1 | ! |
---|
2 | ! $Header$ |
---|
3 | ! |
---|
4 | SUBROUTINE cv_param(nd) |
---|
5 | implicit none |
---|
6 | |
---|
7 | c------------------------------------------------------------ |
---|
8 | c Set parameters for convectL |
---|
9 | c (includes microphysical parameters and parameters that |
---|
10 | c control the rate of approach to quasi-equilibrium) |
---|
11 | c------------------------------------------------------------ |
---|
12 | |
---|
13 | C *** ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) *** |
---|
14 | C *** TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- *** |
---|
15 | C *** CONVERSION THRESHOLD IS ASSUMED TO BE ZERO *** |
---|
16 | C *** (THE AUTOCONVERSION THRESHOLD VARIES LINEARLY *** |
---|
17 | C *** BETWEEN 0 C AND TLCRIT) *** |
---|
18 | C *** ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT *** |
---|
19 | C *** FORMULATION *** |
---|
20 | C *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
---|
21 | C *** SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
---|
22 | C *** OF CLOUD *** |
---|
23 | C *** OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN *** |
---|
24 | C *** OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW *** |
---|
25 | C *** COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
26 | C *** OF RAIN *** |
---|
27 | C *** COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
28 | C *** OF SNOW *** |
---|
29 | C *** CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM *** |
---|
30 | C *** TRANSPORT *** |
---|
31 | C *** DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION *** |
---|
32 | C *** A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC *** |
---|
33 | C *** ALPHA AND DAMP ARE PARAMETERS THAT CONTROL THE RATE OF *** |
---|
34 | C *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
35 | C *** (THEIR STANDARD VALUES ARE 0.20 AND 0.1, RESPECTIVELY) *** |
---|
36 | C *** (DAMP MUST BE LESS THAN 1) *** |
---|
37 | |
---|
38 | #include "cvparam.h" |
---|
39 | integer nd |
---|
40 | |
---|
41 | c noff: integer limit for convection (nd-noff) |
---|
42 | c minorig: First level of convection |
---|
43 | |
---|
44 | noff = 2 |
---|
45 | minorig = 2 |
---|
46 | |
---|
47 | nl=nd-noff |
---|
48 | nlp=nl+1 |
---|
49 | nlm=nl-1 |
---|
50 | |
---|
51 | elcrit=0.0011 |
---|
52 | tlcrit=-55.0 |
---|
53 | entp=1.5 |
---|
54 | sigs=0.12 |
---|
55 | sigd=0.05 |
---|
56 | omtrain=50.0 |
---|
57 | omtsnow=5.5 |
---|
58 | coeffr=1.0 |
---|
59 | coeffs=0.8 |
---|
60 | dtmax=0.9 |
---|
61 | c |
---|
62 | cu=0.70 |
---|
63 | c |
---|
64 | betad=10.0 |
---|
65 | c |
---|
66 | damp=0.1 |
---|
67 | alpha=0.2 |
---|
68 | c |
---|
69 | delta=0.01 ! cld |
---|
70 | c |
---|
71 | return |
---|
72 | end |
---|
73 | |
---|
74 | SUBROUTINE cv_prelim(len,nd,ndp1,t,q,p,ph |
---|
75 | : ,lv,cpn,tv,gz,h,hm) |
---|
76 | implicit none |
---|
77 | |
---|
78 | !===================================================================== |
---|
79 | ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
---|
80 | !===================================================================== |
---|
81 | |
---|
82 | c inputs: |
---|
83 | integer len, nd, ndp1 |
---|
84 | real t(len,nd), q(len,nd), p(len,nd), ph(len,ndp1) |
---|
85 | |
---|
86 | c outputs: |
---|
87 | real lv(len,nd), cpn(len,nd), tv(len,nd) |
---|
88 | real gz(len,nd), h(len,nd), hm(len,nd) |
---|
89 | |
---|
90 | c local variables: |
---|
91 | integer k, i |
---|
92 | real cpx(len,nd) |
---|
93 | |
---|
94 | #include "cvthermo.h" |
---|
95 | #include "cvparam.h" |
---|
96 | |
---|
97 | |
---|
98 | do 110 k=1,nlp |
---|
99 | do 100 i=1,len |
---|
100 | lv(i,k)= lv0-clmcpv*(t(i,k)-t0) |
---|
101 | cpn(i,k)=cpd*(1.0-q(i,k))+cpv*q(i,k) |
---|
102 | cpx(i,k)=cpd*(1.0-q(i,k))+cl*q(i,k) |
---|
103 | tv(i,k)=t(i,k)*(1.0+q(i,k)*epsim1) |
---|
104 | 100 continue |
---|
105 | 110 continue |
---|
106 | c |
---|
107 | c gz = phi at the full levels (same as p). |
---|
108 | c |
---|
109 | do 120 i=1,len |
---|
110 | gz(i,1)=0.0 |
---|
111 | 120 continue |
---|
112 | do 140 k=2,nlp |
---|
113 | do 130 i=1,len |
---|
114 | gz(i,k)=gz(i,k-1)+hrd*(tv(i,k-1)+tv(i,k)) |
---|
115 | & *(p(i,k-1)-p(i,k))/ph(i,k) |
---|
116 | 130 continue |
---|
117 | 140 continue |
---|
118 | c |
---|
119 | c h = phi + cpT (dry static energy). |
---|
120 | c hm = phi + cp(T-Tbase)+Lq |
---|
121 | c |
---|
122 | do 170 k=1,nlp |
---|
123 | do 160 i=1,len |
---|
124 | h(i,k)=gz(i,k)+cpn(i,k)*t(i,k) |
---|
125 | hm(i,k)=gz(i,k)+cpx(i,k)*(t(i,k)-t(i,1))+lv(i,k)*q(i,k) |
---|
126 | 160 continue |
---|
127 | 170 continue |
---|
128 | |
---|
129 | return |
---|
130 | end |
---|
131 | |
---|
132 | SUBROUTINE cv_feed(len,nd,t,q,qs,p,hm,gz |
---|
133 | : ,nk,icb,icbmax,iflag,tnk,qnk,gznk,plcl) |
---|
134 | implicit none |
---|
135 | |
---|
136 | C================================================================ |
---|
137 | C Purpose: CONVECTIVE FEED |
---|
138 | C================================================================ |
---|
139 | |
---|
140 | #include "cvparam.h" |
---|
141 | |
---|
142 | c inputs: |
---|
143 | integer len, nd |
---|
144 | real t(len,nd), q(len,nd), qs(len,nd), p(len,nd) |
---|
145 | real hm(len,nd), gz(len,nd) |
---|
146 | |
---|
147 | c outputs: |
---|
148 | integer iflag(len), nk(len), icb(len), icbmax |
---|
149 | real tnk(len), qnk(len), gznk(len), plcl(len) |
---|
150 | |
---|
151 | c local variables: |
---|
152 | integer i, k |
---|
153 | integer ihmin(len) |
---|
154 | real work(len) |
---|
155 | real pnk(len), qsnk(len), rh(len), chi(len) |
---|
156 | |
---|
157 | !------------------------------------------------------------------- |
---|
158 | ! --- Find level of minimum moist static energy |
---|
159 | ! --- If level of minimum moist static energy coincides with |
---|
160 | ! --- or is lower than minimum allowable parcel origin level, |
---|
161 | ! --- set iflag to 6. |
---|
162 | !------------------------------------------------------------------- |
---|
163 | |
---|
164 | do 180 i=1,len |
---|
165 | work(i)=1.0e12 |
---|
166 | ihmin(i)=nl |
---|
167 | 180 continue |
---|
168 | do 200 k=2,nlp |
---|
169 | do 190 i=1,len |
---|
170 | if((hm(i,k).lt.work(i)).and. |
---|
171 | & (hm(i,k).lt.hm(i,k-1)))then |
---|
172 | work(i)=hm(i,k) |
---|
173 | ihmin(i)=k |
---|
174 | endif |
---|
175 | 190 continue |
---|
176 | 200 continue |
---|
177 | do 210 i=1,len |
---|
178 | ihmin(i)=min(ihmin(i),nlm) |
---|
179 | if(ihmin(i).le.minorig)then |
---|
180 | iflag(i)=6 |
---|
181 | endif |
---|
182 | 210 continue |
---|
183 | c |
---|
184 | !------------------------------------------------------------------- |
---|
185 | ! --- Find that model level below the level of minimum moist static |
---|
186 | ! --- energy that has the maximum value of moist static energy |
---|
187 | !------------------------------------------------------------------- |
---|
188 | |
---|
189 | do 220 i=1,len |
---|
190 | work(i)=hm(i,minorig) |
---|
191 | nk(i)=minorig |
---|
192 | 220 continue |
---|
193 | do 240 k=minorig+1,nl |
---|
194 | do 230 i=1,len |
---|
195 | if((hm(i,k).gt.work(i)).and.(k.le.ihmin(i)))then |
---|
196 | work(i)=hm(i,k) |
---|
197 | nk(i)=k |
---|
198 | endif |
---|
199 | 230 continue |
---|
200 | 240 continue |
---|
201 | !------------------------------------------------------------------- |
---|
202 | ! --- Check whether parcel level temperature and specific humidity |
---|
203 | ! --- are reasonable |
---|
204 | !------------------------------------------------------------------- |
---|
205 | do 250 i=1,len |
---|
206 | if(((t(i,nk(i)).lt.250.0).or. |
---|
207 | & (q(i,nk(i)).le.0.0).or. |
---|
208 | & (p(i,ihmin(i)).lt.400.0)).and. |
---|
209 | & (iflag(i).eq.0))iflag(i)=7 |
---|
210 | 250 continue |
---|
211 | !------------------------------------------------------------------- |
---|
212 | ! --- Calculate lifted condensation level of air at parcel origin level |
---|
213 | ! --- (Within 0.2% of formula of Bolton, MON. WEA. REV.,1980) |
---|
214 | !------------------------------------------------------------------- |
---|
215 | do 260 i=1,len |
---|
216 | tnk(i)=t(i,nk(i)) |
---|
217 | qnk(i)=q(i,nk(i)) |
---|
218 | gznk(i)=gz(i,nk(i)) |
---|
219 | pnk(i)=p(i,nk(i)) |
---|
220 | qsnk(i)=qs(i,nk(i)) |
---|
221 | c |
---|
222 | rh(i)=qnk(i)/qsnk(i) |
---|
223 | rh(i)=min(1.0,rh(i)) |
---|
224 | chi(i)=tnk(i)/(1669.0-122.0*rh(i)-tnk(i)) |
---|
225 | plcl(i)=pnk(i)*(rh(i)**chi(i)) |
---|
226 | if(((plcl(i).lt.200.0).or.(plcl(i).ge.2000.0)) |
---|
227 | & .and.(iflag(i).eq.0))iflag(i)=8 |
---|
228 | 260 continue |
---|
229 | !------------------------------------------------------------------- |
---|
230 | ! --- Calculate first level above lcl (=icb) |
---|
231 | !------------------------------------------------------------------- |
---|
232 | do 270 i=1,len |
---|
233 | icb(i)=nlm |
---|
234 | 270 continue |
---|
235 | c |
---|
236 | do 290 k=minorig,nl |
---|
237 | do 280 i=1,len |
---|
238 | if((k.ge.(nk(i)+1)).and.(p(i,k).lt.plcl(i))) |
---|
239 | & icb(i)=min(icb(i),k) |
---|
240 | 280 continue |
---|
241 | 290 continue |
---|
242 | c |
---|
243 | do 300 i=1,len |
---|
244 | if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
---|
245 | 300 continue |
---|
246 | c |
---|
247 | c Compute icbmax. |
---|
248 | c |
---|
249 | icbmax=2 |
---|
250 | do 310 i=1,len |
---|
251 | icbmax=max(icbmax,icb(i)) |
---|
252 | 310 continue |
---|
253 | |
---|
254 | return |
---|
255 | end |
---|
256 | |
---|
257 | SUBROUTINE cv_undilute1(len,nd,t,q,qs,gz,p,nk,icb,icbmax |
---|
258 | : ,tp,tvp,clw) |
---|
259 | implicit none |
---|
260 | |
---|
261 | #include "cvthermo.h" |
---|
262 | #include "cvparam.h" |
---|
263 | |
---|
264 | c inputs: |
---|
265 | integer len, nd |
---|
266 | integer nk(len), icb(len), icbmax |
---|
267 | real t(len,nd), q(len,nd), qs(len,nd), gz(len,nd) |
---|
268 | real p(len,nd) |
---|
269 | |
---|
270 | c outputs: |
---|
271 | real tp(len,nd), tvp(len,nd), clw(len,nd) |
---|
272 | |
---|
273 | c local variables: |
---|
274 | integer i, k |
---|
275 | real tg, qg, alv, s, ahg, tc, denom, es, rg |
---|
276 | real ah0(len), cpp(len) |
---|
277 | real tnk(len), qnk(len), gznk(len), ticb(len), gzicb(len) |
---|
278 | |
---|
279 | !------------------------------------------------------------------- |
---|
280 | ! --- Calculates the lifted parcel virtual temperature at nk, |
---|
281 | ! --- the actual temperature, and the adiabatic |
---|
282 | ! --- liquid water content. The procedure is to solve the equation. |
---|
283 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
284 | !------------------------------------------------------------------- |
---|
285 | |
---|
286 | do 320 i=1,len |
---|
287 | tnk(i)=t(i,nk(i)) |
---|
288 | qnk(i)=q(i,nk(i)) |
---|
289 | gznk(i)=gz(i,nk(i)) |
---|
290 | ticb(i)=t(i,icb(i)) |
---|
291 | gzicb(i)=gz(i,icb(i)) |
---|
292 | 320 continue |
---|
293 | c |
---|
294 | c *** Calculate certain parcel quantities, including static energy *** |
---|
295 | c |
---|
296 | do 330 i=1,len |
---|
297 | ah0(i)=(cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) |
---|
298 | & +qnk(i)*(lv0-clmcpv*(tnk(i)-273.15))+gznk(i) |
---|
299 | cpp(i)=cpd*(1.-qnk(i))+qnk(i)*cpv |
---|
300 | 330 continue |
---|
301 | c |
---|
302 | c *** Calculate lifted parcel quantities below cloud base *** |
---|
303 | c |
---|
304 | do 350 k=minorig,icbmax-1 |
---|
305 | do 340 i=1,len |
---|
306 | tp(i,k)=tnk(i)-(gz(i,k)-gznk(i))/cpp(i) |
---|
307 | tvp(i,k)=tp(i,k)*(1.+qnk(i)*epsi) |
---|
308 | 340 continue |
---|
309 | 350 continue |
---|
310 | c |
---|
311 | c *** Find lifted parcel quantities above cloud base *** |
---|
312 | c |
---|
313 | do 360 i=1,len |
---|
314 | tg=ticb(i) |
---|
315 | qg=qs(i,icb(i)) |
---|
316 | alv=lv0-clmcpv*(ticb(i)-t0) |
---|
317 | c |
---|
318 | c First iteration. |
---|
319 | c |
---|
320 | s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
321 | s=1./s |
---|
322 | ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
323 | tg=tg+s*(ah0(i)-ahg) |
---|
324 | tg=max(tg,35.0) |
---|
325 | tc=tg-t0 |
---|
326 | denom=243.5+tc |
---|
327 | if(tc.ge.0.0)then |
---|
328 | es=6.112*exp(17.67*tc/denom) |
---|
329 | else |
---|
330 | es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
331 | endif |
---|
332 | qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
333 | c |
---|
334 | c Second iteration. |
---|
335 | c |
---|
336 | s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
337 | s=1./s |
---|
338 | ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
339 | tg=tg+s*(ah0(i)-ahg) |
---|
340 | tg=max(tg,35.0) |
---|
341 | tc=tg-t0 |
---|
342 | denom=243.5+tc |
---|
343 | if(tc.ge.0.0)then |
---|
344 | es=6.112*exp(17.67*tc/denom) |
---|
345 | else |
---|
346 | es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
347 | end if |
---|
348 | qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
349 | c |
---|
350 | alv=lv0-clmcpv*(ticb(i)-273.15) |
---|
351 | tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
---|
352 | & -gz(i,icb(i))-alv*qg)/cpd |
---|
353 | clw(i,icb(i))=qnk(i)-qg |
---|
354 | clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
---|
355 | rg=qg/(1.-qnk(i)) |
---|
356 | tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
---|
357 | 360 continue |
---|
358 | c |
---|
359 | do 380 k=minorig,icbmax |
---|
360 | do 370 i=1,len |
---|
361 | tvp(i,k)=tvp(i,k)-tp(i,k)*qnk(i) |
---|
362 | 370 continue |
---|
363 | 380 continue |
---|
364 | c |
---|
365 | return |
---|
366 | end |
---|
367 | |
---|
368 | SUBROUTINE cv_trigger(len,nd,icb,cbmf,tv,tvp,iflag) |
---|
369 | implicit none |
---|
370 | |
---|
371 | !------------------------------------------------------------------- |
---|
372 | ! --- Test for instability. |
---|
373 | ! --- If there was no convection at last time step and parcel |
---|
374 | ! --- is stable at icb, then set iflag to 4. |
---|
375 | !------------------------------------------------------------------- |
---|
376 | |
---|
377 | #include "cvparam.h" |
---|
378 | |
---|
379 | c inputs: |
---|
380 | integer len, nd, icb(len) |
---|
381 | real cbmf(len), tv(len,nd), tvp(len,nd) |
---|
382 | |
---|
383 | c outputs: |
---|
384 | integer iflag(len) ! also an input |
---|
385 | |
---|
386 | c local variables: |
---|
387 | integer i |
---|
388 | |
---|
389 | |
---|
390 | do 390 i=1,len |
---|
391 | if((cbmf(i).eq.0.0) .and.(iflag(i).eq.0).and. |
---|
392 | & (tvp(i,icb(i)).le.(tv(i,icb(i))-dtmax)))iflag(i)=4 |
---|
393 | 390 continue |
---|
394 | |
---|
395 | return |
---|
396 | end |
---|
397 | |
---|
398 | SUBROUTINE cv_compress( len,nloc,ncum,nd |
---|
399 | : ,iflag1,nk1,icb1 |
---|
400 | : ,cbmf1,plcl1,tnk1,qnk1,gznk1 |
---|
401 | : ,t1,q1,qs1,u1,v1,gz1 |
---|
402 | : ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1 |
---|
403 | o ,iflag,nk,icb |
---|
404 | o ,cbmf,plcl,tnk,qnk,gznk |
---|
405 | o ,t,q,qs,u,v,gz,h,lv,cpn,p,ph,tv,tp,tvp,clw |
---|
406 | o ,dph ) |
---|
407 | implicit none |
---|
408 | |
---|
409 | #include "cvparam.h" |
---|
410 | |
---|
411 | c inputs: |
---|
412 | integer len,ncum,nd,nloc |
---|
413 | integer iflag1(len),nk1(len),icb1(len) |
---|
414 | real cbmf1(len),plcl1(len),tnk1(len),qnk1(len),gznk1(len) |
---|
415 | real t1(len,nd),q1(len,nd),qs1(len,nd),u1(len,nd),v1(len,nd) |
---|
416 | real gz1(len,nd),h1(len,nd),lv1(len,nd),cpn1(len,nd) |
---|
417 | real p1(len,nd),ph1(len,nd+1),tv1(len,nd),tp1(len,nd) |
---|
418 | real tvp1(len,nd),clw1(len,nd) |
---|
419 | |
---|
420 | c outputs: |
---|
421 | integer iflag(nloc),nk(nloc),icb(nloc) |
---|
422 | real cbmf(nloc),plcl(nloc),tnk(nloc),qnk(nloc),gznk(nloc) |
---|
423 | real t(nloc,nd),q(nloc,nd),qs(nloc,nd),u(nloc,nd),v(nloc,nd) |
---|
424 | real gz(nloc,nd),h(nloc,nd),lv(nloc,nd),cpn(nloc,nd) |
---|
425 | real p(nloc,nd),ph(nloc,nd+1),tv(nloc,nd),tp(nloc,nd) |
---|
426 | real tvp(nloc,nd),clw(nloc,nd) |
---|
427 | real dph(nloc,nd) |
---|
428 | |
---|
429 | c local variables: |
---|
430 | integer i,k,nn |
---|
431 | |
---|
432 | |
---|
433 | do 110 k=1,nl+1 |
---|
434 | nn=0 |
---|
435 | do 100 i=1,len |
---|
436 | if(iflag1(i).eq.0)then |
---|
437 | nn=nn+1 |
---|
438 | t(nn,k)=t1(i,k) |
---|
439 | q(nn,k)=q1(i,k) |
---|
440 | qs(nn,k)=qs1(i,k) |
---|
441 | u(nn,k)=u1(i,k) |
---|
442 | v(nn,k)=v1(i,k) |
---|
443 | gz(nn,k)=gz1(i,k) |
---|
444 | h(nn,k)=h1(i,k) |
---|
445 | lv(nn,k)=lv1(i,k) |
---|
446 | cpn(nn,k)=cpn1(i,k) |
---|
447 | p(nn,k)=p1(i,k) |
---|
448 | ph(nn,k)=ph1(i,k) |
---|
449 | tv(nn,k)=tv1(i,k) |
---|
450 | tp(nn,k)=tp1(i,k) |
---|
451 | tvp(nn,k)=tvp1(i,k) |
---|
452 | clw(nn,k)=clw1(i,k) |
---|
453 | endif |
---|
454 | 100 continue |
---|
455 | 110 continue |
---|
456 | |
---|
457 | if (nn.ne.ncum) then |
---|
458 | print*,'strange! nn not equal to ncum: ',nn,ncum |
---|
459 | stop |
---|
460 | endif |
---|
461 | |
---|
462 | nn=0 |
---|
463 | do 150 i=1,len |
---|
464 | if(iflag1(i).eq.0)then |
---|
465 | nn=nn+1 |
---|
466 | cbmf(nn)=cbmf1(i) |
---|
467 | plcl(nn)=plcl1(i) |
---|
468 | tnk(nn)=tnk1(i) |
---|
469 | qnk(nn)=qnk1(i) |
---|
470 | gznk(nn)=gznk1(i) |
---|
471 | nk(nn)=nk1(i) |
---|
472 | icb(nn)=icb1(i) |
---|
473 | iflag(nn)=iflag1(i) |
---|
474 | endif |
---|
475 | 150 continue |
---|
476 | |
---|
477 | do 170 k=1,nl |
---|
478 | do 160 i=1,ncum |
---|
479 | dph(i,k)=ph(i,k)-ph(i,k+1) |
---|
480 | 160 continue |
---|
481 | 170 continue |
---|
482 | |
---|
483 | return |
---|
484 | end |
---|
485 | |
---|
486 | SUBROUTINE cv_undilute2(nloc,ncum,nd,icb,nk |
---|
487 | : ,tnk,qnk,gznk,t,q,qs,gz |
---|
488 | : ,p,dph,h,tv,lv |
---|
489 | o ,inb,inb1,tp,tvp,clw,hp,ep,sigp,frac) |
---|
490 | implicit none |
---|
491 | |
---|
492 | C--------------------------------------------------------------------- |
---|
493 | C Purpose: |
---|
494 | C FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
495 | C & |
---|
496 | C COMPUTE THE PRECIPITATION EFFICIENCIES AND THE |
---|
497 | C FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
498 | C & |
---|
499 | C FIND THE LEVEL OF NEUTRAL BUOYANCY |
---|
500 | C--------------------------------------------------------------------- |
---|
501 | |
---|
502 | #include "cvthermo.h" |
---|
503 | #include "cvparam.h" |
---|
504 | |
---|
505 | c inputs: |
---|
506 | integer ncum, nd, nloc |
---|
507 | integer icb(nloc), nk(nloc) |
---|
508 | real t(nloc,nd), q(nloc,nd), qs(nloc,nd), gz(nloc,nd) |
---|
509 | real p(nloc,nd), dph(nloc,nd) |
---|
510 | real tnk(nloc), qnk(nloc), gznk(nloc) |
---|
511 | real lv(nloc,nd), tv(nloc,nd), h(nloc,nd) |
---|
512 | |
---|
513 | c outputs: |
---|
514 | integer inb(nloc), inb1(nloc) |
---|
515 | real tp(nloc,nd), tvp(nloc,nd), clw(nloc,nd) |
---|
516 | real ep(nloc,nd), sigp(nloc,nd), hp(nloc,nd) |
---|
517 | real frac(nloc) |
---|
518 | |
---|
519 | c local variables: |
---|
520 | integer i, k |
---|
521 | real tg,qg,ahg,alv,s,tc,es,denom,rg,tca,elacrit |
---|
522 | real by, defrac |
---|
523 | real ah0(nloc), cape(nloc), capem(nloc), byp(nloc) |
---|
524 | logical lcape(nloc) |
---|
525 | |
---|
526 | !===================================================================== |
---|
527 | ! --- SOME INITIALIZATIONS |
---|
528 | !===================================================================== |
---|
529 | |
---|
530 | do 170 k=1,nl |
---|
531 | do 160 i=1,ncum |
---|
532 | ep(i,k)=0.0 |
---|
533 | sigp(i,k)=sigs |
---|
534 | 160 continue |
---|
535 | 170 continue |
---|
536 | |
---|
537 | !===================================================================== |
---|
538 | ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
539 | !===================================================================== |
---|
540 | c |
---|
541 | c --- The procedure is to solve the equation. |
---|
542 | c cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
543 | c |
---|
544 | c *** Calculate certain parcel quantities, including static energy *** |
---|
545 | c |
---|
546 | c |
---|
547 | do 240 i=1,ncum |
---|
548 | ah0(i)=(cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) |
---|
549 | & +qnk(i)*(lv0-clmcpv*(tnk(i)-t0))+gznk(i) |
---|
550 | 240 continue |
---|
551 | c |
---|
552 | c |
---|
553 | c *** Find lifted parcel quantities above cloud base *** |
---|
554 | c |
---|
555 | c |
---|
556 | do 300 k=minorig+1,nl |
---|
557 | do 290 i=1,ncum |
---|
558 | if(k.ge.(icb(i)+1))then |
---|
559 | tg=t(i,k) |
---|
560 | qg=qs(i,k) |
---|
561 | alv=lv0-clmcpv*(t(i,k)-t0) |
---|
562 | c |
---|
563 | c First iteration. |
---|
564 | c |
---|
565 | s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
566 | s=1./s |
---|
567 | ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
568 | tg=tg+s*(ah0(i)-ahg) |
---|
569 | tg=max(tg,35.0) |
---|
570 | tc=tg-t0 |
---|
571 | denom=243.5+tc |
---|
572 | if(tc.ge.0.0)then |
---|
573 | es=6.112*exp(17.67*tc/denom) |
---|
574 | else |
---|
575 | es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
576 | endif |
---|
577 | qg=eps*es/(p(i,k)-es*(1.-eps)) |
---|
578 | c |
---|
579 | c Second iteration. |
---|
580 | c |
---|
581 | s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
582 | s=1./s |
---|
583 | ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
584 | tg=tg+s*(ah0(i)-ahg) |
---|
585 | tg=max(tg,35.0) |
---|
586 | tc=tg-t0 |
---|
587 | denom=243.5+tc |
---|
588 | if(tc.ge.0.0)then |
---|
589 | es=6.112*exp(17.67*tc/denom) |
---|
590 | else |
---|
591 | es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
592 | endif |
---|
593 | qg=eps*es/(p(i,k)-es*(1.-eps)) |
---|
594 | c |
---|
595 | alv=lv0-clmcpv*(t(i,k)-t0) |
---|
596 | c print*,'cpd dans convect2 ',cpd |
---|
597 | c print*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
---|
598 | c print*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
---|
599 | tp(i,k)=(ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd |
---|
600 | c if (.not.cpd.gt.1000.) then |
---|
601 | c print*,'CPD=',cpd |
---|
602 | c stop |
---|
603 | c endif |
---|
604 | clw(i,k)=qnk(i)-qg |
---|
605 | clw(i,k)=max(0.0,clw(i,k)) |
---|
606 | rg=qg/(1.-qnk(i)) |
---|
607 | tvp(i,k)=tp(i,k)*(1.+rg*epsi) |
---|
608 | endif |
---|
609 | 290 continue |
---|
610 | 300 continue |
---|
611 | c |
---|
612 | !===================================================================== |
---|
613 | ! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
---|
614 | ! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
615 | ! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
---|
616 | !===================================================================== |
---|
617 | c |
---|
618 | do 320 k=minorig+1,nl |
---|
619 | do 310 i=1,ncum |
---|
620 | if(k.ge.(nk(i)+1))then |
---|
621 | tca=tp(i,k)-t0 |
---|
622 | if(tca.ge.0.0)then |
---|
623 | elacrit=elcrit |
---|
624 | else |
---|
625 | elacrit=elcrit*(1.0-tca/tlcrit) |
---|
626 | endif |
---|
627 | elacrit=max(elacrit,0.0) |
---|
628 | ep(i,k)=1.0-elacrit/max(clw(i,k),1.0e-8) |
---|
629 | ep(i,k)=max(ep(i,k),0.0 ) |
---|
630 | ep(i,k)=min(ep(i,k),1.0 ) |
---|
631 | sigp(i,k)=sigs |
---|
632 | endif |
---|
633 | 310 continue |
---|
634 | 320 continue |
---|
635 | c |
---|
636 | !===================================================================== |
---|
637 | ! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
---|
638 | ! --- VIRTUAL TEMPERATURE |
---|
639 | !===================================================================== |
---|
640 | c |
---|
641 | do 340 k=minorig+1,nl |
---|
642 | do 330 i=1,ncum |
---|
643 | if(k.ge.(icb(i)+1))then |
---|
644 | tvp(i,k)=tvp(i,k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) |
---|
645 | c print*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
---|
646 | c print*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
---|
647 | endif |
---|
648 | 330 continue |
---|
649 | 340 continue |
---|
650 | do 350 i=1,ncum |
---|
651 | tvp(i,nlp)=tvp(i,nl)-(gz(i,nlp)-gz(i,nl))/cpd |
---|
652 | 350 continue |
---|
653 | c |
---|
654 | c===================================================================== |
---|
655 | c --- FIND THE FIRST MODEL LEVEL (INB1) ABOVE THE PARCEL'S |
---|
656 | c --- HIGHEST LEVEL OF NEUTRAL BUOYANCY |
---|
657 | c --- AND THE HIGHEST LEVEL OF POSITIVE CAPE (INB) |
---|
658 | c===================================================================== |
---|
659 | c |
---|
660 | do 510 i=1,ncum |
---|
661 | cape(i)=0.0 |
---|
662 | capem(i)=0.0 |
---|
663 | inb(i)=icb(i)+1 |
---|
664 | inb1(i)=inb(i) |
---|
665 | 510 continue |
---|
666 | c |
---|
667 | c Originial Code |
---|
668 | c |
---|
669 | c do 530 k=minorig+1,nl-1 |
---|
670 | c do 520 i=1,ncum |
---|
671 | c if(k.ge.(icb(i)+1))then |
---|
672 | c by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
673 | c byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
674 | c cape(i)=cape(i)+by |
---|
675 | c if(by.ge.0.0)inb1(i)=k+1 |
---|
676 | c if(cape(i).gt.0.0)then |
---|
677 | c inb(i)=k+1 |
---|
678 | c capem(i)=cape(i) |
---|
679 | c endif |
---|
680 | c endif |
---|
681 | c520 continue |
---|
682 | c530 continue |
---|
683 | c do 540 i=1,ncum |
---|
684 | c byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
---|
685 | c cape(i)=capem(i)+byp |
---|
686 | c defrac=capem(i)-cape(i) |
---|
687 | c defrac=max(defrac,0.001) |
---|
688 | c frac(i)=-cape(i)/defrac |
---|
689 | c frac(i)=min(frac(i),1.0) |
---|
690 | c frac(i)=max(frac(i),0.0) |
---|
691 | c540 continue |
---|
692 | c |
---|
693 | c K Emanuel fix |
---|
694 | c |
---|
695 | c call zilch(byp,ncum) |
---|
696 | c do 530 k=minorig+1,nl-1 |
---|
697 | c do 520 i=1,ncum |
---|
698 | c if(k.ge.(icb(i)+1))then |
---|
699 | c by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
700 | c cape(i)=cape(i)+by |
---|
701 | c if(by.ge.0.0)inb1(i)=k+1 |
---|
702 | c if(cape(i).gt.0.0)then |
---|
703 | c inb(i)=k+1 |
---|
704 | c capem(i)=cape(i) |
---|
705 | c byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
706 | c endif |
---|
707 | c endif |
---|
708 | c520 continue |
---|
709 | c530 continue |
---|
710 | c do 540 i=1,ncum |
---|
711 | c inb(i)=max(inb(i),inb1(i)) |
---|
712 | c cape(i)=capem(i)+byp(i) |
---|
713 | c defrac=capem(i)-cape(i) |
---|
714 | c defrac=max(defrac,0.001) |
---|
715 | c frac(i)=-cape(i)/defrac |
---|
716 | c frac(i)=min(frac(i),1.0) |
---|
717 | c frac(i)=max(frac(i),0.0) |
---|
718 | c540 continue |
---|
719 | c |
---|
720 | c J Teixeira fix |
---|
721 | c |
---|
722 | call zilch(byp,ncum) |
---|
723 | do 515 i=1,ncum |
---|
724 | lcape(i)=.true. |
---|
725 | 515 continue |
---|
726 | do 530 k=minorig+1,nl-1 |
---|
727 | do 520 i=1,ncum |
---|
728 | if(cape(i).lt.0.0)lcape(i)=.false. |
---|
729 | if((k.ge.(icb(i)+1)).and.lcape(i))then |
---|
730 | by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
731 | byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
732 | cape(i)=cape(i)+by |
---|
733 | if(by.ge.0.0)inb1(i)=k+1 |
---|
734 | if(cape(i).gt.0.0)then |
---|
735 | inb(i)=k+1 |
---|
736 | capem(i)=cape(i) |
---|
737 | endif |
---|
738 | endif |
---|
739 | 520 continue |
---|
740 | 530 continue |
---|
741 | do 540 i=1,ncum |
---|
742 | cape(i)=capem(i)+byp(i) |
---|
743 | defrac=capem(i)-cape(i) |
---|
744 | defrac=max(defrac,0.001) |
---|
745 | frac(i)=-cape(i)/defrac |
---|
746 | frac(i)=min(frac(i),1.0) |
---|
747 | frac(i)=max(frac(i),0.0) |
---|
748 | 540 continue |
---|
749 | c |
---|
750 | c===================================================================== |
---|
751 | c --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
---|
752 | c===================================================================== |
---|
753 | c |
---|
754 | c initialization: |
---|
755 | do i=1,ncum*nlp |
---|
756 | hp(i,1)=h(i,1) |
---|
757 | enddo |
---|
758 | |
---|
759 | do 600 k=minorig+1,nl |
---|
760 | do 590 i=1,ncum |
---|
761 | if((k.ge.icb(i)).and.(k.le.inb(i)))then |
---|
762 | hp(i,k)=h(i,nk(i))+(lv(i,k)+(cpd-cpv)*t(i,k))*ep(i,k)*clw(i,k) |
---|
763 | endif |
---|
764 | 590 continue |
---|
765 | 600 continue |
---|
766 | c |
---|
767 | return |
---|
768 | end |
---|
769 | c |
---|
770 | SUBROUTINE cv_closure(nloc,ncum,nd,nk,icb |
---|
771 | : ,tv,tvp,p,ph,dph,plcl,cpn |
---|
772 | : ,iflag,cbmf) |
---|
773 | implicit none |
---|
774 | |
---|
775 | c inputs: |
---|
776 | integer ncum, nd, nloc |
---|
777 | integer nk(nloc), icb(nloc) |
---|
778 | real tv(nloc,nd), tvp(nloc,nd), p(nloc,nd), dph(nloc,nd) |
---|
779 | real ph(nloc,nd+1) ! caution nd instead ndp1 to be consistent... |
---|
780 | real plcl(nloc), cpn(nloc,nd) |
---|
781 | |
---|
782 | c outputs: |
---|
783 | integer iflag(nloc) |
---|
784 | real cbmf(nloc) ! also an input |
---|
785 | |
---|
786 | c local variables: |
---|
787 | integer i, k, icbmax |
---|
788 | real dtpbl(nloc), dtmin(nloc), tvpplcl(nloc), tvaplcl(nloc) |
---|
789 | real work(nloc) |
---|
790 | |
---|
791 | #include "cvthermo.h" |
---|
792 | #include "cvparam.h" |
---|
793 | |
---|
794 | c------------------------------------------------------------------- |
---|
795 | c Compute icbmax. |
---|
796 | c------------------------------------------------------------------- |
---|
797 | |
---|
798 | icbmax=2 |
---|
799 | do 230 i=1,ncum |
---|
800 | icbmax=max(icbmax,icb(i)) |
---|
801 | 230 continue |
---|
802 | |
---|
803 | c===================================================================== |
---|
804 | c --- CALCULATE CLOUD BASE MASS FLUX |
---|
805 | c===================================================================== |
---|
806 | c |
---|
807 | c tvpplcl = parcel temperature lifted adiabatically from level |
---|
808 | c icb-1 to the LCL. |
---|
809 | c tvaplcl = virtual temperature at the LCL. |
---|
810 | c |
---|
811 | do 610 i=1,ncum |
---|
812 | dtpbl(i)=0.0 |
---|
813 | tvpplcl(i)=tvp(i,icb(i)-1) |
---|
814 | & -rrd*tvp(i,icb(i)-1)*(p(i,icb(i)-1)-plcl(i)) |
---|
815 | & /(cpn(i,icb(i)-1)*p(i,icb(i)-1)) |
---|
816 | tvaplcl(i)=tv(i,icb(i)) |
---|
817 | & +(tvp(i,icb(i))-tvp(i,icb(i)+1))*(plcl(i)-p(i,icb(i))) |
---|
818 | & /(p(i,icb(i))-p(i,icb(i)+1)) |
---|
819 | 610 continue |
---|
820 | |
---|
821 | c------------------------------------------------------------------- |
---|
822 | c --- Interpolate difference between lifted parcel and |
---|
823 | c --- environmental temperatures to lifted condensation level |
---|
824 | c------------------------------------------------------------------- |
---|
825 | c |
---|
826 | c dtpbl = average of tvp-tv in the PBL (k=nk to icb-1). |
---|
827 | c |
---|
828 | do 630 k=minorig,icbmax |
---|
829 | do 620 i=1,ncum |
---|
830 | if((k.ge.nk(i)).and.(k.le.(icb(i)-1)))then |
---|
831 | dtpbl(i)=dtpbl(i)+(tvp(i,k)-tv(i,k))*dph(i,k) |
---|
832 | endif |
---|
833 | 620 continue |
---|
834 | 630 continue |
---|
835 | do 640 i=1,ncum |
---|
836 | dtpbl(i)=dtpbl(i)/(ph(i,nk(i))-ph(i,icb(i))) |
---|
837 | dtmin(i)=tvpplcl(i)-tvaplcl(i)+dtmax+dtpbl(i) |
---|
838 | 640 continue |
---|
839 | c |
---|
840 | c------------------------------------------------------------------- |
---|
841 | c --- Adjust cloud base mass flux |
---|
842 | c------------------------------------------------------------------- |
---|
843 | c |
---|
844 | do 650 i=1,ncum |
---|
845 | work(i)=cbmf(i) |
---|
846 | cbmf(i)=max(0.0,(1.0-damp)*cbmf(i)+0.1*alpha*dtmin(i)) |
---|
847 | if((work(i).eq.0.0).and.(cbmf(i).eq.0.0))then |
---|
848 | iflag(i)=3 |
---|
849 | endif |
---|
850 | 650 continue |
---|
851 | |
---|
852 | return |
---|
853 | end |
---|
854 | |
---|
855 | SUBROUTINE cv_mixing(nloc,ncum,nd,icb,nk,inb,inb1 |
---|
856 | : ,ph,t,q,qs,u,v,h,lv,qnk |
---|
857 | : ,hp,tv,tvp,ep,clw,cbmf |
---|
858 | : ,m,ment,qent,uent,vent,nent,sij,elij) |
---|
859 | implicit none |
---|
860 | |
---|
861 | #include "cvthermo.h" |
---|
862 | #include "cvparam.h" |
---|
863 | |
---|
864 | c inputs: |
---|
865 | integer ncum, nd, nloc |
---|
866 | integer icb(nloc), inb(nloc), inb1(nloc), nk(nloc) |
---|
867 | real cbmf(nloc), qnk(nloc) |
---|
868 | real ph(nloc,nd+1) |
---|
869 | real t(nloc,nd), q(nloc,nd), qs(nloc,nd), lv(nloc,nd) |
---|
870 | real u(nloc,nd), v(nloc,nd), h(nloc,nd), hp(nloc,nd) |
---|
871 | real tv(nloc,nd), tvp(nloc,nd), ep(nloc,nd), clw(nloc,nd) |
---|
872 | |
---|
873 | c outputs: |
---|
874 | integer nent(nloc,nd) |
---|
875 | real m(nloc,nd), ment(nloc,nd,nd), qent(nloc,nd,nd) |
---|
876 | real uent(nloc,nd,nd), vent(nloc,nd,nd) |
---|
877 | real sij(nloc,nd,nd), elij(nloc,nd,nd) |
---|
878 | |
---|
879 | c local variables: |
---|
880 | integer i, j, k, ij |
---|
881 | integer num1, num2 |
---|
882 | real dbo, qti, bf2, anum, denom, dei, altem, cwat, stemp |
---|
883 | real alt, qp1, smid, sjmin, sjmax, delp, delm |
---|
884 | real work(nloc), asij(nloc), smin(nloc), scrit(nloc) |
---|
885 | real bsum(nloc,nd) |
---|
886 | logical lwork(nloc) |
---|
887 | |
---|
888 | c===================================================================== |
---|
889 | c --- INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
---|
890 | c===================================================================== |
---|
891 | c |
---|
892 | do 360 i=1,ncum*nlp |
---|
893 | nent(i,1)=0 |
---|
894 | m(i,1)=0.0 |
---|
895 | 360 continue |
---|
896 | c |
---|
897 | do 400 k=1,nlp |
---|
898 | do 390 j=1,nlp |
---|
899 | do 385 i=1,ncum |
---|
900 | qent(i,k,j)=q(i,j) |
---|
901 | uent(i,k,j)=u(i,j) |
---|
902 | vent(i,k,j)=v(i,j) |
---|
903 | elij(i,k,j)=0.0 |
---|
904 | ment(i,k,j)=0.0 |
---|
905 | sij(i,k,j)=0.0 |
---|
906 | 385 continue |
---|
907 | 390 continue |
---|
908 | 400 continue |
---|
909 | c |
---|
910 | c------------------------------------------------------------------- |
---|
911 | c --- Calculate rates of mixing, m(i) |
---|
912 | c------------------------------------------------------------------- |
---|
913 | c |
---|
914 | call zilch(work,ncum) |
---|
915 | c |
---|
916 | do 670 j=minorig+1,nl |
---|
917 | do 660 i=1,ncum |
---|
918 | if((j.ge.(icb(i)+1)).and.(j.le.inb(i)))then |
---|
919 | k=min(j,inb1(i)) |
---|
920 | dbo=abs(tv(i,k+1)-tvp(i,k+1)-tv(i,k-1)+tvp(i,k-1)) |
---|
921 | & +entp*0.04*(ph(i,k)-ph(i,k+1)) |
---|
922 | work(i)=work(i)+dbo |
---|
923 | m(i,j)=cbmf(i)*dbo |
---|
924 | endif |
---|
925 | 660 continue |
---|
926 | 670 continue |
---|
927 | do 690 k=minorig+1,nl |
---|
928 | do 680 i=1,ncum |
---|
929 | if((k.ge.(icb(i)+1)).and.(k.le.inb(i)))then |
---|
930 | m(i,k)=m(i,k)/work(i) |
---|
931 | endif |
---|
932 | 680 continue |
---|
933 | 690 continue |
---|
934 | c |
---|
935 | c |
---|
936 | c===================================================================== |
---|
937 | c --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
---|
938 | c --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
---|
939 | c --- FRACTION (sij) |
---|
940 | c===================================================================== |
---|
941 | c |
---|
942 | c |
---|
943 | do 750 i=minorig+1,nl |
---|
944 | do 710 j=minorig+1,nl |
---|
945 | do 700 ij=1,ncum |
---|
946 | if((i.ge.(icb(ij)+1)).and.(j.ge.icb(ij)) |
---|
947 | & .and.(i.le.inb(ij)).and.(j.le.inb(ij)))then |
---|
948 | qti=qnk(ij)-ep(ij,i)*clw(ij,i) |
---|
949 | bf2=1.+lv(ij,j)*lv(ij,j)*qs(ij,j) |
---|
950 | & /(rrv*t(ij,j)*t(ij,j)*cpd) |
---|
951 | anum=h(ij,j)-hp(ij,i)+(cpv-cpd)*t(ij,j)*(qti-q(ij,j)) |
---|
952 | denom=h(ij,i)-hp(ij,i)+(cpd-cpv)*(q(ij,i)-qti)*t(ij,j) |
---|
953 | dei=denom |
---|
954 | if(abs(dei).lt.0.01)dei=0.01 |
---|
955 | sij(ij,i,j)=anum/dei |
---|
956 | sij(ij,i,i)=1.0 |
---|
957 | altem=sij(ij,i,j)*q(ij,i)+(1.-sij(ij,i,j))*qti-qs(ij,j) |
---|
958 | altem=altem/bf2 |
---|
959 | cwat=clw(ij,j)*(1.-ep(ij,j)) |
---|
960 | stemp=sij(ij,i,j) |
---|
961 | if((stemp.lt.0.0.or.stemp.gt.1.0.or. |
---|
962 | 1 altem.gt.cwat).and.j.gt.i)then |
---|
963 | anum=anum-lv(ij,j)*(qti-qs(ij,j)-cwat*bf2) |
---|
964 | denom=denom+lv(ij,j)*(q(ij,i)-qti) |
---|
965 | if(abs(denom).lt.0.01)denom=0.01 |
---|
966 | sij(ij,i,j)=anum/denom |
---|
967 | altem=sij(ij,i,j)*q(ij,i)+(1.-sij(ij,i,j))*qti-qs(ij,j) |
---|
968 | altem=altem-(bf2-1.)*cwat |
---|
969 | endif |
---|
970 | if(sij(ij,i,j).gt.0.0.and.sij(ij,i,j).lt.0.9)then |
---|
971 | qent(ij,i,j)=sij(ij,i,j)*q(ij,i) |
---|
972 | & +(1.-sij(ij,i,j))*qti |
---|
973 | uent(ij,i,j)=sij(ij,i,j)*u(ij,i) |
---|
974 | & +(1.-sij(ij,i,j))*u(ij,nk(ij)) |
---|
975 | vent(ij,i,j)=sij(ij,i,j)*v(ij,i) |
---|
976 | & +(1.-sij(ij,i,j))*v(ij,nk(ij)) |
---|
977 | elij(ij,i,j)=altem |
---|
978 | elij(ij,i,j)=max(0.0,elij(ij,i,j)) |
---|
979 | ment(ij,i,j)=m(ij,i)/(1.-sij(ij,i,j)) |
---|
980 | nent(ij,i)=nent(ij,i)+1 |
---|
981 | endif |
---|
982 | sij(ij,i,j)=max(0.0,sij(ij,i,j)) |
---|
983 | sij(ij,i,j)=min(1.0,sij(ij,i,j)) |
---|
984 | endif |
---|
985 | 700 continue |
---|
986 | 710 continue |
---|
987 | c |
---|
988 | c *** If no air can entrain at level i assume that updraft detrains *** |
---|
989 | c *** at that level and calculate detrained air flux and properties *** |
---|
990 | c |
---|
991 | do 740 ij=1,ncum |
---|
992 | if((i.ge.(icb(ij)+1)).and.(i.le.inb(ij)) |
---|
993 | & .and.(nent(ij,i).eq.0))then |
---|
994 | ment(ij,i,i)=m(ij,i) |
---|
995 | qent(ij,i,i)=q(ij,nk(ij))-ep(ij,i)*clw(ij,i) |
---|
996 | uent(ij,i,i)=u(ij,nk(ij)) |
---|
997 | vent(ij,i,i)=v(ij,nk(ij)) |
---|
998 | elij(ij,i,i)=clw(ij,i) |
---|
999 | sij(ij,i,i)=1.0 |
---|
1000 | endif |
---|
1001 | 740 continue |
---|
1002 | 750 continue |
---|
1003 | c |
---|
1004 | do 770 i=1,ncum |
---|
1005 | sij(i,inb(i),inb(i))=1.0 |
---|
1006 | 770 continue |
---|
1007 | c |
---|
1008 | c===================================================================== |
---|
1009 | c --- NORMALIZE ENTRAINED AIR MASS FLUXES |
---|
1010 | c --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
---|
1011 | c===================================================================== |
---|
1012 | c |
---|
1013 | call zilch(bsum,ncum*nlp) |
---|
1014 | do 780 ij=1,ncum |
---|
1015 | lwork(ij)=.false. |
---|
1016 | 780 continue |
---|
1017 | do 789 i=minorig+1,nl |
---|
1018 | c |
---|
1019 | num1=0 |
---|
1020 | do 779 ij=1,ncum |
---|
1021 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)))num1=num1+1 |
---|
1022 | 779 continue |
---|
1023 | if(num1.le.0)go to 789 |
---|
1024 | c |
---|
1025 | do 781 ij=1,ncum |
---|
1026 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)))then |
---|
1027 | lwork(ij)=(nent(ij,i).ne.0) |
---|
1028 | qp1=q(ij,nk(ij))-ep(ij,i)*clw(ij,i) |
---|
1029 | anum=h(ij,i)-hp(ij,i)-lv(ij,i)*(qp1-qs(ij,i)) |
---|
1030 | denom=h(ij,i)-hp(ij,i)+lv(ij,i)*(q(ij,i)-qp1) |
---|
1031 | if(abs(denom).lt.0.01)denom=0.01 |
---|
1032 | scrit(ij)=anum/denom |
---|
1033 | alt=qp1-qs(ij,i)+scrit(ij)*(q(ij,i)-qp1) |
---|
1034 | if(scrit(ij).lt.0.0.or.alt.lt.0.0)scrit(ij)=1.0 |
---|
1035 | asij(ij)=0.0 |
---|
1036 | smin(ij)=1.0 |
---|
1037 | endif |
---|
1038 | 781 continue |
---|
1039 | do 783 j=minorig,nl |
---|
1040 | c |
---|
1041 | num2=0 |
---|
1042 | do 778 ij=1,ncum |
---|
1043 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)) |
---|
1044 | & .and.(j.ge.icb(ij)).and.(j.le.inb(ij)) |
---|
1045 | & .and.lwork(ij))num2=num2+1 |
---|
1046 | 778 continue |
---|
1047 | if(num2.le.0)go to 783 |
---|
1048 | c |
---|
1049 | do 782 ij=1,ncum |
---|
1050 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)) |
---|
1051 | & .and.(j.ge.icb(ij)).and.(j.le.inb(ij)).and.lwork(ij))then |
---|
1052 | if(sij(ij,i,j).gt.0.0.and.sij(ij,i,j).lt.0.9)then |
---|
1053 | if(j.gt.i)then |
---|
1054 | smid=min(sij(ij,i,j),scrit(ij)) |
---|
1055 | sjmax=smid |
---|
1056 | sjmin=smid |
---|
1057 | if(smid.lt.smin(ij) |
---|
1058 | & .and.sij(ij,i,j+1).lt.smid)then |
---|
1059 | smin(ij)=smid |
---|
1060 | sjmax=min(sij(ij,i,j+1),sij(ij,i,j),scrit(ij)) |
---|
1061 | sjmin=max(sij(ij,i,j-1),sij(ij,i,j)) |
---|
1062 | sjmin=min(sjmin,scrit(ij)) |
---|
1063 | endif |
---|
1064 | else |
---|
1065 | sjmax=max(sij(ij,i,j+1),scrit(ij)) |
---|
1066 | smid=max(sij(ij,i,j),scrit(ij)) |
---|
1067 | sjmin=0.0 |
---|
1068 | if(j.gt.1)sjmin=sij(ij,i,j-1) |
---|
1069 | sjmin=max(sjmin,scrit(ij)) |
---|
1070 | endif |
---|
1071 | delp=abs(sjmax-smid) |
---|
1072 | delm=abs(sjmin-smid) |
---|
1073 | asij(ij)=asij(ij)+(delp+delm) |
---|
1074 | & *(ph(ij,j)-ph(ij,j+1)) |
---|
1075 | ment(ij,i,j)=ment(ij,i,j)*(delp+delm) |
---|
1076 | & *(ph(ij,j)-ph(ij,j+1)) |
---|
1077 | endif |
---|
1078 | endif |
---|
1079 | 782 continue |
---|
1080 | 783 continue |
---|
1081 | do 784 ij=1,ncum |
---|
1082 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)).and.lwork(ij))then |
---|
1083 | asij(ij)=max(1.0e-21,asij(ij)) |
---|
1084 | asij(ij)=1.0/asij(ij) |
---|
1085 | bsum(ij,i)=0.0 |
---|
1086 | endif |
---|
1087 | 784 continue |
---|
1088 | do 786 j=minorig,nl+1 |
---|
1089 | do 785 ij=1,ncum |
---|
1090 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)) |
---|
1091 | & .and.(j.ge.icb(ij)).and.(j.le.inb(ij)) |
---|
1092 | & .and.lwork(ij))then |
---|
1093 | ment(ij,i,j)=ment(ij,i,j)*asij(ij) |
---|
1094 | bsum(ij,i)=bsum(ij,i)+ment(ij,i,j) |
---|
1095 | endif |
---|
1096 | 785 continue |
---|
1097 | 786 continue |
---|
1098 | do 787 ij=1,ncum |
---|
1099 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)) |
---|
1100 | & .and.(bsum(ij,i).lt.1.0e-18).and.lwork(ij))then |
---|
1101 | nent(ij,i)=0 |
---|
1102 | ment(ij,i,i)=m(ij,i) |
---|
1103 | qent(ij,i,i)=q(ij,nk(ij))-ep(ij,i)*clw(ij,i) |
---|
1104 | uent(ij,i,i)=u(ij,nk(ij)) |
---|
1105 | vent(ij,i,i)=v(ij,nk(ij)) |
---|
1106 | elij(ij,i,i)=clw(ij,i) |
---|
1107 | sij(ij,i,i)=1.0 |
---|
1108 | endif |
---|
1109 | 787 continue |
---|
1110 | 789 continue |
---|
1111 | c |
---|
1112 | return |
---|
1113 | end |
---|
1114 | |
---|
1115 | SUBROUTINE cv_unsat(nloc,ncum,nd,inb,t,q,qs,gz,u,v,p,ph |
---|
1116 | : ,h,lv,ep,sigp,clw,m,ment,elij |
---|
1117 | : ,iflag,mp,qp,up,vp,wt,water,evap) |
---|
1118 | implicit none |
---|
1119 | |
---|
1120 | |
---|
1121 | #include "cvthermo.h" |
---|
1122 | #include "cvparam.h" |
---|
1123 | |
---|
1124 | c inputs: |
---|
1125 | integer ncum, nd, nloc |
---|
1126 | integer inb(nloc) |
---|
1127 | real t(nloc,nd), q(nloc,nd), qs(nloc,nd) |
---|
1128 | real gz(nloc,nd), u(nloc,nd), v(nloc,nd) |
---|
1129 | real p(nloc,nd), ph(nloc,nd+1), h(nloc,nd) |
---|
1130 | real lv(nloc,nd), ep(nloc,nd), sigp(nloc,nd), clw(nloc,nd) |
---|
1131 | real m(nloc,nd), ment(nloc,nd,nd), elij(nloc,nd,nd) |
---|
1132 | |
---|
1133 | c outputs: |
---|
1134 | integer iflag(nloc) ! also an input |
---|
1135 | real mp(nloc,nd), qp(nloc,nd), up(nloc,nd), vp(nloc,nd) |
---|
1136 | real water(nloc,nd), evap(nloc,nd), wt(nloc,nd) |
---|
1137 | |
---|
1138 | c local variables: |
---|
1139 | integer i,j,k,ij,num1 |
---|
1140 | integer jtt(nloc) |
---|
1141 | real awat, coeff, qsm, afac, sigt, b6, c6, revap |
---|
1142 | real dhdp, fac, qstm, rat |
---|
1143 | real wdtrain(nloc) |
---|
1144 | logical lwork(nloc) |
---|
1145 | |
---|
1146 | c===================================================================== |
---|
1147 | c --- PRECIPITATING DOWNDRAFT CALCULATION |
---|
1148 | c===================================================================== |
---|
1149 | c |
---|
1150 | c Initializations: |
---|
1151 | c |
---|
1152 | do i = 1, ncum |
---|
1153 | do k = 1, nl+1 |
---|
1154 | wt(i,k) = omtsnow |
---|
1155 | mp(i,k) = 0.0 |
---|
1156 | evap(i,k) = 0.0 |
---|
1157 | water(i,k) = 0.0 |
---|
1158 | enddo |
---|
1159 | enddo |
---|
1160 | |
---|
1161 | do 420 i=1,ncum |
---|
1162 | qp(i,1)=q(i,1) |
---|
1163 | up(i,1)=u(i,1) |
---|
1164 | vp(i,1)=v(i,1) |
---|
1165 | 420 continue |
---|
1166 | |
---|
1167 | do 440 k=2,nl+1 |
---|
1168 | do 430 i=1,ncum |
---|
1169 | qp(i,k)=q(i,k-1) |
---|
1170 | up(i,k)=u(i,k-1) |
---|
1171 | vp(i,k)=v(i,k-1) |
---|
1172 | 430 continue |
---|
1173 | 440 continue |
---|
1174 | |
---|
1175 | |
---|
1176 | c *** Check whether ep(inb)=0, if so, skip precipitating *** |
---|
1177 | c *** downdraft calculation *** |
---|
1178 | c |
---|
1179 | c |
---|
1180 | c *** Integrate liquid water equation to find condensed water *** |
---|
1181 | c *** and condensed water flux *** |
---|
1182 | c |
---|
1183 | c |
---|
1184 | do 890 i=1,ncum |
---|
1185 | jtt(i)=2 |
---|
1186 | if(ep(i,inb(i)).le.0.0001)iflag(i)=2 |
---|
1187 | if(iflag(i).eq.0)then |
---|
1188 | lwork(i)=.true. |
---|
1189 | else |
---|
1190 | lwork(i)=.false. |
---|
1191 | endif |
---|
1192 | 890 continue |
---|
1193 | c |
---|
1194 | c *** Begin downdraft loop *** |
---|
1195 | c |
---|
1196 | c |
---|
1197 | call zilch(wdtrain,ncum) |
---|
1198 | do 899 i=nl+1,1,-1 |
---|
1199 | c |
---|
1200 | num1=0 |
---|
1201 | do 879 ij=1,ncum |
---|
1202 | if((i.le.inb(ij)).and.lwork(ij))num1=num1+1 |
---|
1203 | 879 continue |
---|
1204 | if(num1.le.0)go to 899 |
---|
1205 | c |
---|
1206 | c |
---|
1207 | c *** Calculate detrained precipitation *** |
---|
1208 | c |
---|
1209 | do 891 ij=1,ncum |
---|
1210 | if((i.le.inb(ij)).and.(lwork(ij)))then |
---|
1211 | wdtrain(ij)=g*ep(ij,i)*m(ij,i)*clw(ij,i) |
---|
1212 | endif |
---|
1213 | 891 continue |
---|
1214 | c |
---|
1215 | if(i.gt.1)then |
---|
1216 | do 893 j=1,i-1 |
---|
1217 | do 892 ij=1,ncum |
---|
1218 | if((i.le.inb(ij)).and.(lwork(ij)))then |
---|
1219 | awat=elij(ij,j,i)-(1.-ep(ij,i))*clw(ij,i) |
---|
1220 | awat=max(0.0,awat) |
---|
1221 | wdtrain(ij)=wdtrain(ij)+g*awat*ment(ij,j,i) |
---|
1222 | endif |
---|
1223 | 892 continue |
---|
1224 | 893 continue |
---|
1225 | endif |
---|
1226 | c |
---|
1227 | c *** Find rain water and evaporation using provisional *** |
---|
1228 | c *** estimates of qp(i)and qp(i-1) *** |
---|
1229 | c |
---|
1230 | c |
---|
1231 | c *** Value of terminal velocity and coeffecient of evaporation for snow *** |
---|
1232 | c |
---|
1233 | do 894 ij=1,ncum |
---|
1234 | if((i.le.inb(ij)).and.(lwork(ij)))then |
---|
1235 | coeff=coeffs |
---|
1236 | wt(ij,i)=omtsnow |
---|
1237 | c |
---|
1238 | c *** Value of terminal velocity and coeffecient of evaporation for rain *** |
---|
1239 | c |
---|
1240 | if(t(ij,i).gt.273.0)then |
---|
1241 | coeff=coeffr |
---|
1242 | wt(ij,i)=omtrain |
---|
1243 | endif |
---|
1244 | qsm=0.5*(q(ij,i)+qp(ij,i+1)) |
---|
1245 | afac=coeff*ph(ij,i)*(qs(ij,i)-qsm) |
---|
1246 | & /(1.0e4+2.0e3*ph(ij,i)*qs(ij,i)) |
---|
1247 | afac=max(afac,0.0) |
---|
1248 | sigt=sigp(ij,i) |
---|
1249 | sigt=max(0.0,sigt) |
---|
1250 | sigt=min(1.0,sigt) |
---|
1251 | b6=100.*(ph(ij,i)-ph(ij,i+1))*sigt*afac/wt(ij,i) |
---|
1252 | c6=(water(ij,i+1)*wt(ij,i+1)+wdtrain(ij)/sigd)/wt(ij,i) |
---|
1253 | revap=0.5*(-b6+sqrt(b6*b6+4.*c6)) |
---|
1254 | evap(ij,i)=sigt*afac*revap |
---|
1255 | water(ij,i)=revap*revap |
---|
1256 | c |
---|
1257 | c *** Calculate precipitating downdraft mass flux under *** |
---|
1258 | c *** hydrostatic approximation *** |
---|
1259 | c |
---|
1260 | if(i.gt.1)then |
---|
1261 | dhdp=(h(ij,i)-h(ij,i-1))/(p(ij,i-1)-p(ij,i)) |
---|
1262 | dhdp=max(dhdp,10.0) |
---|
1263 | mp(ij,i)=100.*ginv*lv(ij,i)*sigd*evap(ij,i)/dhdp |
---|
1264 | mp(ij,i)=max(mp(ij,i),0.0) |
---|
1265 | c |
---|
1266 | c *** Add small amount of inertia to downdraft *** |
---|
1267 | c |
---|
1268 | fac=20.0/(ph(ij,i-1)-ph(ij,i)) |
---|
1269 | mp(ij,i)=(fac*mp(ij,i+1)+mp(ij,i))/(1.+fac) |
---|
1270 | c |
---|
1271 | c *** Force mp to decrease linearly to zero *** |
---|
1272 | c *** between about 950 mb and the surface *** |
---|
1273 | c |
---|
1274 | if(p(ij,i).gt.(0.949*p(ij,1)))then |
---|
1275 | jtt(ij)=max(jtt(ij),i) |
---|
1276 | mp(ij,i)=mp(ij,jtt(ij))*(p(ij,1)-p(ij,i)) |
---|
1277 | & /(p(ij,1)-p(ij,jtt(ij))) |
---|
1278 | endif |
---|
1279 | endif |
---|
1280 | c |
---|
1281 | c *** Find mixing ratio of precipitating downdraft *** |
---|
1282 | c |
---|
1283 | if(i.ne.inb(ij))then |
---|
1284 | if(i.eq.1)then |
---|
1285 | qstm=qs(ij,1) |
---|
1286 | else |
---|
1287 | qstm=qs(ij,i-1) |
---|
1288 | endif |
---|
1289 | if(mp(ij,i).gt.mp(ij,i+1))then |
---|
1290 | rat=mp(ij,i+1)/mp(ij,i) |
---|
1291 | qp(ij,i)=qp(ij,i+1)*rat+q(ij,i)*(1.0-rat)+100.*ginv* |
---|
1292 | & sigd*(ph(ij,i)-ph(ij,i+1))*(evap(ij,i)/mp(ij,i)) |
---|
1293 | up(ij,i)=up(ij,i+1)*rat+u(ij,i)*(1.-rat) |
---|
1294 | vp(ij,i)=vp(ij,i+1)*rat+v(ij,i)*(1.-rat) |
---|
1295 | else |
---|
1296 | if(mp(ij,i+1).gt.0.0)then |
---|
1297 | qp(ij,i)=(gz(ij,i+1)-gz(ij,i) |
---|
1298 | & +qp(ij,i+1)*(lv(ij,i+1)+t(ij,i+1) |
---|
1299 | & *(cl-cpd))+cpd*(t(ij,i+1)-t(ij,i))) |
---|
1300 | & /(lv(ij,i)+t(ij,i)*(cl-cpd)) |
---|
1301 | up(ij,i)=up(ij,i+1) |
---|
1302 | vp(ij,i)=vp(ij,i+1) |
---|
1303 | endif |
---|
1304 | endif |
---|
1305 | qp(ij,i)=min(qp(ij,i),qstm) |
---|
1306 | qp(ij,i)=max(qp(ij,i),0.0) |
---|
1307 | endif |
---|
1308 | endif |
---|
1309 | 894 continue |
---|
1310 | 899 continue |
---|
1311 | c |
---|
1312 | return |
---|
1313 | end |
---|
1314 | |
---|
1315 | SUBROUTINE cv_yield(nloc,ncum,nd,nk,icb,inb,delt |
---|
1316 | : ,t,q,u,v,gz,p,ph,h,hp,lv,cpn |
---|
1317 | : ,ep,clw,frac,m,mp,qp,up,vp |
---|
1318 | : ,wt,water,evap |
---|
1319 | : ,ment,qent,uent,vent,nent,elij |
---|
1320 | : ,tv,tvp |
---|
1321 | o ,iflag,wd,qprime,tprime |
---|
1322 | o ,precip,cbmf,ft,fq,fu,fv,Ma,qcondc) |
---|
1323 | implicit none |
---|
1324 | |
---|
1325 | #include "cvthermo.h" |
---|
1326 | #include "cvparam.h" |
---|
1327 | |
---|
1328 | c inputs |
---|
1329 | integer ncum, nd, nloc |
---|
1330 | integer nk(nloc), icb(nloc), inb(nloc) |
---|
1331 | integer nent(nloc,nd) |
---|
1332 | real delt |
---|
1333 | real t(nloc,nd), q(nloc,nd), u(nloc,nd), v(nloc,nd) |
---|
1334 | real gz(nloc,nd) |
---|
1335 | real p(nloc,nd), ph(nloc,nd+1), h(nloc,nd) |
---|
1336 | real hp(nloc,nd), lv(nloc,nd) |
---|
1337 | real cpn(nloc,nd), ep(nloc,nd), clw(nloc,nd), frac(nloc) |
---|
1338 | real m(nloc,nd), mp(nloc,nd), qp(nloc,nd) |
---|
1339 | real up(nloc,nd), vp(nloc,nd) |
---|
1340 | real wt(nloc,nd), water(nloc,nd), evap(nloc,nd) |
---|
1341 | real ment(nloc,nd,nd), qent(nloc,nd,nd), elij(nloc,nd,nd) |
---|
1342 | real uent(nloc,nd,nd), vent(nloc,nd,nd) |
---|
1343 | real tv(nloc,nd), tvp(nloc,nd) |
---|
1344 | |
---|
1345 | c outputs |
---|
1346 | integer iflag(nloc) ! also an input |
---|
1347 | real cbmf(nloc) ! also an input |
---|
1348 | real wd(nloc), tprime(nloc), qprime(nloc) |
---|
1349 | real precip(nloc) |
---|
1350 | real ft(nloc,nd), fq(nloc,nd), fu(nloc,nd), fv(nloc,nd) |
---|
1351 | real Ma(nloc,nd) |
---|
1352 | real qcondc(nloc,nd) |
---|
1353 | |
---|
1354 | c local variables |
---|
1355 | integer i,j,ij,k,num1 |
---|
1356 | real dpinv,cpinv,awat,fqold,ftold,fuold,fvold,delti |
---|
1357 | real work(nloc), am(nloc),amp1(nloc),ad(nloc) |
---|
1358 | real ents(nloc), uav(nloc),vav(nloc),lvcp(nloc,nd) |
---|
1359 | real qcond(nloc,nd), nqcond(nloc,nd), wa(nloc,nd) ! cld |
---|
1360 | real siga(nloc,nd), ax(nloc,nd), mac(nloc,nd) ! cld |
---|
1361 | |
---|
1362 | |
---|
1363 | c -- initializations: |
---|
1364 | |
---|
1365 | delti = 1.0/delt |
---|
1366 | |
---|
1367 | do 160 i=1,ncum |
---|
1368 | precip(i)=0.0 |
---|
1369 | wd(i)=0.0 |
---|
1370 | tprime(i)=0.0 |
---|
1371 | qprime(i)=0.0 |
---|
1372 | do 170 k=1,nl+1 |
---|
1373 | ft(i,k)=0.0 |
---|
1374 | fu(i,k)=0.0 |
---|
1375 | fv(i,k)=0.0 |
---|
1376 | fq(i,k)=0.0 |
---|
1377 | lvcp(i,k)=lv(i,k)/cpn(i,k) |
---|
1378 | qcondc(i,k)=0.0 ! cld |
---|
1379 | qcond(i,k)=0.0 ! cld |
---|
1380 | nqcond(i,k)=0.0 ! cld |
---|
1381 | 170 continue |
---|
1382 | 160 continue |
---|
1383 | |
---|
1384 | c |
---|
1385 | c *** Calculate surface precipitation in mm/day *** |
---|
1386 | c |
---|
1387 | do 1190 i=1,ncum |
---|
1388 | if(iflag(i).le.1)then |
---|
1389 | cc precip(i)=precip(i)+wt(i,1)*sigd*water(i,1)*3600.*24000. |
---|
1390 | cc & /(rowl*g) |
---|
1391 | cc precip(i)=precip(i)*delt/86400. |
---|
1392 | precip(i) = wt(i,1)*sigd*water(i,1)*86400/g |
---|
1393 | endif |
---|
1394 | 1190 continue |
---|
1395 | c |
---|
1396 | c |
---|
1397 | c *** Calculate downdraft velocity scale and surface temperature and *** |
---|
1398 | c *** water vapor fluctuations *** |
---|
1399 | c |
---|
1400 | do i=1,ncum |
---|
1401 | wd(i)=betad*abs(mp(i,icb(i)))*0.01*rrd*t(i,icb(i)) |
---|
1402 | : /(sigd*p(i,icb(i))) |
---|
1403 | qprime(i)=0.5*(qp(i,1)-q(i,1)) |
---|
1404 | tprime(i)=lv0*qprime(i)/cpd |
---|
1405 | enddo |
---|
1406 | c |
---|
1407 | c *** Calculate tendencies of lowest level potential temperature *** |
---|
1408 | c *** and mixing ratio *** |
---|
1409 | c |
---|
1410 | do 1200 i=1,ncum |
---|
1411 | work(i)=0.01/(ph(i,1)-ph(i,2)) |
---|
1412 | am(i)=0.0 |
---|
1413 | 1200 continue |
---|
1414 | do 1220 k=2,nl |
---|
1415 | do 1210 i=1,ncum |
---|
1416 | if((nk(i).eq.1).and.(k.le.inb(i)).and.(nk(i).eq.1))then |
---|
1417 | am(i)=am(i)+m(i,k) |
---|
1418 | endif |
---|
1419 | 1210 continue |
---|
1420 | 1220 continue |
---|
1421 | do 1240 i=1,ncum |
---|
1422 | if((g*work(i)*am(i)).ge.delti)iflag(i)=1 |
---|
1423 | ft(i,1)=ft(i,1)+g*work(i)*am(i)*(t(i,2)-t(i,1) |
---|
1424 | & +(gz(i,2)-gz(i,1))/cpn(i,1)) |
---|
1425 | ft(i,1)=ft(i,1)-lvcp(i,1)*sigd*evap(i,1) |
---|
1426 | ft(i,1)=ft(i,1)+sigd*wt(i,2)*(cl-cpd)*water(i,2)*(t(i,2) |
---|
1427 | & -t(i,1))*work(i)/cpn(i,1) |
---|
1428 | fq(i,1)=fq(i,1)+g*mp(i,2)*(qp(i,2)-q(i,1))* |
---|
1429 | & work(i)+sigd*evap(i,1) |
---|
1430 | fq(i,1)=fq(i,1)+g*am(i)*(q(i,2)-q(i,1))*work(i) |
---|
1431 | fu(i,1)=fu(i,1)+g*work(i)*(mp(i,2)*(up(i,2)-u(i,1)) |
---|
1432 | & +am(i)*(u(i,2)-u(i,1))) |
---|
1433 | fv(i,1)=fv(i,1)+g*work(i)*(mp(i,2)*(vp(i,2)-v(i,1)) |
---|
1434 | & +am(i)*(v(i,2)-v(i,1))) |
---|
1435 | 1240 continue |
---|
1436 | do 1260 j=2,nl |
---|
1437 | do 1250 i=1,ncum |
---|
1438 | if(j.le.inb(i))then |
---|
1439 | fq(i,1)=fq(i,1) |
---|
1440 | & +g*work(i)*ment(i,j,1)*(qent(i,j,1)-q(i,1)) |
---|
1441 | fu(i,1)=fu(i,1) |
---|
1442 | & +g*work(i)*ment(i,j,1)*(uent(i,j,1)-u(i,1)) |
---|
1443 | fv(i,1)=fv(i,1) |
---|
1444 | & +g*work(i)*ment(i,j,1)*(vent(i,j,1)-v(i,1)) |
---|
1445 | endif |
---|
1446 | 1250 continue |
---|
1447 | 1260 continue |
---|
1448 | c |
---|
1449 | c *** Calculate tendencies of potential temperature and mixing ratio *** |
---|
1450 | c *** at levels above the lowest level *** |
---|
1451 | c |
---|
1452 | c *** First find the net saturated updraft and downdraft mass fluxes *** |
---|
1453 | c *** through each level *** |
---|
1454 | c |
---|
1455 | do 1500 i=2,nl+1 |
---|
1456 | c |
---|
1457 | num1=0 |
---|
1458 | do 1265 ij=1,ncum |
---|
1459 | if(i.le.inb(ij))num1=num1+1 |
---|
1460 | 1265 continue |
---|
1461 | if(num1.le.0)go to 1500 |
---|
1462 | c |
---|
1463 | call zilch(amp1,ncum) |
---|
1464 | call zilch(ad,ncum) |
---|
1465 | c |
---|
1466 | do 1280 k=i+1,nl+1 |
---|
1467 | do 1270 ij=1,ncum |
---|
1468 | if((i.ge.nk(ij)).and.(i.le.inb(ij)) |
---|
1469 | & .and.(k.le.(inb(ij)+1)))then |
---|
1470 | amp1(ij)=amp1(ij)+m(ij,k) |
---|
1471 | endif |
---|
1472 | 1270 continue |
---|
1473 | 1280 continue |
---|
1474 | c |
---|
1475 | do 1310 k=1,i |
---|
1476 | do 1300 j=i+1,nl+1 |
---|
1477 | do 1290 ij=1,ncum |
---|
1478 | if((j.le.(inb(ij)+1)).and.(i.le.inb(ij)))then |
---|
1479 | amp1(ij)=amp1(ij)+ment(ij,k,j) |
---|
1480 | endif |
---|
1481 | 1290 continue |
---|
1482 | 1300 continue |
---|
1483 | 1310 continue |
---|
1484 | do 1340 k=1,i-1 |
---|
1485 | do 1330 j=i,nl+1 |
---|
1486 | do 1320 ij=1,ncum |
---|
1487 | if((i.le.inb(ij)).and.(j.le.inb(ij)))then |
---|
1488 | ad(ij)=ad(ij)+ment(ij,j,k) |
---|
1489 | endif |
---|
1490 | 1320 continue |
---|
1491 | 1330 continue |
---|
1492 | 1340 continue |
---|
1493 | c |
---|
1494 | do 1350 ij=1,ncum |
---|
1495 | if(i.le.inb(ij))then |
---|
1496 | dpinv=0.01/(ph(ij,i)-ph(ij,i+1)) |
---|
1497 | cpinv=1.0/cpn(ij,i) |
---|
1498 | c |
---|
1499 | ft(ij,i)=ft(ij,i) |
---|
1500 | & +g*dpinv*(amp1(ij)*(t(ij,i+1)-t(ij,i) |
---|
1501 | & +(gz(ij,i+1)-gz(ij,i))*cpinv) |
---|
1502 | & -ad(ij)*(t(ij,i)-t(ij,i-1)+(gz(ij,i)-gz(ij,i-1))*cpinv)) |
---|
1503 | & -sigd*lvcp(ij,i)*evap(ij,i) |
---|
1504 | ft(ij,i)=ft(ij,i)+g*dpinv*ment(ij,i,i)*(hp(ij,i)-h(ij,i)+ |
---|
1505 | & t(ij,i)*(cpv-cpd)*(q(ij,i)-qent(ij,i,i)))*cpinv |
---|
1506 | ft(ij,i)=ft(ij,i)+sigd*wt(ij,i+1)*(cl-cpd)*water(ij,i+1)* |
---|
1507 | & (t(ij,i+1)-t(ij,i))*dpinv*cpinv |
---|
1508 | fq(ij,i)=fq(ij,i)+g*dpinv*(amp1(ij)*(q(ij,i+1)-q(ij,i))- |
---|
1509 | & ad(ij)*(q(ij,i)-q(ij,i-1))) |
---|
1510 | fu(ij,i)=fu(ij,i)+g*dpinv*(amp1(ij)*(u(ij,i+1)-u(ij,i))- |
---|
1511 | & ad(ij)*(u(ij,i)-u(ij,i-1))) |
---|
1512 | fv(ij,i)=fv(ij,i)+g*dpinv*(amp1(ij)*(v(ij,i+1)-v(ij,i))- |
---|
1513 | & ad(ij)*(v(ij,i)-v(ij,i-1))) |
---|
1514 | endif |
---|
1515 | 1350 continue |
---|
1516 | do 1370 k=1,i-1 |
---|
1517 | do 1360 ij=1,ncum |
---|
1518 | if(i.le.inb(ij))then |
---|
1519 | awat=elij(ij,k,i)-(1.-ep(ij,i))*clw(ij,i) |
---|
1520 | awat=max(awat,0.0) |
---|
1521 | fq(ij,i)=fq(ij,i) |
---|
1522 | & +g*dpinv*ment(ij,k,i)*(qent(ij,k,i)-awat-q(ij,i)) |
---|
1523 | fu(ij,i)=fu(ij,i) |
---|
1524 | & +g*dpinv*ment(ij,k,i)*(uent(ij,k,i)-u(ij,i)) |
---|
1525 | fv(ij,i)=fv(ij,i) |
---|
1526 | & +g*dpinv*ment(ij,k,i)*(vent(ij,k,i)-v(ij,i)) |
---|
1527 | c (saturated updrafts resulting from mixing) ! cld |
---|
1528 | qcond(ij,i)=qcond(ij,i)+(elij(ij,k,i)-awat) ! cld |
---|
1529 | nqcond(ij,i)=nqcond(ij,i)+1. ! cld |
---|
1530 | endif |
---|
1531 | 1360 continue |
---|
1532 | 1370 continue |
---|
1533 | do 1390 k=i,nl+1 |
---|
1534 | do 1380 ij=1,ncum |
---|
1535 | if((i.le.inb(ij)).and.(k.le.inb(ij)))then |
---|
1536 | fq(ij,i)=fq(ij,i) |
---|
1537 | & +g*dpinv*ment(ij,k,i)*(qent(ij,k,i)-q(ij,i)) |
---|
1538 | fu(ij,i)=fu(ij,i) |
---|
1539 | & +g*dpinv*ment(ij,k,i)*(uent(ij,k,i)-u(ij,i)) |
---|
1540 | fv(ij,i)=fv(ij,i) |
---|
1541 | & +g*dpinv*ment(ij,k,i)*(vent(ij,k,i)-v(ij,i)) |
---|
1542 | endif |
---|
1543 | 1380 continue |
---|
1544 | 1390 continue |
---|
1545 | do 1400 ij=1,ncum |
---|
1546 | if(i.le.inb(ij))then |
---|
1547 | fq(ij,i)=fq(ij,i) |
---|
1548 | & +sigd*evap(ij,i)+g*(mp(ij,i+1)* |
---|
1549 | & (qp(ij,i+1)-q(ij,i)) |
---|
1550 | & -mp(ij,i)*(qp(ij,i)-q(ij,i-1)))*dpinv |
---|
1551 | fu(ij,i)=fu(ij,i) |
---|
1552 | & +g*(mp(ij,i+1)*(up(ij,i+1)-u(ij,i))-mp(ij,i)* |
---|
1553 | & (up(ij,i)-u(ij,i-1)))*dpinv |
---|
1554 | fv(ij,i)=fv(ij,i) |
---|
1555 | & +g*(mp(ij,i+1)*(vp(ij,i+1)-v(ij,i))-mp(ij,i)* |
---|
1556 | & (vp(ij,i)-v(ij,i-1)))*dpinv |
---|
1557 | C (saturated downdrafts resulting from mixing) ! cld |
---|
1558 | do k=i+1,inb(ij) ! cld |
---|
1559 | qcond(ij,i)=qcond(ij,i)+elij(ij,k,i) ! cld |
---|
1560 | nqcond(ij,i)=nqcond(ij,i)+1. ! cld |
---|
1561 | enddo ! cld |
---|
1562 | C (particular case: no detraining level is found) ! cld |
---|
1563 | if (nent(ij,i).eq.0) then ! cld |
---|
1564 | qcond(ij,i)=qcond(ij,i)+(1.-ep(ij,i))*clw(ij,i) ! cld |
---|
1565 | nqcond(ij,i)=nqcond(ij,i)+1. ! cld |
---|
1566 | endif ! cld |
---|
1567 | if (nqcond(ij,i).ne.0.) then ! cld |
---|
1568 | qcond(ij,i)=qcond(ij,i)/nqcond(ij,i) ! cld |
---|
1569 | endif ! cld |
---|
1570 | endif |
---|
1571 | 1400 continue |
---|
1572 | 1500 continue |
---|
1573 | c |
---|
1574 | c *** Adjust tendencies at top of convection layer to reflect *** |
---|
1575 | c *** actual position of the level zero cape *** |
---|
1576 | c |
---|
1577 | do 503 ij=1,ncum |
---|
1578 | fqold=fq(ij,inb(ij)) |
---|
1579 | fq(ij,inb(ij))=fq(ij,inb(ij))*(1.-frac(ij)) |
---|
1580 | fq(ij,inb(ij)-1)=fq(ij,inb(ij)-1) |
---|
1581 | & +frac(ij)*fqold*((ph(ij,inb(ij))-ph(ij,inb(ij)+1))/ |
---|
1582 | 1 (ph(ij,inb(ij)-1)-ph(ij,inb(ij))))*lv(ij,inb(ij)) |
---|
1583 | & /lv(ij,inb(ij)-1) |
---|
1584 | ftold=ft(ij,inb(ij)) |
---|
1585 | ft(ij,inb(ij))=ft(ij,inb(ij))*(1.-frac(ij)) |
---|
1586 | ft(ij,inb(ij)-1)=ft(ij,inb(ij)-1) |
---|
1587 | & +frac(ij)*ftold*((ph(ij,inb(ij))-ph(ij,inb(ij)+1))/ |
---|
1588 | 1 (ph(ij,inb(ij)-1)-ph(ij,inb(ij))))*cpn(ij,inb(ij)) |
---|
1589 | & /cpn(ij,inb(ij)-1) |
---|
1590 | fuold=fu(ij,inb(ij)) |
---|
1591 | fu(ij,inb(ij))=fu(ij,inb(ij))*(1.-frac(ij)) |
---|
1592 | fu(ij,inb(ij)-1)=fu(ij,inb(ij)-1) |
---|
1593 | & +frac(ij)*fuold*((ph(ij,inb(ij))-ph(ij,inb(ij)+1))/ |
---|
1594 | 1 (ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) |
---|
1595 | fvold=fv(ij,inb(ij)) |
---|
1596 | fv(ij,inb(ij))=fv(ij,inb(ij))*(1.-frac(ij)) |
---|
1597 | fv(ij,inb(ij)-1)=fv(ij,inb(ij)-1) |
---|
1598 | & +frac(ij)*fvold*((ph(ij,inb(ij))-ph(ij,inb(ij)+1))/ |
---|
1599 | 1 (ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) |
---|
1600 | 503 continue |
---|
1601 | c |
---|
1602 | c *** Very slightly adjust tendencies to force exact *** |
---|
1603 | c *** enthalpy, momentum and tracer conservation *** |
---|
1604 | c |
---|
1605 | do 682 ij=1,ncum |
---|
1606 | ents(ij)=0.0 |
---|
1607 | uav(ij)=0.0 |
---|
1608 | vav(ij)=0.0 |
---|
1609 | do 681 i=1,inb(ij) |
---|
1610 | ents(ij)=ents(ij) |
---|
1611 | & +(cpn(ij,i)*ft(ij,i)+lv(ij,i)*fq(ij,i))*(ph(ij,i)-ph(ij,i+1)) |
---|
1612 | uav(ij)=uav(ij)+fu(ij,i)*(ph(ij,i)-ph(ij,i+1)) |
---|
1613 | vav(ij)=vav(ij)+fv(ij,i)*(ph(ij,i)-ph(ij,i+1)) |
---|
1614 | 681 continue |
---|
1615 | 682 continue |
---|
1616 | do 683 ij=1,ncum |
---|
1617 | ents(ij)=ents(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
1618 | uav(ij)=uav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
1619 | vav(ij)=vav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
1620 | 683 continue |
---|
1621 | do 642 ij=1,ncum |
---|
1622 | do 641 i=1,inb(ij) |
---|
1623 | ft(ij,i)=ft(ij,i)-ents(ij)/cpn(ij,i) |
---|
1624 | fu(ij,i)=(1.-cu)*(fu(ij,i)-uav(ij)) |
---|
1625 | fv(ij,i)=(1.-cu)*(fv(ij,i)-vav(ij)) |
---|
1626 | 641 continue |
---|
1627 | 642 continue |
---|
1628 | c |
---|
1629 | do 1810 k=1,nl+1 |
---|
1630 | do 1800 i=1,ncum |
---|
1631 | if((q(i,k)+delt*fq(i,k)).lt.0.0)iflag(i)=10 |
---|
1632 | 1800 continue |
---|
1633 | 1810 continue |
---|
1634 | c |
---|
1635 | c |
---|
1636 | do 1900 i=1,ncum |
---|
1637 | if(iflag(i).gt.2)then |
---|
1638 | precip(i)=0.0 |
---|
1639 | cbmf(i)=0.0 |
---|
1640 | endif |
---|
1641 | 1900 continue |
---|
1642 | do 1920 k=1,nl |
---|
1643 | do 1910 i=1,ncum |
---|
1644 | if(iflag(i).gt.2)then |
---|
1645 | ft(i,k)=0.0 |
---|
1646 | fq(i,k)=0.0 |
---|
1647 | fu(i,k)=0.0 |
---|
1648 | fv(i,k)=0.0 |
---|
1649 | qcondc(i,k)=0.0 ! cld |
---|
1650 | endif |
---|
1651 | 1910 continue |
---|
1652 | 1920 continue |
---|
1653 | |
---|
1654 | do k=1,nl+1 |
---|
1655 | do i=1,ncum |
---|
1656 | Ma(i,k) = 0. |
---|
1657 | enddo |
---|
1658 | enddo |
---|
1659 | do k=nl,1,-1 |
---|
1660 | do i=1,ncum |
---|
1661 | Ma(i,k) = Ma(i,k+1)+m(i,k) |
---|
1662 | enddo |
---|
1663 | enddo |
---|
1664 | |
---|
1665 | c |
---|
1666 | c *** diagnose the in-cloud mixing ratio *** ! cld |
---|
1667 | c *** of condensed water *** ! cld |
---|
1668 | c ! cld |
---|
1669 | DO ij=1,ncum ! cld |
---|
1670 | do i=1,nd ! cld |
---|
1671 | mac(ij,i)=0.0 ! cld |
---|
1672 | wa(ij,i)=0.0 ! cld |
---|
1673 | siga(ij,i)=0.0 ! cld |
---|
1674 | enddo ! cld |
---|
1675 | do i=nk(ij),inb(ij) ! cld |
---|
1676 | do k=i+1,inb(ij)+1 ! cld |
---|
1677 | mac(ij,i)=mac(ij,i)+m(ij,k) ! cld |
---|
1678 | enddo ! cld |
---|
1679 | enddo ! cld |
---|
1680 | do i=icb(ij),inb(ij)-1 ! cld |
---|
1681 | ax(ij,i)=0. ! cld |
---|
1682 | do j=icb(ij),i ! cld |
---|
1683 | ax(ij,i)=ax(ij,i)+rrd*(tvp(ij,j)-tv(ij,j)) ! cld |
---|
1684 | : *(ph(ij,j)-ph(ij,j+1))/p(ij,j) ! cld |
---|
1685 | enddo ! cld |
---|
1686 | if (ax(ij,i).gt.0.0) then ! cld |
---|
1687 | wa(ij,i)=sqrt(2.*ax(ij,i)) ! cld |
---|
1688 | endif ! cld |
---|
1689 | enddo ! cld |
---|
1690 | do i=1,nl ! cld |
---|
1691 | if (wa(ij,i).gt.0.0) ! cld |
---|
1692 | : siga(ij,i)=mac(ij,i)/wa(ij,i) ! cld |
---|
1693 | : *rrd*tvp(ij,i)/p(ij,i)/100./delta ! cld |
---|
1694 | siga(ij,i) = min(siga(ij,i),1.0) ! cld |
---|
1695 | qcondc(ij,i)=siga(ij,i)*clw(ij,i)*(1.-ep(ij,i)) ! cld |
---|
1696 | : + (1.-siga(ij,i))*qcond(ij,i) ! cld |
---|
1697 | enddo ! cld |
---|
1698 | ENDDO ! cld |
---|
1699 | |
---|
1700 | return |
---|
1701 | end |
---|
1702 | |
---|
1703 | SUBROUTINE cv_uncompress(nloc,len,ncum,nd,idcum |
---|
1704 | : ,iflag |
---|
1705 | : ,precip,cbmf |
---|
1706 | : ,ft,fq,fu,fv |
---|
1707 | : ,Ma,qcondc |
---|
1708 | : ,iflag1 |
---|
1709 | : ,precip1,cbmf1 |
---|
1710 | : ,ft1,fq1,fu1,fv1 |
---|
1711 | : ,Ma1,qcondc1 |
---|
1712 | : ) |
---|
1713 | implicit none |
---|
1714 | |
---|
1715 | #include "cvparam.h" |
---|
1716 | |
---|
1717 | c inputs: |
---|
1718 | integer len, ncum, nd, nloc |
---|
1719 | integer idcum(nloc) |
---|
1720 | integer iflag(nloc) |
---|
1721 | real precip(nloc), cbmf(nloc) |
---|
1722 | real ft(nloc,nd), fq(nloc,nd), fu(nloc,nd), fv(nloc,nd) |
---|
1723 | real Ma(nloc,nd) |
---|
1724 | real qcondc(nloc,nd) !cld |
---|
1725 | |
---|
1726 | c outputs: |
---|
1727 | integer iflag1(len) |
---|
1728 | real precip1(len), cbmf1(len) |
---|
1729 | real ft1(len,nd), fq1(len,nd), fu1(len,nd), fv1(len,nd) |
---|
1730 | real Ma1(len,nd) |
---|
1731 | real qcondc1(len,nd) !cld |
---|
1732 | |
---|
1733 | c local variables: |
---|
1734 | integer i,k |
---|
1735 | |
---|
1736 | do 2000 i=1,ncum |
---|
1737 | precip1(idcum(i))=precip(i) |
---|
1738 | cbmf1(idcum(i))=cbmf(i) |
---|
1739 | iflag1(idcum(i))=iflag(i) |
---|
1740 | 2000 continue |
---|
1741 | |
---|
1742 | do 2020 k=1,nl |
---|
1743 | do 2010 i=1,ncum |
---|
1744 | ft1(idcum(i),k)=ft(i,k) |
---|
1745 | fq1(idcum(i),k)=fq(i,k) |
---|
1746 | fu1(idcum(i),k)=fu(i,k) |
---|
1747 | fv1(idcum(i),k)=fv(i,k) |
---|
1748 | Ma1(idcum(i),k)=Ma(i,k) |
---|
1749 | qcondc1(idcum(i),k)=qcondc(i,k) |
---|
1750 | 2010 continue |
---|
1751 | 2020 continue |
---|
1752 | |
---|
1753 | return |
---|
1754 | end |
---|
1755 | |
---|