| 1 | SUBROUTINE gradiv2_p(klevel, xcov, ycov, ld, gdx, gdy ) |
|---|
| 2 | c |
|---|
| 3 | c P. Le Van |
|---|
| 4 | c |
|---|
| 5 | c ********************************************************** |
|---|
| 6 | c ld |
|---|
| 7 | c calcul de (grad (div) ) du vect. v .... |
|---|
| 8 | c |
|---|
| 9 | c xcov et ycov etant les composant.covariantes de v |
|---|
| 10 | c ********************************************************** |
|---|
| 11 | c xcont , ycont et ld sont des arguments d'entree pour le s-prog |
|---|
| 12 | c gdx et gdy sont des arguments de sortie pour le s-prog |
|---|
| 13 | c |
|---|
| 14 | c |
|---|
| 15 | USE parallel |
|---|
| 16 | USE times |
|---|
| 17 | USE Write_field_p |
|---|
| 18 | IMPLICIT NONE |
|---|
| 19 | c |
|---|
| 20 | #include "dimensions.h" |
|---|
| 21 | #include "paramet.h" |
|---|
| 22 | #include "comgeom.h" |
|---|
| 23 | #include "comdissipn.h" |
|---|
| 24 | c |
|---|
| 25 | c ........ variables en arguments ........ |
|---|
| 26 | |
|---|
| 27 | INTEGER klevel |
|---|
| 28 | REAL xcov( ip1jmp1,klevel ), ycov( ip1jm,klevel ) |
|---|
| 29 | REAL gdx( ip1jmp1,klevel ), gdy( ip1jm,klevel ) |
|---|
| 30 | c |
|---|
| 31 | c ........ variables locales ......... |
|---|
| 32 | c |
|---|
| 33 | REAL div(ip1jmp1,llm) |
|---|
| 34 | REAL signe, nugrads |
|---|
| 35 | INTEGER l,ij,iter,ld |
|---|
| 36 | INTEGER :: ijb,ije,jjb,jje |
|---|
| 37 | |
|---|
| 38 | c ........................................................ |
|---|
| 39 | c |
|---|
| 40 | EXTERNAL SCOPY, divergf, grad, laplacien_gam, filtreg |
|---|
| 41 | c |
|---|
| 42 | c CALL SCOPY( ip1jmp1 * klevel, xcov, 1, gdx, 1 ) |
|---|
| 43 | c CALL SCOPY( ip1jm * klevel, ycov, 1, gdy, 1 ) |
|---|
| 44 | |
|---|
| 45 | ijb=ij_begin |
|---|
| 46 | ije=ij_end |
|---|
| 47 | gdx(ijb:ije,1:klevel)=xcov(ijb:ije,1:klevel) |
|---|
| 48 | |
|---|
| 49 | |
|---|
| 50 | ijb=ij_begin |
|---|
| 51 | ije=ij_end |
|---|
| 52 | if(pole_sud) ije=ij_end-iip1 |
|---|
| 53 | gdy(ijb:ije,1:klevel)=ycov(ijb:ije,1:klevel) |
|---|
| 54 | |
|---|
| 55 | call suspend_timer(timer_dissip) |
|---|
| 56 | call exchange_Hallo(gdy,ip1jm,llm,1,0) |
|---|
| 57 | call resume_timer(timer_dissip) |
|---|
| 58 | c |
|---|
| 59 | c |
|---|
| 60 | signe = (-1.)**ld |
|---|
| 61 | nugrads = signe * cdivu |
|---|
| 62 | c |
|---|
| 63 | |
|---|
| 64 | |
|---|
| 65 | CALL divergf_p( klevel, gdx, gdy , div ) |
|---|
| 66 | c call write_field3d_p('div1',reshape(div,(/iip1,jjp1,llm/))) |
|---|
| 67 | |
|---|
| 68 | IF( ld.GT.1 ) THEN |
|---|
| 69 | |
|---|
| 70 | call suspend_timer(timer_dissip) |
|---|
| 71 | call exchange_Hallo(div,ip1jmp1,llm,1,1) |
|---|
| 72 | call resume_timer(timer_dissip) |
|---|
| 73 | |
|---|
| 74 | CALL laplacien_p ( klevel, div, div ) |
|---|
| 75 | |
|---|
| 76 | c ...... Iteration de l'operateur laplacien_gam ....... |
|---|
| 77 | c call write_field3d_p('div2',reshape(div,(/iip1,jjp1,llm/))) |
|---|
| 78 | |
|---|
| 79 | DO iter = 1, ld -2 |
|---|
| 80 | call suspend_timer(timer_dissip) |
|---|
| 81 | call exchange_Hallo(div,ip1jmp1,llm,1,1) |
|---|
| 82 | call resume_timer(timer_dissip) |
|---|
| 83 | CALL laplacien_gam ( klevel,cuvscvgam1,cvuscugam1,unsair_gam1, |
|---|
| 84 | * unsapolnga1, unsapolsga1, div, div ) |
|---|
| 85 | ENDDO |
|---|
| 86 | c call write_field3d_p('div3',reshape(div,(/iip1,jjp1,llm/))) |
|---|
| 87 | ENDIF |
|---|
| 88 | |
|---|
| 89 | jjb=jj_begin |
|---|
| 90 | jje=jj_end |
|---|
| 91 | |
|---|
| 92 | CALL filtreg_p( div ,jjb,jje, jjp1, klevel, 2, 1, .TRUE., 1 ) |
|---|
| 93 | c call exchange_Hallo(div,ip1jmp1,llm,0,1) |
|---|
| 94 | |
|---|
| 95 | call suspend_timer(timer_dissip) |
|---|
| 96 | call exchange_Hallo(div,ip1jmp1,llm,1,1) |
|---|
| 97 | call resume_timer(timer_dissip) |
|---|
| 98 | |
|---|
| 99 | c call write_field3d_p('div4',reshape(div,(/iip1,jjp1,llm/))) |
|---|
| 100 | CALL grad_p ( klevel, div, gdx, gdy ) |
|---|
| 101 | |
|---|
| 102 | c |
|---|
| 103 | ijb=ij_begin |
|---|
| 104 | ije=ij_end |
|---|
| 105 | |
|---|
| 106 | |
|---|
| 107 | DO l = 1, klevel |
|---|
| 108 | |
|---|
| 109 | if (pole_sud) ije=ij_end |
|---|
| 110 | DO ij = ijb, ije |
|---|
| 111 | gdx( ij,l ) = gdx( ij,l ) * nugrads |
|---|
| 112 | ENDDO |
|---|
| 113 | |
|---|
| 114 | if (pole_sud) ije=ij_end-iip1 |
|---|
| 115 | DO ij = ijb, ije |
|---|
| 116 | gdy( ij,l ) = gdy( ij,l ) * nugrads |
|---|
| 117 | ENDDO |
|---|
| 118 | |
|---|
| 119 | ENDDO |
|---|
| 120 | c |
|---|
| 121 | RETURN |
|---|
| 122 | END |
|---|