1 | ! |
---|
2 | ! $Header$ |
---|
3 | ! |
---|
4 | MODULE climb_wind_mod |
---|
5 | ! |
---|
6 | ! Module to solve the verctical diffusion of the wind components "u" and "v". |
---|
7 | ! |
---|
8 | USE dimphy |
---|
9 | |
---|
10 | IMPLICIT NONE |
---|
11 | |
---|
12 | SAVE |
---|
13 | PRIVATE |
---|
14 | |
---|
15 | REAL, DIMENSION(:), ALLOCATABLE :: alf1, alf2 |
---|
16 | !$OMP THREADPRIVATE(alf1,alf2) |
---|
17 | REAL, DIMENSION(:,:), ALLOCATABLE :: Kcoefm |
---|
18 | !$OMP THREADPRIVATE(Kcoefm) |
---|
19 | REAL, DIMENSION(:,:), ALLOCATABLE :: Ccoef_U, Dcoef_U |
---|
20 | !$OMP THREADPRIVATE(Ccoef_U, Dcoef_U) |
---|
21 | REAL, DIMENSION(:,:), ALLOCATABLE :: Ccoef_V, Dcoef_V |
---|
22 | !$OMP THREADPRIVATE(Ccoef_V, Dcoef_V) |
---|
23 | LOGICAL :: firstcall=.TRUE. |
---|
24 | !$OMP THREADPRIVATE(firstcall) |
---|
25 | |
---|
26 | |
---|
27 | PUBLIC :: climb_wind_down, calcul_wind_flux, climb_wind_up |
---|
28 | |
---|
29 | CONTAINS |
---|
30 | ! |
---|
31 | !**************************************************************************************** |
---|
32 | ! |
---|
33 | SUBROUTINE climb_wind_init |
---|
34 | |
---|
35 | INTEGER :: ierr |
---|
36 | CHARACTER(len = 20) :: modname = 'climb_wind_init' |
---|
37 | |
---|
38 | !**************************************************************************************** |
---|
39 | ! Allocation of global module variables |
---|
40 | ! |
---|
41 | !**************************************************************************************** |
---|
42 | |
---|
43 | ALLOCATE(alf1(klon), stat=ierr) |
---|
44 | IF (ierr /= 0) CALL abort_gcm(modname,'Pb in allocate alf2',1) |
---|
45 | |
---|
46 | ALLOCATE(alf2(klon), stat=ierr) |
---|
47 | IF (ierr /= 0) CALL abort_gcm(modname,'Pb in allocate alf2',1) |
---|
48 | |
---|
49 | ALLOCATE(Kcoefm(klon,klev), stat=ierr) |
---|
50 | IF (ierr /= 0) CALL abort_gcm(modname,'Pb in allocate Kcoefm',1) |
---|
51 | |
---|
52 | ALLOCATE(Ccoef_U(klon,klev), stat=ierr) |
---|
53 | IF (ierr /= 0) CALL abort_gcm(modname,'Pb in allocate Ccoef_U',1) |
---|
54 | |
---|
55 | ALLOCATE(Dcoef_U(klon,klev), stat=ierr) |
---|
56 | IF (ierr /= 0) CALL abort_gcm(modname,'Pb in allocation Dcoef_U',1) |
---|
57 | |
---|
58 | ALLOCATE(Ccoef_V(klon,klev), stat=ierr) |
---|
59 | IF (ierr /= 0) CALL abort_gcm(modname,'Pb in allocation Ccoef_V',1) |
---|
60 | |
---|
61 | ALLOCATE(Dcoef_V(klon,klev), stat=ierr) |
---|
62 | IF (ierr /= 0) CALL abort_gcm(modname,'Pb in allocation Dcoef_V',1) |
---|
63 | |
---|
64 | firstcall=.FALSE. |
---|
65 | |
---|
66 | END SUBROUTINE climb_wind_init |
---|
67 | ! |
---|
68 | !**************************************************************************************** |
---|
69 | ! |
---|
70 | SUBROUTINE climb_wind_down(knon, dtime, coef_in, pplay, paprs, temp, delp, u_old, v_old) |
---|
71 | ! |
---|
72 | ! This routine calculates for the wind components u and v, |
---|
73 | ! recursivly the coefficients C and D in equation |
---|
74 | ! X(k) = C(k) + D(k)*X(k-1), X=[u,v], k=[1,klev] is the vertical layer. |
---|
75 | ! |
---|
76 | ! |
---|
77 | INCLUDE "YOMCST.h" |
---|
78 | ! Input arguments |
---|
79 | !**************************************************************************************** |
---|
80 | INTEGER, INTENT(IN) :: knon |
---|
81 | REAL, INTENT(IN) :: dtime |
---|
82 | REAL, DIMENSION(klon,klev), INTENT(IN) :: coef_in |
---|
83 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! pres au milieu de couche (Pa) |
---|
84 | REAL, DIMENSION(klon,klev+1), INTENT(IN) :: paprs ! pression a inter-couche (Pa) |
---|
85 | REAL, DIMENSION(klon,klev), INTENT(IN) :: temp ! temperature |
---|
86 | REAL, DIMENSION(klon,klev), INTENT(IN) :: delp |
---|
87 | REAL, DIMENSION(klon,klev), INTENT(IN) :: u_old |
---|
88 | REAL, DIMENSION(klon,klev), INTENT(IN) :: v_old |
---|
89 | |
---|
90 | ! Local variables |
---|
91 | !**************************************************************************************** |
---|
92 | REAL, DIMENSION(klon) :: u1lay, v1lay |
---|
93 | INTEGER :: k, i |
---|
94 | |
---|
95 | |
---|
96 | !**************************************************************************************** |
---|
97 | ! Initialize module |
---|
98 | IF (firstcall) CALL climb_wind_init |
---|
99 | |
---|
100 | !**************************************************************************************** |
---|
101 | ! Calculate the coefficients C and D in : u(k) = C(k) + D(k)*u(k-1) |
---|
102 | ! |
---|
103 | !**************************************************************************************** |
---|
104 | |
---|
105 | ! - Define alpha (alf1 and alf2) |
---|
106 | alf1(:) = 1.0 |
---|
107 | alf2(:) = 1.0 - alf1(:) |
---|
108 | |
---|
109 | ! - Calculte the wind components for the first layer |
---|
110 | u1lay(1:knon) = u_old(1:knon,1)*alf1(1:knon) + u_old(1:knon,2)*alf2(1:knon) |
---|
111 | v1lay(1:knon) = v_old(1:knon,1)*alf1(1:knon) + v_old(1:knon,2)*alf2(1:knon) |
---|
112 | |
---|
113 | ! - Calculate K |
---|
114 | Kcoefm(:,:) = 0.0 |
---|
115 | DO i = 1, knon |
---|
116 | Kcoefm(i,1) = coef_in(i,1) * (1.0+SQRT(u1lay(i)**2+v1lay(i)**2))* & |
---|
117 | pplay(i,1)/(RD*temp(i,1)) |
---|
118 | Kcoefm(i,1) = Kcoefm(i,1) * dtime*RG |
---|
119 | END DO |
---|
120 | |
---|
121 | DO k = 2, klev |
---|
122 | DO i=1,knon |
---|
123 | Kcoefm(i,k) = coef_in(i,k)*RG/(pplay(i,k-1)-pplay(i,k)) & |
---|
124 | *(paprs(i,k)*2/(temp(i,k)+temp(i,k-1))/RD)**2 |
---|
125 | Kcoefm(i,k) = Kcoefm(i,k) * dtime*RG |
---|
126 | END DO |
---|
127 | END DO |
---|
128 | |
---|
129 | ! - Calculate the coefficients C and D, component "u" |
---|
130 | CALL calc_coef(knon, Kcoefm(:,:), delp(:,:), & |
---|
131 | u_old(:,:), alf1(:), alf2(:), & |
---|
132 | Ccoef_U(:,:), Dcoef_U(:,:)) |
---|
133 | |
---|
134 | ! - Calculate the coefficients C and D, component "v" |
---|
135 | CALL calc_coef(knon, Kcoefm(:,:), delp(:,:), & |
---|
136 | v_old(:,:), alf1(:), alf2(:), & |
---|
137 | Ccoef_V(:,:), Dcoef_V(:,:)) |
---|
138 | |
---|
139 | END SUBROUTINE climb_wind_down |
---|
140 | ! |
---|
141 | !**************************************************************************************** |
---|
142 | ! |
---|
143 | SUBROUTINE calc_coef(knon, Kcoef, dels, X, alfa1, alfa2, Ccoef, Dcoef) |
---|
144 | ! |
---|
145 | ! Find the coefficients C and D in fonction of alfa, K and dels |
---|
146 | ! |
---|
147 | ! Input arguments |
---|
148 | !**************************************************************************************** |
---|
149 | INTEGER, INTENT(IN) :: knon |
---|
150 | REAL, DIMENSION(klon,klev), INTENT(IN) :: Kcoef, dels |
---|
151 | REAL, DIMENSION(klon,klev), INTENT(IN) :: X |
---|
152 | REAL, DIMENSION(klon), INTENT(IN) :: alfa1, alfa2 |
---|
153 | |
---|
154 | ! Output arguments |
---|
155 | !**************************************************************************************** |
---|
156 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: Ccoef, Dcoef |
---|
157 | |
---|
158 | ! local variables |
---|
159 | !**************************************************************************************** |
---|
160 | INTEGER :: k, i |
---|
161 | REAL :: buf |
---|
162 | |
---|
163 | !**************************************************************************************** |
---|
164 | ! |
---|
165 | ! Niveau au sommet, k=klev |
---|
166 | ! |
---|
167 | Ccoef(:,:) = 0.0 |
---|
168 | Dcoef(:,:) = 0.0 |
---|
169 | |
---|
170 | DO i = 1, knon |
---|
171 | buf = dels(i,klev) + Kcoef(i,klev) |
---|
172 | |
---|
173 | Ccoef(i,klev) = X(i,klev)*dels(i,klev)/buf |
---|
174 | Dcoef(i,klev) = Kcoef(i,klev)/buf |
---|
175 | END DO |
---|
176 | |
---|
177 | ! |
---|
178 | ! Niveau (klev-1) <= k <= 2 |
---|
179 | ! |
---|
180 | DO k=(klev-1),2,-1 |
---|
181 | DO i = 1, knon |
---|
182 | buf = dels(i,k) + Kcoef(i,k) + & |
---|
183 | Kcoef(i,k+1)*(1.-Dcoef(i,k+1)) |
---|
184 | |
---|
185 | Ccoef(i,k) = X(i,k)*dels(i,k) + & |
---|
186 | Kcoef(i,k+1)*Ccoef(i,k+1) |
---|
187 | Ccoef(i,k) = Ccoef(i,k)/buf |
---|
188 | Dcoef(i,k) = Kcoef(i,k)/buf |
---|
189 | END DO |
---|
190 | END DO |
---|
191 | |
---|
192 | ! |
---|
193 | ! Niveau k=1 |
---|
194 | ! |
---|
195 | DO i = 1, knon |
---|
196 | buf = dels(i,1) + & |
---|
197 | (alfa1(i) + alfa2(i)*Dcoef(i,2)) * Kcoef(i,1) + & |
---|
198 | (1.-Dcoef(i,2))*Kcoef(i,2) |
---|
199 | |
---|
200 | Ccoef(i,1) = X(i,1)*dels(i,1) + & |
---|
201 | (Kcoef(i,2)-Kcoef(i,1)*alfa2(i)) * Ccoef(i,2) |
---|
202 | Ccoef(i,1) = Ccoef(i,1)/buf |
---|
203 | Dcoef(i,1) = Kcoef(i,1)/buf |
---|
204 | END DO |
---|
205 | |
---|
206 | END SUBROUTINE calc_coef |
---|
207 | ! |
---|
208 | !**************************************************************************************** |
---|
209 | ! |
---|
210 | SUBROUTINE calcul_wind_flux(knon, dtime, & |
---|
211 | flux_u, flux_v) |
---|
212 | |
---|
213 | INCLUDE "YOMCST.h" |
---|
214 | |
---|
215 | ! Input arguments |
---|
216 | !**************************************************************************************** |
---|
217 | INTEGER, INTENT(IN) :: knon |
---|
218 | REAL, INTENT(IN) :: dtime |
---|
219 | |
---|
220 | ! Output arguments |
---|
221 | !**************************************************************************************** |
---|
222 | REAL, DIMENSION(klon), INTENT(OUT) :: flux_u |
---|
223 | REAL, DIMENSION(klon), INTENT(OUT) :: flux_v |
---|
224 | |
---|
225 | ! Local variables |
---|
226 | !**************************************************************************************** |
---|
227 | INTEGER :: i |
---|
228 | REAL, DIMENSION(klon) :: u0, v0 ! u and v at niveau 0 |
---|
229 | REAL, DIMENSION(klon) :: u1, v1 ! u and v at niveau 1 |
---|
230 | REAL, DIMENSION(klon) :: u2, v2 ! u and v at niveau 2 |
---|
231 | |
---|
232 | |
---|
233 | !**************************************************************************************** |
---|
234 | ! Les vents de surface sont supposes nuls |
---|
235 | ! |
---|
236 | !**************************************************************************************** |
---|
237 | u0(:) = 0.0 |
---|
238 | v0(:) = 0.0 |
---|
239 | |
---|
240 | !**************************************************************************************** |
---|
241 | ! On calcule les vents du couhes 1 et 2 recurviement |
---|
242 | ! |
---|
243 | !**************************************************************************************** |
---|
244 | DO i = 1, knon |
---|
245 | u1(i) = Ccoef_U(i,1) + Dcoef_U(i,1)*u0(i) |
---|
246 | v1(i) = Ccoef_V(i,1) + Dcoef_V(i,1)*v0(i) |
---|
247 | u2(i) = Ccoef_U(i,2) + Dcoef_U(i,2)*u1(i) |
---|
248 | v2(i) = Ccoef_V(i,2) + Dcoef_V(i,2)*v1(i) |
---|
249 | END DO |
---|
250 | |
---|
251 | !**************************************************************************************** |
---|
252 | ! On calcule le flux |
---|
253 | ! |
---|
254 | !**************************************************************************************** |
---|
255 | flux_u(:) = 0.0 |
---|
256 | flux_v(:) = 0.0 |
---|
257 | |
---|
258 | DO i=1,knon |
---|
259 | flux_u(i) = Kcoefm(i,1)/RG/dtime * (u1(i)*alf1(i) + u2(i)*alf2(i) - u0(i)) |
---|
260 | flux_v(i) = Kcoefm(i,1)/RG/dtime * (v1(i)*alf1(i) + v2(i)*alf2(i) - v0(i)) |
---|
261 | END DO |
---|
262 | |
---|
263 | END SUBROUTINE calcul_wind_flux |
---|
264 | ! |
---|
265 | !**************************************************************************************** |
---|
266 | ! |
---|
267 | SUBROUTINE climb_wind_up(knon, dtime, u_old, v_old, & |
---|
268 | flx_u_new, flx_v_new, d_u_new, d_v_new) |
---|
269 | ! |
---|
270 | ! Diffuse the wind components from the surface and up to the top layer. Coefficents |
---|
271 | ! C and D are known from before. The values for U and V at surface are supposed to be |
---|
272 | ! zero (this could be modified). |
---|
273 | ! |
---|
274 | ! u(k) = Cu(k) + Du(k)*u(k-1) |
---|
275 | ! v(k) = Cv(k) + Dv(k)*v(k-1) |
---|
276 | ! [1 <= k <= klev] |
---|
277 | ! |
---|
278 | !**************************************************************************************** |
---|
279 | INCLUDE "YOMCST.h" |
---|
280 | |
---|
281 | ! Input arguments |
---|
282 | !**************************************************************************************** |
---|
283 | INTEGER, INTENT(IN) :: knon |
---|
284 | REAL, INTENT(IN) :: dtime |
---|
285 | REAL, DIMENSION(klon,klev), INTENT(IN) :: u_old |
---|
286 | REAL, DIMENSION(klon,klev), INTENT(IN) :: v_old |
---|
287 | |
---|
288 | ! Output arguments |
---|
289 | !**************************************************************************************** |
---|
290 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: flx_u_new, flx_v_new |
---|
291 | REAL, DIMENSION(klon,klev), INTENT(OUT) :: d_u_new, d_v_new |
---|
292 | |
---|
293 | ! Local variables |
---|
294 | !**************************************************************************************** |
---|
295 | REAL, DIMENSION(klon,klev) :: u_new, v_new |
---|
296 | REAL, DIMENSION(klon) :: u0, v0 |
---|
297 | INTEGER :: k, i |
---|
298 | |
---|
299 | ! |
---|
300 | !**************************************************************************************** |
---|
301 | |
---|
302 | ! Niveau 0 |
---|
303 | u0(1:knon) = 0.0 |
---|
304 | v0(1:knon) = 0.0 |
---|
305 | |
---|
306 | ! Niveau 1 |
---|
307 | DO i = 1, knon |
---|
308 | u_new(i,1) = Ccoef_U(i,1) + Dcoef_U(i,1) * u0(i) |
---|
309 | v_new(i,1) = Ccoef_V(i,1) + Dcoef_V(i,1) * v0(i) |
---|
310 | END DO |
---|
311 | |
---|
312 | ! Niveau 2 jusqu'au sommet klev |
---|
313 | DO k = 2, klev |
---|
314 | DO i=1, knon |
---|
315 | u_new(i,k) = Ccoef_U(i,k) + Dcoef_U(i,k) * u_new(i,k-1) |
---|
316 | v_new(i,k) = Ccoef_V(i,k) + Dcoef_V(i,k) * v_new(i,k-1) |
---|
317 | END DO |
---|
318 | END DO |
---|
319 | |
---|
320 | !**************************************************************************************** |
---|
321 | ! Calcul flux |
---|
322 | ! |
---|
323 | !== flux_u/v est le flux de moment angulaire (positif vers bas) |
---|
324 | !== dont l'unite est: (kg m/s)/(m**2 s) |
---|
325 | ! |
---|
326 | !**************************************************************************************** |
---|
327 | ! |
---|
328 | flx_u_new(:,:) = 0.0 |
---|
329 | flx_v_new(:,:) = 0.0 |
---|
330 | |
---|
331 | ! Niveau 1 |
---|
332 | DO i = 1, knon |
---|
333 | flx_u_new(i,1) = Kcoefm(i,1)/RG/dtime * & |
---|
334 | (u_new(i,1)*alf1(i)+u_new(i,2)*alf2(i) - u0(i)) |
---|
335 | flx_v_new(i,1) = Kcoefm(i,1)/RG/dtime * & |
---|
336 | (v_new(i,1)*alf1(i)+v_new(i,2)*alf2(i) - v0(i)) |
---|
337 | END DO |
---|
338 | |
---|
339 | ! Niveau 2->klev |
---|
340 | DO k = 2, klev |
---|
341 | DO i = 1, knon |
---|
342 | flx_u_new(i,k) = Kcoefm(i,k)/RG/dtime * & |
---|
343 | (u_new(i,k)-u_new(i,k-1)) |
---|
344 | |
---|
345 | flx_v_new(i,k) = Kcoefm(i,k)/RG/dtime * & |
---|
346 | (v_new(i,k)-v_new(i,k-1)) |
---|
347 | END DO |
---|
348 | END DO |
---|
349 | |
---|
350 | !**************************************************************************************** |
---|
351 | ! Calcul tendances |
---|
352 | ! |
---|
353 | !**************************************************************************************** |
---|
354 | d_u_new(:,:) = 0.0 |
---|
355 | d_v_new(:,:) = 0.0 |
---|
356 | DO k = 1, klev |
---|
357 | DO i = 1, knon |
---|
358 | d_u_new(i,k) = u_new(i,k) - u_old(i,k) |
---|
359 | d_v_new(i,k) = v_new(i,k) - v_old(i,k) |
---|
360 | END DO |
---|
361 | END DO |
---|
362 | |
---|
363 | END SUBROUTINE climb_wind_up |
---|
364 | ! |
---|
365 | !**************************************************************************************** |
---|
366 | ! |
---|
367 | END MODULE climb_wind_mod |
---|