1 | ! |
---|
2 | ! $Header$ |
---|
3 | ! |
---|
4 | |
---|
5 | MODULE interface_surf |
---|
6 | |
---|
7 | ! Ce module regroupe toutes les routines gerant l'interface entre le modele |
---|
8 | ! atmospherique et les modeles de surface (sols continentaux, oceans, glaces) |
---|
9 | ! Les routines sont les suivantes: |
---|
10 | ! |
---|
11 | ! interfsurf_*: routines d'aiguillage vers les interfaces avec les |
---|
12 | ! differents modeles de surface |
---|
13 | ! interfsol\ |
---|
14 | ! > routines d'interface proprement dite |
---|
15 | ! interfoce/ |
---|
16 | ! |
---|
17 | ! interfstart: routine d'initialisation et de lecture de l'etat initial |
---|
18 | ! "interface" |
---|
19 | ! interffin : routine d'ecriture de l'etat de redemmarage de l'interface |
---|
20 | ! |
---|
21 | ! |
---|
22 | ! L. Fairhead, LMD, 02/2000 |
---|
23 | |
---|
24 | USE ioipsl |
---|
25 | |
---|
26 | IMPLICIT none |
---|
27 | |
---|
28 | PRIVATE |
---|
29 | PUBLIC :: interfsurf,interfsurf_hq, gath2cpl |
---|
30 | |
---|
31 | INTERFACE interfsurf |
---|
32 | module procedure interfsurf_hq, interfsurf_vent |
---|
33 | END INTERFACE |
---|
34 | |
---|
35 | INTERFACE interfoce |
---|
36 | module procedure interfoce_cpl, interfoce_slab, interfoce_lim |
---|
37 | END INTERFACE |
---|
38 | |
---|
39 | #include "YOMCST.inc" |
---|
40 | #include "indicesol.inc" |
---|
41 | |
---|
42 | |
---|
43 | ! run_off ruissellement total |
---|
44 | REAL, ALLOCATABLE, DIMENSION(:),SAVE :: run_off, run_off_lic |
---|
45 | real, allocatable, dimension(:),save :: coastalflow, riverflow |
---|
46 | !!$PB |
---|
47 | REAL, ALLOCATABLE, DIMENSION(:,:), SAVE :: tmp_rriv, tmp_rcoa,tmp_rlic |
---|
48 | !! pour simuler la fonte des glaciers antarctiques |
---|
49 | REAL, ALLOCATABLE, DIMENSION(:,:), SAVE :: coeff_iceberg |
---|
50 | real, save :: surf_maille |
---|
51 | real, save :: cte_flux_iceberg = 6.3e7 |
---|
52 | integer, save :: num_antarctic = 1 |
---|
53 | REAL, save :: tau_calv |
---|
54 | !!$ |
---|
55 | CONTAINS |
---|
56 | ! |
---|
57 | !############################################################################ |
---|
58 | ! |
---|
59 | SUBROUTINE interfsurf_hq(itime, dtime, date0, jour, rmu0, & |
---|
60 | & klon, iim, jjm, nisurf, knon, knindex, pctsrf, & |
---|
61 | & rlon, rlat, cufi, cvfi,& |
---|
62 | & debut, lafin, ok_veget, soil_model, nsoilmx, tsoil, qsol,& |
---|
63 | & zlev, u1_lay, v1_lay, temp_air, spechum, epot_air, ccanopy, & |
---|
64 | & tq_cdrag, petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
65 | & precip_rain, precip_snow, sollw, sollwdown, swnet, swdown, & |
---|
66 | & fder, taux, tauy, & |
---|
67 | ! -- LOOP |
---|
68 | & windsp, & |
---|
69 | ! -- LOOP |
---|
70 | & rugos, rugoro, & |
---|
71 | & albedo, snow, qsurf, & |
---|
72 | & tsurf, p1lay, ps, radsol, & |
---|
73 | & ocean, npas, nexca, zmasq, & |
---|
74 | & evap, fluxsens, fluxlat, dflux_l, dflux_s, & |
---|
75 | & tsol_rad, tsurf_new, alb_new, alblw, emis_new, & |
---|
76 | & z0_new, pctsrf_new, agesno,fqcalving,ffonte, run_off_lic_0,& |
---|
77 | !IM "slab" ocean |
---|
78 | & flux_o, flux_g, tslab, seaice) |
---|
79 | |
---|
80 | |
---|
81 | ! Cette routine sert d'aiguillage entre l'atmosphere et la surface en general |
---|
82 | ! (sols continentaux, oceans, glaces) pour les fluxs de chaleur et d'humidite. |
---|
83 | ! En pratique l'interface se fait entre la couche limite du modele |
---|
84 | ! atmospherique (clmain.F) et les routines de surface (sechiba, oasis, ...) |
---|
85 | ! |
---|
86 | ! |
---|
87 | ! L.Fairhead 02/2000 |
---|
88 | ! |
---|
89 | ! input: |
---|
90 | ! itime numero du pas de temps |
---|
91 | ! klon nombre total de points de grille |
---|
92 | ! iim, jjm nbres de pts de grille |
---|
93 | ! dtime pas de temps de la physique (en s) |
---|
94 | ! date0 jour initial |
---|
95 | ! jour jour dans l'annee en cours, |
---|
96 | ! rmu0 cosinus de l'angle solaire zenithal |
---|
97 | ! nexca pas de temps couplage |
---|
98 | ! nisurf index de la surface a traiter (1 = sol continental) |
---|
99 | ! knon nombre de points de la surface a traiter |
---|
100 | ! knindex index des points de la surface a traiter |
---|
101 | ! pctsrf tableau des pourcentages de surface de chaque maille |
---|
102 | ! rlon longitudes |
---|
103 | ! rlat latitudes |
---|
104 | ! cufi,cvfi resolution des mailles en x et y (m) |
---|
105 | ! debut logical: 1er appel a la physique |
---|
106 | ! lafin logical: dernier appel a la physique |
---|
107 | ! ok_veget logical: appel ou non au schema de surface continental |
---|
108 | ! (si false calcul simplifie des fluxs sur les continents) |
---|
109 | ! zlev hauteur de la premiere couche |
---|
110 | ! u1_lay vitesse u 1ere couche |
---|
111 | ! v1_lay vitesse v 1ere couche |
---|
112 | ! temp_air temperature de l'air 1ere couche |
---|
113 | ! spechum humidite specifique 1ere couche |
---|
114 | ! epot_air temp potentielle de l'air |
---|
115 | ! ccanopy concentration CO2 canopee |
---|
116 | ! tq_cdrag cdrag |
---|
117 | ! petAcoef coeff. A de la resolution de la CL pour t |
---|
118 | ! peqAcoef coeff. A de la resolution de la CL pour q |
---|
119 | ! petBcoef coeff. B de la resolution de la CL pour t |
---|
120 | ! peqBcoef coeff. B de la resolution de la CL pour q |
---|
121 | ! precip_rain precipitation liquide |
---|
122 | ! precip_snow precipitation solide |
---|
123 | ! sollw flux IR net a la surface |
---|
124 | ! sollwdown flux IR descendant a la surface |
---|
125 | ! swnet flux solaire net |
---|
126 | ! swdown flux solaire entrant a la surface |
---|
127 | ! albedo albedo de la surface |
---|
128 | ! tsurf temperature de surface |
---|
129 | ! tslab temperature slab ocean |
---|
130 | ! pctsrf_slab pourcentages (0-1) des sous-surfaces dans le slab |
---|
131 | ! tmp_pctsrf_slab = pctsrf_slab |
---|
132 | ! p1lay pression 1er niveau (milieu de couche) |
---|
133 | ! ps pression au sol |
---|
134 | ! radsol rayonnement net aus sol (LW + SW) |
---|
135 | ! ocean type d'ocean utilise (force, slab, couple) |
---|
136 | ! fder derivee des flux (pour le couplage) |
---|
137 | ! taux, tauy tension de vents |
---|
138 | ! -- LOOP |
---|
139 | ! windsp module du vent a 10m |
---|
140 | ! -- LOOP |
---|
141 | ! rugos rugosite |
---|
142 | ! zmasq masque terre/ocean |
---|
143 | ! rugoro rugosite orographique |
---|
144 | ! run_off_lic_0 runoff glacier du pas de temps precedent |
---|
145 | ! |
---|
146 | ! output: |
---|
147 | ! evap evaporation totale |
---|
148 | ! fluxsens flux de chaleur sensible |
---|
149 | ! fluxlat flux de chaleur latente |
---|
150 | ! tsol_rad |
---|
151 | ! tsurf_new temperature au sol |
---|
152 | ! alb_new albedo |
---|
153 | ! emis_new emissivite |
---|
154 | ! z0_new surface roughness |
---|
155 | ! pctsrf_new nouvelle repartition des surfaces |
---|
156 | |
---|
157 | #include "iniprint.h" |
---|
158 | |
---|
159 | |
---|
160 | ! Parametres d'entree |
---|
161 | integer, intent(IN) :: itime |
---|
162 | integer, intent(IN) :: iim, jjm |
---|
163 | integer, intent(IN) :: klon |
---|
164 | real, intent(IN) :: dtime |
---|
165 | real, intent(IN) :: date0 |
---|
166 | integer, intent(IN) :: jour |
---|
167 | real, intent(IN) :: rmu0(klon) |
---|
168 | integer, intent(IN) :: nisurf |
---|
169 | integer, intent(IN) :: knon |
---|
170 | integer, dimension(klon), intent(in) :: knindex |
---|
171 | real, dimension(klon,nbsrf), intent(IN) :: pctsrf |
---|
172 | logical, intent(IN) :: debut, lafin, ok_veget |
---|
173 | real, dimension(klon), intent(IN) :: rlon, rlat |
---|
174 | real, dimension(klon), intent(IN) :: cufi, cvfi |
---|
175 | real, dimension(klon), intent(INOUT) :: tq_cdrag |
---|
176 | real, dimension(klon), intent(IN) :: zlev |
---|
177 | real, dimension(klon), intent(IN) :: u1_lay, v1_lay |
---|
178 | real, dimension(klon), intent(IN) :: temp_air, spechum |
---|
179 | real, dimension(klon), intent(IN) :: epot_air, ccanopy |
---|
180 | real, dimension(klon), intent(IN) :: petAcoef, peqAcoef |
---|
181 | real, dimension(klon), intent(IN) :: petBcoef, peqBcoef |
---|
182 | real, dimension(klon), intent(IN) :: precip_rain, precip_snow |
---|
183 | real, dimension(klon), intent(IN) :: sollw, sollwdown, swnet, swdown |
---|
184 | real, dimension(klon), intent(IN) :: ps, albedo |
---|
185 | real, dimension(klon), intent(IN) :: tsurf, p1lay |
---|
186 | !IM: "slab" ocean |
---|
187 | real, dimension(klon), intent(INOUT) :: tslab |
---|
188 | real, allocatable, dimension(:), save :: tmp_tslab |
---|
189 | real, dimension(klon), intent(OUT) :: flux_o, flux_g |
---|
190 | real, dimension(klon), intent(INOUT) :: seaice ! glace de mer (kg/m2) |
---|
191 | REAL, DIMENSION(klon), INTENT(INOUT) :: radsol,fder |
---|
192 | real, dimension(klon), intent(IN) :: zmasq |
---|
193 | real, dimension(klon), intent(IN) :: taux, tauy, rugos, rugoro |
---|
194 | ! -- LOOP |
---|
195 | real, dimension(klon), intent(IN) :: windsp |
---|
196 | ! -- LOOP |
---|
197 | character (len = 6) :: ocean |
---|
198 | integer :: npas, nexca ! nombre et pas de temps couplage |
---|
199 | real, dimension(klon), intent(INOUT) :: evap, snow, qsurf |
---|
200 | !! PB ajout pour soil |
---|
201 | logical :: soil_model |
---|
202 | integer :: nsoilmx |
---|
203 | REAL, DIMENSION(klon, nsoilmx) :: tsoil |
---|
204 | REAL, dimension(klon), intent(INOUT) :: qsol |
---|
205 | REAL, dimension(klon) :: soilcap |
---|
206 | REAL, dimension(klon) :: soilflux |
---|
207 | ! Parametres de sortie |
---|
208 | real, dimension(klon), intent(OUT):: fluxsens, fluxlat |
---|
209 | real, dimension(klon), intent(OUT):: tsol_rad, tsurf_new, alb_new |
---|
210 | real, dimension(klon), intent(OUT):: alblw |
---|
211 | real, dimension(klon), intent(OUT):: emis_new, z0_new |
---|
212 | real, dimension(klon), intent(OUT):: dflux_l, dflux_s |
---|
213 | real, dimension(klon,nbsrf), intent(OUT) :: pctsrf_new |
---|
214 | real, dimension(klon), intent(INOUT):: agesno |
---|
215 | real, dimension(klon), intent(INOUT):: run_off_lic_0 |
---|
216 | |
---|
217 | ! Flux thermique utiliser pour fondre la neige |
---|
218 | !jld a rajouter real, dimension(klon), intent(INOUT):: ffonte |
---|
219 | real, dimension(klon), intent(INOUT):: ffonte |
---|
220 | ! Flux d'eau "perdue" par la surface et nécessaire pour que limiter la |
---|
221 | ! hauteur de neige, en kg/m2/s |
---|
222 | !jld a rajouter real, dimension(klon), intent(INOUT):: fqcalving |
---|
223 | real, dimension(klon), intent(INOUT):: fqcalving |
---|
224 | !IM: "slab" ocean |
---|
225 | real, dimension(klon) :: new_dif_grnd |
---|
226 | !IM: "slab" ocean - Local |
---|
227 | real, parameter :: t_grnd=271.35 |
---|
228 | real, dimension(klon) :: zx_sl |
---|
229 | integer i |
---|
230 | real, allocatable, dimension(:), save :: tmp_flux_o, tmp_flux_g |
---|
231 | real, allocatable, dimension(:), save :: tmp_radsol |
---|
232 | real, allocatable, dimension(:,:), save :: tmp_pctsrf_slab |
---|
233 | real, allocatable, dimension(:), save :: tmp_seaice |
---|
234 | |
---|
235 | ! Local |
---|
236 | character (len = 20),save :: modname = 'interfsurf_hq' |
---|
237 | character (len = 80) :: abort_message |
---|
238 | logical, save :: first_call = .true. |
---|
239 | integer, save :: error |
---|
240 | integer :: ii, index |
---|
241 | logical,save :: check = .false. |
---|
242 | real, dimension(klon):: cal, beta, dif_grnd, capsol |
---|
243 | !!$PB real, parameter :: calice=1.0/(5.1444e+06*0.15), tau_gl=86400.*5. |
---|
244 | real, parameter :: calice=1.0/(5.1444e+06*0.15), tau_gl=86400.*5. |
---|
245 | real, parameter :: calsno=1./(2.3867e+06*.15) |
---|
246 | real, dimension(klon):: alb_ice |
---|
247 | real, dimension(klon):: tsurf_temp |
---|
248 | real, dimension(klon):: qsurf_new |
---|
249 | !! real, allocatable, dimension(:), save :: alb_neig_grid |
---|
250 | real, dimension(klon):: alb_neig, alb_eau |
---|
251 | real, DIMENSION(klon):: zfra |
---|
252 | logical :: cumul = .false. |
---|
253 | INTEGER,dimension(1) :: iloc |
---|
254 | INTEGER :: isize |
---|
255 | real, dimension(klon):: fder_prev |
---|
256 | REAL, dimension(klon) :: bidule |
---|
257 | |
---|
258 | if (check) write(*,*) 'Entree ', modname |
---|
259 | ! |
---|
260 | ! On doit commencer par appeler les schemas de surfaces continentales |
---|
261 | ! car l'ocean a besoin du ruissellement qui est y calcule |
---|
262 | ! |
---|
263 | if (first_call) then |
---|
264 | call conf_interface(tau_calv) |
---|
265 | if (nisurf /= is_ter .and. klon > 1) then |
---|
266 | write(*,*)' *** Warning ***' |
---|
267 | write(*,*)' nisurf = ',nisurf,' /= is_ter = ',is_ter |
---|
268 | write(*,*)'or on doit commencer par les surfaces continentales' |
---|
269 | abort_message='voir ci-dessus' |
---|
270 | call abort_gcm(modname,abort_message,1) |
---|
271 | endif |
---|
272 | if (ocean /= 'slab ' .and. ocean /= 'force ' .and. ocean /= 'couple') then |
---|
273 | write(*,*)' *** Warning ***' |
---|
274 | write(*,*)'Option couplage pour l''ocean = ', ocean |
---|
275 | abort_message='option pour l''ocean non valable' |
---|
276 | call abort_gcm(modname,abort_message,1) |
---|
277 | endif |
---|
278 | if ( is_oce > is_sic ) then |
---|
279 | write(*,*)' *** Warning ***' |
---|
280 | write(*,*)' Pour des raisons de sequencement dans le code' |
---|
281 | write(*,*)' l''ocean doit etre traite avant la banquise' |
---|
282 | write(*,*)' or is_oce = ',is_oce, '> is_sic = ',is_sic |
---|
283 | abort_message='voir ci-dessus' |
---|
284 | call abort_gcm(modname,abort_message,1) |
---|
285 | endif |
---|
286 | ! allocate(alb_neig_grid(klon), stat = error) |
---|
287 | ! if (error /= 0) then |
---|
288 | ! abort_message='Pb allocation alb_neig_grid' |
---|
289 | ! call abort_gcm(modname,abort_message,1) |
---|
290 | ! endif |
---|
291 | ! |
---|
292 | !IM: "slab" ocean; initialisations |
---|
293 | flux_o = 0. |
---|
294 | flux_g = 0. |
---|
295 | if (.not. allocated(tmp_flux_o)) then |
---|
296 | allocate(tmp_flux_o(klon), stat = error) |
---|
297 | DO i=1, knon |
---|
298 | tmp_flux_o(knindex(i))=flux_o(i) |
---|
299 | ENDDO |
---|
300 | if (error /= 0) then |
---|
301 | abort_message='Pb allocation tmp_flux_o' |
---|
302 | call abort_gcm(modname,abort_message,1) |
---|
303 | endif |
---|
304 | endif |
---|
305 | if (.not. allocated(tmp_flux_g)) then |
---|
306 | allocate(tmp_flux_g(klon), stat = error) |
---|
307 | DO i=1, knon |
---|
308 | tmp_flux_g(knindex(i))=flux_g(i) |
---|
309 | ENDDO |
---|
310 | if (error /= 0) then |
---|
311 | abort_message='Pb allocation tmp_flux_g' |
---|
312 | call abort_gcm(modname,abort_message,1) |
---|
313 | endif |
---|
314 | endif |
---|
315 | if (.not. allocated(tmp_radsol)) then |
---|
316 | allocate(tmp_radsol(klon), stat = error) |
---|
317 | if (error /= 0) then |
---|
318 | abort_message='Pb allocation tmp_radsol' |
---|
319 | call abort_gcm(modname,abort_message,1) |
---|
320 | endif |
---|
321 | endif |
---|
322 | DO i=1, knon |
---|
323 | tmp_radsol(knindex(i))=radsol(i) |
---|
324 | ENDDO |
---|
325 | if (.not. allocated(tmp_pctsrf_slab)) then |
---|
326 | allocate(tmp_pctsrf_slab(klon,nbsrf), stat = error) |
---|
327 | if (error /= 0) then |
---|
328 | abort_message='Pb allocation tmp_pctsrf_slab' |
---|
329 | call abort_gcm(modname,abort_message,1) |
---|
330 | endif |
---|
331 | DO i=1, klon |
---|
332 | tmp_pctsrf_slab(i,1:nbsrf)=pctsrf(i,1:nbsrf) |
---|
333 | ENDDO |
---|
334 | endif |
---|
335 | ! |
---|
336 | if (.not. allocated(tmp_seaice)) then |
---|
337 | allocate(tmp_seaice(klon), stat = error) |
---|
338 | if (error /= 0) then |
---|
339 | abort_message='Pb allocation tmp_seaice' |
---|
340 | call abort_gcm(modname,abort_message,1) |
---|
341 | endif |
---|
342 | DO i=1, klon |
---|
343 | tmp_seaice(i)=seaice(i) |
---|
344 | ENDDO |
---|
345 | endif |
---|
346 | ! |
---|
347 | if (.not. allocated(tmp_tslab)) then |
---|
348 | allocate(tmp_tslab(klon), stat = error) |
---|
349 | if (error /= 0) then |
---|
350 | abort_message='Pb allocation tmp_tslab' |
---|
351 | call abort_gcm(modname,abort_message,1) |
---|
352 | endif |
---|
353 | endif |
---|
354 | DO i=1, klon |
---|
355 | tmp_tslab(i)=tslab(i) |
---|
356 | ENDDO |
---|
357 | endif |
---|
358 | first_call = .false. |
---|
359 | |
---|
360 | ! Initialisations diverses |
---|
361 | ! |
---|
362 | !!$ cal=0.; beta=1.; dif_grnd=0.; capsol=0. |
---|
363 | !!$ alb_new = 0.; z0_new = 0.; alb_neig = 0.0 |
---|
364 | !!$! PB |
---|
365 | !!$ tsurf_new = 0. |
---|
366 | |
---|
367 | !IM cf JLD |
---|
368 | ffonte(1:knon)=0. |
---|
369 | fqcalving(1:knon)=0. |
---|
370 | |
---|
371 | cal = 999999. ; beta = 999999. ; dif_grnd = 999999. ; capsol = 999999. |
---|
372 | alb_new = 999999. ; z0_new = 999999. ; alb_neig = 999999. |
---|
373 | tsurf_new = 999999. |
---|
374 | alblw = 999999. |
---|
375 | |
---|
376 | ! |
---|
377 | ! |
---|
378 | ! Aiguillage vers les differents schemas de surface |
---|
379 | |
---|
380 | if (nisurf == is_ter) then |
---|
381 | ! |
---|
382 | ! Surface "terre" appel a l'interface avec les sols continentaux |
---|
383 | ! |
---|
384 | ! allocation du run-off |
---|
385 | if (.not. allocated(coastalflow)) then |
---|
386 | allocate(coastalflow(knon), stat = error) |
---|
387 | if (error /= 0) then |
---|
388 | abort_message='Pb allocation coastalflow' |
---|
389 | call abort_gcm(modname,abort_message,1) |
---|
390 | endif |
---|
391 | allocate(riverflow(knon), stat = error) |
---|
392 | if (error /= 0) then |
---|
393 | abort_message='Pb allocation riverflow' |
---|
394 | call abort_gcm(modname,abort_message,1) |
---|
395 | endif |
---|
396 | allocate(run_off(knon), stat = error) |
---|
397 | if (error /= 0) then |
---|
398 | abort_message='Pb allocation run_off' |
---|
399 | call abort_gcm(modname,abort_message,1) |
---|
400 | endif |
---|
401 | !cym |
---|
402 | run_off=0.0 |
---|
403 | !cym |
---|
404 | |
---|
405 | !!$PB |
---|
406 | ALLOCATE (tmp_rriv(iim,jjm+1), stat=error) |
---|
407 | if (error /= 0) then |
---|
408 | abort_message='Pb allocation tmp_rriv' |
---|
409 | call abort_gcm(modname,abort_message,1) |
---|
410 | endif |
---|
411 | ALLOCATE (tmp_rcoa(iim,jjm+1), stat=error) |
---|
412 | if (error /= 0) then |
---|
413 | abort_message='Pb allocation tmp_rcoa' |
---|
414 | call abort_gcm(modname,abort_message,1) |
---|
415 | endif |
---|
416 | ALLOCATE (tmp_rlic(iim,jjm+1), stat=error) |
---|
417 | if (error /= 0) then |
---|
418 | abort_message='Pb allocation tmp_rlic' |
---|
419 | call abort_gcm(modname,abort_message,1) |
---|
420 | endif |
---|
421 | tmp_rriv = 0.0 |
---|
422 | tmp_rcoa = 0.0 |
---|
423 | tmp_rlic = 0.0 |
---|
424 | |
---|
425 | !!$ |
---|
426 | else if (size(coastalflow) /= knon) then |
---|
427 | write(*,*)'Bizarre, le nombre de points continentaux' |
---|
428 | write(*,*)'a change entre deux appels. J''arrete ...' |
---|
429 | abort_message='voir ci-dessus' |
---|
430 | call abort_gcm(modname,abort_message,1) |
---|
431 | endif |
---|
432 | coastalflow = 0. |
---|
433 | riverflow = 0. |
---|
434 | ! |
---|
435 | ! Calcul age de la neige |
---|
436 | ! |
---|
437 | !!$ PB ATTENTION changement ordre des appels |
---|
438 | !!$ CALL albsno(klon,agesno,alb_neig_grid) |
---|
439 | |
---|
440 | if (.not. ok_veget) then |
---|
441 | ! |
---|
442 | ! calcul albedo: lecture albedo fichier CL puis ajout albedo neige |
---|
443 | ! |
---|
444 | call interfsur_lim(itime, dtime, jour, & |
---|
445 | & klon, nisurf, knon, knindex, debut, & |
---|
446 | & alb_new, z0_new) |
---|
447 | ! |
---|
448 | ! calcul snow et qsurf, hydrol adapté |
---|
449 | ! |
---|
450 | CALL calbeta(dtime, nisurf, knon, snow, qsol, beta, capsol, dif_grnd) |
---|
451 | |
---|
452 | IF (soil_model) THEN |
---|
453 | CALL soil(dtime, nisurf, knon,snow, tsurf, tsoil,soilcap, soilflux) |
---|
454 | cal(1:knon) = RCPD / soilcap(1:knon) |
---|
455 | radsol(1:knon) = radsol(1:knon) + soilflux(1:knon) |
---|
456 | ELSE |
---|
457 | cal = RCPD * capsol |
---|
458 | !!$ cal = capsol |
---|
459 | ENDIF |
---|
460 | CALL calcul_fluxs( klon, knon, nisurf, dtime, & |
---|
461 | & tsurf, p1lay, cal, beta, tq_cdrag, ps, & |
---|
462 | & precip_rain, precip_snow, snow, qsurf, & |
---|
463 | & radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & |
---|
464 | & petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
465 | & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) |
---|
466 | |
---|
467 | CALL fonte_neige( klon, knon, nisurf, dtime, & |
---|
468 | & tsurf, p1lay, cal, beta, tq_cdrag, ps, & |
---|
469 | & precip_rain, precip_snow, snow, qsol, & |
---|
470 | & radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & |
---|
471 | & petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
472 | & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l, & |
---|
473 | & fqcalving,ffonte, run_off_lic_0) |
---|
474 | |
---|
475 | |
---|
476 | call albsno(klon,knon,dtime,agesno(:),alb_neig(:), precip_snow(:)) |
---|
477 | where (snow(1 : knon) .LT. 0.0001) agesno(1 : knon) = 0. |
---|
478 | zfra(1:knon) = max(0.0,min(1.0,snow(1:knon)/(snow(1:knon)+10.0))) |
---|
479 | alb_new(1 : knon) = alb_neig(1 : knon) *zfra(1:knon) + & |
---|
480 | & alb_new(1 : knon)*(1.0-zfra(1:knon)) |
---|
481 | z0_new = sqrt(z0_new**2+rugoro**2) |
---|
482 | alblw(1 : knon) = alb_new(1 : knon) |
---|
483 | |
---|
484 | else |
---|
485 | !! CALL albsno(klon,agesno,alb_neig_grid) |
---|
486 | ! |
---|
487 | ! appel a sechiba |
---|
488 | ! |
---|
489 | #ifdef CPP_VEGET |
---|
490 | call interfsol(itime, klon, dtime, date0, nisurf, knon, & |
---|
491 | & knindex, rlon, rlat, cufi, cvfi, iim, jjm, pctsrf, & |
---|
492 | & debut, lafin, ok_veget, & |
---|
493 | & zlev, u1_lay, v1_lay, temp_air, spechum, epot_air, ccanopy, & |
---|
494 | & tq_cdrag, petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
495 | & precip_rain, precip_snow, sollwdown, swnet, swdown, & |
---|
496 | & tsurf, p1lay/100., ps/100., radsol, & |
---|
497 | & evap, fluxsens, fluxlat, & |
---|
498 | & tsol_rad, tsurf_new, alb_new, alblw, & |
---|
499 | & emis_new, z0_new, dflux_l, dflux_s, qsurf_new) |
---|
500 | |
---|
501 | ! |
---|
502 | ! ajout de la contribution du relief |
---|
503 | ! |
---|
504 | z0_new = SQRT(z0_new**2+rugoro**2) |
---|
505 | ! |
---|
506 | ! mise a jour de l'humidite saturante calculee par ORCHIDEE |
---|
507 | qsurf(1:knon) = qsurf_new(1:knon) |
---|
508 | #endif |
---|
509 | |
---|
510 | endif |
---|
511 | ! |
---|
512 | ! Remplissage des pourcentages de surface |
---|
513 | ! |
---|
514 | pctsrf_new(:,nisurf) = pctsrf(:,nisurf) |
---|
515 | |
---|
516 | else if (nisurf == is_oce) then |
---|
517 | |
---|
518 | if (check) write(*,*)'ocean, nisurf = ',nisurf |
---|
519 | |
---|
520 | |
---|
521 | ! |
---|
522 | ! Surface "ocean" appel a l'interface avec l'ocean |
---|
523 | ! |
---|
524 | if (ocean == 'couple') then |
---|
525 | if (nexca == 0) then |
---|
526 | abort_message='nexca = 0 dans interfoce_cpl' |
---|
527 | call abort_gcm(modname,abort_message,1) |
---|
528 | endif |
---|
529 | |
---|
530 | cumul = .false. |
---|
531 | |
---|
532 | iloc = maxloc(fder(1:klon)) |
---|
533 | if (check) then |
---|
534 | if (fder(iloc(1))> 0.) then |
---|
535 | WRITE(*,*)'**** Debug fder ****' |
---|
536 | WRITE(*,*)'max fder(',iloc(1),') = ',fder(iloc(1)) |
---|
537 | endif |
---|
538 | endif |
---|
539 | !!$ |
---|
540 | !!$ where(fder.gt.0.) |
---|
541 | !!$ fder = 0. |
---|
542 | !!$ endwhere |
---|
543 | |
---|
544 | call interfoce(itime, dtime, cumul, & |
---|
545 | & klon, iim, jjm, nisurf, pctsrf, knon, knindex, rlon, rlat, & |
---|
546 | & ocean, npas, nexca, debut, lafin, & |
---|
547 | & swdown, sollw, precip_rain, precip_snow, evap, tsurf, & |
---|
548 | & fluxlat, fluxsens, fder, albedo, taux, tauy, & |
---|
549 | ! -- LOOP |
---|
550 | & windsp, & |
---|
551 | ! -- LOOP |
---|
552 | & zmasq, & |
---|
553 | & tsurf_new, alb_new, & |
---|
554 | & pctsrf_new) |
---|
555 | |
---|
556 | !IM: "slab" ocean |
---|
557 | else if (ocean == 'slab ') then |
---|
558 | tsurf_new = tsurf |
---|
559 | pctsrf_new = tmp_pctsrf_slab |
---|
560 | ! |
---|
561 | else ! lecture conditions limites |
---|
562 | call interfoce(itime, dtime, jour, & |
---|
563 | & klon, nisurf, knon, knindex, & |
---|
564 | & debut, & |
---|
565 | & tsurf_new, pctsrf_new) |
---|
566 | |
---|
567 | endif |
---|
568 | |
---|
569 | tsurf_temp = tsurf_new |
---|
570 | cal = 0. |
---|
571 | beta = 1. |
---|
572 | dif_grnd = 0. |
---|
573 | alb_neig(:) = 0. |
---|
574 | agesno(:) = 0. |
---|
575 | |
---|
576 | call calcul_fluxs( klon, knon, nisurf, dtime, & |
---|
577 | & tsurf_temp, p1lay, cal, beta, tq_cdrag, ps, & |
---|
578 | & precip_rain, precip_snow, snow, qsurf, & |
---|
579 | & radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & |
---|
580 | & petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
581 | & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) |
---|
582 | |
---|
583 | fder_prev = fder |
---|
584 | fder = fder_prev + dflux_s + dflux_l |
---|
585 | |
---|
586 | iloc = maxloc(fder(1:klon)) |
---|
587 | if (check.and.fder(iloc(1))> 0.) then |
---|
588 | WRITE(*,*)'**** Debug fder****' |
---|
589 | WRITE(*,*)'max fder(',iloc(1),') = ',fder(iloc(1)) |
---|
590 | WRITE(*,*)'fder_prev, dflux_s, dflux_l',fder_prev(iloc(1)), & |
---|
591 | & dflux_s(iloc(1)), dflux_l(iloc(1)) |
---|
592 | endif |
---|
593 | !!$ |
---|
594 | !!$ where(fder.gt.0.) |
---|
595 | !!$ fder = 0. |
---|
596 | !!$ endwhere |
---|
597 | |
---|
598 | !IM: flux ocean-atmosphere utile pour le "slab" ocean |
---|
599 | DO i=1, knon |
---|
600 | zx_sl(i) = RLVTT |
---|
601 | if (tsurf_new(i) .LT. RTT) zx_sl(i) = RLSTT |
---|
602 | flux_o(i) = fluxsens(i)-evap(i)*zx_sl(i) |
---|
603 | tmp_flux_o(knindex(i)) = flux_o(i) |
---|
604 | tmp_radsol(knindex(i))=radsol(i) |
---|
605 | ENDDO |
---|
606 | ! |
---|
607 | ! 2eme appel a interfoce pour le cumul des champs (en particulier |
---|
608 | ! fluxsens et fluxlat calcules dans calcul_fluxs) |
---|
609 | ! |
---|
610 | if (ocean == 'couple') then |
---|
611 | |
---|
612 | cumul = .true. |
---|
613 | |
---|
614 | call interfoce(itime, dtime, cumul, & |
---|
615 | & klon, iim, jjm, nisurf, pctsrf, knon, knindex, rlon, rlat, & |
---|
616 | & ocean, npas, nexca, debut, lafin, & |
---|
617 | & swdown, sollw, precip_rain, precip_snow, evap, tsurf, & |
---|
618 | & fluxlat, fluxsens, fder, albedo, taux, tauy, & |
---|
619 | ! -- LOOP |
---|
620 | & windsp, & |
---|
621 | ! -- LOOP |
---|
622 | & zmasq, & |
---|
623 | & tsurf_new, alb_new, & |
---|
624 | & pctsrf_new) |
---|
625 | |
---|
626 | !IM: "slab" ocean |
---|
627 | else if (ocean == 'slab ') then |
---|
628 | ! |
---|
629 | seaice=tmp_seaice |
---|
630 | cumul = .true. |
---|
631 | call interfoce(klon, debut, itime, dtime, jour, & |
---|
632 | & tmp_radsol, tmp_flux_o, tmp_flux_g, pctsrf, & |
---|
633 | & tslab, seaice, pctsrf_new) |
---|
634 | ! |
---|
635 | tmp_pctsrf_slab=pctsrf_new |
---|
636 | DO i=1, knon |
---|
637 | tsurf_new(i)=tslab(knindex(i)) |
---|
638 | ENDDO !i |
---|
639 | ! |
---|
640 | endif |
---|
641 | |
---|
642 | ! |
---|
643 | ! calcul albedo |
---|
644 | ! |
---|
645 | |
---|
646 | if ( minval(rmu0) == maxval(rmu0) .and. minval(rmu0) == -999.999 ) then |
---|
647 | CALL alboc(FLOAT(jour),rlat,alb_eau) |
---|
648 | else ! cycle diurne |
---|
649 | CALL alboc_cd(rmu0,alb_eau) |
---|
650 | endif |
---|
651 | DO ii =1, knon |
---|
652 | alb_new(ii) = alb_eau(knindex(ii)) |
---|
653 | enddo |
---|
654 | |
---|
655 | z0_new = sqrt(rugos**2 + rugoro**2) |
---|
656 | alblw(1:knon) = alb_new(1:knon) |
---|
657 | |
---|
658 | ! |
---|
659 | else if (nisurf == is_sic) then |
---|
660 | |
---|
661 | if (check) write(*,*)'sea ice, nisurf = ',nisurf |
---|
662 | |
---|
663 | ! |
---|
664 | ! Surface "glace de mer" appel a l'interface avec l'ocean |
---|
665 | ! |
---|
666 | ! |
---|
667 | if (ocean == 'couple') then |
---|
668 | |
---|
669 | cumul =.false. |
---|
670 | |
---|
671 | iloc = maxloc(fder(1:klon)) |
---|
672 | if (check.and.fder(iloc(1))> 0.) then |
---|
673 | WRITE(*,*)'**** Debug fder ****' |
---|
674 | WRITE(*,*)'max fder(',iloc(1),') = ',fder(iloc(1)) |
---|
675 | endif |
---|
676 | !!$ |
---|
677 | !!$ where(fder.gt.0.) |
---|
678 | !!$ fder = 0. |
---|
679 | !!$ endwhere |
---|
680 | |
---|
681 | call interfoce(itime, dtime, cumul, & |
---|
682 | & klon, iim, jjm, nisurf, pctsrf, knon, knindex, rlon, rlat, & |
---|
683 | & ocean, npas, nexca, debut, lafin, & |
---|
684 | & swdown, sollw, precip_rain, precip_snow, evap, tsurf, & |
---|
685 | & fluxlat, fluxsens, fder, albedo, taux, tauy, & |
---|
686 | ! -- LOOP |
---|
687 | & windsp, & |
---|
688 | ! -- LOOP |
---|
689 | & zmasq, & |
---|
690 | & tsurf_new, alb_new, & |
---|
691 | & pctsrf_new) |
---|
692 | |
---|
693 | tsurf_temp = tsurf_new |
---|
694 | cal = 0. |
---|
695 | dif_grnd = 0. |
---|
696 | beta = 1.0 |
---|
697 | |
---|
698 | !IM: "slab" ocean |
---|
699 | else if (ocean == 'slab ') then |
---|
700 | pctsrf_new=tmp_pctsrf_slab |
---|
701 | ! |
---|
702 | DO ii = 1, knon |
---|
703 | tsurf_new(ii) = tsurf(ii) |
---|
704 | IF (pctsrf_new(knindex(ii),nisurf) < EPSFRA) then |
---|
705 | snow(ii) = 0.0 |
---|
706 | tsurf_new(ii) = RTT - 1.8 |
---|
707 | IF (soil_model) tsoil(ii,:) = RTT -1.8 |
---|
708 | ENDIF |
---|
709 | ENDDO |
---|
710 | |
---|
711 | CALL calbeta(dtime, nisurf, knon, snow, qsol, beta, capsol, dif_grnd) |
---|
712 | |
---|
713 | IF (soil_model) THEN |
---|
714 | CALL soil(dtime, nisurf, knon,snow, tsurf_new, tsoil,soilcap, soilflux) |
---|
715 | cal(1:knon) = RCPD / soilcap(1:knon) |
---|
716 | radsol(1:knon) = radsol(1:knon) + soilflux(1:knon) |
---|
717 | ELSE |
---|
718 | dif_grnd = 1.0 / tau_gl |
---|
719 | cal = RCPD * calice |
---|
720 | WHERE (snow > 0.0) cal = RCPD * calsno |
---|
721 | ENDIF |
---|
722 | tsurf_temp = tsurf_new |
---|
723 | beta = 1.0 |
---|
724 | ! |
---|
725 | ELSE |
---|
726 | ! ! lecture conditions limites |
---|
727 | CALL interfoce(itime, dtime, jour, & |
---|
728 | & klon, nisurf, knon, knindex, & |
---|
729 | & debut, & |
---|
730 | & tsurf_new, pctsrf_new) |
---|
731 | |
---|
732 | !IM cf LF |
---|
733 | DO ii = 1, knon |
---|
734 | tsurf_new(ii) = tsurf(ii) |
---|
735 | !IMbad IF (pctsrf_new(ii,nisurf) < EPSFRA) then |
---|
736 | IF (pctsrf_new(knindex(ii),nisurf) < EPSFRA) then |
---|
737 | snow(ii) = 0.0 |
---|
738 | !IM cf LF/JLD tsurf(ii) = RTT - 1.8 |
---|
739 | tsurf_new(ii) = RTT - 1.8 |
---|
740 | IF (soil_model) tsoil(ii,:) = RTT -1.8 |
---|
741 | endif |
---|
742 | enddo |
---|
743 | |
---|
744 | CALL calbeta(dtime, nisurf, knon, snow, qsol, beta, capsol, dif_grnd) |
---|
745 | |
---|
746 | IF (soil_model) THEN |
---|
747 | !IM cf LF/JLD CALL soil(dtime, nisurf, knon,snow, tsurf, tsoil,soilcap, soilflux) |
---|
748 | CALL soil(dtime, nisurf, knon,snow, tsurf_new, tsoil,soilcap, soilflux) |
---|
749 | cal(1:knon) = RCPD / soilcap(1:knon) |
---|
750 | radsol(1:knon) = radsol(1:knon) + soilflux(1:knon) |
---|
751 | dif_grnd = 0. |
---|
752 | ELSE |
---|
753 | dif_grnd = 1.0 / tau_gl |
---|
754 | cal = RCPD * calice |
---|
755 | WHERE (snow > 0.0) cal = RCPD * calsno |
---|
756 | ENDIF |
---|
757 | !IMbadtsurf_temp = tsurf |
---|
758 | tsurf_temp = tsurf_new |
---|
759 | beta = 1.0 |
---|
760 | ENDIF |
---|
761 | |
---|
762 | CALL calcul_fluxs( klon, knon, nisurf, dtime, & |
---|
763 | & tsurf_temp, p1lay, cal, beta, tq_cdrag, ps, & |
---|
764 | & precip_rain, precip_snow, snow, qsurf, & |
---|
765 | & radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & |
---|
766 | & petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
767 | & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) |
---|
768 | ! |
---|
769 | !IM: flux entre l'ocean et la glace de mer pour le "slab" ocean |
---|
770 | DO i = 1, knon |
---|
771 | flux_g(i) = 0.0 |
---|
772 | ! |
---|
773 | !IM: faire dependre le coefficient de conduction de la glace de mer |
---|
774 | ! de l'epaisseur de la glace de mer, dans l'hypothese ou le coeff. |
---|
775 | ! actuel correspond a 3m de glace de mer, cf. L.Li |
---|
776 | ! |
---|
777 | ! IF(1.EQ.0) THEN |
---|
778 | ! IF(siceh(i).GT.0.) THEN |
---|
779 | ! new_dif_grnd(i) = dif_grnd(i)*3./siceh(i) |
---|
780 | ! ELSE |
---|
781 | ! new_dif_grnd(i) = 0. |
---|
782 | ! ENDIF |
---|
783 | ! ENDIF !(1.EQ.0) THEN |
---|
784 | ! |
---|
785 | IF (cal(i).GT.1.0e-15) flux_g(i)=(tsurf_new(i)-t_grnd) & |
---|
786 | & * dif_grnd(i) *RCPD/cal(i) |
---|
787 | ! & * new_dif_grnd(i) *RCPD/cal(i) |
---|
788 | tmp_flux_g(knindex(i))=flux_g(i) |
---|
789 | tmp_radsol(knindex(i))=radsol(i) |
---|
790 | ENDDO |
---|
791 | |
---|
792 | IF (ocean /= 'couple') THEN |
---|
793 | CALL fonte_neige( klon, knon, nisurf, dtime, & |
---|
794 | & tsurf_temp, p1lay, cal, beta, tq_cdrag, ps, & |
---|
795 | & precip_rain, precip_snow, snow, qsol, & |
---|
796 | & radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & |
---|
797 | & petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
798 | & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l, & |
---|
799 | & fqcalving,ffonte, run_off_lic_0) |
---|
800 | |
---|
801 | ! calcul albedo |
---|
802 | |
---|
803 | CALL albsno(klon,knon,dtime,agesno(:),alb_neig(:), precip_snow(:)) |
---|
804 | WHERE (snow(1 : knon) .LT. 0.0001) agesno(1 : knon) = 0. |
---|
805 | zfra(1:knon) = MAX(0.0,MIN(1.0,snow(1:knon)/(snow(1:knon)+10.0))) |
---|
806 | alb_new(1 : knon) = alb_neig(1 : knon) *zfra(1:knon) + & |
---|
807 | & 0.6 * (1.0-zfra(1:knon)) |
---|
808 | !! alb_new(1 : knon) = 0.6 |
---|
809 | ENDIF |
---|
810 | |
---|
811 | fder_prev = fder |
---|
812 | fder = fder_prev + dflux_s + dflux_l |
---|
813 | |
---|
814 | iloc = maxloc(fder(1:klon)) |
---|
815 | if (check.and.fder(iloc(1))> 0.) then |
---|
816 | WRITE(*,*)'**** Debug fder ****' |
---|
817 | WRITE(*,*)'max fder(',iloc(1),') = ',fder(iloc(1)) |
---|
818 | WRITE(*,*)'fder_prev, dflux_s, dflux_l',fder_prev(iloc(1)), & |
---|
819 | & dflux_s(iloc(1)), dflux_l(iloc(1)) |
---|
820 | endif |
---|
821 | !!$ where(fder.gt.0.) |
---|
822 | !!$ fder = 0. |
---|
823 | !!$ endwhere |
---|
824 | |
---|
825 | ! |
---|
826 | ! 2eme appel a interfoce pour le cumul et le passage des flux a l'ocean |
---|
827 | ! |
---|
828 | if (ocean == 'couple') then |
---|
829 | |
---|
830 | cumul =.true. |
---|
831 | |
---|
832 | call interfoce(itime, dtime, cumul, & |
---|
833 | & klon, iim, jjm, nisurf, pctsrf, knon, knindex, rlon, rlat, & |
---|
834 | & ocean, npas, nexca, debut, lafin, & |
---|
835 | & swdown, sollw, precip_rain, precip_snow, evap, tsurf, & |
---|
836 | & fluxlat, fluxsens, fder, albedo, taux, tauy, & |
---|
837 | ! -- LOOP |
---|
838 | & windsp, & |
---|
839 | ! -- LOOP |
---|
840 | & zmasq, & |
---|
841 | & tsurf_new, alb_new, & |
---|
842 | & pctsrf_new) |
---|
843 | |
---|
844 | ! else if (ocean == 'slab ') then |
---|
845 | ! call interfoce(nisurf) |
---|
846 | |
---|
847 | endif |
---|
848 | |
---|
849 | |
---|
850 | z0_new = 0.002 |
---|
851 | z0_new = SQRT(z0_new**2+rugoro**2) |
---|
852 | alblw(1:knon) = alb_new(1:knon) |
---|
853 | |
---|
854 | else if (nisurf == is_lic) then |
---|
855 | |
---|
856 | if (check) write(*,*)'glacier, nisurf = ',nisurf |
---|
857 | |
---|
858 | if (.not. allocated(run_off_lic)) then |
---|
859 | allocate(run_off_lic(knon), stat = error) |
---|
860 | if (error /= 0) then |
---|
861 | abort_message='Pb allocation run_off_lic' |
---|
862 | call abort_gcm(modname,abort_message,1) |
---|
863 | endif |
---|
864 | run_off_lic = 0. |
---|
865 | endif |
---|
866 | ! |
---|
867 | ! Surface "glacier continentaux" appel a l'interface avec le sol |
---|
868 | ! |
---|
869 | ! call interfsol(nisurf) |
---|
870 | IF (soil_model) THEN |
---|
871 | CALL soil(dtime, nisurf, knon, snow, tsurf, tsoil,soilcap, soilflux) |
---|
872 | cal(1:knon) = RCPD / soilcap(1:knon) |
---|
873 | radsol(1:knon) = radsol(1:knon) + soilflux(1:knon) |
---|
874 | ELSE |
---|
875 | cal = RCPD * calice |
---|
876 | WHERE (snow > 0.0) cal = RCPD * calsno |
---|
877 | ENDIF |
---|
878 | beta = 1.0 |
---|
879 | dif_grnd = 0.0 |
---|
880 | |
---|
881 | call calcul_fluxs( klon, knon, nisurf, dtime, & |
---|
882 | & tsurf, p1lay, cal, beta, tq_cdrag, ps, & |
---|
883 | & precip_rain, precip_snow, snow, qsurf, & |
---|
884 | & radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & |
---|
885 | & petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
886 | & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) |
---|
887 | |
---|
888 | call fonte_neige( klon, knon, nisurf, dtime, & |
---|
889 | & tsurf, p1lay, cal, beta, tq_cdrag, ps, & |
---|
890 | & precip_rain, precip_snow, snow, qsol, & |
---|
891 | & radsol, dif_grnd, temp_air, spechum, u1_lay, v1_lay, & |
---|
892 | & petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
893 | & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l, & |
---|
894 | & fqcalving,ffonte, run_off_lic_0) |
---|
895 | |
---|
896 | ! passage du run-off des glaciers calcule dans fonte_neige au coupleur |
---|
897 | bidule=0. |
---|
898 | bidule(1:knon)= run_off_lic(1:knon) |
---|
899 | call gath2cpl(bidule, tmp_rlic, klon, knon,iim,jjm,knindex) |
---|
900 | ! |
---|
901 | ! calcul albedo |
---|
902 | ! |
---|
903 | CALL albsno(klon,knon,dtime,agesno(:),alb_neig(:), precip_snow(:)) |
---|
904 | WHERE (snow(1 : knon) .LT. 0.0001) agesno(1 : knon) = 0. |
---|
905 | zfra(1:knon) = MAX(0.0,MIN(1.0,snow(1:knon)/(snow(1:knon)+10.0))) |
---|
906 | alb_new(1 : knon) = alb_neig(1 : knon)*zfra(1:knon) + & |
---|
907 | & 0.6 * (1.0-zfra(1:knon)) |
---|
908 | ! |
---|
909 | !IM: plusieurs choix/tests sur l'albedo des "glaciers continentaux" |
---|
910 | ! alb_new(1 : knon) = 0.6 !IM cf FH/GK |
---|
911 | ! alb_new(1 : knon) = 0.82 |
---|
912 | ! alb_new(1 : knon) = 0.77 !211003 Ksta0.77 |
---|
913 | ! alb_new(1 : knon) = 0.8 !KstaTER0.8 & LMD_ARMIP5 |
---|
914 | !IM: KstaTER0.77 & LMD_ARMIP6 |
---|
915 | alb_new(1 : knon) = 0.77 |
---|
916 | |
---|
917 | ! |
---|
918 | ! Rugosite |
---|
919 | ! |
---|
920 | z0_new = rugoro |
---|
921 | ! |
---|
922 | ! Remplissage des pourcentages de surface |
---|
923 | ! |
---|
924 | pctsrf_new(:,nisurf) = pctsrf(:,nisurf) |
---|
925 | |
---|
926 | alblw(1:knon) = alb_new(1:knon) |
---|
927 | else |
---|
928 | write(*,*)'Index surface = ',nisurf |
---|
929 | abort_message = 'Index surface non valable' |
---|
930 | call abort_gcm(modname,abort_message,1) |
---|
931 | endif |
---|
932 | |
---|
933 | END SUBROUTINE interfsurf_hq |
---|
934 | |
---|
935 | ! |
---|
936 | !######################################################################### |
---|
937 | ! |
---|
938 | SUBROUTINE interfsurf_vent(nisurf, knon & |
---|
939 | & ) |
---|
940 | ! |
---|
941 | ! Cette routine sert d'aiguillage entre l'atmosphere et la surface en general |
---|
942 | ! (sols continentaux, oceans, glaces) pour les tensions de vents. |
---|
943 | ! En pratique l'interface se fait entre la couche limite du modele |
---|
944 | ! atmospherique (clmain.F) et les routines de surface (sechiba, oasis, ...) |
---|
945 | ! |
---|
946 | ! |
---|
947 | ! L.Fairhead 02/2000 |
---|
948 | ! |
---|
949 | ! input: |
---|
950 | ! nisurf index de la surface a traiter (1 = sol continental) |
---|
951 | ! knon nombre de points de la surface a traiter |
---|
952 | |
---|
953 | ! Parametres d'entree |
---|
954 | integer, intent(IN) :: nisurf |
---|
955 | integer, intent(IN) :: knon |
---|
956 | |
---|
957 | |
---|
958 | return |
---|
959 | END SUBROUTINE interfsurf_vent |
---|
960 | ! |
---|
961 | !######################################################################### |
---|
962 | ! |
---|
963 | #ifdef CPP_VEGET |
---|
964 | SUBROUTINE interfsol(itime, klon, dtime, date0, nisurf, knon, & |
---|
965 | & knindex, rlon, rlat, cufi, cvfi, iim, jjm, pctsrf, & |
---|
966 | & debut, lafin, ok_veget, & |
---|
967 | & plev, u1_lay, v1_lay, temp_air, spechum, epot_air, ccanopy, & |
---|
968 | & tq_cdrag, petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
969 | & precip_rain, precip_snow, lwdown, swnet, swdown, & |
---|
970 | & tsurf, p1lay, ps, radsol, & |
---|
971 | & evap, fluxsens, fluxlat, & |
---|
972 | & tsol_rad, tsurf_new, alb_new, alblw, & |
---|
973 | & emis_new, z0_new, dflux_l, dflux_s, qsurf) |
---|
974 | |
---|
975 | USE intersurf |
---|
976 | |
---|
977 | ! Cette routine sert d'interface entre le modele atmospherique et le |
---|
978 | ! modele de sol continental. Appel a sechiba |
---|
979 | ! |
---|
980 | ! L. Fairhead 02/2000 |
---|
981 | ! |
---|
982 | ! input: |
---|
983 | ! itime numero du pas de temps |
---|
984 | ! klon nombre total de points de grille |
---|
985 | ! dtime pas de temps de la physique (en s) |
---|
986 | ! nisurf index de la surface a traiter (1 = sol continental) |
---|
987 | ! knon nombre de points de la surface a traiter |
---|
988 | ! knindex index des points de la surface a traiter |
---|
989 | ! rlon longitudes de la grille entiere |
---|
990 | ! rlat latitudes de la grille entiere |
---|
991 | ! pctsrf tableau des fractions de surface de chaque maille |
---|
992 | ! debut logical: 1er appel a la physique (lire les restart) |
---|
993 | ! lafin logical: dernier appel a la physique (ecrire les restart) |
---|
994 | ! ok_veget logical: appel ou non au schema de surface continental |
---|
995 | ! (si false calcul simplifie des fluxs sur les continents) |
---|
996 | ! plev hauteur de la premiere couche (Pa) |
---|
997 | ! u1_lay vitesse u 1ere couche |
---|
998 | ! v1_lay vitesse v 1ere couche |
---|
999 | ! temp_air temperature de l'air 1ere couche |
---|
1000 | ! spechum humidite specifique 1ere couche |
---|
1001 | ! epot_air temp pot de l'air |
---|
1002 | ! ccanopy concentration CO2 canopee |
---|
1003 | ! tq_cdrag cdrag |
---|
1004 | ! petAcoef coeff. A de la resolution de la CL pour t |
---|
1005 | ! peqAcoef coeff. A de la resolution de la CL pour q |
---|
1006 | ! petBcoef coeff. B de la resolution de la CL pour t |
---|
1007 | ! peqBcoef coeff. B de la resolution de la CL pour q |
---|
1008 | ! precip_rain precipitation liquide |
---|
1009 | ! precip_snow precipitation solide |
---|
1010 | ! lwdown flux IR descendant a la surface |
---|
1011 | ! swnet flux solaire net |
---|
1012 | ! swdown flux solaire entrant a la surface |
---|
1013 | ! tsurf temperature de surface |
---|
1014 | ! p1lay pression 1er niveau (milieu de couche) |
---|
1015 | ! ps pression au sol |
---|
1016 | ! radsol rayonnement net aus sol (LW + SW) |
---|
1017 | ! |
---|
1018 | ! |
---|
1019 | ! input/output |
---|
1020 | ! run_off ruissellement total |
---|
1021 | ! |
---|
1022 | ! output: |
---|
1023 | ! evap evaporation totale |
---|
1024 | ! fluxsens flux de chaleur sensible |
---|
1025 | ! fluxlat flux de chaleur latente |
---|
1026 | ! tsol_rad |
---|
1027 | ! tsurf_new temperature au sol |
---|
1028 | ! alb_new albedo |
---|
1029 | ! emis_new emissivite |
---|
1030 | ! z0_new surface roughness |
---|
1031 | ! qsurf air moisture at surface |
---|
1032 | |
---|
1033 | ! Parametres d'entree |
---|
1034 | integer, intent(IN) :: itime |
---|
1035 | integer, intent(IN) :: klon |
---|
1036 | real, intent(IN) :: dtime |
---|
1037 | real, intent(IN) :: date0 |
---|
1038 | integer, intent(IN) :: nisurf |
---|
1039 | integer, intent(IN) :: knon |
---|
1040 | integer, intent(IN) :: iim, jjm |
---|
1041 | integer, dimension(klon), intent(IN) :: knindex |
---|
1042 | logical, intent(IN) :: debut, lafin, ok_veget |
---|
1043 | real, dimension(klon,nbsrf), intent(IN) :: pctsrf |
---|
1044 | real, dimension(klon), intent(IN) :: rlon, rlat |
---|
1045 | real, dimension(klon), intent(IN) :: cufi, cvfi |
---|
1046 | real, dimension(klon), intent(IN) :: plev |
---|
1047 | real, dimension(klon), intent(IN) :: u1_lay, v1_lay |
---|
1048 | real, dimension(klon), intent(IN) :: temp_air, spechum |
---|
1049 | real, dimension(klon), intent(IN) :: epot_air, ccanopy |
---|
1050 | real, dimension(klon), intent(INOUT) :: tq_cdrag |
---|
1051 | real, dimension(klon), intent(IN) :: petAcoef, peqAcoef |
---|
1052 | real, dimension(klon), intent(IN) :: petBcoef, peqBcoef |
---|
1053 | real, dimension(klon), intent(IN) :: precip_rain, precip_snow |
---|
1054 | real, dimension(klon), intent(IN) :: lwdown, swnet, swdown, ps |
---|
1055 | !IM cf. JP +++ |
---|
1056 | real, dimension(klon) :: swdown_vrai |
---|
1057 | !IM cf. JP --- |
---|
1058 | real, dimension(klon), intent(IN) :: tsurf, p1lay |
---|
1059 | real, dimension(klon), intent(IN) :: radsol |
---|
1060 | ! Parametres de sortie |
---|
1061 | real, dimension(klon), intent(OUT):: evap, fluxsens, fluxlat, qsurf |
---|
1062 | real, dimension(klon), intent(OUT):: tsol_rad, tsurf_new, alb_new, alblw |
---|
1063 | real, dimension(klon), intent(OUT):: emis_new, z0_new |
---|
1064 | real, dimension(klon), intent(OUT):: dflux_s, dflux_l |
---|
1065 | |
---|
1066 | ! Local |
---|
1067 | ! |
---|
1068 | integer :: ii, ij, jj, igrid, ireal, i, index, iglob |
---|
1069 | integer :: error |
---|
1070 | character (len = 20) :: modname = 'interfsol' |
---|
1071 | character (len = 80) :: abort_message |
---|
1072 | logical,save :: check = .FALSE. |
---|
1073 | real, dimension(klon) :: cal, beta, dif_grnd, capsol |
---|
1074 | ! type de couplage dans sechiba |
---|
1075 | ! character (len=10) :: coupling = 'implicit' |
---|
1076 | ! drapeaux controlant les appels dans SECHIBA |
---|
1077 | ! type(control_type), save :: control_in |
---|
1078 | ! Preserved albedo |
---|
1079 | !IM cf. JP +++ |
---|
1080 | real, allocatable, dimension(:), save :: albedo_keep, zlev |
---|
1081 | !IM cf. JP --- |
---|
1082 | ! coordonnees geographiques |
---|
1083 | real, allocatable, dimension(:,:), save :: lalo |
---|
1084 | ! pts voisins |
---|
1085 | integer,allocatable, dimension(:,:), save :: neighbours |
---|
1086 | ! fractions continents |
---|
1087 | real,allocatable, dimension(:), save :: contfrac |
---|
1088 | ! resolution de la grille |
---|
1089 | real, allocatable, dimension (:,:), save :: resolution |
---|
1090 | ! correspondance point n -> indices (i,j) |
---|
1091 | integer, allocatable, dimension(:,:), save :: correspond |
---|
1092 | ! offset pour calculer les point voisins |
---|
1093 | integer, dimension(8,3), save :: off_ini |
---|
1094 | integer, dimension(8), save :: offset |
---|
1095 | ! Identifieurs des fichiers restart et histoire |
---|
1096 | integer, save :: rest_id, hist_id |
---|
1097 | integer, save :: rest_id_stom, hist_id_stom |
---|
1098 | ! |
---|
1099 | real, allocatable, dimension (:,:), save :: lon_scat, lat_scat |
---|
1100 | |
---|
1101 | logical, save :: lrestart_read = .true. , lrestart_write = .false. |
---|
1102 | |
---|
1103 | real, dimension(klon):: snow |
---|
1104 | real, dimension(knon,2) :: albedo_out |
---|
1105 | ! Pb de nomenclature |
---|
1106 | real, dimension(klon) :: petA_orc, peqA_orc |
---|
1107 | real, dimension(klon) :: petB_orc, peqB_orc |
---|
1108 | ! Pb de correspondances de grilles |
---|
1109 | integer, dimension(:), save, allocatable :: ig, jg |
---|
1110 | integer :: indi, indj |
---|
1111 | integer, dimension(klon) :: ktindex |
---|
1112 | REAL, dimension(klon) :: bidule |
---|
1113 | ! Essai cdrag |
---|
1114 | real, dimension(klon) :: cdrag |
---|
1115 | |
---|
1116 | #include "temps.inc" |
---|
1117 | #include "YOMCST.inc" |
---|
1118 | #include "iniprint.h" |
---|
1119 | |
---|
1120 | if (check) write(lunout,*)'Entree ', modname |
---|
1121 | if (check) write(lunout,*)'ok_veget = ',ok_veget |
---|
1122 | |
---|
1123 | ktindex(:) = knindex(:) + iim - 1 |
---|
1124 | |
---|
1125 | ! initialisation |
---|
1126 | if (debut) then |
---|
1127 | |
---|
1128 | IF ( .NOT. allocated(albedo_keep)) THEN |
---|
1129 | ALLOCATE(albedo_keep(klon)) |
---|
1130 | ALLOCATE(zlev(klon)) |
---|
1131 | ENDIF |
---|
1132 | ! Pb de correspondances de grilles |
---|
1133 | allocate(ig(klon)) |
---|
1134 | allocate(jg(klon)) |
---|
1135 | ig(1) = 1 |
---|
1136 | jg(1) = 1 |
---|
1137 | indi = 0 |
---|
1138 | indj = 2 |
---|
1139 | do igrid = 2, klon - 1 |
---|
1140 | indi = indi + 1 |
---|
1141 | if ( indi > iim) then |
---|
1142 | indi = 1 |
---|
1143 | indj = indj + 1 |
---|
1144 | endif |
---|
1145 | ig(igrid) = indi |
---|
1146 | jg(igrid) = indj |
---|
1147 | enddo |
---|
1148 | ig(klon) = 1 |
---|
1149 | jg(klon) = jjm + 1 |
---|
1150 | ! |
---|
1151 | ! Initialisation des offset |
---|
1152 | ! |
---|
1153 | ! offset bord ouest |
---|
1154 | off_ini(1,1) = - iim ; off_ini(2,1) = - iim + 1; off_ini(3,1) = 1 |
---|
1155 | off_ini(4,1) = iim + 1; off_ini(5,1) = iim ; off_ini(6,1) = 2 * iim - 1 |
---|
1156 | off_ini(7,1) = iim -1 ; off_ini(8,1) = - 1 |
---|
1157 | ! offset point normal |
---|
1158 | off_ini(1,2) = - iim ; off_ini(2,2) = - iim + 1; off_ini(3,2) = 1 |
---|
1159 | off_ini(4,2) = iim + 1; off_ini(5,2) = iim ; off_ini(6,2) = iim - 1 |
---|
1160 | off_ini(7,2) = -1 ; off_ini(8,2) = - iim - 1 |
---|
1161 | ! offset bord est |
---|
1162 | off_ini(1,3) = - iim; off_ini(2,3) = - 2 * iim + 1; off_ini(3,3) = - iim + 1 |
---|
1163 | off_ini(4,3) = 1 ; off_ini(5,3) = iim ; off_ini(6,3) = iim - 1 |
---|
1164 | off_ini(7,3) = -1 ; off_ini(8,3) = - iim - 1 |
---|
1165 | ! |
---|
1166 | ! Initialisation des correspondances point -> indices i,j |
---|
1167 | ! |
---|
1168 | if (( .not. allocated(correspond))) then |
---|
1169 | allocate(correspond(iim,jjm+1), stat = error) |
---|
1170 | if (error /= 0) then |
---|
1171 | abort_message='Pb allocation correspond' |
---|
1172 | call abort_gcm(modname,abort_message,1) |
---|
1173 | endif |
---|
1174 | endif |
---|
1175 | ! |
---|
1176 | ! Attention aux poles |
---|
1177 | ! |
---|
1178 | do igrid = 1, knon |
---|
1179 | index = ktindex(igrid) |
---|
1180 | jj = int((index - 1)/iim) + 1 |
---|
1181 | ij = index - (jj - 1) * iim |
---|
1182 | correspond(ij,jj) = igrid |
---|
1183 | enddo |
---|
1184 | |
---|
1185 | ! Allouer et initialiser le tableau de coordonnees du sol |
---|
1186 | ! |
---|
1187 | if ((.not. allocated(lalo))) then |
---|
1188 | allocate(lalo(knon,2), stat = error) |
---|
1189 | if (error /= 0) then |
---|
1190 | abort_message='Pb allocation lalo' |
---|
1191 | call abort_gcm(modname,abort_message,1) |
---|
1192 | endif |
---|
1193 | endif |
---|
1194 | if ((.not. allocated(lon_scat))) then |
---|
1195 | allocate(lon_scat(iim,jjm+1), stat = error) |
---|
1196 | if (error /= 0) then |
---|
1197 | abort_message='Pb allocation lon_scat' |
---|
1198 | call abort_gcm(modname,abort_message,1) |
---|
1199 | endif |
---|
1200 | endif |
---|
1201 | if ((.not. allocated(lat_scat))) then |
---|
1202 | allocate(lat_scat(iim,jjm+1), stat = error) |
---|
1203 | if (error /= 0) then |
---|
1204 | abort_message='Pb allocation lat_scat' |
---|
1205 | call abort_gcm(modname,abort_message,1) |
---|
1206 | endif |
---|
1207 | endif |
---|
1208 | lon_scat = 0. |
---|
1209 | lat_scat = 0. |
---|
1210 | do igrid = 1, knon |
---|
1211 | index = knindex(igrid) |
---|
1212 | lalo(igrid,2) = rlon(index) |
---|
1213 | lalo(igrid,1) = rlat(index) |
---|
1214 | ij = index - int((index-1)/iim)*iim - 1 |
---|
1215 | jj = 2 + int((index-1)/iim) |
---|
1216 | if (mod(index,iim) == 1 ) then |
---|
1217 | jj = 1 + int((index-1)/iim) |
---|
1218 | ij = iim |
---|
1219 | endif |
---|
1220 | ! lon_scat(ij,jj) = rlon(index) |
---|
1221 | ! lat_scat(ij,jj) = rlat(index) |
---|
1222 | enddo |
---|
1223 | index = 1 |
---|
1224 | do jj = 2, jjm |
---|
1225 | do ij = 1, iim |
---|
1226 | index = index + 1 |
---|
1227 | lon_scat(ij,jj) = rlon(index) |
---|
1228 | lat_scat(ij,jj) = rlat(index) |
---|
1229 | enddo |
---|
1230 | enddo |
---|
1231 | lon_scat(:,1) = lon_scat(:,2) |
---|
1232 | lat_scat(:,1) = rlat(1) |
---|
1233 | lon_scat(:,jjm+1) = lon_scat(:,2) |
---|
1234 | lat_scat(:,jjm+1) = rlat(klon) |
---|
1235 | ! Pb de correspondances de grilles! |
---|
1236 | ! do igrid = 1, knon |
---|
1237 | ! index = ktindex(igrid) |
---|
1238 | ! ij = ig(index) |
---|
1239 | ! jj = jg(index) |
---|
1240 | ! lon_scat(ij,jj) = rlon(index) |
---|
1241 | ! lat_scat(ij,jj) = rlat(index) |
---|
1242 | ! enddo |
---|
1243 | |
---|
1244 | ! |
---|
1245 | ! Allouer et initialiser le tableau des voisins et des fraction de continents |
---|
1246 | ! |
---|
1247 | if ( (.not.allocated(neighbours))) THEN |
---|
1248 | allocate(neighbours(knon,8), stat = error) |
---|
1249 | if (error /= 0) then |
---|
1250 | abort_message='Pb allocation neighbours' |
---|
1251 | call abort_gcm(modname,abort_message,1) |
---|
1252 | endif |
---|
1253 | endif |
---|
1254 | neighbours = -1. |
---|
1255 | if (( .not. allocated(contfrac))) then |
---|
1256 | allocate(contfrac(knon), stat = error) |
---|
1257 | if (error /= 0) then |
---|
1258 | abort_message='Pb allocation contfrac' |
---|
1259 | call abort_gcm(modname,abort_message,1) |
---|
1260 | endif |
---|
1261 | endif |
---|
1262 | |
---|
1263 | do igrid = 1, knon |
---|
1264 | ireal = knindex(igrid) |
---|
1265 | contfrac(igrid) = pctsrf(ireal,is_ter) |
---|
1266 | enddo |
---|
1267 | |
---|
1268 | do igrid = 1, knon |
---|
1269 | iglob = ktindex(igrid) |
---|
1270 | if (mod(iglob, iim) == 1) then |
---|
1271 | offset = off_ini(:,1) |
---|
1272 | else if(mod(iglob, iim) == 0) then |
---|
1273 | offset = off_ini(:,3) |
---|
1274 | else |
---|
1275 | offset = off_ini(:,2) |
---|
1276 | endif |
---|
1277 | do i = 1, 8 |
---|
1278 | index = iglob + offset(i) |
---|
1279 | ireal = (min(max(1, index - iim + 1), klon)) |
---|
1280 | if (pctsrf(ireal, is_ter) > EPSFRA) then |
---|
1281 | jj = int((index - 1)/iim) + 1 |
---|
1282 | ij = index - (jj - 1) * iim |
---|
1283 | neighbours(igrid, i) = correspond(ij, jj) |
---|
1284 | endif |
---|
1285 | enddo |
---|
1286 | enddo |
---|
1287 | |
---|
1288 | ! |
---|
1289 | ! Allocation et calcul resolutions |
---|
1290 | IF ( (.NOT.ALLOCATED(resolution))) THEN |
---|
1291 | ALLOCATE(resolution(knon,2), stat = error) |
---|
1292 | if (error /= 0) then |
---|
1293 | abort_message='Pb allocation resolution' |
---|
1294 | call abort_gcm(modname,abort_message,1) |
---|
1295 | endif |
---|
1296 | ENDIF |
---|
1297 | do igrid = 1, knon |
---|
1298 | ij = knindex(igrid) |
---|
1299 | resolution(igrid,1) = cufi(ij) |
---|
1300 | resolution(igrid,2) = cvfi(ij) |
---|
1301 | enddo |
---|
1302 | !IM tester la resolution que recoit Orchidee |
---|
1303 | IF((maxval(resolution(:,2)) == 0.).OR. & |
---|
1304 | & (maxval(resolution(:,1)) == 0.)) THEN |
---|
1305 | abort_message='STOP interfsol : resolution recue par Orchidee = 0.' |
---|
1306 | call abort_gcm(modname,abort_message,1) |
---|
1307 | ENDIF |
---|
1308 | |
---|
1309 | endif ! (fin debut) |
---|
1310 | |
---|
1311 | ! |
---|
1312 | ! Appel a la routine sols continentaux |
---|
1313 | ! |
---|
1314 | if (lafin) lrestart_write = .true. |
---|
1315 | if (check) write(lunout,*)'lafin ',lafin,lrestart_write |
---|
1316 | |
---|
1317 | petA_orc = petBcoef * dtime |
---|
1318 | petB_orc = petAcoef |
---|
1319 | peqA_orc = peqBcoef * dtime |
---|
1320 | peqB_orc = peqAcoef |
---|
1321 | |
---|
1322 | cdrag = 0. |
---|
1323 | cdrag(1:knon) = tq_cdrag(1:knon) |
---|
1324 | |
---|
1325 | !IM cf. JP +++ |
---|
1326 | ! zlev(1:knon) = (100.*plev(1:knon))/((ps(1:knon)/287.05*temp_air(1:knon))*9.80665) |
---|
1327 | zlev(1:knon) = (100.*plev(1:knon))/((ps(1:knon)/RD*temp_air(1:knon))*RG) |
---|
1328 | !IM cf. JP --- |
---|
1329 | |
---|
1330 | |
---|
1331 | ! PF et PASB |
---|
1332 | ! where(cdrag > 0.01) |
---|
1333 | ! cdrag = 0.01 |
---|
1334 | ! endwhere |
---|
1335 | ! write(*,*)'Cdrag = ',minval(cdrag),maxval(cdrag) |
---|
1336 | |
---|
1337 | ! |
---|
1338 | ! Init Orchidee |
---|
1339 | ! |
---|
1340 | if (debut) then |
---|
1341 | call intersurf_main (itime+itau_phy-1, iim, jjm+1, knon, ktindex, dtime, & |
---|
1342 | & lrestart_read, lrestart_write, lalo, & |
---|
1343 | & contfrac, neighbours, resolution, date0, & |
---|
1344 | & zlev, u1_lay, v1_lay, spechum, temp_air, epot_air, ccanopy, & |
---|
1345 | & cdrag, petA_orc, peqA_orc, petB_orc, peqB_orc, & |
---|
1346 | & precip_rain, precip_snow, lwdown, swnet, swdown, ps, & |
---|
1347 | & evap, fluxsens, fluxlat, coastalflow, riverflow, & |
---|
1348 | & tsol_rad, tsurf_new, qsurf, albedo_out, emis_new, z0_new, & |
---|
1349 | & lon_scat, lat_scat) |
---|
1350 | |
---|
1351 | !IM cf. JP +++ |
---|
1352 | albedo_keep(1:knon) = (albedo_out(1:knon,1)+albedo_out(1:knon,2))/2. |
---|
1353 | !IM cf. JP --- |
---|
1354 | |
---|
1355 | endif |
---|
1356 | |
---|
1357 | !IM cf. JP +++ |
---|
1358 | !IM swdown_vrai(1:knon) = swnet(1:knon)/(1. - albedo_keep(1:knon)) |
---|
1359 | !IM modification faite dans clmain |
---|
1360 | swdown_vrai(1:knon) = swdown(1:knon) |
---|
1361 | !IM cf. JP --- |
---|
1362 | |
---|
1363 | call intersurf_main (itime+itau_phy, iim, jjm+1, knon, ktindex, dtime, & |
---|
1364 | & lrestart_read, lrestart_write, lalo, & |
---|
1365 | & contfrac, neighbours, resolution, date0, & |
---|
1366 | & zlev, u1_lay, v1_lay, spechum, temp_air, epot_air, ccanopy, & |
---|
1367 | & cdrag, petA_orc, peqA_orc, petB_orc, peqB_orc, & |
---|
1368 | & precip_rain, precip_snow, lwdown, swnet, swdown_vrai, ps, & |
---|
1369 | & evap, fluxsens, fluxlat, coastalflow, riverflow, & |
---|
1370 | & tsol_rad, tsurf_new, qsurf, albedo_out, emis_new, z0_new, & |
---|
1371 | & lon_scat, lat_scat) |
---|
1372 | |
---|
1373 | !IM cf. JP +++ |
---|
1374 | albedo_keep(1:knon) = (albedo_out(1:knon,1)+albedo_out(1:knon,2))/2. |
---|
1375 | !IM cf. JP --- |
---|
1376 | |
---|
1377 | bidule=0. |
---|
1378 | bidule(1:knon)=riverflow(1:knon) |
---|
1379 | call gath2cpl(bidule, tmp_rriv, klon, knon,iim,jjm,knindex) |
---|
1380 | bidule=0. |
---|
1381 | bidule(1:knon)=coastalflow(1:knon) |
---|
1382 | call gath2cpl(bidule, tmp_rcoa, klon, knon,iim,jjm,knindex) |
---|
1383 | alb_new(1:knon) = albedo_out(1:knon,1) |
---|
1384 | alblw(1:knon) = albedo_out(1:knon,2) |
---|
1385 | |
---|
1386 | |
---|
1387 | ! Convention orchidee: positif vers le haut |
---|
1388 | fluxsens(1:knon) = -1. * fluxsens(1:knon) |
---|
1389 | fluxlat(1:knon) = -1. * fluxlat(1:knon) |
---|
1390 | |
---|
1391 | ! evap = -1. * evap |
---|
1392 | |
---|
1393 | if (debut) lrestart_read = .false. |
---|
1394 | |
---|
1395 | END SUBROUTINE interfsol |
---|
1396 | #endif |
---|
1397 | ! |
---|
1398 | !######################################################################### |
---|
1399 | ! |
---|
1400 | SUBROUTINE interfoce_cpl(itime, dtime, cumul, & |
---|
1401 | & klon, iim, jjm, nisurf, pctsrf, knon, knindex, rlon, rlat, & |
---|
1402 | & ocean, npas, nexca, debut, lafin, & |
---|
1403 | & swdown, lwdown, precip_rain, precip_snow, evap, tsurf, & |
---|
1404 | & fluxlat, fluxsens, fder, albsol, taux, tauy, & |
---|
1405 | ! -- LOOP |
---|
1406 | & windsp, & |
---|
1407 | ! -- LOOP |
---|
1408 | & zmasq, & |
---|
1409 | & tsurf_new, alb_new, & |
---|
1410 | & pctsrf_new) |
---|
1411 | |
---|
1412 | ! Cette routine sert d'interface entre le modele atmospherique et un |
---|
1413 | ! coupleur avec un modele d'ocean 'complet' derriere |
---|
1414 | ! |
---|
1415 | ! Le modele de glace qu'il est prevu d'utiliser etant couple directement a |
---|
1416 | ! l'ocean presentement, on va passer deux fois dans cette routine par pas de |
---|
1417 | ! temps physique, une fois avec les points oceans et l'autre avec les points |
---|
1418 | ! glace. A chaque pas de temps de couplage, la lecture des champs provenant |
---|
1419 | ! du coupleur se fera "dans" l'ocean et l'ecriture des champs a envoyer |
---|
1420 | ! au coupleur "dans" la glace. Il faut donc des tableaux de travail "tampons" |
---|
1421 | ! dimensionnes sur toute la grille qui remplissent les champs sur les |
---|
1422 | ! domaines ocean/glace quand il le faut. Il est aussi necessaire que l'index |
---|
1423 | ! ocean soit traiter avant l'index glace (sinon tout intervertir) |
---|
1424 | ! |
---|
1425 | ! |
---|
1426 | ! L. Fairhead 02/2000 |
---|
1427 | ! |
---|
1428 | ! input: |
---|
1429 | ! itime numero du pas de temps |
---|
1430 | ! iim, jjm nbres de pts de grille |
---|
1431 | ! dtime pas de temps de la physique |
---|
1432 | ! klon nombre total de points de grille |
---|
1433 | ! nisurf index de la surface a traiter (1 = sol continental) |
---|
1434 | ! pctsrf tableau des fractions de surface de chaque maille |
---|
1435 | ! knon nombre de points de la surface a traiter |
---|
1436 | ! knindex index des points de la surface a traiter |
---|
1437 | ! rlon longitudes |
---|
1438 | ! rlat latitudes |
---|
1439 | ! debut logical: 1er appel a la physique |
---|
1440 | ! lafin logical: dernier appel a la physique |
---|
1441 | ! ocean type d'ocean |
---|
1442 | ! nexca frequence de couplage |
---|
1443 | ! swdown flux solaire entrant a la surface |
---|
1444 | ! lwdown flux IR net a la surface |
---|
1445 | ! precip_rain precipitation liquide |
---|
1446 | ! precip_snow precipitation solide |
---|
1447 | ! evap evaporation |
---|
1448 | ! tsurf temperature de surface |
---|
1449 | ! fder derivee dF/dT |
---|
1450 | ! albsol albedo du sol (coherent avec swdown) |
---|
1451 | ! taux tension de vent en x |
---|
1452 | ! tauy tension de vent en y |
---|
1453 | ! -- LOOP |
---|
1454 | ! windsp module du vent a 10m |
---|
1455 | ! -- LOOP |
---|
1456 | ! nexca frequence de couplage |
---|
1457 | ! zmasq masque terre/ocean |
---|
1458 | ! |
---|
1459 | ! |
---|
1460 | ! output: |
---|
1461 | ! tsurf_new temperature au sol |
---|
1462 | ! alb_new albedo |
---|
1463 | ! pctsrf_new nouvelle repartition des surfaces |
---|
1464 | ! alb_ice albedo de la glace |
---|
1465 | ! |
---|
1466 | #ifdef CPP_PSMILE |
---|
1467 | USE oasis |
---|
1468 | integer :: il_time_secs !time in seconds |
---|
1469 | #endif |
---|
1470 | |
---|
1471 | ! Parametres d'entree |
---|
1472 | integer, intent(IN) :: itime |
---|
1473 | integer, intent(IN) :: iim, jjm |
---|
1474 | real, intent(IN) :: dtime |
---|
1475 | integer, intent(IN) :: klon |
---|
1476 | integer, intent(IN) :: nisurf |
---|
1477 | integer, intent(IN) :: knon |
---|
1478 | real, dimension(klon,nbsrf), intent(IN) :: pctsrf |
---|
1479 | integer, dimension(klon), intent(in) :: knindex |
---|
1480 | logical, intent(IN) :: debut, lafin |
---|
1481 | real, dimension(klon), intent(IN) :: rlon, rlat |
---|
1482 | character (len = 6) :: ocean |
---|
1483 | real, dimension(klon), intent(IN) :: lwdown, swdown |
---|
1484 | real, dimension(klon), intent(IN) :: precip_rain, precip_snow |
---|
1485 | real, dimension(klon), intent(IN) :: tsurf, fder, albsol, taux, tauy |
---|
1486 | ! -- LOOP |
---|
1487 | real, dimension(klon), intent(IN) :: windsp |
---|
1488 | ! -- LOOP |
---|
1489 | INTEGER :: nexca, npas, kstep |
---|
1490 | real, dimension(klon), intent(IN) :: zmasq |
---|
1491 | real, dimension(klon), intent(IN) :: fluxlat, fluxsens |
---|
1492 | logical, intent(IN) :: cumul |
---|
1493 | real, dimension(klon), intent(INOUT) :: evap |
---|
1494 | |
---|
1495 | ! Parametres de sortie |
---|
1496 | real, dimension(klon), intent(OUT):: tsurf_new, alb_new |
---|
1497 | real, dimension(klon,nbsrf), intent(OUT) :: pctsrf_new |
---|
1498 | |
---|
1499 | ! Variables locales |
---|
1500 | integer :: j, error, sum_error, ig, cpl_index,i |
---|
1501 | ! -- LOOP |
---|
1502 | INTEGER :: nsrf |
---|
1503 | ! -- LOOP |
---|
1504 | character (len = 20) :: modname = 'interfoce_cpl' |
---|
1505 | character (len = 80) :: abort_message |
---|
1506 | logical,save :: check = .FALSE. |
---|
1507 | ! variables pour moyenner les variables de couplage |
---|
1508 | real, allocatable, dimension(:,:),save :: cpl_sols, cpl_nsol, cpl_rain |
---|
1509 | real, allocatable, dimension(:,:),save :: cpl_snow, cpl_evap, cpl_tsol |
---|
1510 | real, allocatable, dimension(:,:),save :: cpl_fder, cpl_albe, cpl_taux |
---|
1511 | ! -- LOOP |
---|
1512 | real, allocatable, dimension(:,:),save :: cpl_windsp |
---|
1513 | ! -- LOOP |
---|
1514 | real, allocatable, dimension(:,:),save :: cpl_tauy |
---|
1515 | REAL, ALLOCATABLE, DIMENSION(:,:),SAVE :: cpl_rriv, cpl_rcoa, cpl_rlic |
---|
1516 | !!$ |
---|
1517 | ! variables tampons avant le passage au coupleur |
---|
1518 | real, allocatable, dimension(:,:,:),save :: tmp_sols, tmp_nsol, tmp_rain |
---|
1519 | real, allocatable, dimension(:,:,:),save :: tmp_snow, tmp_evap, tmp_tsol |
---|
1520 | real, allocatable, dimension(:,:,:),save :: tmp_fder, tmp_albe, tmp_taux |
---|
1521 | ! -- LOOP |
---|
1522 | real, allocatable, dimension(:,:,:),save :: tmp_windsp |
---|
1523 | ! -- LOOP |
---|
1524 | !!$ real, allocatable, dimension(:,:,:),save :: tmp_tauy, tmp_rriv, tmp_rcoa |
---|
1525 | REAL, ALLOCATABLE, DIMENSION(:,:,:),SAVE :: tmp_tauy |
---|
1526 | ! variables a passer au coupleur |
---|
1527 | real, dimension(iim, jjm+1) :: wri_sol_ice, wri_sol_sea, wri_nsol_ice |
---|
1528 | real, dimension(iim, jjm+1) :: wri_nsol_sea, wri_fder_ice, wri_evap_ice |
---|
1529 | REAL, DIMENSION(iim, jjm+1) :: wri_evap_sea, wri_rcoa, wri_rriv |
---|
1530 | REAL, DIMENSION(iim, jjm+1) :: wri_rain, wri_snow, wri_taux, wri_tauy |
---|
1531 | ! -- LOOP |
---|
1532 | REAL, DIMENSION(iim, jjm+1) :: wri_windsp |
---|
1533 | ! -- LOOP |
---|
1534 | REAL, DIMENSION(iim, jjm+1) :: wri_calv |
---|
1535 | REAL, DIMENSION(iim, jjm+1) :: wri_tauxx, wri_tauyy, wri_tauzz |
---|
1536 | REAL, DIMENSION(iim, jjm+1) :: tmp_lon, tmp_lat |
---|
1537 | ! variables relues par le coupleur |
---|
1538 | ! read_sic = fraction de glace |
---|
1539 | ! read_sit = temperature de glace |
---|
1540 | real, allocatable, dimension(:,:),save :: read_sst, read_sic, read_sit |
---|
1541 | real, allocatable, dimension(:,:),save :: read_alb_sic |
---|
1542 | ! variable tampon |
---|
1543 | real, dimension(klon) :: tamp_sic |
---|
1544 | ! sauvegarde des fractions de surface d'un pas de temps a l'autre apres |
---|
1545 | ! l'avoir lu |
---|
1546 | real, allocatable,dimension(:,:),save :: pctsrf_sav |
---|
1547 | real, dimension(iim, jjm+1, 2) :: tamp_srf |
---|
1548 | integer, allocatable, dimension(:), save :: tamp_ind |
---|
1549 | real, allocatable, dimension(:,:),save :: tamp_zmasq |
---|
1550 | real, dimension(iim, jjm+1) :: deno |
---|
1551 | integer :: idtime |
---|
1552 | integer, allocatable,dimension(:),save :: unity |
---|
1553 | ! |
---|
1554 | logical, save :: first_appel = .true. |
---|
1555 | logical,save :: print |
---|
1556 | !maf |
---|
1557 | ! variables pour avoir une sortie IOIPSL des champs echanges |
---|
1558 | CHARACTER*80,SAVE :: clintocplnam, clfromcplnam |
---|
1559 | INTEGER, SAVE :: jf,nhoridct,nidct |
---|
1560 | INTEGER, SAVE :: nhoridcs,nidcs |
---|
1561 | INTEGER :: ndexct(iim*(jjm+1)),ndexcs(iim*(jjm+1)) |
---|
1562 | REAL :: zx_lon(iim,jjm+1), zx_lat(iim,jjm+1), zjulian |
---|
1563 | INTEGER,save :: idayref |
---|
1564 | !med integer :: itau_w |
---|
1565 | integer,save :: itau_w |
---|
1566 | ! -- LOOP |
---|
1567 | integer :: nb_interf_cpl |
---|
1568 | ! -- LOOP |
---|
1569 | #include "param_cou.h" |
---|
1570 | #include "inc_cpl.h" |
---|
1571 | #include "temps.inc" |
---|
1572 | #include "iniprint.h" |
---|
1573 | ! |
---|
1574 | ! Initialisation |
---|
1575 | ! |
---|
1576 | if (check) write(*,*)'Entree ',modname,'nisurf = ',nisurf |
---|
1577 | |
---|
1578 | if (first_appel) then |
---|
1579 | error = 0 |
---|
1580 | allocate(unity(klon), stat = error) |
---|
1581 | if ( error /=0) then |
---|
1582 | abort_message='Pb allocation variable unity' |
---|
1583 | call abort_gcm(modname,abort_message,1) |
---|
1584 | endif |
---|
1585 | allocate(pctsrf_sav(klon,nbsrf), stat = error) |
---|
1586 | if ( error /=0) then |
---|
1587 | abort_message='Pb allocation variable pctsrf_sav' |
---|
1588 | call abort_gcm(modname,abort_message,1) |
---|
1589 | endif |
---|
1590 | pctsrf_sav = 0. |
---|
1591 | |
---|
1592 | do ig = 1, klon |
---|
1593 | unity(ig) = ig |
---|
1594 | enddo |
---|
1595 | sum_error = 0 |
---|
1596 | allocate(cpl_sols(klon,2), stat = error); sum_error = sum_error + error |
---|
1597 | allocate(cpl_nsol(klon,2), stat = error); sum_error = sum_error + error |
---|
1598 | allocate(cpl_rain(klon,2), stat = error); sum_error = sum_error + error |
---|
1599 | allocate(cpl_snow(klon,2), stat = error); sum_error = sum_error + error |
---|
1600 | allocate(cpl_evap(klon,2), stat = error); sum_error = sum_error + error |
---|
1601 | allocate(cpl_tsol(klon,2), stat = error); sum_error = sum_error + error |
---|
1602 | allocate(cpl_fder(klon,2), stat = error); sum_error = sum_error + error |
---|
1603 | allocate(cpl_albe(klon,2), stat = error); sum_error = sum_error + error |
---|
1604 | allocate(cpl_taux(klon,2), stat = error); sum_error = sum_error + error |
---|
1605 | ! -- LOOP |
---|
1606 | allocate(cpl_windsp(klon,2), stat = error); sum_error = sum_error + error |
---|
1607 | ! -- LOOP |
---|
1608 | allocate(cpl_tauy(klon,2), stat = error); sum_error = sum_error + error |
---|
1609 | ALLOCATE(cpl_rriv(iim,jjm+1), stat=error); sum_error = sum_error + error |
---|
1610 | ALLOCATE(cpl_rcoa(iim,jjm+1), stat=error); sum_error = sum_error + error |
---|
1611 | ALLOCATE(cpl_rlic(iim,jjm+1), stat=error); sum_error = sum_error + error |
---|
1612 | !! |
---|
1613 | allocate(read_sst(iim, jjm+1), stat = error); sum_error = sum_error + error |
---|
1614 | allocate(read_sic(iim, jjm+1), stat = error); sum_error = sum_error + error |
---|
1615 | allocate(read_sit(iim, jjm+1), stat = error); sum_error = sum_error + error |
---|
1616 | allocate(read_alb_sic(iim, jjm+1), stat = error); sum_error = sum_error + error |
---|
1617 | |
---|
1618 | if (sum_error /= 0) then |
---|
1619 | abort_message='Pb allocation variables couplees' |
---|
1620 | call abort_gcm(modname,abort_message,1) |
---|
1621 | endif |
---|
1622 | cpl_sols = 0.; cpl_nsol = 0.; cpl_rain = 0.; cpl_snow = 0. |
---|
1623 | cpl_evap = 0.; cpl_tsol = 0.; cpl_fder = 0.; cpl_albe = 0. |
---|
1624 | cpl_taux = 0.; cpl_tauy = 0.; cpl_rriv = 0.; cpl_rcoa = 0.; cpl_rlic = 0. |
---|
1625 | ! -- LOOP |
---|
1626 | cpl_windsp = 0. |
---|
1627 | ! -- LOOP |
---|
1628 | |
---|
1629 | sum_error = 0 |
---|
1630 | allocate(tamp_ind(klon), stat = error); sum_error = sum_error + error |
---|
1631 | allocate(tamp_zmasq(iim, jjm+1), stat = error); sum_error = sum_error + error |
---|
1632 | do ig = 1, klon |
---|
1633 | tamp_ind(ig) = ig |
---|
1634 | enddo |
---|
1635 | call gath2cpl(zmasq, tamp_zmasq, klon, klon, iim, jjm, tamp_ind) |
---|
1636 | ! |
---|
1637 | ! initialisation couplage |
---|
1638 | ! |
---|
1639 | idtime = int(dtime) |
---|
1640 | #ifdef CPP_COUPLE |
---|
1641 | #ifdef CPP_PSMILE |
---|
1642 | CALL inicma(iim, (jjm+1)) |
---|
1643 | #else |
---|
1644 | call inicma(npas , nexca, idtime,(jjm+1)*iim) |
---|
1645 | #endif |
---|
1646 | #endif |
---|
1647 | ! |
---|
1648 | ! initialisation sorties netcdf |
---|
1649 | ! |
---|
1650 | idayref = day_ini |
---|
1651 | CALL ymds2ju(annee_ref, 1, idayref, 0.0, zjulian) |
---|
1652 | CALL gr_fi_ecrit(1,klon,iim,jjm+1,rlon,zx_lon) |
---|
1653 | DO i = 1, iim |
---|
1654 | zx_lon(i,1) = rlon(i+1) |
---|
1655 | zx_lon(i,jjm+1) = rlon(i+1) |
---|
1656 | ENDDO |
---|
1657 | CALL gr_fi_ecrit(1,klon,iim,jjm+1,rlat,zx_lat) |
---|
1658 | clintocplnam="cpl_atm_tauflx" |
---|
1659 | CALL histbeg(clintocplnam, iim,zx_lon(:,1),jjm+1,zx_lat(1,:),1,iim,1,jjm+1, & |
---|
1660 | & itau_phy,zjulian,dtime,nhoridct,nidct) |
---|
1661 | ! no vertical axis |
---|
1662 | CALL histdef(nidct, 'tauxe','tauxe', & |
---|
1663 | & "-",iim, jjm+1, nhoridct, 1, 1, 1, -99, 32, "inst", dtime,dtime) |
---|
1664 | CALL histdef(nidct, 'tauyn','tauyn', & |
---|
1665 | & "-",iim, jjm+1, nhoridct, 1, 1, 1, -99, 32, "inst", dtime,dtime) |
---|
1666 | CALL histdef(nidct, 'tmp_lon','tmp_lon', & |
---|
1667 | & "-",iim, jjm+1, nhoridct, 1, 1, 1, -99, 32, "inst", dtime,dtime) |
---|
1668 | CALL histdef(nidct, 'tmp_lat','tmp_lat', & |
---|
1669 | & "-",iim, jjm+1, nhoridct, 1, 1, 1, -99, 32, "inst", dtime,dtime) |
---|
1670 | DO jf=1,jpflda2o1 + jpflda2o2 |
---|
1671 | CALL histdef(nidct, cl_writ(jf),cl_writ(jf), & |
---|
1672 | & "-",iim, jjm+1, nhoridct, 1, 1, 1, -99, 32, "inst", dtime,dtime) |
---|
1673 | END DO |
---|
1674 | CALL histend(nidct) |
---|
1675 | CALL histsync(nidct) |
---|
1676 | |
---|
1677 | clfromcplnam="cpl_atm_sst" |
---|
1678 | CALL histbeg(clfromcplnam, iim,zx_lon(:,1),jjm+1,zx_lat(1,:),1,iim,1,jjm+1, & |
---|
1679 | & 0,zjulian,dtime,nhoridcs,nidcs) |
---|
1680 | ! no vertical axis |
---|
1681 | DO jf=1,jpfldo2a |
---|
1682 | CALL histdef(nidcs, cl_read(jf),cl_read(jf), & |
---|
1683 | & "-",iim, jjm+1, nhoridcs, 1, 1, 1, -99, 32, "inst", dtime,dtime) |
---|
1684 | END DO |
---|
1685 | CALL histend(nidcs) |
---|
1686 | CALL histsync(nidcs) |
---|
1687 | |
---|
1688 | ! pour simuler la fonte des glaciers antarctiques |
---|
1689 | ! |
---|
1690 | surf_maille = (4. * rpi * ra**2) / (iim * (jjm +1)) |
---|
1691 | ALLOCATE(coeff_iceberg(iim,jjm+1), stat=error) |
---|
1692 | if (error /= 0) then |
---|
1693 | abort_message='Pb allocation variable coeff_iceberg' |
---|
1694 | call abort_gcm(modname,abort_message,1) |
---|
1695 | endif |
---|
1696 | open (12,file='flux_iceberg',form='formatted',status='old') |
---|
1697 | read (12,*) coeff_iceberg |
---|
1698 | close (12) |
---|
1699 | num_antarctic = max(1, count(coeff_iceberg > 0)) |
---|
1700 | |
---|
1701 | first_appel = .false. |
---|
1702 | endif ! fin if (first_appel) |
---|
1703 | |
---|
1704 | ! Initialisations |
---|
1705 | |
---|
1706 | ! calcul des fluxs a passer |
---|
1707 | ! -- LOOP |
---|
1708 | nb_interf_cpl = nb_interf_cpl + 1 |
---|
1709 | if (check) write(lunout,*)'passage dans interface_surf.F90 : ',nb_interf_cpl |
---|
1710 | ! -- LOOP |
---|
1711 | cpl_index = 1 |
---|
1712 | if (nisurf == is_sic) cpl_index = 2 |
---|
1713 | if (cumul) then |
---|
1714 | ! -- LOOP |
---|
1715 | if (check) write(lunout,*)'passage dans cumul ' |
---|
1716 | if (check) write(lunout,*)'valeur de cpl_index ', cpl_index |
---|
1717 | ! -- LOOP |
---|
1718 | if (check) write(*,*) modname, 'cumul des champs' |
---|
1719 | do ig = 1, knon |
---|
1720 | cpl_sols(ig,cpl_index) = cpl_sols(ig,cpl_index) & |
---|
1721 | & + swdown(ig) / FLOAT(nexca) |
---|
1722 | cpl_nsol(ig,cpl_index) = cpl_nsol(ig,cpl_index) & |
---|
1723 | & + (lwdown(ig) + fluxlat(ig) +fluxsens(ig))& |
---|
1724 | & / FLOAT(nexca) |
---|
1725 | cpl_rain(ig,cpl_index) = cpl_rain(ig,cpl_index) & |
---|
1726 | & + precip_rain(ig) / FLOAT(nexca) |
---|
1727 | cpl_snow(ig,cpl_index) = cpl_snow(ig,cpl_index) & |
---|
1728 | & + precip_snow(ig) / FLOAT(nexca) |
---|
1729 | cpl_evap(ig,cpl_index) = cpl_evap(ig,cpl_index) & |
---|
1730 | & + evap(ig) / FLOAT(nexca) |
---|
1731 | cpl_tsol(ig,cpl_index) = cpl_tsol(ig,cpl_index) & |
---|
1732 | & + tsurf(ig) / FLOAT(nexca) |
---|
1733 | cpl_fder(ig,cpl_index) = cpl_fder(ig,cpl_index) & |
---|
1734 | & + fder(ig) / FLOAT(nexca) |
---|
1735 | cpl_albe(ig,cpl_index) = cpl_albe(ig,cpl_index) & |
---|
1736 | & + albsol(ig) / FLOAT(nexca) |
---|
1737 | cpl_taux(ig,cpl_index) = cpl_taux(ig,cpl_index) & |
---|
1738 | & + taux(ig) / FLOAT(nexca) |
---|
1739 | cpl_tauy(ig,cpl_index) = cpl_tauy(ig,cpl_index) & |
---|
1740 | & + tauy(ig) / FLOAT(nexca) |
---|
1741 | ! -- LOOP |
---|
1742 | IF (cpl_index .EQ. 1) THEN |
---|
1743 | cpl_windsp(ig,cpl_index) = cpl_windsp(ig,cpl_index) & |
---|
1744 | & + windsp(ig) / FLOAT(nexca) |
---|
1745 | ENDIF |
---|
1746 | ! -- LOOP |
---|
1747 | enddo |
---|
1748 | IF (cpl_index .EQ. 1) THEN |
---|
1749 | cpl_rriv(:,:) = cpl_rriv(:,:) + tmp_rriv(:,:) / FLOAT(nexca) |
---|
1750 | cpl_rcoa(:,:) = cpl_rcoa(:,:) + tmp_rcoa(:,:) / FLOAT(nexca) |
---|
1751 | cpl_rlic(:,:) = cpl_rlic(:,:) + tmp_rlic(:,:) / FLOAT(nexca) |
---|
1752 | ENDIF |
---|
1753 | endif |
---|
1754 | |
---|
1755 | if (mod(itime, nexca) == 1) then |
---|
1756 | ! |
---|
1757 | ! Demande des champs au coupleur |
---|
1758 | ! |
---|
1759 | ! Si le domaine considere est l'ocean, on lit les champs venant du coupleur |
---|
1760 | ! |
---|
1761 | if (nisurf == is_oce .and. .not. cumul) then |
---|
1762 | if (check) write(*,*)'rentree fromcpl, itime-1 = ',itime-1 |
---|
1763 | #ifdef CPP_COUPLE |
---|
1764 | #ifdef CPP_PSMILE |
---|
1765 | il_time_secs=(itime-1)*dtime |
---|
1766 | CALL fromcpl(il_time_secs, iim, (jjm+1), & |
---|
1767 | & read_sst, read_sic, read_sit, read_alb_sic) |
---|
1768 | #else |
---|
1769 | call fromcpl(itime-1,(jjm+1)*iim, & |
---|
1770 | & read_sst, read_sic, read_sit, read_alb_sic) |
---|
1771 | #endif |
---|
1772 | #endif |
---|
1773 | ! |
---|
1774 | ! sorties NETCDF des champs recus |
---|
1775 | ! |
---|
1776 | ndexcs(:)=0 |
---|
1777 | itau_w = itau_phy + itime |
---|
1778 | CALL histwrite(nidcs,cl_read(1),itau_w,read_sst,iim*(jjm+1),ndexcs) |
---|
1779 | CALL histwrite(nidcs,cl_read(2),itau_w,read_sic,iim*(jjm+1),ndexcs) |
---|
1780 | CALL histwrite(nidcs,cl_read(3),itau_w,read_alb_sic,iim*(jjm+1),ndexcs) |
---|
1781 | CALL histwrite(nidcs,cl_read(4),itau_w,read_sit,iim*(jjm+1),ndexcs) |
---|
1782 | CALL histsync(nidcs) |
---|
1783 | ! pas utile IF (npas-itime.LT.nexca )CALL histclo(nidcs) |
---|
1784 | |
---|
1785 | do j = 1, jjm + 1 |
---|
1786 | do ig = 1, iim |
---|
1787 | if (abs(1. - read_sic(ig,j)) < 0.00001) then |
---|
1788 | read_sst(ig,j) = RTT - 1.8 |
---|
1789 | read_sit(ig,j) = read_sit(ig,j) / read_sic(ig,j) |
---|
1790 | read_alb_sic(ig,j) = read_alb_sic(ig,j) / read_sic(ig,j) |
---|
1791 | else if (abs(read_sic(ig,j)) < 0.00001) then |
---|
1792 | read_sst(ig,j) = read_sst(ig,j) / (1. - read_sic(ig,j)) |
---|
1793 | read_sit(ig,j) = read_sst(ig,j) |
---|
1794 | read_alb_sic(ig,j) = 0.6 |
---|
1795 | else |
---|
1796 | read_sst(ig,j) = read_sst(ig,j) / (1. - read_sic(ig,j)) |
---|
1797 | read_sit(ig,j) = read_sit(ig,j) / read_sic(ig,j) |
---|
1798 | read_alb_sic(ig,j) = read_alb_sic(ig,j) / read_sic(ig,j) |
---|
1799 | endif |
---|
1800 | enddo |
---|
1801 | enddo |
---|
1802 | ! |
---|
1803 | ! transformer read_sic en pctsrf_sav |
---|
1804 | ! |
---|
1805 | call cpl2gath(read_sic, tamp_sic , klon, klon,iim,jjm, unity) |
---|
1806 | do ig = 1, klon |
---|
1807 | IF (pctsrf(ig,is_oce) > epsfra .OR. & |
---|
1808 | & pctsrf(ig,is_sic) > epsfra) THEN |
---|
1809 | pctsrf_sav(ig,is_sic) = (pctsrf(ig,is_oce) + pctsrf(ig,is_sic)) & |
---|
1810 | & * tamp_sic(ig) |
---|
1811 | pctsrf_sav(ig,is_oce) = (pctsrf(ig,is_oce) + pctsrf(ig,is_sic)) & |
---|
1812 | & - pctsrf_sav(ig,is_sic) |
---|
1813 | endif |
---|
1814 | enddo |
---|
1815 | ! |
---|
1816 | ! Pour rattraper des erreurs d'arrondis |
---|
1817 | ! |
---|
1818 | where (abs(pctsrf_sav(:,is_sic)) .le. 2.*epsilon(pctsrf_sav(1,is_sic))) |
---|
1819 | pctsrf_sav(:,is_sic) = 0. |
---|
1820 | pctsrf_sav(:,is_oce) = pctsrf(:,is_oce) + pctsrf(:,is_sic) |
---|
1821 | endwhere |
---|
1822 | where (abs(pctsrf_sav(:,is_oce)) .le. 2.*epsilon(pctsrf_sav(1,is_oce))) |
---|
1823 | pctsrf_sav(:,is_sic) = pctsrf(:,is_oce) + pctsrf(:,is_sic) |
---|
1824 | pctsrf_sav(:,is_oce) = 0. |
---|
1825 | endwhere |
---|
1826 | if (minval(pctsrf_sav(:,is_oce)) < 0.) then |
---|
1827 | write(*,*)'Pb fraction ocean inferieure a 0' |
---|
1828 | write(*,*)'au point ',minloc(pctsrf_sav(:,is_oce)) |
---|
1829 | write(*,*)'valeur = ',minval(pctsrf_sav(:,is_oce)) |
---|
1830 | abort_message = 'voir ci-dessus' |
---|
1831 | call abort_gcm(modname,abort_message,1) |
---|
1832 | endif |
---|
1833 | if (minval(pctsrf_sav(:,is_sic)) < 0.) then |
---|
1834 | write(*,*)'Pb fraction glace inferieure a 0' |
---|
1835 | write(*,*)'au point ',minloc(pctsrf_sav(:,is_sic)) |
---|
1836 | write(*,*)'valeur = ',minval(pctsrf_sav(:,is_sic)) |
---|
1837 | abort_message = 'voir ci-dessus' |
---|
1838 | call abort_gcm(modname,abort_message,1) |
---|
1839 | endif |
---|
1840 | endif |
---|
1841 | endif ! fin mod(itime, nexca) == 1 |
---|
1842 | |
---|
1843 | if (mod(itime, nexca) == 0) then |
---|
1844 | ! |
---|
1845 | ! allocation memoire |
---|
1846 | if (nisurf == is_oce .and. (.not. cumul) ) then |
---|
1847 | sum_error = 0 |
---|
1848 | allocate(tmp_sols(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
1849 | allocate(tmp_nsol(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
1850 | allocate(tmp_rain(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
1851 | allocate(tmp_snow(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
1852 | allocate(tmp_evap(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
1853 | allocate(tmp_tsol(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
1854 | allocate(tmp_fder(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
1855 | allocate(tmp_albe(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
1856 | allocate(tmp_taux(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
1857 | allocate(tmp_tauy(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
1858 | ! -- LOOP |
---|
1859 | allocate(tmp_windsp(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
1860 | ! -- LOOP |
---|
1861 | !!$ allocate(tmp_rriv(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
1862 | !!$ allocate(tmp_rcoa(iim,jjm+1,2), stat=error); sum_error = sum_error + error |
---|
1863 | if (sum_error /= 0) then |
---|
1864 | abort_message='Pb allocation variables couplees pour l''ecriture' |
---|
1865 | call abort_gcm(modname,abort_message,1) |
---|
1866 | endif |
---|
1867 | endif |
---|
1868 | |
---|
1869 | ! |
---|
1870 | ! Mise sur la bonne grille des champs a passer au coupleur |
---|
1871 | ! |
---|
1872 | cpl_index = 1 |
---|
1873 | if (nisurf == is_sic) cpl_index = 2 |
---|
1874 | call gath2cpl(cpl_sols(1,cpl_index), tmp_sols(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
1875 | call gath2cpl(cpl_nsol(1,cpl_index), tmp_nsol(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
1876 | call gath2cpl(cpl_rain(1,cpl_index), tmp_rain(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
1877 | call gath2cpl(cpl_snow(1,cpl_index), tmp_snow(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
1878 | call gath2cpl(cpl_evap(1,cpl_index), tmp_evap(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
1879 | call gath2cpl(cpl_tsol(1,cpl_index), tmp_tsol(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
1880 | call gath2cpl(cpl_fder(1,cpl_index), tmp_fder(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
1881 | call gath2cpl(cpl_albe(1,cpl_index), tmp_albe(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
1882 | call gath2cpl(cpl_taux(1,cpl_index), tmp_taux(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
1883 | ! -- LOOP |
---|
1884 | call gath2cpl(cpl_windsp(1,cpl_index), tmp_windsp(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
1885 | ! -- LOOP |
---|
1886 | call gath2cpl(cpl_tauy(1,cpl_index), tmp_tauy(1,1,cpl_index), klon, knon,iim,jjm, knindex) |
---|
1887 | |
---|
1888 | ! |
---|
1889 | ! Si le domaine considere est la banquise, on envoie les champs au coupleur |
---|
1890 | ! |
---|
1891 | if (nisurf == is_sic .and. cumul) then |
---|
1892 | wri_rain = 0.; wri_snow = 0.; wri_rcoa = 0.; wri_rriv = 0. |
---|
1893 | wri_taux = 0.; wri_tauy = 0. |
---|
1894 | ! -- LOOP |
---|
1895 | wri_windsp = 0. |
---|
1896 | ! -- LOOP |
---|
1897 | call gath2cpl(pctsrf(1,is_oce), tamp_srf(1,1,1), klon, klon, iim, jjm, tamp_ind) |
---|
1898 | call gath2cpl(pctsrf(1,is_sic), tamp_srf(1,1,2), klon, klon, iim, jjm, tamp_ind) |
---|
1899 | |
---|
1900 | wri_sol_ice = tmp_sols(:,:,2) |
---|
1901 | wri_sol_sea = tmp_sols(:,:,1) |
---|
1902 | wri_nsol_ice = tmp_nsol(:,:,2) |
---|
1903 | wri_nsol_sea = tmp_nsol(:,:,1) |
---|
1904 | wri_fder_ice = tmp_fder(:,:,2) |
---|
1905 | wri_evap_ice = tmp_evap(:,:,2) |
---|
1906 | wri_evap_sea = tmp_evap(:,:,1) |
---|
1907 | ! -- LOOP |
---|
1908 | wri_windsp = tmp_windsp(:,:,1) |
---|
1909 | ! -- LOOP |
---|
1910 | |
---|
1911 | !!$PB |
---|
1912 | wri_rriv = cpl_rriv(:,:) |
---|
1913 | wri_rcoa = cpl_rcoa(:,:) |
---|
1914 | DO j = 1, jjm + 1 |
---|
1915 | wri_calv(:,j) = sum(cpl_rlic(:,j)) / iim |
---|
1916 | enddo |
---|
1917 | |
---|
1918 | where (tamp_zmasq /= 1.) |
---|
1919 | deno = tamp_srf(:,:,1) + tamp_srf(:,:,2) |
---|
1920 | wri_rain = tmp_rain(:,:,1) * tamp_srf(:,:,1) / deno + & |
---|
1921 | & tmp_rain(:,:,2) * tamp_srf(:,:,2) / deno |
---|
1922 | wri_snow = tmp_snow(:,:,1) * tamp_srf(:,:,1) / deno + & |
---|
1923 | & tmp_snow(:,:,2) * tamp_srf(:,:,2) / deno |
---|
1924 | wri_taux = tmp_taux(:,:,1) * tamp_srf(:,:,1) / deno + & |
---|
1925 | & tmp_taux(:,:,2) * tamp_srf(:,:,2) / deno |
---|
1926 | wri_tauy = tmp_tauy(:,:,1) * tamp_srf(:,:,1) / deno + & |
---|
1927 | & tmp_tauy(:,:,2) * tamp_srf(:,:,2) / deno |
---|
1928 | endwhere |
---|
1929 | ! |
---|
1930 | ! pour simuler la fonte des glaciers antarctiques |
---|
1931 | ! |
---|
1932 | !$$$ wri_rain = wri_rain & |
---|
1933 | !$$$ & + coeff_iceberg * cte_flux_iceberg / (num_antarctic * surf_maille) |
---|
1934 | ! wri_calv = coeff_iceberg * cte_flux_iceberg / (num_antarctic * surf_maille) |
---|
1935 | ! |
---|
1936 | ! on passe les coordonnées de la grille |
---|
1937 | ! |
---|
1938 | |
---|
1939 | CALL gr_fi_ecrit(1,klon,iim,jjm+1,rlon,tmp_lon) |
---|
1940 | CALL gr_fi_ecrit(1,klon,iim,jjm+1,rlat,tmp_lat) |
---|
1941 | |
---|
1942 | DO i = 1, iim |
---|
1943 | tmp_lon(i,1) = rlon(i+1) |
---|
1944 | tmp_lon(i,jjm + 1) = rlon(i+1) |
---|
1945 | ENDDO |
---|
1946 | ! |
---|
1947 | ! sortie netcdf des champs pour le changement de repere |
---|
1948 | ! |
---|
1949 | ndexct(:)=0 |
---|
1950 | CALL histwrite(nidct,'tauxe',itau_w,wri_taux,iim*(jjm+1),ndexct) |
---|
1951 | CALL histwrite(nidct,'tauyn',itau_w,wri_tauy,iim*(jjm+1),ndexct) |
---|
1952 | CALL histwrite(nidct,'tmp_lon',itau_w,tmp_lon,iim*(jjm+1),ndexct) |
---|
1953 | CALL histwrite(nidct,'tmp_lat',itau_w,tmp_lat,iim*(jjm+1),ndexct) |
---|
1954 | |
---|
1955 | ! |
---|
1956 | ! calcul 3 coordonnées du vent |
---|
1957 | ! |
---|
1958 | CALL atm2geo (iim , jjm + 1, wri_taux, wri_tauy, tmp_lon, tmp_lat, & |
---|
1959 | & wri_tauxx, wri_tauyy, wri_tauzz ) |
---|
1960 | ! |
---|
1961 | ! sortie netcdf des champs apres changement de repere et juste avant |
---|
1962 | ! envoi au coupleur |
---|
1963 | ! |
---|
1964 | CALL histwrite(nidct,cl_writ(8),itau_w,wri_sol_ice,iim*(jjm+1),ndexct) |
---|
1965 | CALL histwrite(nidct,cl_writ(9),itau_w,wri_sol_sea,iim*(jjm+1),ndexct) |
---|
1966 | CALL histwrite(nidct,cl_writ(10),itau_w,wri_nsol_ice,iim*(jjm+1),ndexct) |
---|
1967 | CALL histwrite(nidct,cl_writ(11),itau_w,wri_nsol_sea,iim*(jjm+1),ndexct) |
---|
1968 | CALL histwrite(nidct,cl_writ(12),itau_w,wri_fder_ice,iim*(jjm+1),ndexct) |
---|
1969 | CALL histwrite(nidct,cl_writ(13),itau_w,wri_evap_ice,iim*(jjm+1),ndexct) |
---|
1970 | CALL histwrite(nidct,cl_writ(14),itau_w,wri_evap_sea,iim*(jjm+1),ndexct) |
---|
1971 | CALL histwrite(nidct,cl_writ(15),itau_w,wri_rain,iim*(jjm+1),ndexct) |
---|
1972 | CALL histwrite(nidct,cl_writ(16),itau_w,wri_snow,iim*(jjm+1),ndexct) |
---|
1973 | CALL histwrite(nidct,cl_writ(17),itau_w,wri_rcoa,iim*(jjm+1),ndexct) |
---|
1974 | CALL histwrite(nidct,cl_writ(18),itau_w,wri_rriv,iim*(jjm+1),ndexct) |
---|
1975 | CALL histwrite(nidct,cl_writ(19),itau_w,wri_calv,iim*(jjm+1),ndexct) |
---|
1976 | CALL histwrite(nidct,cl_writ(1),itau_w,wri_tauxx,iim*(jjm+1),ndexct) |
---|
1977 | CALL histwrite(nidct,cl_writ(2),itau_w,wri_tauyy,iim*(jjm+1),ndexct) |
---|
1978 | CALL histwrite(nidct,cl_writ(3),itau_w,wri_tauzz,iim*(jjm+1),ndexct) |
---|
1979 | CALL histwrite(nidct,cl_writ(4),itau_w,wri_tauxx,iim*(jjm+1),ndexct) |
---|
1980 | CALL histwrite(nidct,cl_writ(5),itau_w,wri_tauyy,iim*(jjm+1),ndexct) |
---|
1981 | CALL histwrite(nidct,cl_writ(6),itau_w,wri_tauzz,iim*(jjm+1),ndexct) |
---|
1982 | ! -- LOOP |
---|
1983 | CALL histwrite(nidct,cl_writ(7),itau_w,wri_windsp,iim*(jjm+1),ndexct) |
---|
1984 | ! -- LOOP |
---|
1985 | CALL histsync(nidct) |
---|
1986 | ! pas utile IF (lafin) CALL histclo(nidct) |
---|
1987 | #ifdef CPP_COUPLE |
---|
1988 | #ifdef CPP_PSMILE |
---|
1989 | il_time_secs=(itime-1)*dtime |
---|
1990 | |
---|
1991 | CALL intocpl(il_time_secs, iim, jjm+1, wri_sol_ice, wri_sol_sea, wri_nsol_ice,& |
---|
1992 | & wri_nsol_sea, wri_fder_ice, wri_evap_ice, wri_evap_sea, wri_rain, & |
---|
1993 | & wri_snow, wri_rcoa, wri_rriv, wri_calv, wri_tauxx, wri_tauyy, & |
---|
1994 | & wri_tauzz, wri_tauxx, wri_tauyy, wri_tauzz, & |
---|
1995 | ! -- LOOP |
---|
1996 | & wri_windsp,lafin) |
---|
1997 | ! -- LOOP |
---|
1998 | #else |
---|
1999 | call intocpl(itime, (jjm+1)*iim, wri_sol_ice, wri_sol_sea, wri_nsol_ice,& |
---|
2000 | & wri_nsol_sea, wri_fder_ice, wri_evap_ice, wri_evap_sea, wri_rain, & |
---|
2001 | & wri_snow, wri_rcoa, wri_rriv, wri_calv, wri_tauxx, wri_tauyy, & |
---|
2002 | & wri_tauzz, wri_tauxx, wri_tauyy, wri_tauzz, & |
---|
2003 | ! -- LOOP |
---|
2004 | & wri_windsp,lafin) |
---|
2005 | ! -- LOOP |
---|
2006 | #endif |
---|
2007 | #endif |
---|
2008 | ! |
---|
2009 | cpl_sols = 0.; cpl_nsol = 0.; cpl_rain = 0.; cpl_snow = 0. |
---|
2010 | cpl_evap = 0.; cpl_tsol = 0.; cpl_fder = 0.; cpl_albe = 0. |
---|
2011 | cpl_taux = 0.; cpl_tauy = 0.; cpl_rriv = 0.; cpl_rcoa = 0.; cpl_rlic = 0. |
---|
2012 | ! -- LOOP |
---|
2013 | cpl_windsp = 0. |
---|
2014 | ! -- LOOP |
---|
2015 | ! |
---|
2016 | ! deallocation memoire variables temporaires |
---|
2017 | ! |
---|
2018 | sum_error = 0 |
---|
2019 | deallocate(tmp_sols, stat=error); sum_error = sum_error + error |
---|
2020 | deallocate(tmp_nsol, stat=error); sum_error = sum_error + error |
---|
2021 | deallocate(tmp_rain, stat=error); sum_error = sum_error + error |
---|
2022 | deallocate(tmp_snow, stat=error); sum_error = sum_error + error |
---|
2023 | deallocate(tmp_evap, stat=error); sum_error = sum_error + error |
---|
2024 | deallocate(tmp_fder, stat=error); sum_error = sum_error + error |
---|
2025 | deallocate(tmp_tsol, stat=error); sum_error = sum_error + error |
---|
2026 | deallocate(tmp_albe, stat=error); sum_error = sum_error + error |
---|
2027 | deallocate(tmp_taux, stat=error); sum_error = sum_error + error |
---|
2028 | deallocate(tmp_tauy, stat=error); sum_error = sum_error + error |
---|
2029 | ! -- LOOP |
---|
2030 | deallocate(tmp_windsp, stat=error); sum_error = sum_error + error |
---|
2031 | ! -- LOOP |
---|
2032 | !!$PB |
---|
2033 | !!$ deallocate(tmp_rriv, stat=error); sum_error = sum_error + error |
---|
2034 | !!$ deallocate(tmp_rcoa, stat=error); sum_error = sum_error + error |
---|
2035 | if (sum_error /= 0) then |
---|
2036 | abort_message='Pb deallocation variables couplees' |
---|
2037 | call abort_gcm(modname,abort_message,1) |
---|
2038 | endif |
---|
2039 | |
---|
2040 | endif |
---|
2041 | |
---|
2042 | endif ! fin (mod(itime, nexca) == 0) |
---|
2043 | ! |
---|
2044 | ! on range les variables lues/sauvegardees dans les bonnes variables de sortie |
---|
2045 | ! |
---|
2046 | if (nisurf == is_oce) then |
---|
2047 | call cpl2gath(read_sst, tsurf_new, klon, knon,iim,jjm, knindex) |
---|
2048 | else if (nisurf == is_sic) then |
---|
2049 | call cpl2gath(read_sit, tsurf_new, klon, knon,iim,jjm, knindex) |
---|
2050 | call cpl2gath(read_alb_sic, alb_new, klon, knon,iim,jjm, knindex) |
---|
2051 | endif |
---|
2052 | pctsrf_new(:,nisurf) = pctsrf_sav(:,nisurf) |
---|
2053 | |
---|
2054 | ! if (lafin) call quitcpl |
---|
2055 | |
---|
2056 | END SUBROUTINE interfoce_cpl |
---|
2057 | ! |
---|
2058 | !######################################################################### |
---|
2059 | ! |
---|
2060 | SUBROUTINE interfoce_slab(klon, debut, itap, dtime, ijour, & |
---|
2061 | & radsol, fluxo, fluxg, pctsrf, & |
---|
2062 | & tslab, seaice, pctsrf_slab) |
---|
2063 | ! |
---|
2064 | ! Cette routine calcule la temperature d'un slab ocean, la glace de mer |
---|
2065 | ! et les pourcentages de la maille couverte par l'ocean libre et/ou |
---|
2066 | ! la glace de mer pour un "slab" ocean de 50m |
---|
2067 | ! |
---|
2068 | ! I. Musat 04.02.2005 |
---|
2069 | ! |
---|
2070 | ! input: |
---|
2071 | ! klon nombre total de points de grille |
---|
2072 | ! debut logical: 1er appel a la physique |
---|
2073 | ! itap numero du pas de temps |
---|
2074 | ! dtime pas de temps de la physique (en s) |
---|
2075 | ! ijour jour dans l'annee en cours |
---|
2076 | ! radsol rayonnement net au sol (LW + SW) |
---|
2077 | ! fluxo flux turbulent (sensible + latent) sur les mailles oceaniques |
---|
2078 | ! fluxg flux de conduction entre la surface de la glace de mer et l'ocean |
---|
2079 | ! pctsrf tableau des pourcentages de surface de chaque maille |
---|
2080 | ! output: |
---|
2081 | ! tslab temperature de l'ocean libre |
---|
2082 | ! seaice glace de mer (kg/m2) |
---|
2083 | ! pctsrf_slab "pourcentages" (valeurs entre 0. et 1.) surfaces issus du slab |
---|
2084 | ! |
---|
2085 | #include "indicesol.inc" |
---|
2086 | #include "clesphys.inc" |
---|
2087 | ! Parametres d'entree |
---|
2088 | integer, intent(IN) :: klon |
---|
2089 | logical, intent(IN) :: debut |
---|
2090 | INTEGER, intent(IN) :: itap |
---|
2091 | REAL, intent(IN) :: dtime |
---|
2092 | INTEGER, intent(IN) :: ijour |
---|
2093 | REAL, dimension(klon), intent(IN) :: radsol |
---|
2094 | REAL, dimension(klon), intent(IN) :: fluxo |
---|
2095 | REAL, dimension(klon), intent(IN) :: fluxg |
---|
2096 | real, dimension(klon, nbsrf), intent(IN) :: pctsrf |
---|
2097 | ! Parametres de sortie |
---|
2098 | real, dimension(klon), intent(INOUT) :: tslab |
---|
2099 | real, dimension(klon), intent(INOUT) :: seaice ! glace de mer (kg/m2) |
---|
2100 | real, dimension(klon, nbsrf), intent(OUT) :: pctsrf_slab |
---|
2101 | ! |
---|
2102 | ! Variables locales : |
---|
2103 | INTEGER, save :: lmt_pas, julien, idayvrai |
---|
2104 | REAL, parameter :: unjour=86400. |
---|
2105 | real, allocatable, dimension(:), save :: tmp_tslab, tmp_seaice |
---|
2106 | REAL, allocatable, dimension(:), save :: slab_bils |
---|
2107 | REAL, allocatable, dimension(:), save :: lmt_bils |
---|
2108 | logical,save :: check = .false. |
---|
2109 | ! |
---|
2110 | REAL, parameter :: cyang=50.0 * 4.228e+06 ! capacite calorifique volumetrique de l'eau J/(m2 K) |
---|
2111 | REAL, parameter :: cbing=0.334e+05 ! J/kg |
---|
2112 | real, dimension(klon) :: siceh !hauteur de la glace de mer (m) |
---|
2113 | INTEGER :: i |
---|
2114 | integer :: sum_error, error |
---|
2115 | REAL :: zz, za, zb |
---|
2116 | ! |
---|
2117 | character (len = 80) :: abort_message |
---|
2118 | character (len = 20) :: modname = 'interfoce_slab' |
---|
2119 | ! |
---|
2120 | julien = MOD(ijour,360) |
---|
2121 | sum_error = 0 |
---|
2122 | IF (debut) THEN |
---|
2123 | allocate(slab_bils(klon), stat = error); sum_error = sum_error + error |
---|
2124 | allocate(lmt_bils(klon), stat = error); sum_error = sum_error + error |
---|
2125 | allocate(tmp_tslab(klon), stat = error); sum_error = sum_error + error |
---|
2126 | allocate(tmp_seaice(klon), stat = error); sum_error = sum_error + error |
---|
2127 | if (sum_error /= 0) then |
---|
2128 | abort_message='Pb allocation var. slab_bils,lmt_bils,tmp_tslab,tmp_seaice' |
---|
2129 | call abort_gcm(modname,abort_message,1) |
---|
2130 | endif |
---|
2131 | tmp_tslab=tslab |
---|
2132 | tmp_seaice=seaice |
---|
2133 | lmt_pas = nint(86400./dtime * 1.0) ! pour une lecture une fois par jour |
---|
2134 | ! |
---|
2135 | IF (check) THEN |
---|
2136 | PRINT*,'interfoce_slab klon, debut, itap, dtime, ijour, & |
---|
2137 | & lmt_pas ', klon, debut, itap, dtime, ijour, & |
---|
2138 | & lmt_pas |
---|
2139 | ENDIF !check |
---|
2140 | ! |
---|
2141 | PRINT*, '************************' |
---|
2142 | PRINT*, 'SLAB OCEAN est actif, prenez precautions !' |
---|
2143 | PRINT*, '************************' |
---|
2144 | ! |
---|
2145 | ! a mettre un slab_bils aussi en force !!! |
---|
2146 | ! |
---|
2147 | DO i = 1, klon |
---|
2148 | slab_bils(i) = 0.0 |
---|
2149 | ENDDO |
---|
2150 | ! |
---|
2151 | ENDIF !debut |
---|
2152 | pctsrf_slab(1:klon,1:nbsrf) = pctsrf(1:klon,1:nbsrf) |
---|
2153 | ! |
---|
2154 | ! lecture du bilan au sol lmt_bils issu d'une simulation forcee en debut de journee |
---|
2155 | ! |
---|
2156 | IF (MOD(itap,lmt_pas) .EQ. 1) THEN !1er pas de temps de la journee |
---|
2157 | idayvrai = ijour |
---|
2158 | CALL condsurf(julien,idayvrai, lmt_bils) |
---|
2159 | ENDIF !(MOD(itap-1,lmt_pas) .EQ. 0) THEN |
---|
2160 | |
---|
2161 | DO i = 1, klon |
---|
2162 | IF((pctsrf_slab(i,is_oce).GT.epsfra).OR. & |
---|
2163 | & (pctsrf_slab(i,is_sic).GT.epsfra)) THEN |
---|
2164 | ! |
---|
2165 | ! fabriquer de la glace si congelation atteinte: |
---|
2166 | ! |
---|
2167 | IF (tmp_tslab(i).LT.(RTT-1.8)) THEN |
---|
2168 | zz = (RTT-1.8)-tmp_tslab(i) |
---|
2169 | tmp_seaice(i) = tmp_seaice(i) + cyang/cbing * zz |
---|
2170 | seaice(i) = tmp_seaice(i) |
---|
2171 | tmp_tslab(i) = RTT-1.8 |
---|
2172 | ENDIF |
---|
2173 | ! |
---|
2174 | ! faire fondre de la glace si temperature est superieure a 0: |
---|
2175 | ! |
---|
2176 | IF ((tmp_tslab(i).GT.RTT) .AND. (tmp_seaice(i).GT.0.0)) THEN |
---|
2177 | zz = cyang/cbing * (tmp_tslab(i)-RTT) |
---|
2178 | zz = MIN(zz,tmp_seaice(i)) |
---|
2179 | tmp_seaice(i) = tmp_seaice(i) - zz |
---|
2180 | seaice(i) = tmp_seaice(i) |
---|
2181 | tmp_tslab(i) = tmp_tslab(i) - zz*cbing/cyang |
---|
2182 | ENDIF |
---|
2183 | ! |
---|
2184 | ! limiter la glace de mer a 10 metres (10000 kg/m2) |
---|
2185 | ! |
---|
2186 | IF(tmp_seaice(i).GT.45.) THEN |
---|
2187 | tmp_seaice(i) = MIN(tmp_seaice(i),10000.0) |
---|
2188 | ELSE |
---|
2189 | tmp_seaice(i) = 0. |
---|
2190 | ENDIF |
---|
2191 | seaice(i) = tmp_seaice(i) |
---|
2192 | siceh(i)=tmp_seaice(i)/1000. !en metres |
---|
2193 | ! |
---|
2194 | ! determiner la nature du sol (glace de mer ou ocean libre): |
---|
2195 | ! |
---|
2196 | ! on fait dependre la fraction de seaice "pctsrf(i,is_sic)" |
---|
2197 | ! de l'epaisseur de seaice : |
---|
2198 | ! pctsrf(i,is_sic)=1. si l'epaisseur de la glace de mer est >= a 20cm |
---|
2199 | ! et pctsrf(i,is_sic) croit lineairement avec seaice de 0. a 20cm d'epaisseur |
---|
2200 | ! |
---|
2201 | pctsrf_slab(i,is_sic)=MIN(siceh(i)/0.20, & |
---|
2202 | & 1.-(pctsrf_slab(i,is_ter)+pctsrf_slab(i,is_lic))) |
---|
2203 | pctsrf_slab(i,is_oce)=1.0 - & |
---|
2204 | & (pctsrf_slab(i,is_ter)+pctsrf_slab(i,is_lic)+pctsrf_slab(i,is_sic)) |
---|
2205 | ENDIF !pctsrf |
---|
2206 | ENDDO |
---|
2207 | ! |
---|
2208 | ! Calculer le bilan du flux de chaleur au sol : |
---|
2209 | ! |
---|
2210 | DO i = 1, klon |
---|
2211 | za = radsol(i) + fluxo(i) |
---|
2212 | zb = fluxg(i) |
---|
2213 | IF((pctsrf_slab(i,is_oce).GT.epsfra).OR. & |
---|
2214 | & (pctsrf_slab(i,is_sic).GT.epsfra)) THEN |
---|
2215 | slab_bils(i)=slab_bils(i)+(za*pctsrf_slab(i,is_oce) & |
---|
2216 | & +zb*pctsrf_slab(i,is_sic))/ FLOAT(lmt_pas) |
---|
2217 | ENDIF |
---|
2218 | ENDDO !klon |
---|
2219 | ! |
---|
2220 | ! calcul tslab |
---|
2221 | ! |
---|
2222 | IF (MOD(itap,lmt_pas).EQ.0) THEN !fin de journee |
---|
2223 | DO i = 1, klon |
---|
2224 | IF ((pctsrf_slab(i,is_oce).GT.epsfra).OR. & |
---|
2225 | & (pctsrf_slab(i,is_sic).GT.epsfra)) THEN |
---|
2226 | tmp_tslab(i) = tmp_tslab(i) + & |
---|
2227 | & (slab_bils(i)-lmt_bils(i)) & |
---|
2228 | & /cyang*unjour |
---|
2229 | ! on remet l'accumulation a 0 |
---|
2230 | slab_bils(i) = 0. |
---|
2231 | ENDIF !pctsrf |
---|
2232 | ENDDO !klon |
---|
2233 | ENDIF !(MOD(itap,lmt_pas).EQ.0) THEN |
---|
2234 | ! |
---|
2235 | tslab = tmp_tslab |
---|
2236 | seaice = tmp_seaice |
---|
2237 | END SUBROUTINE interfoce_slab |
---|
2238 | ! |
---|
2239 | !######################################################################### |
---|
2240 | ! |
---|
2241 | SUBROUTINE interfoce_lim(itime, dtime, jour, & |
---|
2242 | & klon, nisurf, knon, knindex, & |
---|
2243 | & debut, & |
---|
2244 | & lmt_sst, pctsrf_new) |
---|
2245 | |
---|
2246 | ! Cette routine sert d'interface entre le modele atmospherique et un fichier |
---|
2247 | ! de conditions aux limites |
---|
2248 | ! |
---|
2249 | ! L. Fairhead 02/2000 |
---|
2250 | ! |
---|
2251 | ! input: |
---|
2252 | ! itime numero du pas de temps courant |
---|
2253 | ! dtime pas de temps de la physique (en s) |
---|
2254 | ! jour jour a lire dans l'annee |
---|
2255 | ! nisurf index de la surface a traiter (1 = sol continental) |
---|
2256 | ! knon nombre de points dans le domaine a traiter |
---|
2257 | ! knindex index des points de la surface a traiter |
---|
2258 | ! klon taille de la grille |
---|
2259 | ! debut logical: 1er appel a la physique (initialisation) |
---|
2260 | ! |
---|
2261 | ! output: |
---|
2262 | ! lmt_sst SST lues dans le fichier de CL |
---|
2263 | ! pctsrf_new sous-maille fractionnelle |
---|
2264 | ! |
---|
2265 | |
---|
2266 | |
---|
2267 | ! Parametres d'entree |
---|
2268 | integer, intent(IN) :: itime |
---|
2269 | real , intent(IN) :: dtime |
---|
2270 | integer, intent(IN) :: jour |
---|
2271 | integer, intent(IN) :: nisurf |
---|
2272 | integer, intent(IN) :: knon |
---|
2273 | integer, intent(IN) :: klon |
---|
2274 | integer, dimension(klon), intent(in) :: knindex |
---|
2275 | logical, intent(IN) :: debut |
---|
2276 | |
---|
2277 | ! Parametres de sortie |
---|
2278 | real, intent(out), dimension(klon) :: lmt_sst |
---|
2279 | real, intent(out), dimension(klon,nbsrf) :: pctsrf_new |
---|
2280 | |
---|
2281 | ! Variables locales |
---|
2282 | integer :: ii |
---|
2283 | INTEGER,save :: lmt_pas ! frequence de lecture des conditions limites |
---|
2284 | ! (en pas de physique) |
---|
2285 | logical,save :: deja_lu ! pour indiquer que le jour a lire a deja |
---|
2286 | ! lu pour une surface precedente |
---|
2287 | integer,save :: jour_lu |
---|
2288 | integer :: ierr |
---|
2289 | character (len = 20) :: modname = 'interfoce_lim' |
---|
2290 | character (len = 80) :: abort_message |
---|
2291 | character (len = 20),save :: fich ='limit.nc' |
---|
2292 | logical, save :: newlmt = .TRUE. |
---|
2293 | logical, save :: check = .FALSE. |
---|
2294 | ! Champs lus dans le fichier de CL |
---|
2295 | real, allocatable , save, dimension(:) :: sst_lu, rug_lu, nat_lu |
---|
2296 | real, allocatable , save, dimension(:,:) :: pct_tmp |
---|
2297 | ! |
---|
2298 | ! quelques variables pour netcdf |
---|
2299 | ! |
---|
2300 | #include "netcdf.inc" |
---|
2301 | integer :: nid, nvarid |
---|
2302 | integer, dimension(2) :: start, epais |
---|
2303 | ! |
---|
2304 | ! Fin déclaration |
---|
2305 | ! |
---|
2306 | |
---|
2307 | if (debut .and. .not. allocated(sst_lu)) then |
---|
2308 | lmt_pas = nint(86400./dtime * 1.0) ! pour une lecture une fois par jour |
---|
2309 | jour_lu = jour - 1 |
---|
2310 | allocate(sst_lu(klon)) |
---|
2311 | allocate(nat_lu(klon)) |
---|
2312 | allocate(pct_tmp(klon,nbsrf)) |
---|
2313 | endif |
---|
2314 | |
---|
2315 | if ((jour - jour_lu) /= 0) deja_lu = .false. |
---|
2316 | |
---|
2317 | if (check) write(*,*)modname,' :: jour, jour_lu, deja_lu', jour, jour_lu, deja_lu |
---|
2318 | if (check) write(*,*)modname,' :: itime, lmt_pas ', itime, lmt_pas,dtime |
---|
2319 | |
---|
2320 | ! Tester d'abord si c'est le moment de lire le fichier |
---|
2321 | if (mod(itime-1, lmt_pas) == 0 .and. .not. deja_lu) then |
---|
2322 | ! |
---|
2323 | ! Ouverture du fichier |
---|
2324 | ! |
---|
2325 | fich = trim(fich) |
---|
2326 | ierr = NF_OPEN (fich, NF_NOWRITE,nid) |
---|
2327 | if (ierr.NE.NF_NOERR) then |
---|
2328 | abort_message = 'Pb d''ouverture du fichier de conditions aux limites' |
---|
2329 | call abort_gcm(modname,abort_message,1) |
---|
2330 | endif |
---|
2331 | ! |
---|
2332 | ! La tranche de donnees a lire: |
---|
2333 | ! |
---|
2334 | start(1) = 1 |
---|
2335 | start(2) = jour |
---|
2336 | epais(1) = klon |
---|
2337 | epais(2) = 1 |
---|
2338 | ! |
---|
2339 | if (newlmt) then |
---|
2340 | ! |
---|
2341 | ! Fraction "ocean" |
---|
2342 | ! |
---|
2343 | ierr = NF_INQ_VARID(nid, 'FOCE', nvarid) |
---|
2344 | if (ierr /= NF_NOERR) then |
---|
2345 | abort_message = 'Le champ <FOCE> est absent' |
---|
2346 | call abort_gcm(modname,abort_message,1) |
---|
2347 | endif |
---|
2348 | #ifdef NC_DOUBLE |
---|
2349 | ierr = NF_GET_VARA_DOUBLE(nid,nvarid,start,epais,pct_tmp(1,is_oce)) |
---|
2350 | #else |
---|
2351 | ierr = NF_GET_VARA_REAL(nid,nvarid,start,epais,pct_tmp(1,is_oce)) |
---|
2352 | #endif |
---|
2353 | if (ierr /= NF_NOERR) then |
---|
2354 | abort_message = 'Lecture echouee pour <FOCE>' |
---|
2355 | call abort_gcm(modname,abort_message,1) |
---|
2356 | endif |
---|
2357 | ! |
---|
2358 | ! Fraction "glace de mer" |
---|
2359 | ! |
---|
2360 | ierr = NF_INQ_VARID(nid, 'FSIC', nvarid) |
---|
2361 | if (ierr /= NF_NOERR) then |
---|
2362 | abort_message = 'Le champ <FSIC> est absent' |
---|
2363 | call abort_gcm(modname,abort_message,1) |
---|
2364 | endif |
---|
2365 | #ifdef NC_DOUBLE |
---|
2366 | ierr = NF_GET_VARA_DOUBLE(nid,nvarid,start,epais,pct_tmp(1,is_sic)) |
---|
2367 | #else |
---|
2368 | ierr = NF_GET_VARA_REAL(nid,nvarid,start,epais,pct_tmp(1,is_sic)) |
---|
2369 | #endif |
---|
2370 | if (ierr /= NF_NOERR) then |
---|
2371 | abort_message = 'Lecture echouee pour <FSIC>' |
---|
2372 | call abort_gcm(modname,abort_message,1) |
---|
2373 | endif |
---|
2374 | ! |
---|
2375 | ! Fraction "terre" |
---|
2376 | ! |
---|
2377 | ierr = NF_INQ_VARID(nid, 'FTER', nvarid) |
---|
2378 | if (ierr /= NF_NOERR) then |
---|
2379 | abort_message = 'Le champ <FTER> est absent' |
---|
2380 | call abort_gcm(modname,abort_message,1) |
---|
2381 | endif |
---|
2382 | #ifdef NC_DOUBLE |
---|
2383 | ierr = NF_GET_VARA_DOUBLE(nid,nvarid,start,epais,pct_tmp(1,is_ter)) |
---|
2384 | #else |
---|
2385 | ierr = NF_GET_VARA_REAL(nid,nvarid,start,epais,pct_tmp(1,is_ter)) |
---|
2386 | #endif |
---|
2387 | if (ierr /= NF_NOERR) then |
---|
2388 | abort_message = 'Lecture echouee pour <FTER>' |
---|
2389 | call abort_gcm(modname,abort_message,1) |
---|
2390 | endif |
---|
2391 | ! |
---|
2392 | ! Fraction "glacier terre" |
---|
2393 | ! |
---|
2394 | ierr = NF_INQ_VARID(nid, 'FLIC', nvarid) |
---|
2395 | if (ierr /= NF_NOERR) then |
---|
2396 | abort_message = 'Le champ <FLIC> est absent' |
---|
2397 | call abort_gcm(modname,abort_message,1) |
---|
2398 | endif |
---|
2399 | #ifdef NC_DOUBLE |
---|
2400 | ierr = NF_GET_VARA_DOUBLE(nid,nvarid,start,epais,pct_tmp(1,is_lic)) |
---|
2401 | #else |
---|
2402 | ierr = NF_GET_VARA_REAL(nid,nvarid,start,epais,pct_tmp(1,is_lic)) |
---|
2403 | #endif |
---|
2404 | if (ierr /= NF_NOERR) then |
---|
2405 | abort_message = 'Lecture echouee pour <FLIC>' |
---|
2406 | call abort_gcm(modname,abort_message,1) |
---|
2407 | endif |
---|
2408 | ! |
---|
2409 | else ! on en est toujours a rnatur |
---|
2410 | ! |
---|
2411 | ierr = NF_INQ_VARID(nid, 'NAT', nvarid) |
---|
2412 | if (ierr /= NF_NOERR) then |
---|
2413 | abort_message = 'Le champ <NAT> est absent' |
---|
2414 | call abort_gcm(modname,abort_message,1) |
---|
2415 | endif |
---|
2416 | #ifdef NC_DOUBLE |
---|
2417 | ierr = NF_GET_VARA_DOUBLE(nid,nvarid,start,epais, nat_lu) |
---|
2418 | #else |
---|
2419 | ierr = NF_GET_VARA_REAL(nid,nvarid,start,epais, nat_lu) |
---|
2420 | #endif |
---|
2421 | if (ierr /= NF_NOERR) then |
---|
2422 | abort_message = 'Lecture echouee pour <NAT>' |
---|
2423 | call abort_gcm(modname,abort_message,1) |
---|
2424 | endif |
---|
2425 | ! |
---|
2426 | ! Remplissage des fractions de surface |
---|
2427 | ! nat = 0, 1, 2, 3 pour ocean, terre, glacier, seaice |
---|
2428 | ! |
---|
2429 | pct_tmp = 0.0 |
---|
2430 | do ii = 1, klon |
---|
2431 | pct_tmp(ii,nint(nat_lu(ii)) + 1) = 1. |
---|
2432 | enddo |
---|
2433 | |
---|
2434 | ! |
---|
2435 | ! On se retrouve avec ocean en 1 et terre en 2 alors qu'on veut le contraire |
---|
2436 | ! |
---|
2437 | pctsrf_new = pct_tmp |
---|
2438 | pctsrf_new (:,2)= pct_tmp (:,1) |
---|
2439 | pctsrf_new (:,1)= pct_tmp (:,2) |
---|
2440 | pct_tmp = pctsrf_new |
---|
2441 | endif ! fin test sur newlmt |
---|
2442 | ! |
---|
2443 | ! Lecture SST |
---|
2444 | ! |
---|
2445 | ierr = NF_INQ_VARID(nid, 'SST', nvarid) |
---|
2446 | if (ierr /= NF_NOERR) then |
---|
2447 | abort_message = 'Le champ <SST> est absent' |
---|
2448 | call abort_gcm(modname,abort_message,1) |
---|
2449 | endif |
---|
2450 | #ifdef NC_DOUBLE |
---|
2451 | ierr = NF_GET_VARA_DOUBLE(nid,nvarid,start,epais, sst_lu) |
---|
2452 | #else |
---|
2453 | ierr = NF_GET_VARA_REAL(nid,nvarid,start,epais, sst_lu) |
---|
2454 | #endif |
---|
2455 | if (ierr /= NF_NOERR) then |
---|
2456 | abort_message = 'Lecture echouee pour <SST>' |
---|
2457 | call abort_gcm(modname,abort_message,1) |
---|
2458 | endif |
---|
2459 | |
---|
2460 | ! |
---|
2461 | ! Fin de lecture |
---|
2462 | ! |
---|
2463 | ierr = NF_CLOSE(nid) |
---|
2464 | deja_lu = .true. |
---|
2465 | jour_lu = jour |
---|
2466 | endif |
---|
2467 | ! |
---|
2468 | ! Recopie des variables dans les champs de sortie |
---|
2469 | ! |
---|
2470 | lmt_sst = 999999999. |
---|
2471 | do ii = 1, knon |
---|
2472 | lmt_sst(ii) = sst_lu(knindex(ii)) |
---|
2473 | enddo |
---|
2474 | |
---|
2475 | pctsrf_new(:,is_oce) = pct_tmp(:,is_oce) |
---|
2476 | pctsrf_new(:,is_sic) = pct_tmp(:,is_sic) |
---|
2477 | |
---|
2478 | END SUBROUTINE interfoce_lim |
---|
2479 | |
---|
2480 | ! |
---|
2481 | !######################################################################### |
---|
2482 | ! |
---|
2483 | SUBROUTINE interfsur_lim(itime, dtime, jour, & |
---|
2484 | & klon, nisurf, knon, knindex, & |
---|
2485 | & debut, & |
---|
2486 | & lmt_alb, lmt_rug) |
---|
2487 | |
---|
2488 | ! Cette routine sert d'interface entre le modele atmospherique et un fichier |
---|
2489 | ! de conditions aux limites |
---|
2490 | ! |
---|
2491 | ! L. Fairhead 02/2000 |
---|
2492 | ! |
---|
2493 | ! input: |
---|
2494 | ! itime numero du pas de temps courant |
---|
2495 | ! dtime pas de temps de la physique (en s) |
---|
2496 | ! jour jour a lire dans l'annee |
---|
2497 | ! nisurf index de la surface a traiter (1 = sol continental) |
---|
2498 | ! knon nombre de points dans le domaine a traiter |
---|
2499 | ! knindex index des points de la surface a traiter |
---|
2500 | ! klon taille de la grille |
---|
2501 | ! debut logical: 1er appel a la physique (initialisation) |
---|
2502 | ! |
---|
2503 | ! output: |
---|
2504 | ! lmt_sst SST lues dans le fichier de CL |
---|
2505 | ! lmt_alb Albedo lu |
---|
2506 | ! lmt_rug longueur de rugosité lue |
---|
2507 | ! pctsrf_new sous-maille fractionnelle |
---|
2508 | ! |
---|
2509 | |
---|
2510 | |
---|
2511 | ! Parametres d'entree |
---|
2512 | integer, intent(IN) :: itime |
---|
2513 | real , intent(IN) :: dtime |
---|
2514 | integer, intent(IN) :: jour |
---|
2515 | integer, intent(IN) :: nisurf |
---|
2516 | integer, intent(IN) :: knon |
---|
2517 | integer, intent(IN) :: klon |
---|
2518 | integer, dimension(klon), intent(in) :: knindex |
---|
2519 | logical, intent(IN) :: debut |
---|
2520 | |
---|
2521 | ! Parametres de sortie |
---|
2522 | real, intent(out), dimension(klon) :: lmt_alb |
---|
2523 | real, intent(out), dimension(klon) :: lmt_rug |
---|
2524 | |
---|
2525 | ! Variables locales |
---|
2526 | integer :: ii |
---|
2527 | integer,save :: lmt_pas ! frequence de lecture des conditions limites |
---|
2528 | ! (en pas de physique) |
---|
2529 | logical,save :: deja_lu_sur! pour indiquer que le jour a lire a deja |
---|
2530 | ! lu pour une surface precedente |
---|
2531 | integer,save :: jour_lu_sur |
---|
2532 | integer :: ierr |
---|
2533 | character (len = 20) :: modname = 'interfsur_lim' |
---|
2534 | character (len = 80) :: abort_message |
---|
2535 | character (len = 20),save :: fich ='limit.nc' |
---|
2536 | logical,save :: newlmt = .false. |
---|
2537 | logical,save :: check = .false. |
---|
2538 | ! Champs lus dans le fichier de CL |
---|
2539 | real, allocatable , save, dimension(:) :: alb_lu, rug_lu |
---|
2540 | ! |
---|
2541 | ! quelques variables pour netcdf |
---|
2542 | ! |
---|
2543 | #include "netcdf.inc" |
---|
2544 | integer ,save :: nid, nvarid |
---|
2545 | integer, dimension(2),save :: start, epais |
---|
2546 | ! |
---|
2547 | ! Fin déclaration |
---|
2548 | ! |
---|
2549 | |
---|
2550 | if (debut) then |
---|
2551 | lmt_pas = nint(86400./dtime * 1.0) ! pour une lecture une fois par jour |
---|
2552 | jour_lu_sur = jour - 1 |
---|
2553 | allocate(alb_lu(klon)) |
---|
2554 | allocate(rug_lu(klon)) |
---|
2555 | endif |
---|
2556 | |
---|
2557 | if ((jour - jour_lu_sur) /= 0) deja_lu_sur = .false. |
---|
2558 | |
---|
2559 | if (check) write(*,*)modname,':: jour_lu_sur, deja_lu_sur', jour_lu_sur, deja_lu_sur |
---|
2560 | if (check) write(*,*)modname,':: itime, lmt_pas', itime, lmt_pas |
---|
2561 | if (check) call flush(6) |
---|
2562 | |
---|
2563 | ! Tester d'abord si c'est le moment de lire le fichier |
---|
2564 | if (mod(itime-1, lmt_pas) == 0 .and. .not. deja_lu_sur) then |
---|
2565 | ! |
---|
2566 | ! Ouverture du fichier |
---|
2567 | ! |
---|
2568 | fich = trim(fich) |
---|
2569 | IF (check) WRITE(*,*)modname,' ouverture fichier ',fich |
---|
2570 | if (check) CALL flush(6) |
---|
2571 | ierr = NF_OPEN (fich, NF_NOWRITE,nid) |
---|
2572 | if (ierr.NE.NF_NOERR) then |
---|
2573 | abort_message = 'Pb d''ouverture du fichier de conditions aux limites' |
---|
2574 | call abort_gcm(modname,abort_message,1) |
---|
2575 | endif |
---|
2576 | ! |
---|
2577 | ! La tranche de donnees a lire: |
---|
2578 | |
---|
2579 | start(1) = 1 |
---|
2580 | start(2) = jour |
---|
2581 | epais(1) = klon |
---|
2582 | epais(2) = 1 |
---|
2583 | ! |
---|
2584 | ! Lecture Albedo |
---|
2585 | ! |
---|
2586 | ierr = NF_INQ_VARID(nid, 'ALB', nvarid) |
---|
2587 | if (ierr /= NF_NOERR) then |
---|
2588 | abort_message = 'Le champ <ALB> est absent' |
---|
2589 | call abort_gcm(modname,abort_message,1) |
---|
2590 | endif |
---|
2591 | #ifdef NC_DOUBLE |
---|
2592 | ierr = NF_GET_VARA_DOUBLE(nid,nvarid,start,epais, alb_lu) |
---|
2593 | #else |
---|
2594 | ierr = NF_GET_VARA_REAL(nid,nvarid,start,epais, alb_lu) |
---|
2595 | #endif |
---|
2596 | if (ierr /= NF_NOERR) then |
---|
2597 | abort_message = 'Lecture echouee pour <ALB>' |
---|
2598 | call abort_gcm(modname,abort_message,1) |
---|
2599 | endif |
---|
2600 | ! |
---|
2601 | ! Lecture rugosité |
---|
2602 | ! |
---|
2603 | ierr = NF_INQ_VARID(nid, 'RUG', nvarid) |
---|
2604 | if (ierr /= NF_NOERR) then |
---|
2605 | abort_message = 'Le champ <RUG> est absent' |
---|
2606 | call abort_gcm(modname,abort_message,1) |
---|
2607 | endif |
---|
2608 | #ifdef NC_DOUBLE |
---|
2609 | ierr = NF_GET_VARA_DOUBLE(nid,nvarid,start,epais, rug_lu) |
---|
2610 | #else |
---|
2611 | ierr = NF_GET_VARA_REAL(nid,nvarid,start,epais, rug_lu) |
---|
2612 | #endif |
---|
2613 | if (ierr /= NF_NOERR) then |
---|
2614 | abort_message = 'Lecture echouee pour <RUG>' |
---|
2615 | call abort_gcm(modname,abort_message,1) |
---|
2616 | endif |
---|
2617 | |
---|
2618 | ! |
---|
2619 | ! Fin de lecture |
---|
2620 | ! |
---|
2621 | ierr = NF_CLOSE(nid) |
---|
2622 | deja_lu_sur = .true. |
---|
2623 | jour_lu_sur = jour |
---|
2624 | endif |
---|
2625 | ! |
---|
2626 | ! Recopie des variables dans les champs de sortie |
---|
2627 | ! |
---|
2628 | !!$ lmt_alb(:) = 0.0 |
---|
2629 | !!$ lmt_rug(:) = 0.0 |
---|
2630 | lmt_alb(:) = 999999. |
---|
2631 | lmt_rug(:) = 999999. |
---|
2632 | DO ii = 1, knon |
---|
2633 | lmt_alb(ii) = alb_lu(knindex(ii)) |
---|
2634 | lmt_rug(ii) = rug_lu(knindex(ii)) |
---|
2635 | enddo |
---|
2636 | |
---|
2637 | END SUBROUTINE interfsur_lim |
---|
2638 | |
---|
2639 | ! |
---|
2640 | !######################################################################### |
---|
2641 | ! |
---|
2642 | |
---|
2643 | SUBROUTINE calcul_fluxs( klon, knon, nisurf, dtime, & |
---|
2644 | & tsurf, p1lay, cal, beta, coef1lay, ps, & |
---|
2645 | & precip_rain, precip_snow, snow, qsurf, & |
---|
2646 | & radsol, dif_grnd, t1lay, q1lay, u1lay, v1lay, & |
---|
2647 | & petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
2648 | & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l) |
---|
2649 | |
---|
2650 | ! Cette routine calcule les fluxs en h et q a l'interface et eventuellement |
---|
2651 | ! une temperature de surface (au cas ou ok_veget = false) |
---|
2652 | ! |
---|
2653 | ! L. Fairhead 4/2000 |
---|
2654 | ! |
---|
2655 | ! input: |
---|
2656 | ! knon nombre de points a traiter |
---|
2657 | ! nisurf surface a traiter |
---|
2658 | ! tsurf temperature de surface |
---|
2659 | ! p1lay pression 1er niveau (milieu de couche) |
---|
2660 | ! cal capacite calorifique du sol |
---|
2661 | ! beta evap reelle |
---|
2662 | ! coef1lay coefficient d'echange |
---|
2663 | ! ps pression au sol |
---|
2664 | ! precip_rain precipitations liquides |
---|
2665 | ! precip_snow precipitations solides |
---|
2666 | ! snow champs hauteur de neige |
---|
2667 | ! runoff runoff en cas de trop plein |
---|
2668 | ! petAcoef coeff. A de la resolution de la CL pour t |
---|
2669 | ! peqAcoef coeff. A de la resolution de la CL pour q |
---|
2670 | ! petBcoef coeff. B de la resolution de la CL pour t |
---|
2671 | ! peqBcoef coeff. B de la resolution de la CL pour q |
---|
2672 | ! radsol rayonnement net aus sol (LW + SW) |
---|
2673 | ! dif_grnd coeff. diffusion vers le sol profond |
---|
2674 | ! |
---|
2675 | ! output: |
---|
2676 | ! tsurf_new temperature au sol |
---|
2677 | ! qsurf humidite de l'air au dessus du sol |
---|
2678 | ! fluxsens flux de chaleur sensible |
---|
2679 | ! fluxlat flux de chaleur latente |
---|
2680 | ! dflux_s derivee du flux de chaleur sensible / Ts |
---|
2681 | ! dflux_l derivee du flux de chaleur latente / Ts |
---|
2682 | ! |
---|
2683 | |
---|
2684 | #include "YOETHF.inc" |
---|
2685 | #include "FCTTRE.inc" |
---|
2686 | #include "indicesol.inc" |
---|
2687 | |
---|
2688 | ! Parametres d'entree |
---|
2689 | integer, intent(IN) :: knon, nisurf, klon |
---|
2690 | real , intent(IN) :: dtime |
---|
2691 | real, dimension(klon), intent(IN) :: petAcoef, peqAcoef |
---|
2692 | real, dimension(klon), intent(IN) :: petBcoef, peqBcoef |
---|
2693 | real, dimension(klon), intent(IN) :: ps, q1lay |
---|
2694 | real, dimension(klon), intent(IN) :: tsurf, p1lay, cal, beta, coef1lay |
---|
2695 | real, dimension(klon), intent(IN) :: precip_rain, precip_snow |
---|
2696 | real, dimension(klon), intent(IN) :: radsol, dif_grnd |
---|
2697 | real, dimension(klon), intent(IN) :: t1lay, u1lay, v1lay |
---|
2698 | real, dimension(klon), intent(INOUT) :: snow, qsurf |
---|
2699 | |
---|
2700 | ! Parametres sorties |
---|
2701 | real, dimension(klon), intent(OUT):: tsurf_new, evap, fluxsens, fluxlat |
---|
2702 | real, dimension(klon), intent(OUT):: dflux_s, dflux_l |
---|
2703 | |
---|
2704 | ! Variables locales |
---|
2705 | integer :: i |
---|
2706 | real, dimension(klon) :: zx_mh, zx_nh, zx_oh |
---|
2707 | real, dimension(klon) :: zx_mq, zx_nq, zx_oq |
---|
2708 | real, dimension(klon) :: zx_pkh, zx_dq_s_dt, zx_qsat, zx_coef |
---|
2709 | real, dimension(klon) :: zx_sl, zx_k1 |
---|
2710 | real, dimension(klon) :: zx_q_0 , d_ts |
---|
2711 | real :: zdelta, zcvm5, zx_qs, zcor, zx_dq_s_dh |
---|
2712 | real :: bilan_f, fq_fonte |
---|
2713 | REAL :: subli, fsno |
---|
2714 | REAL :: qsat_new, q1_new |
---|
2715 | real, parameter :: t_grnd = 271.35, t_coup = 273.15 |
---|
2716 | !! PB temporaire en attendant mieux pour le modele de neige |
---|
2717 | REAL, parameter :: chasno = 3.334E+05/(2.3867E+06*0.15) |
---|
2718 | ! |
---|
2719 | logical, save :: check = .false. |
---|
2720 | character (len = 20) :: modname = 'calcul_fluxs' |
---|
2721 | logical, save :: fonte_neige = .false. |
---|
2722 | real, save :: max_eau_sol = 150.0 |
---|
2723 | character (len = 80) :: abort_message |
---|
2724 | logical,save :: first = .true.,second=.false. |
---|
2725 | |
---|
2726 | if (check) write(*,*)'Entree ', modname,' surface = ',nisurf |
---|
2727 | |
---|
2728 | IF (check) THEN |
---|
2729 | WRITE(*,*)' radsol (min, max)' & |
---|
2730 | & , MINVAL(radsol(1:knon)), MAXVAL(radsol(1:knon)) |
---|
2731 | CALL flush(6) |
---|
2732 | ENDIF |
---|
2733 | |
---|
2734 | if (size(coastalflow) /= knon .AND. nisurf == is_ter) then |
---|
2735 | write(*,*)'Bizarre, le nombre de points continentaux' |
---|
2736 | write(*,*)'a change entre deux appels. J''arrete ...' |
---|
2737 | abort_message='Pb run_off' |
---|
2738 | call abort_gcm(modname,abort_message,1) |
---|
2739 | endif |
---|
2740 | ! |
---|
2741 | ! Traitement neige et humidite du sol |
---|
2742 | ! |
---|
2743 | !!$ WRITE(*,*)'test calcul_flux, surface ', nisurf |
---|
2744 | !!PB test |
---|
2745 | !!$ if (nisurf == is_oce) then |
---|
2746 | !!$ snow = 0. |
---|
2747 | !!$ qsol = max_eau_sol |
---|
2748 | !!$ else |
---|
2749 | !!$ where (precip_snow > 0.) snow = snow + (precip_snow * dtime) |
---|
2750 | !!$ where (snow > epsilon(snow)) snow = max(0.0, snow - (evap * dtime)) |
---|
2751 | !!$! snow = max(0.0, snow + (precip_snow - evap) * dtime) |
---|
2752 | !!$ where (precip_rain > 0.) qsol = qsol + (precip_rain - evap) * dtime |
---|
2753 | !!$ endif |
---|
2754 | !!$ IF (nisurf /= is_ter) qsol = max_eau_sol |
---|
2755 | |
---|
2756 | |
---|
2757 | ! |
---|
2758 | ! Initialisation |
---|
2759 | ! |
---|
2760 | evap = 0. |
---|
2761 | fluxsens=0. |
---|
2762 | fluxlat=0. |
---|
2763 | dflux_s = 0. |
---|
2764 | dflux_l = 0. |
---|
2765 | ! |
---|
2766 | ! zx_qs = qsat en kg/kg |
---|
2767 | ! |
---|
2768 | DO i = 1, knon |
---|
2769 | zx_pkh(i) = (ps(i)/ps(i))**RKAPPA |
---|
2770 | IF (thermcep) THEN |
---|
2771 | zdelta=MAX(0.,SIGN(1.,rtt-tsurf(i))) |
---|
2772 | zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta |
---|
2773 | zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*q1lay(i)) |
---|
2774 | zx_qs= r2es * FOEEW(tsurf(i),zdelta)/ps(i) |
---|
2775 | zx_qs=MIN(0.5,zx_qs) |
---|
2776 | zcor=1./(1.-retv*zx_qs) |
---|
2777 | zx_qs=zx_qs*zcor |
---|
2778 | zx_dq_s_dh = FOEDE(tsurf(i),zdelta,zcvm5,zx_qs,zcor) & |
---|
2779 | & /RLVTT / zx_pkh(i) |
---|
2780 | ELSE |
---|
2781 | IF (tsurf(i).LT.t_coup) THEN |
---|
2782 | zx_qs = qsats(tsurf(i)) / ps(i) |
---|
2783 | zx_dq_s_dh = dqsats(tsurf(i),zx_qs)/RLVTT & |
---|
2784 | & / zx_pkh(i) |
---|
2785 | ELSE |
---|
2786 | zx_qs = qsatl(tsurf(i)) / ps(i) |
---|
2787 | zx_dq_s_dh = dqsatl(tsurf(i),zx_qs)/RLVTT & |
---|
2788 | & / zx_pkh(i) |
---|
2789 | ENDIF |
---|
2790 | ENDIF |
---|
2791 | zx_dq_s_dt(i) = RCPD * zx_pkh(i) * zx_dq_s_dh |
---|
2792 | zx_qsat(i) = zx_qs |
---|
2793 | zx_coef(i) = coef1lay(i) & |
---|
2794 | & * (1.0+SQRT(u1lay(i)**2+v1lay(i)**2)) & |
---|
2795 | & * p1lay(i)/(RD*t1lay(i)) |
---|
2796 | |
---|
2797 | ENDDO |
---|
2798 | |
---|
2799 | |
---|
2800 | ! === Calcul de la temperature de surface === |
---|
2801 | ! |
---|
2802 | ! zx_sl = chaleur latente d'evaporation ou de sublimation |
---|
2803 | ! |
---|
2804 | do i = 1, knon |
---|
2805 | zx_sl(i) = RLVTT |
---|
2806 | if (tsurf(i) .LT. RTT) zx_sl(i) = RLSTT |
---|
2807 | zx_k1(i) = zx_coef(i) |
---|
2808 | enddo |
---|
2809 | |
---|
2810 | |
---|
2811 | do i = 1, knon |
---|
2812 | ! Q |
---|
2813 | zx_oq(i) = 1. - (beta(i) * zx_k1(i) * peqBcoef(i) * dtime) |
---|
2814 | zx_mq(i) = beta(i) * zx_k1(i) * & |
---|
2815 | & (peqAcoef(i) - zx_qsat(i) & |
---|
2816 | & + zx_dq_s_dt(i) * tsurf(i)) & |
---|
2817 | & / zx_oq(i) |
---|
2818 | zx_nq(i) = beta(i) * zx_k1(i) * (-1. * zx_dq_s_dt(i)) & |
---|
2819 | & / zx_oq(i) |
---|
2820 | |
---|
2821 | ! H |
---|
2822 | zx_oh(i) = 1. - (zx_k1(i) * petBcoef(i) * dtime) |
---|
2823 | zx_mh(i) = zx_k1(i) * petAcoef(i) / zx_oh(i) |
---|
2824 | zx_nh(i) = - (zx_k1(i) * RCPD * zx_pkh(i))/ zx_oh(i) |
---|
2825 | |
---|
2826 | ! Tsurface |
---|
2827 | tsurf_new(i) = (tsurf(i) + cal(i)/(RCPD * zx_pkh(i)) * dtime * & |
---|
2828 | & (radsol(i) + zx_mh(i) + zx_sl(i) * zx_mq(i)) & |
---|
2829 | & + dif_grnd(i) * t_grnd * dtime)/ & |
---|
2830 | & ( 1. - dtime * cal(i)/(RCPD * zx_pkh(i)) * ( & |
---|
2831 | & zx_nh(i) + zx_sl(i) * zx_nq(i)) & |
---|
2832 | & + dtime * dif_grnd(i)) |
---|
2833 | |
---|
2834 | ! |
---|
2835 | ! Y'a-t-il fonte de neige? |
---|
2836 | ! |
---|
2837 | ! fonte_neige = (nisurf /= is_oce) .AND. & |
---|
2838 | ! & (snow(i) > epsfra .OR. nisurf == is_sic .OR. nisurf == is_lic) & |
---|
2839 | ! & .AND. (tsurf_new(i) >= RTT) |
---|
2840 | ! if (fonte_neige) tsurf_new(i) = RTT |
---|
2841 | d_ts(i) = tsurf_new(i) - tsurf(i) |
---|
2842 | ! zx_h_ts(i) = tsurf_new(i) * RCPD * zx_pkh(i) |
---|
2843 | ! zx_q_0(i) = zx_qsat(i) + zx_dq_s_dt(i) * d_ts(i) |
---|
2844 | !== flux_q est le flux de vapeur d'eau: kg/(m**2 s) positive vers bas |
---|
2845 | !== flux_t est le flux de cpt (energie sensible): j/(m**2 s) |
---|
2846 | evap(i) = - zx_mq(i) - zx_nq(i) * tsurf_new(i) |
---|
2847 | fluxlat(i) = - evap(i) * zx_sl(i) |
---|
2848 | fluxsens(i) = zx_mh(i) + zx_nh(i) * tsurf_new(i) |
---|
2849 | ! Derives des flux dF/dTs (W m-2 K-1): |
---|
2850 | dflux_s(i) = zx_nh(i) |
---|
2851 | dflux_l(i) = (zx_sl(i) * zx_nq(i)) |
---|
2852 | ! Nouvelle valeure de l'humidite au dessus du sol |
---|
2853 | qsat_new=zx_qsat(i) + zx_dq_s_dt(i) * d_ts(i) |
---|
2854 | q1_new = peqAcoef(i) - peqBcoef(i)*evap(i)*dtime |
---|
2855 | qsurf(i)=q1_new*(1.-beta(i)) + beta(i)*qsat_new |
---|
2856 | ! |
---|
2857 | ! en cas de fonte de neige |
---|
2858 | ! |
---|
2859 | ! if (fonte_neige) then |
---|
2860 | ! bilan_f = radsol(i) + fluxsens(i) - (zx_sl(i) * evap (i)) - & |
---|
2861 | ! & dif_grnd(i) * (tsurf_new(i) - t_grnd) - & |
---|
2862 | ! & RCPD * (zx_pkh(i))/cal(i)/dtime * (tsurf_new(i) - tsurf(i)) |
---|
2863 | ! bilan_f = max(0., bilan_f) |
---|
2864 | ! fq_fonte = bilan_f / zx_sl(i) |
---|
2865 | ! snow(i) = max(0., snow(i) - fq_fonte * dtime) |
---|
2866 | ! qsol(i) = qsol(i) + (fq_fonte * dtime) |
---|
2867 | ! endif |
---|
2868 | !!$ if (nisurf == is_ter) & |
---|
2869 | !!$ & run_off(i) = run_off(i) + max(qsol(i) - max_eau_sol, 0.0) |
---|
2870 | !!$ qsol(i) = min(qsol(i), max_eau_sol) |
---|
2871 | ENDDO |
---|
2872 | |
---|
2873 | END SUBROUTINE calcul_fluxs |
---|
2874 | ! |
---|
2875 | !######################################################################### |
---|
2876 | ! |
---|
2877 | SUBROUTINE gath2cpl(champ_in, champ_out, klon, knon, iim, jjm, knindex) |
---|
2878 | |
---|
2879 | ! Cette routine ecrit un champ 'gathered' sur la grille 2D pour le passer |
---|
2880 | ! au coupleur. |
---|
2881 | ! |
---|
2882 | ! |
---|
2883 | ! input: |
---|
2884 | ! champ_in champ sur la grille gathere |
---|
2885 | ! knon nombre de points dans le domaine a traiter |
---|
2886 | ! knindex index des points de la surface a traiter |
---|
2887 | ! klon taille de la grille |
---|
2888 | ! iim,jjm dimension de la grille 2D |
---|
2889 | ! |
---|
2890 | ! output: |
---|
2891 | ! champ_out champ sur la grille 2D |
---|
2892 | ! |
---|
2893 | ! input |
---|
2894 | integer :: klon, knon, iim, jjm |
---|
2895 | real, dimension(klon) :: champ_in |
---|
2896 | integer, dimension(klon) :: knindex |
---|
2897 | ! output |
---|
2898 | real, dimension(iim,jjm+1) :: champ_out |
---|
2899 | ! local |
---|
2900 | integer :: i, ig, j |
---|
2901 | real, dimension(klon) :: tamp |
---|
2902 | |
---|
2903 | tamp = 0. |
---|
2904 | do i = 1, knon |
---|
2905 | ig = knindex(i) |
---|
2906 | tamp(ig) = champ_in(i) |
---|
2907 | enddo |
---|
2908 | ig = 1 |
---|
2909 | champ_out(:,1) = tamp(ig) |
---|
2910 | do j = 2, jjm |
---|
2911 | do i = 1, iim |
---|
2912 | ig = ig + 1 |
---|
2913 | champ_out(i,j) = tamp(ig) |
---|
2914 | enddo |
---|
2915 | enddo |
---|
2916 | ig = ig + 1 |
---|
2917 | champ_out(:,jjm+1) = tamp(ig) |
---|
2918 | |
---|
2919 | END SUBROUTINE gath2cpl |
---|
2920 | ! |
---|
2921 | !######################################################################### |
---|
2922 | ! |
---|
2923 | SUBROUTINE cpl2gath(champ_in, champ_out, klon, knon, iim, jjm, knindex) |
---|
2924 | |
---|
2925 | ! Cette routine ecrit un champ 'gathered' sur la grille 2D pour le passer |
---|
2926 | ! au coupleur. |
---|
2927 | ! |
---|
2928 | ! |
---|
2929 | ! input: |
---|
2930 | ! champ_in champ sur la grille gathere |
---|
2931 | ! knon nombre de points dans le domaine a traiter |
---|
2932 | ! knindex index des points de la surface a traiter |
---|
2933 | ! klon taille de la grille |
---|
2934 | ! iim,jjm dimension de la grille 2D |
---|
2935 | ! |
---|
2936 | ! output: |
---|
2937 | ! champ_out champ sur la grille 2D |
---|
2938 | ! |
---|
2939 | ! input |
---|
2940 | integer :: klon, knon, iim, jjm |
---|
2941 | real, dimension(iim,jjm+1) :: champ_in |
---|
2942 | integer, dimension(klon) :: knindex |
---|
2943 | ! output |
---|
2944 | real, dimension(klon) :: champ_out |
---|
2945 | ! local |
---|
2946 | integer :: i, ig, j |
---|
2947 | real, dimension(klon) :: tamp |
---|
2948 | logical ,save :: check = .false. |
---|
2949 | |
---|
2950 | ig = 1 |
---|
2951 | tamp(ig) = champ_in(1,1) |
---|
2952 | do j = 2, jjm |
---|
2953 | do i = 1, iim |
---|
2954 | ig = ig + 1 |
---|
2955 | tamp(ig) = champ_in(i,j) |
---|
2956 | enddo |
---|
2957 | enddo |
---|
2958 | ig = ig + 1 |
---|
2959 | tamp(ig) = champ_in(1,jjm+1) |
---|
2960 | |
---|
2961 | do i = 1, knon |
---|
2962 | ig = knindex(i) |
---|
2963 | champ_out(i) = tamp(ig) |
---|
2964 | enddo |
---|
2965 | |
---|
2966 | END SUBROUTINE cpl2gath |
---|
2967 | ! |
---|
2968 | !######################################################################### |
---|
2969 | ! |
---|
2970 | SUBROUTINE albsno(klon, knon,dtime,agesno,alb_neig_grid, precip_snow) |
---|
2971 | IMPLICIT none |
---|
2972 | |
---|
2973 | INTEGER :: klon, knon |
---|
2974 | INTEGER, PARAMETER :: nvm = 8 |
---|
2975 | REAL :: dtime |
---|
2976 | REAL, dimension(klon,nvm) :: veget |
---|
2977 | REAL, DIMENSION(klon) :: alb_neig_grid, agesno, precip_snow |
---|
2978 | |
---|
2979 | INTEGER :: i, nv |
---|
2980 | |
---|
2981 | REAL, DIMENSION(nvm),SAVE :: init, decay |
---|
2982 | REAL :: as |
---|
2983 | DATA init /0.55, 0.14, 0.18, 0.29, 0.15, 0.15, 0.14, 0./ |
---|
2984 | DATA decay/0.30, 0.67, 0.63, 0.45, 0.40, 0.14, 0.06, 1./ |
---|
2985 | |
---|
2986 | veget = 0. |
---|
2987 | veget(:,1) = 1. ! desert partout |
---|
2988 | DO i = 1, knon |
---|
2989 | alb_neig_grid(i) = 0.0 |
---|
2990 | ENDDO |
---|
2991 | DO nv = 1, nvm |
---|
2992 | DO i = 1, knon |
---|
2993 | as = init(nv)+decay(nv)*EXP(-agesno(i)/5.) |
---|
2994 | alb_neig_grid(i) = alb_neig_grid(i) + veget(i,nv)*as |
---|
2995 | ENDDO |
---|
2996 | ENDDO |
---|
2997 | ! |
---|
2998 | !! modilation en fonction de l'age de la neige |
---|
2999 | ! |
---|
3000 | DO i = 1, knon |
---|
3001 | agesno(i) = (agesno(i) + (1.-agesno(i)/50.)*dtime/86400.)& |
---|
3002 | & * EXP(-1.*MAX(0.0,precip_snow(i))*dtime/0.3) |
---|
3003 | agesno(i) = MAX(agesno(i),0.0) |
---|
3004 | ENDDO |
---|
3005 | |
---|
3006 | END SUBROUTINE albsno |
---|
3007 | ! |
---|
3008 | !######################################################################### |
---|
3009 | ! |
---|
3010 | |
---|
3011 | SUBROUTINE fonte_neige( klon, knon, nisurf, dtime, & |
---|
3012 | & tsurf, p1lay, cal, beta, coef1lay, ps, & |
---|
3013 | & precip_rain, precip_snow, snow, qsol, & |
---|
3014 | & radsol, dif_grnd, t1lay, q1lay, u1lay, v1lay, & |
---|
3015 | & petAcoef, peqAcoef, petBcoef, peqBcoef, & |
---|
3016 | & tsurf_new, evap, fluxlat, fluxsens, dflux_s, dflux_l, & |
---|
3017 | & fqcalving,ffonte,run_off_lic_0) |
---|
3018 | |
---|
3019 | ! Routine de traitement de la fonte de la neige dans le cas du traitement |
---|
3020 | ! de sol simplifié |
---|
3021 | ! |
---|
3022 | ! LF 03/2001 |
---|
3023 | ! input: |
---|
3024 | ! knon nombre de points a traiter |
---|
3025 | ! nisurf surface a traiter |
---|
3026 | ! tsurf temperature de surface |
---|
3027 | ! p1lay pression 1er niveau (milieu de couche) |
---|
3028 | ! cal capacite calorifique du sol |
---|
3029 | ! beta evap reelle |
---|
3030 | ! coef1lay coefficient d'echange |
---|
3031 | ! ps pression au sol |
---|
3032 | ! precip_rain precipitations liquides |
---|
3033 | ! precip_snow precipitations solides |
---|
3034 | ! snow champs hauteur de neige |
---|
3035 | ! qsol hauteur d'eau contenu dans le sol |
---|
3036 | ! runoff runoff en cas de trop plein |
---|
3037 | ! petAcoef coeff. A de la resolution de la CL pour t |
---|
3038 | ! peqAcoef coeff. A de la resolution de la CL pour q |
---|
3039 | ! petBcoef coeff. B de la resolution de la CL pour t |
---|
3040 | ! peqBcoef coeff. B de la resolution de la CL pour q |
---|
3041 | ! radsol rayonnement net aus sol (LW + SW) |
---|
3042 | ! dif_grnd coeff. diffusion vers le sol profond |
---|
3043 | ! |
---|
3044 | ! output: |
---|
3045 | ! tsurf_new temperature au sol |
---|
3046 | ! fluxsens flux de chaleur sensible |
---|
3047 | ! fluxlat flux de chaleur latente |
---|
3048 | ! dflux_s derivee du flux de chaleur sensible / Ts |
---|
3049 | ! dflux_l derivee du flux de chaleur latente / Ts |
---|
3050 | ! in/out: |
---|
3051 | ! run_off_lic_0 run off glacier du pas de temps précedent |
---|
3052 | ! |
---|
3053 | |
---|
3054 | #include "YOETHF.inc" |
---|
3055 | !rv#include "FCTTRE.inc" |
---|
3056 | #include "indicesol.inc" |
---|
3057 | !IM cf JLD |
---|
3058 | #include "YOMCST.inc" |
---|
3059 | |
---|
3060 | ! Parametres d'entree |
---|
3061 | integer, intent(IN) :: knon, nisurf, klon |
---|
3062 | real , intent(IN) :: dtime |
---|
3063 | real, dimension(klon), intent(IN) :: petAcoef, peqAcoef |
---|
3064 | real, dimension(klon), intent(IN) :: petBcoef, peqBcoef |
---|
3065 | real, dimension(klon), intent(IN) :: ps, q1lay |
---|
3066 | real, dimension(klon), intent(IN) :: tsurf, p1lay, cal, beta, coef1lay |
---|
3067 | real, dimension(klon), intent(IN) :: precip_rain, precip_snow |
---|
3068 | real, dimension(klon), intent(IN) :: radsol, dif_grnd |
---|
3069 | real, dimension(klon), intent(IN) :: t1lay, u1lay, v1lay |
---|
3070 | real, dimension(klon), intent(INOUT) :: snow, qsol |
---|
3071 | |
---|
3072 | ! Parametres sorties |
---|
3073 | real, dimension(klon), intent(INOUT):: tsurf_new, evap, fluxsens, fluxlat |
---|
3074 | real, dimension(klon), intent(INOUT):: dflux_s, dflux_l |
---|
3075 | ! Flux thermique utiliser pour fondre la neige |
---|
3076 | real, dimension(klon), intent(INOUT):: ffonte |
---|
3077 | ! Flux d'eau "perdue" par la surface et necessaire pour que limiter la |
---|
3078 | ! hauteur de neige, en kg/m2/s |
---|
3079 | real, dimension(klon), intent(INOUT):: fqcalving |
---|
3080 | real, dimension(klon), intent(INOUT):: run_off_lic_0 |
---|
3081 | ! Variables locales |
---|
3082 | ! Masse maximum de neige (kg/m2). Au dessus de ce seuil, la neige |
---|
3083 | ! en exces "s'ecoule" (calving) |
---|
3084 | ! real, parameter :: snow_max=1. |
---|
3085 | !IM cf JLD/GK |
---|
3086 | real, parameter :: snow_max=3000. |
---|
3087 | integer :: i |
---|
3088 | real, dimension(klon) :: zx_mh, zx_nh, zx_oh |
---|
3089 | real, dimension(klon) :: zx_mq, zx_nq, zx_oq |
---|
3090 | real, dimension(klon) :: zx_pkh, zx_dq_s_dt, zx_qsat, zx_coef |
---|
3091 | real, dimension(klon) :: zx_sl, zx_k1 |
---|
3092 | real, dimension(klon) :: zx_q_0 , d_ts |
---|
3093 | real :: zdelta, zcvm5, zx_qs, zcor, zx_dq_s_dh |
---|
3094 | real :: bilan_f, fq_fonte |
---|
3095 | REAL :: subli, fsno |
---|
3096 | REAL, DIMENSION(klon) :: bil_eau_s, snow_evap |
---|
3097 | real, parameter :: t_grnd = 271.35, t_coup = 273.15 |
---|
3098 | !! PB temporaire en attendant mieux pour le modele de neige |
---|
3099 | ! REAL, parameter :: chasno = RLMLT/(2.3867E+06*0.15) |
---|
3100 | REAL, parameter :: chasno = 3.334E+05/(2.3867E+06*0.15) |
---|
3101 | !IM cf JLD/ GKtest |
---|
3102 | REAL, parameter :: chaice = 3.334E+05/(2.3867E+06*0.15) |
---|
3103 | ! fin GKtest |
---|
3104 | ! |
---|
3105 | logical, save :: check = .FALSE. |
---|
3106 | character (len = 20) :: modname = 'fonte_neige' |
---|
3107 | logical, save :: neige_fond = .false. |
---|
3108 | real, save :: max_eau_sol = 150.0 |
---|
3109 | character (len = 80) :: abort_message |
---|
3110 | logical,save :: first = .true.,second=.false. |
---|
3111 | real :: coeff_rel |
---|
3112 | #include "FCTTRE.inc" |
---|
3113 | |
---|
3114 | |
---|
3115 | if (check) write(*,*)'Entree ', modname,' surface = ',nisurf |
---|
3116 | |
---|
3117 | ! Initialisations |
---|
3118 | coeff_rel = dtime/(tau_calv * rday) |
---|
3119 | bil_eau_s(:) = 0. |
---|
3120 | DO i = 1, knon |
---|
3121 | zx_pkh(i) = (ps(i)/ps(i))**RKAPPA |
---|
3122 | IF (thermcep) THEN |
---|
3123 | zdelta=MAX(0.,SIGN(1.,rtt-tsurf(i))) |
---|
3124 | zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta |
---|
3125 | zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*q1lay(i)) |
---|
3126 | zx_qs= r2es * FOEEW(tsurf(i),zdelta)/ps(i) |
---|
3127 | zx_qs=MIN(0.5,zx_qs) |
---|
3128 | zcor=1./(1.-retv*zx_qs) |
---|
3129 | zx_qs=zx_qs*zcor |
---|
3130 | zx_dq_s_dh = FOEDE(tsurf(i),zdelta,zcvm5,zx_qs,zcor) & |
---|
3131 | & /RLVTT / zx_pkh(i) |
---|
3132 | ELSE |
---|
3133 | IF (tsurf(i).LT.t_coup) THEN |
---|
3134 | zx_qs = qsats(tsurf(i)) / ps(i) |
---|
3135 | zx_dq_s_dh = dqsats(tsurf(i),zx_qs)/RLVTT & |
---|
3136 | & / zx_pkh(i) |
---|
3137 | ELSE |
---|
3138 | zx_qs = qsatl(tsurf(i)) / ps(i) |
---|
3139 | zx_dq_s_dh = dqsatl(tsurf(i),zx_qs)/RLVTT & |
---|
3140 | & / zx_pkh(i) |
---|
3141 | ENDIF |
---|
3142 | ENDIF |
---|
3143 | zx_dq_s_dt(i) = RCPD * zx_pkh(i) * zx_dq_s_dh |
---|
3144 | zx_qsat(i) = zx_qs |
---|
3145 | zx_coef(i) = coef1lay(i) & |
---|
3146 | & * (1.0+SQRT(u1lay(i)**2+v1lay(i)**2)) & |
---|
3147 | & * p1lay(i)/(RD*t1lay(i)) |
---|
3148 | ENDDO |
---|
3149 | |
---|
3150 | |
---|
3151 | ! === Calcul de la temperature de surface === |
---|
3152 | ! |
---|
3153 | ! zx_sl = chaleur latente d'evaporation ou de sublimation |
---|
3154 | ! |
---|
3155 | do i = 1, knon |
---|
3156 | zx_sl(i) = RLVTT |
---|
3157 | if (tsurf(i) .LT. RTT) zx_sl(i) = RLSTT |
---|
3158 | zx_k1(i) = zx_coef(i) |
---|
3159 | enddo |
---|
3160 | |
---|
3161 | |
---|
3162 | do i = 1, knon |
---|
3163 | ! Q |
---|
3164 | zx_oq(i) = 1. - (beta(i) * zx_k1(i) * peqBcoef(i) * dtime) |
---|
3165 | zx_mq(i) = beta(i) * zx_k1(i) * & |
---|
3166 | & (peqAcoef(i) - zx_qsat(i) & |
---|
3167 | & + zx_dq_s_dt(i) * tsurf(i)) & |
---|
3168 | & / zx_oq(i) |
---|
3169 | zx_nq(i) = beta(i) * zx_k1(i) * (-1. * zx_dq_s_dt(i)) & |
---|
3170 | & / zx_oq(i) |
---|
3171 | |
---|
3172 | ! H |
---|
3173 | zx_oh(i) = 1. - (zx_k1(i) * petBcoef(i) * dtime) |
---|
3174 | zx_mh(i) = zx_k1(i) * petAcoef(i) / zx_oh(i) |
---|
3175 | zx_nh(i) = - (zx_k1(i) * RCPD * zx_pkh(i))/ zx_oh(i) |
---|
3176 | enddo |
---|
3177 | |
---|
3178 | |
---|
3179 | WHERE (precip_snow > 0.) snow = snow + (precip_snow * dtime) |
---|
3180 | snow_evap = 0. |
---|
3181 | WHERE (evap > 0. ) |
---|
3182 | snow_evap = MIN (snow / dtime, evap) |
---|
3183 | snow = snow - snow_evap * dtime |
---|
3184 | snow = MAX(0.0, snow) |
---|
3185 | end where |
---|
3186 | |
---|
3187 | ! bil_eau_s = bil_eau_s + (precip_rain * dtime) - (evap - snow_evap) * dtime |
---|
3188 | bil_eau_s = (precip_rain * dtime) - (evap - snow_evap) * dtime |
---|
3189 | |
---|
3190 | ! |
---|
3191 | ! Y'a-t-il fonte de neige? |
---|
3192 | ! |
---|
3193 | ffonte=0. |
---|
3194 | do i = 1, knon |
---|
3195 | neige_fond = ((snow(i) > epsfra .OR. nisurf == is_sic .OR. nisurf == is_lic) & |
---|
3196 | & .AND. tsurf_new(i) >= RTT) |
---|
3197 | if (neige_fond) then |
---|
3198 | fq_fonte = MIN( MAX((tsurf_new(i)-RTT )/chasno,0.0),snow(i)) |
---|
3199 | ffonte(i) = fq_fonte * RLMLT/dtime |
---|
3200 | snow(i) = max(0., snow(i) - fq_fonte) |
---|
3201 | bil_eau_s(i) = bil_eau_s(i) + fq_fonte |
---|
3202 | tsurf_new(i) = tsurf_new(i) - fq_fonte * chasno |
---|
3203 | !IM cf JLD OK |
---|
3204 | !IM cf JLD/ GKtest fonte aussi pour la glace |
---|
3205 | IF (nisurf == is_sic .OR. nisurf == is_lic ) THEN |
---|
3206 | fq_fonte = MAX((tsurf_new(i)-RTT )/chaice,0.0) |
---|
3207 | ffonte(i) = ffonte(i) + fq_fonte * RLMLT/dtime |
---|
3208 | bil_eau_s(i) = bil_eau_s(i) + fq_fonte |
---|
3209 | tsurf_new(i) = RTT |
---|
3210 | ENDIF |
---|
3211 | d_ts(i) = tsurf_new(i) - tsurf(i) |
---|
3212 | endif |
---|
3213 | ! |
---|
3214 | ! s'il y a une hauteur trop importante de neige, elle s'coule |
---|
3215 | fqcalving(i) = max(0., snow(i) - snow_max)/dtime |
---|
3216 | snow(i)=min(snow(i),snow_max) |
---|
3217 | ! |
---|
3218 | IF (nisurf == is_ter) then |
---|
3219 | qsol(i) = qsol(i) + bil_eau_s(i) |
---|
3220 | run_off(i) = run_off(i) + MAX(qsol(i) - max_eau_sol, 0.0) |
---|
3221 | qsol(i) = MIN(qsol(i), max_eau_sol) |
---|
3222 | else if (nisurf == is_lic) then |
---|
3223 | run_off_lic(i) = (coeff_rel * fqcalving(i)) + & |
---|
3224 | & (1. - coeff_rel) * run_off_lic_0(i) |
---|
3225 | run_off_lic_0(i) = run_off_lic(i) |
---|
3226 | run_off_lic(i) = run_off_lic(i) + bil_eau_s(i)/dtime |
---|
3227 | endif |
---|
3228 | enddo |
---|
3229 | |
---|
3230 | END SUBROUTINE fonte_neige |
---|
3231 | ! |
---|
3232 | !######################################################################### |
---|
3233 | ! |
---|
3234 | END MODULE interface_surf |
---|