950 | end if |
---|
| 951 | enddo |
---|
| 952 | 29 continue |
---|
| 953 | |
---|
| 954 | do j=1,npoints |
---|
| 955 | if (nmatch(j) .ge. 1) then |
---|
| 956 | k1 = match(j,nmatch(j)) |
---|
| 957 | k2 = k1 + 1 |
---|
| 958 | logp1 = log(pfull(j,k1)) |
---|
| 959 | logp2 = log(pfull(j,k2)) |
---|
| 960 | atd = max(tauchk,abs(at(j,k2) - at(j,k1))) |
---|
| 961 | logp=logp1+(logp2-logp1)*abs(tb(j,ibox)-at(j,k1))/atd |
---|
| 962 | ptop(j,ibox) = exp(logp) |
---|
| 963 | if(abs(pfull(j,k1)-ptop(j,ibox)) .lt. |
---|
| 964 | & abs(pfull(j,k2)-ptop(j,ibox))) then |
---|
| 965 | levmatch(j,ibox)=k1 |
---|
| 966 | else |
---|
| 967 | levmatch(j,ibox)=k2 |
---|
| 968 | end if |
---|
| 969 | else |
---|
| 970 | if (tb(j,ibox) .le. attrop(j)) then |
---|
| 971 | ptop(j,ibox)=ptrop(j) |
---|
| 972 | levmatch(j,ibox)=itrop(j) |
---|
| 973 | end if |
---|
| 974 | if (tb(j,ibox) .ge. atmax(j)) then |
---|
| 975 | ptop(j,ibox)=pfull(j,nlev) |
---|
| 976 | levmatch(j,ibox)=nlev |
---|
| 977 | end if |
---|
| 978 | end if |
---|
| 979 | enddo ! j |
---|
| 980 | |
---|
| 981 | else ! if (top_height .eq. 1 .or. top_height .eq. 3) |
---|
| 982 | |
---|
| 983 | do j=1,npoints |
---|
| 984 | ptop(j,ibox)=0. |
---|
| 985 | enddo |
---|
| 986 | do ilev=1,nlev |
---|
| 987 | do j=1,npoints |
---|
| 988 | if ((ptop(j,ibox) .eq. 0. ) |
---|
| 989 | & .and.(frac_out(j,ibox,ilev) .ne. 0)) then |
---|
| 990 | ptop(j,ibox)=phalf(j,ilev) |
---|
| 991 | levmatch(j,ibox)=ilev |
---|
| 992 | end if |
---|
| 993 | end do |
---|
| 994 | end do |
---|
| 995 | end if |
---|
| 996 | |
---|
| 997 | do j=1,npoints |
---|
| 998 | if (tau(j,ibox) .le. (tauchk )) then |
---|
| 999 | ptop(j,ibox)=0. |
---|
| 1000 | levmatch(j,ibox)=0 |
---|
| 1001 | endif |
---|
| 1002 | enddo |
---|
| 1003 | |
---|
| 1004 | 30 continue |
---|
| 1005 | |
---|
| 1006 | ! |
---|
| 1007 | ! |
---|
| 1008 | ! ---------------------------------------------------! |
---|
| 1009 | |
---|
| 1010 | |
---|
| 1011 | ! |
---|
| 1012 | ! ---------------------------------------------------! |
---|
| 1013 | ! DETERMINE ISCCP CLOUD TYPE FREQUENCIES |
---|
| 1014 | ! |
---|
| 1015 | ! Now that ptop and tau have been determined, |
---|
| 1016 | ! determine amount of each of the 49 ISCCP cloud |
---|
| 1017 | ! types |
---|
| 1018 | ! |
---|
| 1019 | ! Also compute grid box mean cloud top pressure and |
---|
| 1020 | ! optical thickness. The mean cloud top pressure and |
---|
| 1021 | ! optical thickness are averages over the cloudy |
---|
| 1022 | ! area only. The mean cloud top pressure is a linear |
---|
| 1023 | ! average of the cloud top pressures. The mean cloud |
---|
| 1024 | ! optical thickness is computed by converting optical |
---|
| 1025 | ! thickness to an albedo, averaging in albedo units, |
---|
| 1026 | ! then converting the average albedo back to a mean |
---|
| 1027 | ! optical thickness. |
---|
| 1028 | ! |
---|
| 1029 | |
---|
| 1030 | !compute isccp frequencies |
---|
| 1031 | |
---|
| 1032 | !reset frequencies |
---|
| 1033 | do 38 ilev=1,7 |
---|
| 1034 | do 38 ilev2=1,7 |
---|
| 1035 | do j=1,npoints ! |
---|
| 1036 | if (sunlit(j).eq.1 .or. top_height .eq. 3) then |
---|
| 1037 | fq_isccp(j,ilev,ilev2)= 0. |
---|
| 1038 | else |
---|
| 1039 | fq_isccp(j,ilev,ilev2)= output_missing_value |
---|
| 1040 | end if |
---|
| 1041 | enddo |
---|
| 1042 | 38 continue |
---|
| 1043 | |
---|
| 1044 | !reset variables need for averaging cloud properties |
---|
| 1045 | do j=1,npoints |
---|
| 1046 | if (sunlit(j).eq.1 .or. top_height .eq. 3) then |
---|
| 1047 | totalcldarea(j) = 0. |
---|
| 1048 | meanalbedocld(j) = 0. |
---|
| 1049 | meanptop(j) = 0. |
---|
| 1050 | meantaucld(j) = 0. |
---|
| 1051 | else |
---|
| 1052 | totalcldarea(j) = output_missing_value |
---|
| 1053 | meanalbedocld(j) = output_missing_value |
---|
| 1054 | meanptop(j) = output_missing_value |
---|
| 1055 | meantaucld(j) = output_missing_value |
---|
| 1056 | end if |
---|
| 1057 | enddo ! j |
---|
| 1058 | |
---|
| 1059 | boxarea = 1./real(ncol) |
---|
| 1060 | |
---|
| 1061 | do 39 ibox=1,ncol |
---|
| 1062 | do j=1,npoints |
---|
| 1063 | |
---|
| 1064 | if (tau(j,ibox) .gt. (tauchk ) |
---|
| 1065 | & .and. ptop(j,ibox) .gt. 0.) then |
---|
| 1066 | box_cloudy(j,ibox)=.true. |
---|
| 1067 | endif |
---|
| 1068 | |
---|
| 1069 | if (box_cloudy(j,ibox)) then |
---|
| 1070 | |
---|
| 1071 | if (sunlit(j).eq.1 .or. top_height .eq. 3) then |
---|
| 1072 | |
---|
| 1073 | boxtau(j,ibox) = tau(j,ibox) |
---|
| 1074 | |
---|
| 1075 | if (tau(j,ibox) .ge. isccp_taumin) then |
---|
| 1076 | totalcldarea(j) = totalcldarea(j) + boxarea |
---|
| 1077 | |
---|
| 1078 | !convert optical thickness to albedo |
---|
| 1079 | albedocld(j,ibox) |
---|
| 1080 | & = (tau(j,ibox)**0.895)/((tau(j,ibox)**0.895)+6.82) |
---|
| 1081 | |
---|
| 1082 | !contribute to averaging |
---|
| 1083 | meanalbedocld(j) = meanalbedocld(j) |
---|
| 1084 | & +albedocld(j,ibox)*boxarea |
---|
| 1085 | |
---|
| 1086 | end if |
---|
| 1087 | |
---|
| 1088 | endif |
---|
| 1089 | |
---|
| 1090 | endif |
---|
| 1091 | |
---|
| 1092 | if (sunlit(j).eq.1 .or. top_height .eq. 3) then |
---|
| 1093 | |
---|
| 1094 | if (box_cloudy(j,ibox)) then |
---|
| 1095 | |
---|
| 1096 | !convert ptop to millibars |
---|
| 1097 | ptop(j,ibox)=ptop(j,ibox) / 100. |
---|
| 1098 | |
---|
| 1099 | !save for output cloud top pressure and optical thickness |
---|
| 1100 | boxptop(j,ibox) = ptop(j,ibox) |
---|
| 1101 | |
---|
| 1102 | if (tau(j,ibox) .ge. isccp_taumin) then |
---|
| 1103 | meanptop(j) = meanptop(j) + ptop(j,ibox)*boxarea |
---|
| 1104 | end if |
---|
| 1105 | |
---|
| 1106 | !reset itau(j), ipres(j) |
---|
| 1107 | itau(j) = 0 |
---|
| 1108 | ipres(j) = 0 |
---|
| 1109 | |
---|
| 1110 | !determine optical depth category |
---|
| 1111 | if (tau(j,ibox) .lt. isccp_taumin) then |
---|
| 1112 | itau(j)=1 |
---|
| 1113 | else if (tau(j,ibox) .ge. isccp_taumin |
---|
| 1114 | & |
---|
| 1115 | & .and. tau(j,ibox) .lt. 1.3) then |
---|
| 1116 | itau(j)=2 |
---|
| 1117 | else if (tau(j,ibox) .ge. 1.3 |
---|
| 1118 | & .and. tau(j,ibox) .lt. 3.6) then |
---|
| 1119 | itau(j)=3 |
---|
| 1120 | else if (tau(j,ibox) .ge. 3.6 |
---|
| 1121 | & .and. tau(j,ibox) .lt. 9.4) then |
---|
| 1122 | itau(j)=4 |
---|
| 1123 | else if (tau(j,ibox) .ge. 9.4 |
---|
| 1124 | & .and. tau(j,ibox) .lt. 23.) then |
---|
| 1125 | itau(j)=5 |
---|
| 1126 | else if (tau(j,ibox) .ge. 23. |
---|
| 1127 | & .and. tau(j,ibox) .lt. 60.) then |
---|
| 1128 | itau(j)=6 |
---|
| 1129 | else if (tau(j,ibox) .ge. 60.) then |
---|
| 1130 | itau(j)=7 |
---|
| 1131 | end if |
---|
| 1132 | |
---|
| 1133 | !determine cloud top pressure category |
---|
| 1134 | if ( ptop(j,ibox) .gt. 0. |
---|
| 1135 | & .and.ptop(j,ibox) .lt. 180.) then |
---|
| 1136 | ipres(j)=1 |
---|
| 1137 | else if(ptop(j,ibox) .ge. 180. |
---|
| 1138 | & .and.ptop(j,ibox) .lt. 310.) then |
---|
| 1139 | ipres(j)=2 |
---|
| 1140 | else if(ptop(j,ibox) .ge. 310. |
---|
| 1141 | & .and.ptop(j,ibox) .lt. 440.) then |
---|
| 1142 | ipres(j)=3 |
---|
| 1143 | else if(ptop(j,ibox) .ge. 440. |
---|
| 1144 | & .and.ptop(j,ibox) .lt. 560.) then |
---|
| 1145 | ipres(j)=4 |
---|
| 1146 | else if(ptop(j,ibox) .ge. 560. |
---|
| 1147 | & .and.ptop(j,ibox) .lt. 680.) then |
---|
| 1148 | ipres(j)=5 |
---|
| 1149 | else if(ptop(j,ibox) .ge. 680. |
---|
| 1150 | & .and.ptop(j,ibox) .lt. 800.) then |
---|
| 1151 | ipres(j)=6 |
---|
| 1152 | else if(ptop(j,ibox) .ge. 800.) then |
---|
| 1153 | ipres(j)=7 |
---|
| 1154 | end if |
---|
| 1155 | |
---|
| 1156 | !update frequencies |
---|
| 1157 | if(ipres(j) .gt. 0.and.itau(j) .gt. 0) then |
---|
| 1158 | fq_isccp(j,itau(j),ipres(j))= |
---|
| 1159 | & fq_isccp(j,itau(j),ipres(j))+ boxarea |
---|
| 1160 | end if |
---|
| 1161 | |
---|
| 1162 | end if |
---|
| 1163 | |
---|
| 1164 | end if |
---|
| 1165 | |
---|
| 1166 | enddo ! j |
---|
| 1167 | 39 continue |
---|
| 1168 | |
---|
| 1169 | !compute mean cloud properties |
---|
| 1170 | do j=1,npoints |
---|
| 1171 | if (totalcldarea(j) .gt. 0.) then |
---|
| 1172 | ! code above guarantees that totalcldarea > 0 |
---|
| 1173 | ! only if sunlit .eq. 1 .or. top_height = 3 |
---|
| 1174 | ! and applies only to clouds with tau > isccp_taumin |
---|
| 1175 | meanptop(j) = meanptop(j) / totalcldarea(j) |
---|
| 1176 | meanalbedocld(j) = meanalbedocld(j) / totalcldarea(j) |
---|
| 1177 | meantaucld(j) = (6.82/((1./meanalbedocld(j))-1.))**(1./0.895) |
---|
| 1178 | else |
---|
| 1179 | ! this code is necessary so that in the case that totalcldarea = 0., |
---|
| 1180 | ! that these variables, which are in-cloud averages, are set to missing |
---|
| 1181 | ! note that totalcldarea will be 0. if all the clouds in the grid box have |
---|
| 1182 | ! tau < isccp_taumin |
---|
| 1183 | meanptop(j) = output_missing_value |
---|
| 1184 | meanalbedocld(j) = output_missing_value |
---|
| 1185 | meantaucld(j) = output_missing_value |
---|
| 1186 | end if |
---|
| 1187 | enddo ! j |
---|
| 1188 | ! |
---|
| 1189 | ! ---------------------------------------------------! |
---|
| 1190 | |
---|
| 1191 | ! ---------------------------------------------------! |
---|
| 1192 | ! OPTIONAL PRINTOUT OF DATA TO CHECK PROGRAM |
---|
| 1193 | ! |
---|
| 1194 | if (debugcol.ne.0) then |
---|
| 1195 | ! |
---|
| 1196 | do j=1,npoints,debugcol |
---|
| 1197 | |
---|
| 1198 | !produce character output |
---|
| 1199 | do ilev=1,nlev |
---|
| 1200 | do ibox=1,ncol |
---|
| 1201 | acc(ilev,ibox)=0 |
---|
| 1202 | enddo |
---|
| 1203 | enddo |
---|
| 1204 | |
---|
| 1205 | do ilev=1,nlev |
---|
| 1206 | do ibox=1,ncol |
---|
| 1207 | acc(ilev,ibox)=frac_out(j,ibox,ilev)*2 |
---|
| 1208 | if (levmatch(j,ibox) .eq. ilev) |
---|
| 1209 | & acc(ilev,ibox)=acc(ilev,ibox)+1 |
---|
| 1210 | enddo |
---|
| 1211 | enddo |
---|
| 1212 | |
---|
| 1213 | !print test |
---|
| 1214 | |
---|
| 1215 | write(ftn09,11) j |
---|
| 1216 | 11 format('ftn09.',i4.4) |
---|
| 1217 | open(9, FILE=ftn09, FORM='FORMATTED') |
---|
| 1218 | |
---|
| 1219 | write(9,'(a1)') ' ' |
---|
| 1220 | write(9,'(10i5)') |
---|
| 1221 | & (ilev,ilev=5,nlev,5) |
---|
| 1222 | write(9,'(a1)') ' ' |
---|
| 1223 | |
---|
| 1224 | do ibox=1,ncol |
---|
| 1225 | write(9,'(40(a1),1x,40(a1))') |
---|
| 1226 | & (cchar_realtops(acc(ilev,ibox)+1),ilev=1,nlev) |
---|
| 1227 | & ,(cchar(acc(ilev,ibox)+1),ilev=1,nlev) |
---|
| 1228 | end do |
---|
| 1229 | close(9) |
---|
| 1230 | |
---|
| 1231 | if (ncolprint.ne.0) then |
---|
| 1232 | write(6,'(a1)') ' ' |
---|
| 1233 | write(6,'(a2,1X,5(a7,1X),a50)') |
---|
| 1234 | & 'ilev', |
---|
| 1235 | & 'pfull','at', |
---|
| 1236 | & 'cc*100','dem_s','dtau_s', |
---|
| 1237 | & 'cchar' |
---|
| 1238 | |
---|
| 1239 | ! do 4012 ilev=1,nlev |
---|
| 1240 | ! write(6,'(60i2)') (box(i,ilev),i=1,ncolprint) |
---|
| 1241 | ! write(6,'(i2,1X,5(f7.2,1X),50(a1))') |
---|
| 1242 | ! & ilev, |
---|
| 1243 | ! & pfull(j,ilev)/100.,at(j,ilev), |
---|
| 1244 | ! & cc(j,ilev)*100.0,dem_s(j,ilev),dtau_s(j,ilev) |
---|
| 1245 | ! & ,(cchar(acc(ilev,ibox)+1),ibox=1,ncolprint) |
---|
| 1246 | !4012 continue |
---|
| 1247 | write (6,'(a)') 'skt(j):' |
---|
| 1248 | write (6,'(8f7.2)') skt(j) |
---|
| 1249 | |
---|
| 1250 | write (6,'(8I7)') (ibox,ibox=1,ncolprint) |
---|
| 1251 | |
---|
| 1252 | write (6,'(a)') 'tau:' |
---|
| 1253 | write (6,'(8f7.2)') (tau(j,ibox),ibox=1,ncolprint) |
---|
| 1254 | |
---|
| 1255 | write (6,'(a)') 'tb:' |
---|
| 1256 | write (6,'(8f7.2)') (tb(j,ibox),ibox=1,ncolprint) |
---|
| 1257 | |
---|
| 1258 | write (6,'(a)') 'ptop:' |
---|
| 1259 | write (6,'(8f7.2)') (ptop(j,ibox),ibox=1,ncolprint) |
---|
| 1260 | endif |
---|
| 1261 | |
---|
| 1262 | enddo |
---|
| 1263 | |
---|
| 1264 | end if |
---|
| 1265 | |
---|
| 1266 | return |
---|
| 1267 | end |
---|
| 1268 | |
---|
| 1269 | |
---|