1 | ! $Id: physiq.F 1928 2014-01-16 12:43:34Z jyg $ |
---|
2 | c#define IO_DEBUG |
---|
3 | |
---|
4 | SUBROUTINE physiq (nlon,nlev, |
---|
5 | . debut,lafin,jD_cur, jH_cur,pdtphys, |
---|
6 | . paprs,pplay,pphi,pphis,presnivs,clesphy0, |
---|
7 | . u,v,t,qx, |
---|
8 | . flxmass_w, |
---|
9 | . d_u, d_v, d_t, d_qx, d_ps |
---|
10 | . , dudyn |
---|
11 | . , PVteta) |
---|
12 | |
---|
13 | USE ioipsl, only: histbeg, histvert, histdef, histend, histsync, |
---|
14 | $ histwrite, ju2ymds, ymds2ju, ioget_year_len |
---|
15 | USE comgeomphy |
---|
16 | USE phys_cal_mod |
---|
17 | USE write_field_phy |
---|
18 | USE dimphy |
---|
19 | USE infotrac |
---|
20 | USE mod_grid_phy_lmdz |
---|
21 | USE mod_phys_lmdz_para |
---|
22 | USE iophy |
---|
23 | USE misc_mod, mydebug=>debug |
---|
24 | USE vampir |
---|
25 | USE pbl_surface_mod, ONLY : pbl_surface |
---|
26 | USE change_srf_frac_mod |
---|
27 | USE surface_data, ONLY : type_ocean, ok_veget |
---|
28 | USE phys_local_var_mod ! Variables internes non sauvegardees de la physique |
---|
29 | USE phys_state_var_mod ! Variables sauvegardees de la physique |
---|
30 | USE phys_output_var_mod ! Variables pour les ecritures des sorties |
---|
31 | USE fonte_neige_mod, ONLY : fonte_neige_get_vars |
---|
32 | USE phys_output_mod |
---|
33 | use open_climoz_m, only: open_climoz ! ozone climatology from a file |
---|
34 | use regr_pr_av_m, only: regr_pr_av |
---|
35 | use netcdf95, only: nf95_close |
---|
36 | cIM for NMC files |
---|
37 | use netcdf, only: nf90_fill_real |
---|
38 | use mod_phys_lmdz_mpi_data, only: is_mpi_root |
---|
39 | USE aero_mod |
---|
40 | use ozonecm_m, only: ozonecm ! ozone of J.-F. Royer |
---|
41 | use conf_phys_m, only: conf_phys |
---|
42 | use radlwsw_m, only: radlwsw |
---|
43 | |
---|
44 | !IM stations CFMIP |
---|
45 | USE CFMIP_point_locations |
---|
46 | IMPLICIT none |
---|
47 | c====================================================================== |
---|
48 | c |
---|
49 | c Auteur(s) Z.X. Li (LMD/CNRS) date: 19930818 |
---|
50 | c |
---|
51 | c Objet: Moniteur general de la physique du modele |
---|
52 | cAA Modifications quant aux traceurs : |
---|
53 | cAA - uniformisation des parametrisations ds phytrac |
---|
54 | cAA - stockage des moyennes des champs necessaires |
---|
55 | cAA en mode traceur off-line |
---|
56 | c====================================================================== |
---|
57 | c CLEFS CPP POUR LES IO |
---|
58 | c ===================== |
---|
59 | #define histNMC |
---|
60 | c#define histISCCP |
---|
61 | c====================================================================== |
---|
62 | c modif ( P. Le Van , 12/10/98 ) |
---|
63 | c |
---|
64 | c Arguments: |
---|
65 | c |
---|
66 | c nlon----input-I-nombre de points horizontaux |
---|
67 | c nlev----input-I-nombre de couches verticales, doit etre egale a klev |
---|
68 | c debut---input-L-variable logique indiquant le premier passage |
---|
69 | c lafin---input-L-variable logique indiquant le dernier passage |
---|
70 | c jD_cur -R-jour courant a l'appel de la physique (jour julien) |
---|
71 | c jH_cur -R-heure courante a l'appel de la physique (jour julien) |
---|
72 | c pdtphys-input-R-pas d'integration pour la physique (seconde) |
---|
73 | c paprs---input-R-pression pour chaque inter-couche (en Pa) |
---|
74 | c pplay---input-R-pression pour le mileu de chaque couche (en Pa) |
---|
75 | c pphi----input-R-geopotentiel de chaque couche (g z) (reference sol) |
---|
76 | c pphis---input-R-geopotentiel du sol |
---|
77 | c presnivs-input_R_pressions approximat. des milieux couches ( en PA) |
---|
78 | c u-------input-R-vitesse dans la direction X (de O a E) en m/s |
---|
79 | c v-------input-R-vitesse Y (de S a N) en m/s |
---|
80 | c t-------input-R-temperature (K) |
---|
81 | c qx------input-R-humidite specifique (kg/kg) et d'autres traceurs |
---|
82 | c d_t_dyn-input-R-tendance dynamique pour "t" (K/s) |
---|
83 | c d_q_dyn-input-R-tendance dynamique pour "q" (kg/kg/s) |
---|
84 | c flxmass_w -input-R- flux de masse verticale |
---|
85 | c d_u-----output-R-tendance physique de "u" (m/s/s) |
---|
86 | c d_v-----output-R-tendance physique de "v" (m/s/s) |
---|
87 | c d_t-----output-R-tendance physique de "t" (K/s) |
---|
88 | c d_qx----output-R-tendance physique de "qx" (kg/kg/s) |
---|
89 | c d_ps----output-R-tendance physique de la pression au sol |
---|
90 | cIM |
---|
91 | c PVteta--output-R-vorticite potentielle a des thetas constantes |
---|
92 | c====================================================================== |
---|
93 | #include "dimensions.h" |
---|
94 | integer jjmp1 |
---|
95 | parameter (jjmp1=jjm+1-1/jjm) |
---|
96 | integer iip1 |
---|
97 | parameter (iip1=iim+1) |
---|
98 | |
---|
99 | #include "regdim.h" |
---|
100 | #include "indicesol.h" |
---|
101 | #include "dimsoil.h" |
---|
102 | #include "clesphys.h" |
---|
103 | #include "control.h" |
---|
104 | #include "temps.h" |
---|
105 | #include "iniprint.h" |
---|
106 | #include "thermcell.h" |
---|
107 | c====================================================================== |
---|
108 | LOGICAL ok_cvl ! pour activer le nouveau driver pour convection KE |
---|
109 | PARAMETER (ok_cvl=.TRUE.) |
---|
110 | LOGICAL ok_gust ! pour activer l'effet des gust sur flux surface |
---|
111 | PARAMETER (ok_gust=.FALSE.) |
---|
112 | integer iflag_radia ! active ou non le rayonnement (MPL) |
---|
113 | save iflag_radia |
---|
114 | c$OMP THREADPRIVATE(iflag_radia) |
---|
115 | c====================================================================== |
---|
116 | LOGICAL check ! Verifier la conservation du modele en eau |
---|
117 | PARAMETER (check=.FALSE.) |
---|
118 | LOGICAL ok_stratus ! Ajouter artificiellement les stratus |
---|
119 | PARAMETER (ok_stratus=.FALSE.) |
---|
120 | c====================================================================== |
---|
121 | REAL amn, amx |
---|
122 | INTEGER igout |
---|
123 | c====================================================================== |
---|
124 | c Clef controlant l'activation du cycle diurne: |
---|
125 | ccc LOGICAL cycle_diurne |
---|
126 | ccc PARAMETER (cycle_diurne=.FALSE.) |
---|
127 | c====================================================================== |
---|
128 | c Modele thermique du sol, a activer pour le cycle diurne: |
---|
129 | ccc LOGICAL soil_model |
---|
130 | ccc PARAMETER (soil_model=.FALSE.) |
---|
131 | c====================================================================== |
---|
132 | c Dans les versions precedentes, l'eau liquide nuageuse utilisee dans |
---|
133 | c le calcul du rayonnement est celle apres la precipitation des nuages. |
---|
134 | c Si cette cle new_oliq est activee, ce sera une valeur moyenne entre |
---|
135 | c la condensation et la precipitation. Cette cle augmente les impacts |
---|
136 | c radiatifs des nuages. |
---|
137 | ccc LOGICAL new_oliq |
---|
138 | ccc PARAMETER (new_oliq=.FALSE.) |
---|
139 | c====================================================================== |
---|
140 | c Clefs controlant deux parametrisations de l'orographie: |
---|
141 | cc LOGICAL ok_orodr |
---|
142 | ccc PARAMETER (ok_orodr=.FALSE.) |
---|
143 | ccc LOGICAL ok_orolf |
---|
144 | ccc PARAMETER (ok_orolf=.FALSE.) |
---|
145 | c====================================================================== |
---|
146 | LOGICAL ok_journe ! sortir le fichier journalier |
---|
147 | save ok_journe |
---|
148 | c$OMP THREADPRIVATE(ok_journe) |
---|
149 | c |
---|
150 | LOGICAL ok_mensuel ! sortir le fichier mensuel |
---|
151 | save ok_mensuel |
---|
152 | c$OMP THREADPRIVATE(ok_mensuel) |
---|
153 | c |
---|
154 | LOGICAL ok_instan ! sortir le fichier instantane |
---|
155 | save ok_instan |
---|
156 | c$OMP THREADPRIVATE(ok_instan) |
---|
157 | c |
---|
158 | LOGICAL ok_LES ! sortir le fichier LES |
---|
159 | save ok_LES |
---|
160 | c$OMP THREADPRIVATE(ok_LES) |
---|
161 | c |
---|
162 | LOGICAL ok_region ! sortir le fichier regional |
---|
163 | PARAMETER (ok_region=.FALSE.) |
---|
164 | c====================================================================== |
---|
165 | real weak_inversion(klon),dthmin(klon) |
---|
166 | real seuil_inversion |
---|
167 | save seuil_inversion |
---|
168 | c$OMP THREADPRIVATE(seuil_inversion) |
---|
169 | integer iflag_ratqs |
---|
170 | save iflag_ratqs |
---|
171 | c$OMP THREADPRIVATE(iflag_ratqs) |
---|
172 | REAL lambda_th(klon,klev),zz,znum,zden |
---|
173 | REAL wmax_th(klon) |
---|
174 | REAL zmax_th(klon) |
---|
175 | REAL tau_overturning_th(klon) |
---|
176 | |
---|
177 | integer lmax_th(klon) |
---|
178 | integer limbas(klon) |
---|
179 | real ratqscth(klon,klev) |
---|
180 | real ratqsdiff(klon,klev) |
---|
181 | real zqsatth(klon,klev) |
---|
182 | |
---|
183 | c====================================================================== |
---|
184 | c |
---|
185 | INTEGER ivap ! indice de traceurs pour vapeur d'eau |
---|
186 | PARAMETER (ivap=1) |
---|
187 | INTEGER iliq ! indice de traceurs pour eau liquide |
---|
188 | PARAMETER (iliq=2) |
---|
189 | |
---|
190 | c |
---|
191 | c |
---|
192 | c Variables argument: |
---|
193 | c |
---|
194 | INTEGER nlon |
---|
195 | INTEGER nlev |
---|
196 | REAL, intent(in):: jD_cur, jH_cur |
---|
197 | |
---|
198 | REAL pdtphys |
---|
199 | LOGICAL debut, lafin |
---|
200 | REAL paprs(klon,klev+1) |
---|
201 | REAL pplay(klon,klev) |
---|
202 | REAL pphi(klon,klev) |
---|
203 | REAL pphis(klon) |
---|
204 | REAL presnivs(klev) |
---|
205 | REAL znivsig(klev) |
---|
206 | real pir |
---|
207 | |
---|
208 | REAL u(klon,klev) |
---|
209 | REAL v(klon,klev) |
---|
210 | REAL t(klon,klev),theta(klon,klev) |
---|
211 | REAL qx(klon,klev,nqtot) |
---|
212 | REAL flxmass_w(klon,klev) |
---|
213 | REAL omega(klon,klev) ! vitesse verticale en Pa/s |
---|
214 | REAL d_u(klon,klev) |
---|
215 | REAL d_v(klon,klev) |
---|
216 | REAL d_t(klon,klev) |
---|
217 | REAL d_qx(klon,klev,nqtot) |
---|
218 | REAL d_ps(klon) |
---|
219 | real da(klon,klev),phi(klon,klev,klev),mp(klon,klev) |
---|
220 | c |
---|
221 | cIM Amip2 PV a theta constante |
---|
222 | c |
---|
223 | INTEGER nbteta |
---|
224 | PARAMETER(nbteta=3) |
---|
225 | CHARACTER*3 ctetaSTD(nbteta) |
---|
226 | DATA ctetaSTD/'350','380','405'/ |
---|
227 | SAVE ctetaSTD |
---|
228 | c$OMP THREADPRIVATE(ctetaSTD) |
---|
229 | REAL rtetaSTD(nbteta) |
---|
230 | DATA rtetaSTD/350., 380., 405./ |
---|
231 | SAVE rtetaSTD |
---|
232 | c$OMP THREADPRIVATE(rtetaSTD) |
---|
233 | c |
---|
234 | REAL PVteta(klon,nbteta) |
---|
235 | REAL zx_tmp_3dte(iim,jjmp1,nbteta) |
---|
236 | c |
---|
237 | cMI Amip2 PV a theta constante |
---|
238 | |
---|
239 | cym INTEGER klevp1, klevm1 |
---|
240 | cym PARAMETER(klevp1=klev+1,klevm1=klev-1) |
---|
241 | cym#include "raddim.h" |
---|
242 | c |
---|
243 | c |
---|
244 | cIM Amip2 |
---|
245 | c variables a une pression donnee |
---|
246 | c |
---|
247 | real rlevSTD(nlevSTD) |
---|
248 | DATA rlevSTD/100000., 92500., 85000., 70000., |
---|
249 | .60000., 50000., 40000., 30000., 25000., 20000., |
---|
250 | .15000., 10000., 7000., 5000., 3000., 2000., 1000./ |
---|
251 | SAVE rlevstd |
---|
252 | c$OMP THREADPRIVATE(rlevstd) |
---|
253 | CHARACTER*4 clevSTD(nlevSTD) |
---|
254 | DATA clevSTD/'1000','925 ','850 ','700 ','600 ', |
---|
255 | .'500 ','400 ','300 ','250 ','200 ','150 ','100 ', |
---|
256 | .'70 ','50 ','30 ','20 ','10 '/ |
---|
257 | SAVE clevSTD |
---|
258 | c$OMP THREADPRIVATE(clevSTD) |
---|
259 | c |
---|
260 | CHARACTER*4 bb2 |
---|
261 | CHARACTER*2 bb3 |
---|
262 | c |
---|
263 | real twriteSTD(klon,nlevSTD,nfiles) |
---|
264 | real qwriteSTD(klon,nlevSTD,nfiles) |
---|
265 | real rhwriteSTD(klon,nlevSTD,nfiles) |
---|
266 | real phiwriteSTD(klon,nlevSTD,nfiles) |
---|
267 | real uwriteSTD(klon,nlevSTD,nfiles) |
---|
268 | real vwriteSTD(klon,nlevSTD,nfiles) |
---|
269 | real wwriteSTD(klon,nlevSTD,nfiles) |
---|
270 | cIM for NMC files |
---|
271 | REAL geo500(klon) |
---|
272 | real :: rlevSTD3(nlevSTD3) |
---|
273 | DATA rlevSTD3/85000., 50000., 25000./ |
---|
274 | SAVE rlevSTD3 |
---|
275 | c$OMP THREADPRIVATE(rlevSTD3) |
---|
276 | real :: rlevSTD8(nlevSTD8) |
---|
277 | DATA rlevSTD8/100000., 85000., 70000., 50000., 25000., 10000., |
---|
278 | $ 5000., 1000./ |
---|
279 | SAVE rlevSTD8 |
---|
280 | c$OMP THREADPRIVATE(rlevSTD8) |
---|
281 | real twriteSTD3(klon,nlevSTD3) |
---|
282 | real qwriteSTD3(klon,nlevSTD3) |
---|
283 | real rhwriteSTD3(klon,nlevSTD3) |
---|
284 | real phiwriteSTD3(klon,nlevSTD3) |
---|
285 | real uwriteSTD3(klon,nlevSTD3) |
---|
286 | real vwriteSTD3(klon,nlevSTD3) |
---|
287 | real wwriteSTD3(klon,nlevSTD3) |
---|
288 | c |
---|
289 | real tnondefSTD8(klon,nlevSTD8) |
---|
290 | real twriteSTD8(klon,nlevSTD8) |
---|
291 | real qwriteSTD8(klon,nlevSTD8) |
---|
292 | real rhwriteSTD8(klon,nlevSTD8) |
---|
293 | real phiwriteSTD8(klon,nlevSTD8) |
---|
294 | real uwriteSTD8(klon,nlevSTD8) |
---|
295 | real vwriteSTD8(klon,nlevSTD8) |
---|
296 | real wwriteSTD8(klon,nlevSTD8) |
---|
297 | c |
---|
298 | c plevSTD3 END |
---|
299 | c |
---|
300 | c nout : niveau de output des variables a une pression donnee |
---|
301 | logical oknondef(klon,nlevSTD,nout) |
---|
302 | c |
---|
303 | c les produits uvSTD, vqSTD, .., T2STD sont calcules |
---|
304 | c a partir des valeurs instantannees toutes les 6 h |
---|
305 | c qui sont moyennees sur le mois |
---|
306 | c |
---|
307 | #include "radopt.h" |
---|
308 | c |
---|
309 | c |
---|
310 | c prw: precipitable water |
---|
311 | real prw(klon) |
---|
312 | |
---|
313 | REAL convliq(klon,klev) ! eau liquide nuageuse convective |
---|
314 | REAL convfra(klon,klev) ! fraction nuageuse convective |
---|
315 | |
---|
316 | REAL cldl_c(klon),cldm_c(klon),cldh_c(klon) !nuages bas, moyen et haut |
---|
317 | REAL cldt_c(klon),cldq_c(klon) !nuage total, eau liquide integree |
---|
318 | REAL cldl_s(klon),cldm_s(klon),cldh_s(klon) !nuages bas, moyen et haut |
---|
319 | REAL cldt_s(klon),cldq_s(klon) !nuage total, eau liquide integree |
---|
320 | |
---|
321 | INTEGER linv, kp1 |
---|
322 | c flwp, fiwp = Liquid Water Path & Ice Water Path (kg/m2) |
---|
323 | c flwc, fiwc = Liquid Water Content & Ice Water Content (kg/kg) |
---|
324 | REAL flwp(klon), fiwp(klon) |
---|
325 | REAL flwc(klon,klev), fiwc(klon,klev) |
---|
326 | REAL flwp_c(klon), fiwp_c(klon) |
---|
327 | REAL flwc_c(klon,klev), fiwc_c(klon,klev) |
---|
328 | REAL flwp_s(klon), fiwp_s(klon) |
---|
329 | REAL flwc_s(klon,klev), fiwc_s(klon,klev) |
---|
330 | |
---|
331 | cIM ISCCP simulator v3.4 |
---|
332 | c dans clesphys.h top_height, overlap |
---|
333 | cv3.4 |
---|
334 | INTEGER debug, debugcol |
---|
335 | cym INTEGER npoints |
---|
336 | cym PARAMETER(npoints=klon) |
---|
337 | c |
---|
338 | INTEGER sunlit(klon) !sunlit=1 if day; sunlit=0 if night |
---|
339 | INTEGER nregISCtot |
---|
340 | PARAMETER(nregISCtot=1) |
---|
341 | c |
---|
342 | c imin_debut, nbpti, jmin_debut, nbptj : parametres pour sorties sur 1 region rectangulaire |
---|
343 | c y compris pour 1 point |
---|
344 | c imin_debut : indice minimum de i; nbpti : nombre de points en direction i (longitude) |
---|
345 | c jmin_debut : indice minimum de j; nbptj : nombre de points en direction j (latitude) |
---|
346 | INTEGER imin_debut, nbpti |
---|
347 | INTEGER jmin_debut, nbptj |
---|
348 | cIM parametres ISCCP BEG |
---|
349 | INTEGER nbapp_isccp |
---|
350 | ! INTEGER nbapp_isccp,isccppas |
---|
351 | ! PARAMETER(isccppas=6) !appel du simulateurs tous les 6pas de temps de la physique |
---|
352 | ! !i.e. toutes les 3 heures |
---|
353 | INTEGER n |
---|
354 | INTEGER ifreq_isccp(napisccp), freqin_pdt(napisccp) |
---|
355 | DATA ifreq_isccp/3/ |
---|
356 | SAVE ifreq_isccp |
---|
357 | c$OMP THREADPRIVATE(ifreq_isccp) |
---|
358 | CHARACTER*5 typinout(napisccp) |
---|
359 | DATA typinout/'i3od'/ |
---|
360 | SAVE typinout |
---|
361 | c$OMP THREADPRIVATE(typinout) |
---|
362 | cIM verif boxptop BEG |
---|
363 | CHARACTER*1 verticaxe(napisccp) |
---|
364 | DATA verticaxe/'1'/ |
---|
365 | SAVE verticaxe |
---|
366 | c$OMP THREADPRIVATE(verticaxe) |
---|
367 | cIM verif boxptop END |
---|
368 | INTEGER nvlev(napisccp) |
---|
369 | c INTEGER nvlev |
---|
370 | REAL t1, aa |
---|
371 | REAL seed_re(klon,napisccp) |
---|
372 | cym !!!! A voir plus tard |
---|
373 | cym INTEGER iphy(iim,jjmp1) |
---|
374 | cIM parametres ISCCP END |
---|
375 | c |
---|
376 | c ncol = nb. de sous-colonnes pour chaque maille du GCM |
---|
377 | c ncolmx = No. max. de sous-colonnes pour chaque maille du GCM |
---|
378 | c INTEGER ncol(napisccp), ncolmx, seed(klon,napisccp) |
---|
379 | INTEGER,SAVE :: ncol(napisccp) |
---|
380 | c$OMP THREADPRIVATE(ncol) |
---|
381 | INTEGER ncolmx, seed(klon,napisccp) |
---|
382 | REAL nbsunlit(nregISCtot,klon,napisccp) !nbsunlit : moyenne de sunlit |
---|
383 | c PARAMETER(ncolmx=1500) |
---|
384 | PARAMETER(ncolmx=300) |
---|
385 | c |
---|
386 | cIM verif boxptop BEG |
---|
387 | REAL vertlev(ncolmx,napisccp) |
---|
388 | cIM verif boxptop END |
---|
389 | c |
---|
390 | REAL,SAVE :: tautab_omp(0:255),tautab(0:255) |
---|
391 | INTEGER,SAVE :: invtau_omp(-20:45000),invtau(-20:45000) |
---|
392 | c$OMP THREADPRIVATE(tautab,invtau) |
---|
393 | REAL emsfc_lw |
---|
394 | PARAMETER(emsfc_lw=0.99) |
---|
395 | c REAL ran0 ! type for random number fuction |
---|
396 | c |
---|
397 | REAL cldtot(klon,klev) |
---|
398 | c variables de haut en bas pour le simulateur ISCCP |
---|
399 | REAL dtau_s(klon,klev) !tau nuages startiformes |
---|
400 | REAL dtau_c(klon,klev) !tau nuages convectifs |
---|
401 | REAL dem_s(klon,klev) !emissivite nuages startiformes |
---|
402 | REAL dem_c(klon,klev) !emissivite nuages convectifs |
---|
403 | c |
---|
404 | c variables de haut en bas pour le simulateur ISCCP |
---|
405 | REAL pfull(klon,klev) |
---|
406 | REAL phalf(klon,klev+1) |
---|
407 | REAL qv(klon,klev) |
---|
408 | REAL cc(klon,klev) |
---|
409 | REAL conv(klon,klev) |
---|
410 | REAL dtau_sH2B(klon,klev) |
---|
411 | REAL dtau_cH2B(klon,klev) |
---|
412 | REAL at(klon,klev) |
---|
413 | REAL dem_sH2B(klon,klev) |
---|
414 | REAL dem_cH2B(klon,klev) |
---|
415 | c |
---|
416 | INTEGER kmax, lmax, lmax3 |
---|
417 | PARAMETER(kmax=8, lmax=8, lmax3=3) |
---|
418 | INTEGER kmaxm1, lmaxm1 |
---|
419 | PARAMETER(kmaxm1=kmax-1, lmaxm1=lmax-1) |
---|
420 | INTEGER iimx7, jjmx7, jjmp1x7 |
---|
421 | PARAMETER(iimx7=iim*kmaxm1, jjmx7=jjm*lmaxm1, |
---|
422 | .jjmp1x7=jjmp1*lmaxm1) |
---|
423 | c |
---|
424 | c output from ISCCP simulator |
---|
425 | REAL fq_isccp(klon,kmaxm1,lmaxm1,napisccp) |
---|
426 | REAL fq_is_true(klon,kmaxm1,lmaxm1,napisccp) |
---|
427 | REAL totalcldarea(klon,napisccp) |
---|
428 | REAL meanptop(klon,napisccp) |
---|
429 | REAL meantaucld(klon,napisccp) |
---|
430 | REAL boxtau(klon,ncolmx,napisccp) |
---|
431 | REAL boxptop(klon,ncolmx,napisccp) |
---|
432 | REAL zx_tmp_fi3d_bx(klon,ncolmx) |
---|
433 | REAL zx_tmp_3d_bx(iim,jjmp1,ncolmx) |
---|
434 | c |
---|
435 | REAL cld_fi3d(klon,lmax3) |
---|
436 | REAL cld_3d(iim,jjmp1,lmax3) |
---|
437 | c |
---|
438 | INTEGER iw, iwmax |
---|
439 | REAL wmin, pas_w |
---|
440 | c PARAMETER(wmin=-100.,pas_w=10.,iwmax=30) |
---|
441 | cIM 051005 PARAMETER(wmin=-200.,pas_w=10.,iwmax=40) |
---|
442 | PARAMETER(wmin=-100.,pas_w=10.,iwmax=20) |
---|
443 | REAL o500(klon) |
---|
444 | c |
---|
445 | |
---|
446 | c sorties ISCCP |
---|
447 | |
---|
448 | integer nid_isccp |
---|
449 | save nid_isccp |
---|
450 | c$OMP THREADPRIVATE(nid_isccp) |
---|
451 | |
---|
452 | REAL zx_tau(kmaxm1), zx_pc(lmaxm1), zx_o500(iwmax) |
---|
453 | DATA zx_tau/0.0, 0.3, 1.3, 3.6, 9.4, 23., 60./ |
---|
454 | SAVE zx_tau |
---|
455 | DATA zx_pc/180., 310., 440., 560., 680., 800., 1000./ |
---|
456 | SAVE zx_pc |
---|
457 | c$OMP THREADPRIVATE(zx_tau,zx_pc) |
---|
458 | c cldtopres pression au sommet des nuages |
---|
459 | REAL cldtopres(lmaxm1), cldtopres3(lmax3) |
---|
460 | DATA cldtopres/180., 310., 440., 560., 680., 800., 1000./ |
---|
461 | DATA cldtopres3/440., 680., 1000./ |
---|
462 | SAVE cldtopres,cldtopres3 |
---|
463 | c$OMP THREADPRIVATE(cldtopres,cldtopres3) |
---|
464 | cIM 051005 BEG |
---|
465 | INTEGER komega, nhoriRD |
---|
466 | |
---|
467 | c taulev: numero du niveau de tau dans les sorties ISCCP |
---|
468 | CHARACTER *4 taulev(kmaxm1) |
---|
469 | c DATA taulev/'tau1','tau2','tau3','tau4','tau5','tau6','tau7'/ |
---|
470 | DATA taulev/'tau0','tau1','tau2','tau3','tau4','tau5','tau6'/ |
---|
471 | CHARACTER *3 pclev(lmaxm1) |
---|
472 | DATA pclev/'pc1','pc2','pc3','pc4','pc5','pc6','pc7'/ |
---|
473 | SAVE taulev,pclev |
---|
474 | c$OMP THREADPRIVATE(taulev,pclev) |
---|
475 | c |
---|
476 | c cnameisccp |
---|
477 | CHARACTER *27 cnameisccp(lmaxm1,kmaxm1) |
---|
478 | cIM bad 151205 DATA cnameisccp/'pc< 50hPa, tau< 0.3', |
---|
479 | DATA cnameisccp/'pc= 50-180hPa, tau< 0.3', |
---|
480 | . 'pc= 180-310hPa, tau< 0.3', |
---|
481 | . 'pc= 310-440hPa, tau< 0.3', |
---|
482 | . 'pc= 440-560hPa, tau< 0.3', |
---|
483 | . 'pc= 560-680hPa, tau< 0.3', |
---|
484 | . 'pc= 680-800hPa, tau< 0.3', |
---|
485 | . 'pc= 800-1000hPa, tau< 0.3', |
---|
486 | . 'pc= 50-180hPa, tau= 0.3-1.3', |
---|
487 | . 'pc= 180-310hPa, tau= 0.3-1.3', |
---|
488 | . 'pc= 310-440hPa, tau= 0.3-1.3', |
---|
489 | . 'pc= 440-560hPa, tau= 0.3-1.3', |
---|
490 | . 'pc= 560-680hPa, tau= 0.3-1.3', |
---|
491 | . 'pc= 680-800hPa, tau= 0.3-1.3', |
---|
492 | . 'pc= 800-1000hPa, tau= 0.3-1.3', |
---|
493 | . 'pc= 50-180hPa, tau= 1.3-3.6', |
---|
494 | . 'pc= 180-310hPa, tau= 1.3-3.6', |
---|
495 | . 'pc= 310-440hPa, tau= 1.3-3.6', |
---|
496 | . 'pc= 440-560hPa, tau= 1.3-3.6', |
---|
497 | . 'pc= 560-680hPa, tau= 1.3-3.6', |
---|
498 | . 'pc= 680-800hPa, tau= 1.3-3.6', |
---|
499 | . 'pc= 800-1000hPa, tau= 1.3-3.6', |
---|
500 | . 'pc= 50-180hPa, tau= 3.6-9.4', |
---|
501 | . 'pc= 180-310hPa, tau= 3.6-9.4', |
---|
502 | . 'pc= 310-440hPa, tau= 3.6-9.4', |
---|
503 | . 'pc= 440-560hPa, tau= 3.6-9.4', |
---|
504 | . 'pc= 560-680hPa, tau= 3.6-9.4', |
---|
505 | . 'pc= 680-800hPa, tau= 3.6-9.4', |
---|
506 | . 'pc= 800-1000hPa, tau= 3.6-9.4', |
---|
507 | . 'pc= 50-180hPa, tau= 9.4-23', |
---|
508 | . 'pc= 180-310hPa, tau= 9.4-23', |
---|
509 | . 'pc= 310-440hPa, tau= 9.4-23', |
---|
510 | . 'pc= 440-560hPa, tau= 9.4-23', |
---|
511 | . 'pc= 560-680hPa, tau= 9.4-23', |
---|
512 | . 'pc= 680-800hPa, tau= 9.4-23', |
---|
513 | . 'pc= 800-1000hPa, tau= 9.4-23', |
---|
514 | . 'pc= 50-180hPa, tau= 23-60', |
---|
515 | . 'pc= 180-310hPa, tau= 23-60', |
---|
516 | . 'pc= 310-440hPa, tau= 23-60', |
---|
517 | . 'pc= 440-560hPa, tau= 23-60', |
---|
518 | . 'pc= 560-680hPa, tau= 23-60', |
---|
519 | . 'pc= 680-800hPa, tau= 23-60', |
---|
520 | . 'pc= 800-1000hPa, tau= 23-60', |
---|
521 | . 'pc= 50-180hPa, tau> 60.', |
---|
522 | . 'pc= 180-310hPa, tau> 60.', |
---|
523 | . 'pc= 310-440hPa, tau> 60.', |
---|
524 | . 'pc= 440-560hPa, tau> 60.', |
---|
525 | . 'pc= 560-680hPa, tau> 60.', |
---|
526 | . 'pc= 680-800hPa, tau> 60.', |
---|
527 | . 'pc= 800-1000hPa, tau> 60.'/ |
---|
528 | SAVE cnameisccp |
---|
529 | c$OMP THREADPRIVATE(cnameisccp) |
---|
530 | c |
---|
531 | c REAL zx_lonx7(iimx7), zx_latx7(jjmp1x7) |
---|
532 | c INTEGER nhorix7 |
---|
533 | cIM: region='3d' <==> sorties en global |
---|
534 | CHARACTER*3 region |
---|
535 | PARAMETER(region='3d') |
---|
536 | c |
---|
537 | cIM ISCCP simulator v3.4 |
---|
538 | c |
---|
539 | logical ok_hf |
---|
540 | c |
---|
541 | integer nid_hf, nid_hf3d |
---|
542 | save ok_hf, nid_hf, nid_hf3d |
---|
543 | c$OMP THREADPRIVATE(ok_hf, nid_hf, nid_hf3d) |
---|
544 | c QUESTION : noms de variables ? |
---|
545 | |
---|
546 | INTEGER longcles |
---|
547 | PARAMETER ( longcles = 20 ) |
---|
548 | REAL clesphy0( longcles ) |
---|
549 | c |
---|
550 | c Variables propres a la physique |
---|
551 | INTEGER itap |
---|
552 | SAVE itap ! compteur pour la physique |
---|
553 | c$OMP THREADPRIVATE(itap) |
---|
554 | c |
---|
555 | real slp(klon) ! sea level pressure |
---|
556 | c |
---|
557 | REAL fevap(klon,nbsrf) |
---|
558 | REAL fluxlat(klon,nbsrf) |
---|
559 | c |
---|
560 | REAL qsol(klon) |
---|
561 | REAL,save :: solarlong0 |
---|
562 | c$OMP THREADPRIVATE(solarlong0) |
---|
563 | |
---|
564 | c |
---|
565 | c Parametres de l'Orographie a l'Echelle Sous-Maille (OESM): |
---|
566 | c |
---|
567 | cIM 141004 REAL zulow(klon),zvlow(klon),zustr(klon), zvstr(klon) |
---|
568 | REAL zulow(klon),zvlow(klon) |
---|
569 | c |
---|
570 | INTEGER igwd,idx(klon),itest(klon) |
---|
571 | c |
---|
572 | REAL agesno(klon,nbsrf) |
---|
573 | c |
---|
574 | c REAL,allocatable,save :: run_off_lic_0(:) |
---|
575 | cc$OMP THREADPRIVATE(run_off_lic_0) |
---|
576 | cym SAVE run_off_lic_0 |
---|
577 | cKE43 |
---|
578 | c Variables liees a la convection de K. Emanuel (sb): |
---|
579 | c |
---|
580 | REAL bas, top ! cloud base and top levels |
---|
581 | SAVE bas |
---|
582 | SAVE top |
---|
583 | c$OMP THREADPRIVATE(bas, top) |
---|
584 | |
---|
585 | REAL wdn(klon), tdn(klon), qdn(klon) |
---|
586 | c |
---|
587 | c================================================================================================= |
---|
588 | cCR04.12.07: on ajoute les nouvelles variables du nouveau schema de convection avec poches froides |
---|
589 | c Variables liées à la poche froide (jyg) |
---|
590 | |
---|
591 | REAL mip(klon,klev) ! mass flux shed by the adiab ascent at each level |
---|
592 | REAL Vprecip(klon,klev+1) ! precipitation vertical profile |
---|
593 | c |
---|
594 | REAL wape_prescr, fip_prescr |
---|
595 | INTEGER it_wape_prescr |
---|
596 | SAVE wape_prescr, fip_prescr, it_wape_prescr |
---|
597 | c$OMP THREADPRIVATE(wape_prescr, fip_prescr, it_wape_prescr) |
---|
598 | c |
---|
599 | c variables supplementaires de concvl |
---|
600 | REAL Tconv(klon,klev) |
---|
601 | REAL ment(klon,klev,klev),sij(klon,klev,klev) |
---|
602 | REAL dd_t(klon,klev),dd_q(klon,klev) |
---|
603 | |
---|
604 | real, save :: alp_bl_prescr=0. |
---|
605 | real, save :: ale_bl_prescr=0. |
---|
606 | |
---|
607 | real, save :: ale_max=100. |
---|
608 | real, save :: alp_max=2. |
---|
609 | |
---|
610 | c$OMP THREADPRIVATE(alp_bl_prescr,ale_bl_prescr) |
---|
611 | c$OMP THREADPRIVATE(ale_max,alp_max) |
---|
612 | |
---|
613 | real ale_wake(klon) |
---|
614 | real alp_wake(klon) |
---|
615 | cRC |
---|
616 | c Variables liées à la poche froide (jyg et rr) |
---|
617 | c Version diagnostique pour l'instant : pas de rétroaction sur la convection |
---|
618 | |
---|
619 | REAL t_wake(klon,klev),q_wake(klon,klev) ! wake pour la convection |
---|
620 | |
---|
621 | REAL wake_dth(klon,klev) ! wake : temp pot difference |
---|
622 | |
---|
623 | REAL wake_d_deltat_gw(klon,klev)! wake : delta T tendency due to Gravity Wave (/s) |
---|
624 | REAL wake_omgbdth(klon,klev) ! Wake : flux of Delta_Theta transported by LS omega |
---|
625 | REAL wake_dp_omgb(klon,klev) ! Wake : vertical gradient of large scale omega |
---|
626 | REAL wake_dtKE(klon,klev) ! Wake : differential heating (wake - unpertubed) CONV |
---|
627 | REAL wake_dqKE(klon,klev) ! Wake : differential moistening (wake - unpertubed) CONV |
---|
628 | REAL wake_dtPBL(klon,klev) ! Wake : differential heating (wake - unpertubed) PBL |
---|
629 | REAL wake_dqPBL(klon,klev) ! Wake : differential moistening (wake - unpertubed) PBL |
---|
630 | REAL wake_omg(klon,klev) ! Wake : velocity difference (wake - unpertubed) |
---|
631 | REAL wake_ddeltat(klon,klev),wake_ddeltaq(klon,klev) |
---|
632 | REAL wake_dp_deltomg(klon,klev) ! Wake : gradient vertical de wake_omg |
---|
633 | REAL wake_spread(klon,klev) ! spreading term in wake_delt |
---|
634 | c |
---|
635 | cpourquoi y'a pas de save?? |
---|
636 | REAL wake_h(klon) ! Wake : hauteur de la poche froide |
---|
637 | c |
---|
638 | INTEGER wake_k(klon) ! Wake sommet |
---|
639 | c |
---|
640 | REAL t_undi(klon,klev) ! temperature moyenne dans la zone non perturbee |
---|
641 | REAL q_undi(klon,klev) ! humidite moyenne dans la zone non perturbee |
---|
642 | c |
---|
643 | REAL wake_pe(klon) ! Wake potential energy - WAPE |
---|
644 | |
---|
645 | REAL wake_gfl(klon) ! Gust Front Length |
---|
646 | REAL wake_dens(klon) |
---|
647 | c |
---|
648 | c |
---|
649 | REAL dt_dwn(klon,klev) |
---|
650 | REAL dq_dwn(klon,klev) |
---|
651 | REAL wdt_PBL(klon,klev) |
---|
652 | REAL udt_PBL(klon,klev) |
---|
653 | REAL wdq_PBL(klon,klev) |
---|
654 | REAL udq_PBL(klon,klev) |
---|
655 | REAL M_dwn(klon,klev) |
---|
656 | REAL M_up(klon,klev) |
---|
657 | REAL dt_a(klon,klev) |
---|
658 | REAL dq_a(klon,klev) |
---|
659 | c |
---|
660 | cRR:fin declarations poches froides |
---|
661 | c======================================================================================================= |
---|
662 | |
---|
663 | REAL zw2(klon,klev+1) |
---|
664 | REAL fraca(klon,klev+1) |
---|
665 | |
---|
666 | c Variables locales pour la couche limite (al1): |
---|
667 | c |
---|
668 | cAl1 REAL pblh(klon) ! Hauteur de couche limite |
---|
669 | cAl1 SAVE pblh |
---|
670 | c34EK |
---|
671 | c |
---|
672 | c Variables locales: |
---|
673 | c |
---|
674 | REAL cdragh(klon) ! drag coefficient pour T and Q |
---|
675 | REAL cdragm(klon) ! drag coefficient pour vent |
---|
676 | cAA |
---|
677 | cAA Pour phytrac |
---|
678 | cAA |
---|
679 | REAL coefh(klon,klev) ! coef d'echange pour phytrac, valable pour 2<=k<=klev |
---|
680 | REAL coefm(klon,klev) ! coef d'echange pour U, V |
---|
681 | REAL u1(klon) ! vents dans la premiere couche U |
---|
682 | REAL v1(klon) ! vents dans la premiere couche V |
---|
683 | |
---|
684 | REAL zxffonte(klon), zxfqcalving(klon),zxfqfonte(klon) |
---|
685 | |
---|
686 | c@$$ LOGICAL offline ! Controle du stockage ds "physique" |
---|
687 | c@$$ PARAMETER (offline=.false.) |
---|
688 | c@$$ INTEGER physid |
---|
689 | REAL frac_impa(klon,klev) ! fractions d'aerosols lessivees (impaction) |
---|
690 | REAL frac_nucl(klon,klev) ! idem (nucleation) |
---|
691 | INTEGER :: iii |
---|
692 | REAL :: calday |
---|
693 | |
---|
694 | cIM cf FH pour Tiedtke 080604 |
---|
695 | REAL rain_tiedtke(klon),snow_tiedtke(klon) |
---|
696 | c |
---|
697 | cIM 050204 END |
---|
698 | REAL evap(klon), devap(klon) ! evaporation et sa derivee |
---|
699 | REAL sens(klon), dsens(klon) ! chaleur sensible et sa derivee |
---|
700 | |
---|
701 | REAL bils(klon) ! bilan de chaleur au sol |
---|
702 | REAL wfbilo(klon,nbsrf) ! bilan d'eau, pour chaque |
---|
703 | C ! type de sous-surface et pondere par la fraction |
---|
704 | REAL wfbils(klon,nbsrf) ! bilan de chaleur au sol, pour chaque |
---|
705 | C ! type de sous-surface et pondere par la fraction |
---|
706 | REAL slab_wfbils(klon) ! bilan de chaleur au sol pour le cas de slab, sur les points d'ocean |
---|
707 | |
---|
708 | REAL fder(klon) |
---|
709 | REAL ve(klon) ! integr. verticale du transport meri. de l'energie |
---|
710 | REAL vq(klon) ! integr. verticale du transport meri. de l'eau |
---|
711 | REAL ue(klon) ! integr. verticale du transport zonal de l'energie |
---|
712 | REAL uq(klon) ! integr. verticale du transport zonal de l'eau |
---|
713 | c |
---|
714 | REAL frugs(klon,nbsrf) |
---|
715 | REAL zxrugs(klon) ! longueur de rugosite |
---|
716 | c |
---|
717 | c Conditions aux limites |
---|
718 | c |
---|
719 | ! |
---|
720 | REAL :: day_since_equinox |
---|
721 | ! Date de l'equinoxe de printemps |
---|
722 | INTEGER, parameter :: mth_eq=3, day_eq=21 |
---|
723 | REAL :: jD_eq |
---|
724 | |
---|
725 | LOGICAL, parameter :: new_orbit = .true. |
---|
726 | |
---|
727 | c |
---|
728 | INTEGER lmt_pas |
---|
729 | SAVE lmt_pas ! frequence de mise a jour |
---|
730 | c$OMP THREADPRIVATE(lmt_pas) |
---|
731 | real zmasse(klon, llm) |
---|
732 | C (column-density of mass of air in a cell, in kg m-2) |
---|
733 | real, parameter:: dobson_u = 2.1415e-05 ! Dobson unit, in kg m-2 |
---|
734 | |
---|
735 | cIM sorties |
---|
736 | REAL un_jour |
---|
737 | PARAMETER(un_jour=86400.) |
---|
738 | c====================================================================== |
---|
739 | c |
---|
740 | c Declaration des procedures appelees |
---|
741 | c |
---|
742 | EXTERNAL angle ! calculer angle zenithal du soleil |
---|
743 | EXTERNAL alboc ! calculer l'albedo sur ocean |
---|
744 | EXTERNAL ajsec ! ajustement sec |
---|
745 | EXTERNAL conlmd ! convection (schema LMD) |
---|
746 | cKE43 |
---|
747 | EXTERNAL conema3 ! convect4.3 |
---|
748 | EXTERNAL fisrtilp ! schema de condensation a grande echelle (pluie) |
---|
749 | cAA |
---|
750 | EXTERNAL fisrtilp_tr ! schema de condensation a grande echelle (pluie) |
---|
751 | c ! stockage des coefficients necessaires au |
---|
752 | c ! lessivage OFF-LINE et ON-LINE |
---|
753 | EXTERNAL hgardfou ! verifier les temperatures |
---|
754 | EXTERNAL nuage ! calculer les proprietes radiatives |
---|
755 | CC EXTERNAL o3cm ! initialiser l'ozone |
---|
756 | EXTERNAL orbite ! calculer l'orbite terrestre |
---|
757 | EXTERNAL phyetat0 ! lire l'etat initial de la physique |
---|
758 | EXTERNAL phyredem ! ecrire l'etat de redemarrage de la physique |
---|
759 | EXTERNAL suphel ! initialiser certaines constantes |
---|
760 | EXTERNAL transp ! transport total de l'eau et de l'energie |
---|
761 | EXTERNAL ecribina ! ecrire le fichier binaire global |
---|
762 | EXTERNAL ecribins ! ecrire le fichier binaire global |
---|
763 | EXTERNAL ecrirega ! ecrire le fichier binaire regional |
---|
764 | EXTERNAL ecriregs ! ecrire le fichier binaire regional |
---|
765 | cIM |
---|
766 | EXTERNAL haut2bas !variables de haut en bas |
---|
767 | INTEGER lnblnk1 |
---|
768 | EXTERNAL lnblnk1 !enleve les blancs a la fin d'une variable de type |
---|
769 | !caracter |
---|
770 | EXTERNAL ini_undefSTD !initialise a 0 une variable a 1 niveau de pression |
---|
771 | EXTERNAL undefSTD !somme les valeurs definies d'1 var a 1 niveau de pression |
---|
772 | c EXTERNAL moy_undefSTD !moyenne d'1 var a 1 niveau de pression |
---|
773 | c EXTERNAL moyglo_aire !moyenne globale d'1 var ponderee par l'aire de la maille (moyglo_pondaire) |
---|
774 | c !par la masse/airetot (moyglo_pondaima) et la vraie masse (moyglo_pondmass) |
---|
775 | c |
---|
776 | c Variables locales |
---|
777 | c |
---|
778 | REAL rhcl(klon,klev) ! humiditi relative ciel clair |
---|
779 | REAL dialiq(klon,klev) ! eau liquide nuageuse |
---|
780 | REAL diafra(klon,klev) ! fraction nuageuse |
---|
781 | REAL cldliq(klon,klev) ! eau liquide nuageuse |
---|
782 | REAL cldfra(klon,klev) ! fraction nuageuse |
---|
783 | REAL cldtau(klon,klev) ! epaisseur optique |
---|
784 | REAL cldemi(klon,klev) ! emissivite infrarouge |
---|
785 | c |
---|
786 | CXXX PB |
---|
787 | REAL fluxq(klon,klev, nbsrf) ! flux turbulent d'humidite |
---|
788 | REAL fluxt(klon,klev, nbsrf) ! flux turbulent de chaleur |
---|
789 | REAL fluxu(klon,klev, nbsrf) ! flux turbulent de vitesse u |
---|
790 | REAL fluxv(klon,klev, nbsrf) ! flux turbulent de vitesse v |
---|
791 | c |
---|
792 | REAL zxfluxt(klon, klev) |
---|
793 | REAL zxfluxq(klon, klev) |
---|
794 | REAL zxfluxu(klon, klev) |
---|
795 | REAL zxfluxv(klon, klev) |
---|
796 | CXXX |
---|
797 | c |
---|
798 | REAL fsollw(klon, nbsrf) ! bilan flux IR pour chaque sous surface |
---|
799 | REAL fsolsw(klon, nbsrf) ! flux solaire absorb. pour chaque sous surface |
---|
800 | c Le rayonnement n'est pas calcule tous les pas, il faut donc |
---|
801 | c sauvegarder les sorties du rayonnement |
---|
802 | cym SAVE heat,cool,albpla,topsw,toplw,solsw,sollw,sollwdown |
---|
803 | cym SAVE sollwdownclr, toplwdown, toplwdownclr |
---|
804 | cym SAVE topsw0,toplw0,solsw0,sollw0, heat0, cool0 |
---|
805 | c |
---|
806 | INTEGER itaprad |
---|
807 | SAVE itaprad |
---|
808 | c$OMP THREADPRIVATE(itaprad) |
---|
809 | c |
---|
810 | REAL conv_q(klon,klev) ! convergence de l'humidite (kg/kg/s) |
---|
811 | REAL conv_t(klon,klev) ! convergence de la temperature(K/s) |
---|
812 | c |
---|
813 | REAL cldl(klon),cldm(klon),cldh(klon) !nuages bas, moyen et haut |
---|
814 | REAL cldt(klon),cldq(klon) !nuage total, eau liquide integree |
---|
815 | c |
---|
816 | REAL zxtsol(klon), zxqsurf(klon), zxsnow(klon), zxfluxlat(klon) |
---|
817 | REAL zxsnow_dummy(klon) |
---|
818 | c |
---|
819 | REAL dist, rmu0(klon), fract(klon) |
---|
820 | REAL zdtime, zlongi |
---|
821 | c |
---|
822 | CHARACTER*2 str2 |
---|
823 | CHARACTER*2 iqn |
---|
824 | c |
---|
825 | REAL qcheck |
---|
826 | REAL z_avant(klon), z_apres(klon), z_factor(klon) |
---|
827 | LOGICAL zx_ajustq |
---|
828 | c |
---|
829 | REAL za, zb |
---|
830 | REAL zx_t, zx_qs, zdelta, zcor, zfra, zlvdcp, zlsdcp |
---|
831 | real zqsat(klon,klev) |
---|
832 | INTEGER i, k, iq, ig, j, nsrf, ll, l, iiq, iff |
---|
833 | REAL t_coup |
---|
834 | PARAMETER (t_coup=234.0) |
---|
835 | c |
---|
836 | REAL zphi(klon,klev) |
---|
837 | cym A voir plus tard !! |
---|
838 | cym REAL zx_relief(iim,jjmp1) |
---|
839 | cym REAL zx_aire(iim,jjmp1) |
---|
840 | c |
---|
841 | c Grandeurs de sorties |
---|
842 | REAL s_pblh(klon), s_lcl(klon), s_capCL(klon) |
---|
843 | REAL s_oliqCL(klon), s_cteiCL(klon), s_pblt(klon) |
---|
844 | REAL s_therm(klon), s_trmb1(klon), s_trmb2(klon) |
---|
845 | REAL s_trmb3(klon) |
---|
846 | cKE43 |
---|
847 | c Variables locales pour la convection de K. Emanuel (sb): |
---|
848 | c |
---|
849 | REAL upwd(klon,klev) ! saturated updraft mass flux |
---|
850 | REAL dnwd(klon,klev) ! saturated downdraft mass flux |
---|
851 | REAL dnwd0(klon,klev) ! unsaturated downdraft mass flux |
---|
852 | REAL tvp(klon,klev) ! virtual temp of lifted parcel |
---|
853 | CHARACTER*40 capemaxcels !max(CAPE) |
---|
854 | |
---|
855 | REAL rflag(klon) ! flag fonctionnement de convect |
---|
856 | INTEGER iflagctrl(klon) ! flag fonctionnement de convect |
---|
857 | |
---|
858 | c -- convect43: |
---|
859 | INTEGER ntra ! nb traceurs pour convect4.3 |
---|
860 | REAL pori_con(klon) ! pressure at the origin level of lifted parcel |
---|
861 | REAL plcl_con(klon),dtma_con(klon),dtlcl_con(klon) |
---|
862 | REAL dtvpdt1(klon,klev), dtvpdq1(klon,klev) |
---|
863 | REAL dplcldt(klon), dplcldr(klon) |
---|
864 | c? . condm_con(klon,klev),conda_con(klon,klev), |
---|
865 | c? . mr_con(klon,klev),ep_con(klon,klev) |
---|
866 | c? . ,sadiab(klon,klev),wadiab(klon,klev) |
---|
867 | c -- |
---|
868 | c34EK |
---|
869 | c |
---|
870 | c Variables du changement |
---|
871 | c |
---|
872 | c con: convection |
---|
873 | c lsc: condensation a grande echelle (Large-Scale-Condensation) |
---|
874 | c ajs: ajustement sec |
---|
875 | c eva: evaporation de l'eau liquide nuageuse |
---|
876 | c vdf: couche limite (Vertical DiFfusion) |
---|
877 | REAL rneb(klon,klev) |
---|
878 | |
---|
879 | ! tendance nulles |
---|
880 | REAL du0(klon,klev),dv0(klon,klev),dq0(klon,klev),dql0(klon,klev) |
---|
881 | |
---|
882 | c |
---|
883 | ********************************************************* |
---|
884 | * declarations |
---|
885 | |
---|
886 | ********************************************************* |
---|
887 | cIM 081204 END |
---|
888 | c |
---|
889 | REAL pmfu(klon,klev), pmfd(klon,klev) |
---|
890 | REAL pen_u(klon,klev), pen_d(klon,klev) |
---|
891 | REAL pde_u(klon,klev), pde_d(klon,klev) |
---|
892 | INTEGER kcbot(klon), kctop(klon), kdtop(klon) |
---|
893 | REAL pmflxr(klon,klev+1), pmflxs(klon,klev+1) |
---|
894 | REAL prfl(klon,klev+1), psfl(klon,klev+1) |
---|
895 | c |
---|
896 | REAL rain_lsc(klon) |
---|
897 | REAL snow_lsc(klon) |
---|
898 | c |
---|
899 | REAL ratqss(klon,klev),ratqsc(klon,klev) |
---|
900 | real ratqsbas,ratqshaut,tau_ratqs |
---|
901 | save ratqsbas,ratqshaut,tau_ratqs |
---|
902 | c$OMP THREADPRIVATE(ratqsbas,ratqshaut,tau_ratqs) |
---|
903 | real zpt_conv(klon,klev) |
---|
904 | |
---|
905 | c Parametres lies au nouveau schema de nuages (SB, PDF) |
---|
906 | real fact_cldcon |
---|
907 | real facttemps |
---|
908 | logical ok_newmicro |
---|
909 | save ok_newmicro |
---|
910 | real ref_liq(klon,klev), ref_ice(klon,klev) |
---|
911 | c$OMP THREADPRIVATE(ok_newmicro) |
---|
912 | save fact_cldcon,facttemps |
---|
913 | c$OMP THREADPRIVATE(fact_cldcon,facttemps) |
---|
914 | real facteur |
---|
915 | |
---|
916 | integer iflag_cldcon |
---|
917 | save iflag_cldcon |
---|
918 | c$OMP THREADPRIVATE(iflag_cldcon) |
---|
919 | logical ptconv(klon,klev) |
---|
920 | cIM cf. AM 081204 BEG |
---|
921 | logical ptconvth(klon,klev) |
---|
922 | cIM cf. AM 081204 END |
---|
923 | c |
---|
924 | c Variables liees a l'ecriture de la bande histoire physique |
---|
925 | c |
---|
926 | c====================================================================== |
---|
927 | c |
---|
928 | cIM cf. AM 081204 BEG |
---|
929 | c declarations pour sortir sur une sous-region |
---|
930 | integer imin_ins,imax_ins,jmin_ins,jmax_ins |
---|
931 | save imin_ins,imax_ins,jmin_ins,jmax_ins |
---|
932 | c$OMP THREADPRIVATE(imin_ins,imax_ins,jmin_ins,jmax_ins) |
---|
933 | c real lonmin_ins,lonmax_ins,latmin_ins |
---|
934 | c s ,latmax_ins |
---|
935 | c data lonmin_ins,lonmax_ins,latmin_ins |
---|
936 | c s ,latmax_ins/ |
---|
937 | c valeurs initiales s -5.,20.,41.,55./ |
---|
938 | c s 100.,130.,-20.,20./ |
---|
939 | c s -180.,180.,-90.,90./ |
---|
940 | c====================================================================== |
---|
941 | cIM cf. AM 081204 END |
---|
942 | |
---|
943 | c |
---|
944 | integer itau_w ! pas de temps ecriture = itap + itau_phy |
---|
945 | c |
---|
946 | c |
---|
947 | c Variables locales pour effectuer les appels en serie |
---|
948 | c |
---|
949 | REAL zx_rh(klon,klev) |
---|
950 | cIM RH a 2m (la surface) |
---|
951 | REAL rh2m(klon), qsat2m(klon) |
---|
952 | REAL tpot(klon), tpote(klon) |
---|
953 | REAL Lheat |
---|
954 | |
---|
955 | INTEGER length |
---|
956 | PARAMETER ( length = 100 ) |
---|
957 | REAL tabcntr0( length ) |
---|
958 | c |
---|
959 | INTEGER ndex2d(iim*jjmp1),ndex3d(iim*jjmp1*klev) |
---|
960 | cIM |
---|
961 | INTEGER ndex2d1(iwmax) |
---|
962 | c |
---|
963 | cIM AMIP2 BEG |
---|
964 | REAL moyglo, mountor |
---|
965 | cIM 141004 BEG |
---|
966 | REAL zustrdr(klon), zvstrdr(klon) |
---|
967 | REAL zustrli(klon), zvstrli(klon) |
---|
968 | REAL zustrph(klon), zvstrph(klon) |
---|
969 | REAL zustrhi(klon), zvstrhi(klon) |
---|
970 | REAL aam, torsfc |
---|
971 | cIM 141004 END |
---|
972 | cIM 190504 BEG |
---|
973 | INTEGER ij, imp1jmp1 |
---|
974 | PARAMETER(imp1jmp1=(iim+1)*jjmp1) |
---|
975 | cym A voir plus tard |
---|
976 | REAL zx_tmp(imp1jmp1), airedyn(iim+1,jjmp1) |
---|
977 | REAL padyn(iim+1,jjmp1,klev+1) |
---|
978 | REAL dudyn(iim+1,jjmp1,klev) |
---|
979 | REAL rlatdyn(iim+1,jjmp1) |
---|
980 | cIM 190504 END |
---|
981 | LOGICAL ok_msk |
---|
982 | REAL msk(klon) |
---|
983 | cIM |
---|
984 | REAL airetot, pi |
---|
985 | cym A voir plus tard |
---|
986 | cym REAL zm_wo(jjmp1, klev) |
---|
987 | cIM AMIP2 END |
---|
988 | c |
---|
989 | REAL zx_tmp_fi2d(klon) ! variable temporaire grille physique |
---|
990 | REAL zx_tmp_fi3d(klon,klev) ! variable temporaire pour champs 3D |
---|
991 | REAL zx_tmp_fi3d1(klon,klev+1) !variable temporaire pour champs 3D (kelvp1) |
---|
992 | c#ifdef histNMC |
---|
993 | cym A voir plus tard !!!! |
---|
994 | cym REAL zx_tmp_NC(iim,jjmp1,nlevSTD) |
---|
995 | REAL zx_tmp_fiNC(klon,nlevSTD) |
---|
996 | c#endif |
---|
997 | REAL(KIND=8) zx_tmp2_fi3d(klon,klev) ! variable temporaire pour champs 3D |
---|
998 | REAL zx_tmp_2d(iim,jjmp1), zx_tmp_3d(iim,jjmp1,klev) |
---|
999 | REAL zx_lon(iim,jjmp1), zx_lat(iim,jjmp1) |
---|
1000 | cIM for NMC files |
---|
1001 | REAL missing_val |
---|
1002 | REAL, SAVE :: freq_moyNMC(nout) |
---|
1003 | c$OMP THREADPRIVATE(freq_moyNMC) |
---|
1004 | c |
---|
1005 | INTEGER nid_day, nid_mth, nid_ins, nid_mthnmc, nid_daynmc |
---|
1006 | INTEGER nid_hfnmc, nid_day_seri, nid_ctesGCM |
---|
1007 | SAVE nid_day, nid_mth, nid_ins, nid_mthnmc, nid_daynmc |
---|
1008 | SAVE nid_hfnmc, nid_day_seri, nid_ctesGCM |
---|
1009 | c$OMP THREADPRIVATE(nid_day, nid_mth, nid_ins) |
---|
1010 | c$OMP THREADPRIVATE(nid_mthnmc, nid_daynmc, nid_hfnmc) |
---|
1011 | c$OMP THREADPRIVATE(nid_day_seri,nid_ctesGCM) |
---|
1012 | c |
---|
1013 | cIM 280405 BEG |
---|
1014 | INTEGER nid_bilKPins, nid_bilKPave |
---|
1015 | SAVE nid_bilKPins, nid_bilKPave |
---|
1016 | c$OMP THREADPRIVATE(nid_bilKPins, nid_bilKPave) |
---|
1017 | c |
---|
1018 | REAL ve_lay(klon,klev) ! transport meri. de l'energie a chaque niveau vert. |
---|
1019 | REAL vq_lay(klon,klev) ! transport meri. de l'eau a chaque niveau vert. |
---|
1020 | REAL ue_lay(klon,klev) ! transport zonal de l'energie a chaque niveau vert. |
---|
1021 | REAL uq_lay(klon,klev) ! transport zonal de l'eau a chaque niveau vert. |
---|
1022 | c |
---|
1023 | INTEGER nhori, nvert, nvert1, nvert3 |
---|
1024 | REAL zsto, zsto1, zsto2 |
---|
1025 | REAL zstophy, zstorad, zstohf, zstoday, zstomth, zout |
---|
1026 | REAL zcals(napisccp), zcalh(napisccp), zoutj(napisccp) |
---|
1027 | REAL zout_isccp(napisccp) |
---|
1028 | SAVE zcals, zcalh, zoutj, zout_isccp |
---|
1029 | c$OMP THREADPRIVATE(zcals, zcalh, zoutj, zout_isccp) |
---|
1030 | |
---|
1031 | real zjulian |
---|
1032 | save zjulian |
---|
1033 | c$OMP THREADPRIVATE(zjulian) |
---|
1034 | |
---|
1035 | character*20 modname |
---|
1036 | character*80 abort_message |
---|
1037 | logical ok_sync |
---|
1038 | real date0 |
---|
1039 | integer idayref |
---|
1040 | |
---|
1041 | C essai writephys |
---|
1042 | integer fid_day, fid_mth, fid_ins |
---|
1043 | parameter (fid_ins = 1, fid_day = 2, fid_mth = 3) |
---|
1044 | integer prof2d_on, prof3d_on, prof2d_av, prof3d_av |
---|
1045 | parameter (prof2d_on = 1, prof3d_on = 2, |
---|
1046 | . prof2d_av = 3, prof3d_av = 4) |
---|
1047 | character*30 nom_fichier |
---|
1048 | character*10 varname |
---|
1049 | character*40 vartitle |
---|
1050 | character*20 varunits |
---|
1051 | C Variables liees au bilan d'energie et d'enthalpi |
---|
1052 | REAL ztsol(klon) |
---|
1053 | REAL h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot |
---|
1054 | $ , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot |
---|
1055 | SAVE h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot |
---|
1056 | $ , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot |
---|
1057 | c$OMP THREADPRIVATE(h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot, |
---|
1058 | c$OMP+ h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot) |
---|
1059 | REAL d_h_vcol, d_h_dair, d_qt, d_qw, d_ql, d_qs, d_ec |
---|
1060 | REAL d_h_vcol_phy |
---|
1061 | REAL fs_bound, fq_bound |
---|
1062 | SAVE d_h_vcol_phy |
---|
1063 | c$OMP THREADPRIVATE(d_h_vcol_phy) |
---|
1064 | REAL zero_v(klon) |
---|
1065 | CHARACTER*15 ztit |
---|
1066 | INTEGER ip_ebil ! PRINT level for energy conserv. diag. |
---|
1067 | SAVE ip_ebil |
---|
1068 | DATA ip_ebil/0/ |
---|
1069 | c$OMP THREADPRIVATE(ip_ebil) |
---|
1070 | INTEGER if_ebil ! level for energy conserv. dignostics |
---|
1071 | SAVE if_ebil |
---|
1072 | c$OMP THREADPRIVATE(if_ebil) |
---|
1073 | c+jld ec_conser |
---|
1074 | REAL ZRCPD |
---|
1075 | c-jld ec_conser |
---|
1076 | REAL t2m(klon,nbsrf) ! temperature a 2m |
---|
1077 | REAL q2m(klon,nbsrf) ! humidite a 2m |
---|
1078 | |
---|
1079 | cIM: t2m, q2m, u10m, v10m et t2mincels, t2maxcels |
---|
1080 | REAL zt2m(klon), zq2m(klon) !temp., hum. 2m moyenne s/ 1 maille |
---|
1081 | REAL zu10m(klon), zv10m(klon) !vents a 10m moyennes s/1 maille |
---|
1082 | CHARACTER*40 t2mincels, t2maxcels !t2m min., t2m max |
---|
1083 | CHARACTER*40 tinst, tave, typeval |
---|
1084 | REAL cldtaupi(klon,klev) ! Cloud optical thickness for pre-industrial (pi) aerosols |
---|
1085 | |
---|
1086 | REAL re(klon, klev) ! Cloud droplet effective radius |
---|
1087 | REAL fl(klon, klev) ! denominator of re |
---|
1088 | |
---|
1089 | REAL re_top(klon), fl_top(klon) ! CDR at top of liquid water clouds |
---|
1090 | |
---|
1091 | ! Aerosol optical properties |
---|
1092 | CHARACTER*4, DIMENSION(naero_grp) :: rfname |
---|
1093 | REAL, DIMENSION(klon) :: aerindex ! POLDER aerosol index |
---|
1094 | REAL, DIMENSION(klon,klev) :: mass_solu_aero ! total mass concentration for all soluble aerosols[ug/m3] |
---|
1095 | REAL, DIMENSION(klon,klev) :: mass_solu_aero_pi ! - " - (pre-industrial value) |
---|
1096 | INTEGER :: naero ! aerosol species |
---|
1097 | |
---|
1098 | ! Parameters |
---|
1099 | LOGICAL ok_ade, ok_aie ! Apply aerosol (in)direct effects or not |
---|
1100 | REAL bl95_b0, bl95_b1 ! Parameter in Boucher and Lohmann (1995) |
---|
1101 | SAVE ok_ade, ok_aie, bl95_b0, bl95_b1 |
---|
1102 | c$OMP THREADPRIVATE(ok_ade, ok_aie, bl95_b0, bl95_b1) |
---|
1103 | LOGICAL, SAVE :: aerosol_couple ! true : calcul des aerosols dans INCA |
---|
1104 | ! false : lecture des aerosol dans un fichier |
---|
1105 | c$OMP THREADPRIVATE(aerosol_couple) |
---|
1106 | INTEGER, SAVE :: flag_aerosol |
---|
1107 | c$OMP THREADPRIVATE(flag_aerosol) |
---|
1108 | LOGICAL, SAVE :: new_aod |
---|
1109 | c$OMP THREADPRIVATE(new_aod) |
---|
1110 | |
---|
1111 | c |
---|
1112 | c Declaration des constantes et des fonctions thermodynamiques |
---|
1113 | c |
---|
1114 | LOGICAL,SAVE :: first=.true. |
---|
1115 | c$OMP THREADPRIVATE(first) |
---|
1116 | |
---|
1117 | integer iunit |
---|
1118 | |
---|
1119 | integer, save:: read_climoz ! read ozone climatology |
---|
1120 | C Allowed values are 0, 1 and 2 |
---|
1121 | C 0: do not read an ozone climatology |
---|
1122 | C 1: read a single ozone climatology that will be used day and night |
---|
1123 | C 2: read two ozone climatologies, the average day and night |
---|
1124 | C climatology and the daylight climatology |
---|
1125 | |
---|
1126 | integer, save:: ncid_climoz ! NetCDF file containing ozone climatologies |
---|
1127 | |
---|
1128 | real, pointer, save:: press_climoz(:) |
---|
1129 | ! edges of pressure intervals for ozone climatologies, in Pa, in strictly |
---|
1130 | ! ascending order |
---|
1131 | |
---|
1132 | integer, save:: co3i = 0 |
---|
1133 | ! time index in NetCDF file of current ozone fields |
---|
1134 | c$OMP THREADPRIVATE(co3i) |
---|
1135 | |
---|
1136 | integer ro3i |
---|
1137 | ! required time index in NetCDF file for the ozone fields, between 1 |
---|
1138 | ! and 360 |
---|
1139 | |
---|
1140 | #include "YOMCST.h" |
---|
1141 | #include "YOETHF.h" |
---|
1142 | #include "FCTTRE.h" |
---|
1143 | cIM 100106 BEG : pouvoir sortir les ctes de la physique |
---|
1144 | #include "conema3.h" |
---|
1145 | #include "fisrtilp.h" |
---|
1146 | #include "nuage.h" |
---|
1147 | #include "compbl.h" |
---|
1148 | cIM 100106 END : pouvoir sortir les ctes de la physique |
---|
1149 | c |
---|
1150 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1151 | c Declarations pour Simulateur COSP |
---|
1152 | c============================================================ |
---|
1153 | real :: mr_ozone(klon,klev) |
---|
1154 | |
---|
1155 | cIM sorties fichier 1D paramLMDZ_phy.nc |
---|
1156 | REAL :: zx_tmp_0d(1,1) |
---|
1157 | INTEGER, PARAMETER :: np=1 |
---|
1158 | REAL,dimension(klon_glo) :: rlat_glo |
---|
1159 | REAL,dimension(klon_glo) :: rlon_glo |
---|
1160 | REAL gbils(1), gevap(1), gevapt(1), glat(1), gnet0(1), gnet(1) |
---|
1161 | REAL grain(1), gtsol(1), gt2m(1), gprw(1) |
---|
1162 | |
---|
1163 | cIM stations CFMIP |
---|
1164 | INTEGER, SAVE :: nCFMIP |
---|
1165 | c$OMP THREADPRIVATE(nCFMIP) |
---|
1166 | INTEGER, PARAMETER :: npCFMIP=120 |
---|
1167 | INTEGER, ALLOCATABLE, SAVE :: tabCFMIP(:) |
---|
1168 | REAL, ALLOCATABLE, SAVE :: lonCFMIP(:), latCFMIP(:) |
---|
1169 | c$OMP THREADPRIVATE(tabCFMIP, lonCFMIP, latCFMIP) |
---|
1170 | INTEGER, ALLOCATABLE, SAVE :: tabijGCM(:) |
---|
1171 | REAL, ALLOCATABLE, SAVE :: lonGCM(:), latGCM(:) |
---|
1172 | c$OMP THREADPRIVATE(tabijGCM, lonGCM, latGCM) |
---|
1173 | INTEGER, ALLOCATABLE, SAVE :: iGCM(:), jGCM(:) |
---|
1174 | c$OMP THREADPRIVATE(iGCM, jGCM) |
---|
1175 | logical, dimension(nfiles) :: phys_out_filestations |
---|
1176 | logical, parameter :: lNMC=.FALSE. |
---|
1177 | |
---|
1178 | cIM betaCRF |
---|
1179 | REAL, SAVE :: pfree, beta_pbl, beta_free |
---|
1180 | c$OMP THREADPRIVATE(pfree, beta_pbl, beta_free) |
---|
1181 | REAL, SAVE :: lon1_beta, lon2_beta, lat1_beta, lat2_beta |
---|
1182 | c$OMP THREADPRIVATE(lon1_beta, lon2_beta, lat1_beta, lat2_beta) |
---|
1183 | LOGICAL, SAVE :: mskocean_beta |
---|
1184 | c$OMP THREADPRIVATE(mskocean_beta) |
---|
1185 | REAL, dimension(klon, klev) :: beta ! facteur sur cldtaurad et cldemirad pour evaluer les retros liees aux CRF |
---|
1186 | REAL, dimension(klon, klev) :: cldtaurad ! epaisseur optique pour radlwsw,COSP |
---|
1187 | REAL, dimension(klon, klev) :: cldemirad ! emissivite pour radlwsw,COSP |
---|
1188 | integer iostat |
---|
1189 | cIM for NMC files |
---|
1190 | missing_val=nf90_fill_real |
---|
1191 | c====================================================================== |
---|
1192 | ! Gestion calendrier : mise a jour du module phys_cal_mod |
---|
1193 | ! |
---|
1194 | CALL phys_cal_update(jD_cur,jH_cur) |
---|
1195 | |
---|
1196 | c====================================================================== |
---|
1197 | ! Ecriture eventuelle d'un profil verticale en entree de la physique. |
---|
1198 | ! Utilise notamment en 1D mais peut etre active egalement en 3D |
---|
1199 | ! en imposant la valeur de igout. |
---|
1200 | c====================================================================== |
---|
1201 | |
---|
1202 | if (prt_level.ge.1) then |
---|
1203 | igout=klon/2+1/klon |
---|
1204 | write(lunout,*) 'DEBUT DE PHYSIQ !!!!!!!!!!!!!!!!!!!!' |
---|
1205 | write(lunout,*) |
---|
1206 | s 'nlon,klev,nqtot,debut,lafin, jD_cur, jH_cur,pdtphys' |
---|
1207 | write(lunout,*) |
---|
1208 | s nlon,klev,nqtot,debut,lafin, jD_cur, jH_cur,pdtphys |
---|
1209 | |
---|
1210 | write(lunout,*) 'paprs, play, phi, u, v, t' |
---|
1211 | do k=1,klev |
---|
1212 | write(lunout,*) paprs(igout,k),pplay(igout,k),pphi(igout,k), |
---|
1213 | s u(igout,k),v(igout,k),t(igout,k) |
---|
1214 | enddo |
---|
1215 | write(lunout,*) 'ovap (g/kg), oliq (g/kg)' |
---|
1216 | do k=1,klev |
---|
1217 | write(lunout,*) qx(igout,k,1)*1000,qx(igout,k,2)*1000. |
---|
1218 | enddo |
---|
1219 | endif |
---|
1220 | |
---|
1221 | c====================================================================== |
---|
1222 | |
---|
1223 | cym => necessaire pour iflag_con != 2 |
---|
1224 | pmfd(:,:) = 0. |
---|
1225 | pen_u(:,:) = 0. |
---|
1226 | pen_d(:,:) = 0. |
---|
1227 | pde_d(:,:) = 0. |
---|
1228 | pde_u(:,:) = 0. |
---|
1229 | aam=0. |
---|
1230 | |
---|
1231 | torsfc=0. |
---|
1232 | forall (k=1: llm) zmasse(:, k) = (paprs(:, k)-paprs(:, k+1)) / rg |
---|
1233 | |
---|
1234 | if (first) then |
---|
1235 | |
---|
1236 | cCR:nvelles variables convection/poches froides |
---|
1237 | |
---|
1238 | print*, '=================================================' |
---|
1239 | print*, 'Allocation des variables locales et sauvegardees' |
---|
1240 | call phys_local_var_init |
---|
1241 | c |
---|
1242 | pasphys=pdtphys |
---|
1243 | c appel a la lecture du run.def physique |
---|
1244 | call conf_phys(ok_journe, ok_mensuel, |
---|
1245 | . ok_instan, ok_hf, |
---|
1246 | . ok_LES, |
---|
1247 | . solarlong0,seuil_inversion, |
---|
1248 | . fact_cldcon, facttemps,ok_newmicro,iflag_radia, |
---|
1249 | . iflag_cldcon,iflag_ratqs,ratqsbas,ratqshaut,tau_ratqs, |
---|
1250 | . ok_ade, ok_aie, aerosol_couple, |
---|
1251 | . flag_aerosol, new_aod, |
---|
1252 | . bl95_b0, bl95_b1, |
---|
1253 | . iflag_thermals,nsplit_thermals,tau_thermals, |
---|
1254 | . iflag_thermals_ed,iflag_thermals_optflux, |
---|
1255 | c nv flags pour la convection et les poches froides |
---|
1256 | . iflag_coupl,iflag_clos,iflag_wake, read_climoz) |
---|
1257 | call phys_state_var_init(read_climoz) |
---|
1258 | call phys_output_var_init |
---|
1259 | print*, '=================================================' |
---|
1260 | cIM for NMC files |
---|
1261 | cIM freq_moyNMC = frequences auxquelles on moyenne les champs accumules |
---|
1262 | cIM sur les niveaux de pression standard du NMC |
---|
1263 | DO n=1, nout |
---|
1264 | freq_moyNMC(n)=freq_outNMC(n)/freq_calNMC(n) |
---|
1265 | ENDDO |
---|
1266 | c |
---|
1267 | cIM beg |
---|
1268 | dnwd0=0.0 |
---|
1269 | ftd=0.0 |
---|
1270 | fqd=0.0 |
---|
1271 | cin=0. |
---|
1272 | cym Attention pbase pas initialise dans concvl !!!! |
---|
1273 | pbase=0 |
---|
1274 | paire_ter(:)=0. |
---|
1275 | cIM 180608 |
---|
1276 | c pmflxr=0. |
---|
1277 | c pmflxs=0. |
---|
1278 | itau_con=0 |
---|
1279 | first=.false. |
---|
1280 | |
---|
1281 | endif ! first |
---|
1282 | |
---|
1283 | modname = 'physiq' |
---|
1284 | cIM |
---|
1285 | IF (ip_ebil_phy.ge.1) THEN |
---|
1286 | DO i=1,klon |
---|
1287 | zero_v(i)=0. |
---|
1288 | END DO |
---|
1289 | END IF |
---|
1290 | ok_sync=.TRUE. |
---|
1291 | |
---|
1292 | IF (debut) THEN |
---|
1293 | CALL suphel ! initialiser constantes et parametres phys. |
---|
1294 | ENDIF |
---|
1295 | |
---|
1296 | if(prt_level.ge.1) print*,'CONVERGENCE PHYSIQUE THERM 1 ' |
---|
1297 | |
---|
1298 | |
---|
1299 | c====================================================================== |
---|
1300 | ! Gestion calendrier : mise a jour du module phys_cal_mod |
---|
1301 | ! |
---|
1302 | cIM CALL phys_cal_update(jD_cur,jH_cur) |
---|
1303 | |
---|
1304 | c |
---|
1305 | c Si c'est le debut, il faut initialiser plusieurs choses |
---|
1306 | c ******** |
---|
1307 | c |
---|
1308 | IF (debut) THEN |
---|
1309 | !rv |
---|
1310 | cCRinitialisation de wght_th et lalim_conv pour la definition de la couche alimentation |
---|
1311 | cde la convection a partir des caracteristiques du thermique |
---|
1312 | wght_th(:,:)=1. |
---|
1313 | lalim_conv(:)=1 |
---|
1314 | cRC |
---|
1315 | u10m(:,:)=0. |
---|
1316 | v10m(:,:)=0. |
---|
1317 | rain_con(:)=0. |
---|
1318 | snow_con(:)=0. |
---|
1319 | topswai(:)=0. |
---|
1320 | topswad(:)=0. |
---|
1321 | solswai(:)=0. |
---|
1322 | solswad(:)=0. |
---|
1323 | |
---|
1324 | lambda_th(:,:)=0. |
---|
1325 | wmax_th(:)=0. |
---|
1326 | tau_overturning_th(:)=0. |
---|
1327 | |
---|
1328 | IF (config_inca /= 'none') THEN |
---|
1329 | ! jg : initialisation jusqu'au ces variables sont dans restart |
---|
1330 | ccm(:,:,:) = 0. |
---|
1331 | tau_aero(:,:,:,:) = 0. |
---|
1332 | piz_aero(:,:,:,:) = 0. |
---|
1333 | cg_aero(:,:,:,:) = 0. |
---|
1334 | END IF |
---|
1335 | |
---|
1336 | rnebcon0(:,:) = 0.0 |
---|
1337 | clwcon0(:,:) = 0.0 |
---|
1338 | rnebcon(:,:) = 0.0 |
---|
1339 | clwcon(:,:) = 0.0 |
---|
1340 | |
---|
1341 | cIM |
---|
1342 | IF (ip_ebil_phy.ge.1) d_h_vcol_phy=0. |
---|
1343 | c |
---|
1344 | print*,'iflag_coupl,iflag_clos,iflag_wake', |
---|
1345 | . iflag_coupl,iflag_clos,iflag_wake |
---|
1346 | print*,'CYCLE_DIURNE', cycle_diurne |
---|
1347 | c |
---|
1348 | IF (iflag_con.EQ.2.AND.iflag_cldcon.GT.-1) THEN |
---|
1349 | abort_message = 'Tiedtke needs iflag_cldcon=-2 or -1' |
---|
1350 | CALL abort_gcm (modname,abort_message,1) |
---|
1351 | ENDIF |
---|
1352 | c |
---|
1353 | IF(ok_isccp.AND.iflag_con.LE.2) THEN |
---|
1354 | abort_message = 'ISCCP-like outputs may be available for KE |
---|
1355 | .(iflag_con >= 3); for Tiedtke (iflag_con=-2) put ok_isccp=n' |
---|
1356 | CALL abort_gcm (modname,abort_message,1) |
---|
1357 | ENDIF |
---|
1358 | c |
---|
1359 | c Initialiser les compteurs: |
---|
1360 | c |
---|
1361 | itap = 0 |
---|
1362 | itaprad = 0 |
---|
1363 | |
---|
1364 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1365 | !! Un petit travail à faire ici. |
---|
1366 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1367 | |
---|
1368 | if (iflag_pbl>1) then |
---|
1369 | PRINT*, "Using method MELLOR&YAMADA" |
---|
1370 | endif |
---|
1371 | |
---|
1372 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1373 | ! FH 2008/05/02 changement lie a la lecture de nbapp_rad dans phylmd plutot que |
---|
1374 | ! dyn3d |
---|
1375 | ! Attention : la version precedente n'etait pas tres propre. |
---|
1376 | ! Il se peut qu'il faille prendre une valeur differente de nbapp_rad |
---|
1377 | ! pour obtenir le meme resultat. |
---|
1378 | dtime=pdtphys |
---|
1379 | radpas = NINT( 86400./dtime/nbapp_rad) |
---|
1380 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1381 | |
---|
1382 | CALL phyetat0 ("startphy.nc",clesphy0,tabcntr0) |
---|
1383 | cIM begin |
---|
1384 | print*,'physiq: clwcon rnebcon ratqs',clwcon(1,1),rnebcon(1,1) |
---|
1385 | $,ratqs(1,1) |
---|
1386 | cIM end |
---|
1387 | |
---|
1388 | |
---|
1389 | |
---|
1390 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1391 | c |
---|
1392 | C on remet le calendrier a zero |
---|
1393 | c |
---|
1394 | IF (raz_date .eq. 1) THEN |
---|
1395 | itau_phy = 0 |
---|
1396 | ENDIF |
---|
1397 | |
---|
1398 | cIM cf. AM 081204 BEG |
---|
1399 | PRINT*,'cycle_diurne3 =',cycle_diurne |
---|
1400 | cIM cf. AM 081204 END |
---|
1401 | c |
---|
1402 | CALL printflag( tabcntr0,radpas,ok_journe, |
---|
1403 | , ok_instan, ok_region ) |
---|
1404 | c |
---|
1405 | IF (ABS(dtime-pdtphys).GT.0.001) THEN |
---|
1406 | WRITE(lunout,*) 'Pas physique n est pas correct',dtime, |
---|
1407 | . pdtphys |
---|
1408 | abort_message='Pas physique n est pas correct ' |
---|
1409 | ! call abort_gcm(modname,abort_message,1) |
---|
1410 | dtime=pdtphys |
---|
1411 | ENDIF |
---|
1412 | IF (nlon .NE. klon) THEN |
---|
1413 | WRITE(lunout,*)'nlon et klon ne sont pas coherents', nlon, |
---|
1414 | . klon |
---|
1415 | abort_message='nlon et klon ne sont pas coherents' |
---|
1416 | call abort_gcm(modname,abort_message,1) |
---|
1417 | ENDIF |
---|
1418 | IF (nlev .NE. klev) THEN |
---|
1419 | WRITE(lunout,*)'nlev et klev ne sont pas coherents', nlev, |
---|
1420 | . klev |
---|
1421 | abort_message='nlev et klev ne sont pas coherents' |
---|
1422 | call abort_gcm(modname,abort_message,1) |
---|
1423 | ENDIF |
---|
1424 | c |
---|
1425 | IF (dtime*FLOAT(radpas).GT.21600..AND.cycle_diurne) THEN |
---|
1426 | WRITE(lunout,*)'Nbre d appels au rayonnement insuffisant' |
---|
1427 | WRITE(lunout,*)"Au minimum 4 appels par jour si cycle diurne" |
---|
1428 | abort_message='Nbre d appels au rayonnement insuffisant' |
---|
1429 | call abort_gcm(modname,abort_message,1) |
---|
1430 | ENDIF |
---|
1431 | WRITE(lunout,*)"Clef pour la convection, iflag_con=", iflag_con |
---|
1432 | WRITE(lunout,*)"Clef pour le driver de la convection, ok_cvl=", |
---|
1433 | . ok_cvl |
---|
1434 | c |
---|
1435 | cKE43 |
---|
1436 | c Initialisation pour la convection de K.E. (sb): |
---|
1437 | IF (iflag_con.GE.3) THEN |
---|
1438 | |
---|
1439 | WRITE(lunout,*)"*** Convection de Kerry Emanuel 4.3 " |
---|
1440 | WRITE(lunout,*) |
---|
1441 | . "On va utiliser le melange convectif des traceurs qui" |
---|
1442 | WRITE(lunout,*)"est calcule dans convect4.3" |
---|
1443 | WRITE(lunout,*)" !!! penser aux logical flags de phytrac" |
---|
1444 | |
---|
1445 | DO i = 1, klon |
---|
1446 | ema_cbmf(i) = 0. |
---|
1447 | ema_pcb(i) = 0. |
---|
1448 | ema_pct(i) = 0. |
---|
1449 | c ema_workcbmf(i) = 0. |
---|
1450 | ENDDO |
---|
1451 | cIM15/11/02 rajout initialisation ibas_con,itop_con cf. SB =>BEG |
---|
1452 | DO i = 1, klon |
---|
1453 | ibas_con(i) = 1 |
---|
1454 | itop_con(i) = 1 |
---|
1455 | ENDDO |
---|
1456 | cIM15/11/02 rajout initialisation ibas_con,itop_con cf. SB =>END |
---|
1457 | c=============================================================================== |
---|
1458 | cCR:04.12.07: initialisations poches froides |
---|
1459 | c Controle de ALE et ALP pour la fermeture convective (jyg) |
---|
1460 | if (iflag_wake.eq.1) then |
---|
1461 | CALL ini_wake(0.,0.,it_wape_prescr,wape_prescr,fip_prescr |
---|
1462 | s ,alp_bl_prescr, ale_bl_prescr) |
---|
1463 | c 11/09/06 rajout initialisation ALE et ALP du wake et PBL(YU) |
---|
1464 | c print*,'apres ini_wake iflag_cldcon=', iflag_cldcon |
---|
1465 | endif |
---|
1466 | |
---|
1467 | do i = 1,klon |
---|
1468 | Ale_bl(i)=0. |
---|
1469 | Alp_bl(i)=0. |
---|
1470 | enddo |
---|
1471 | |
---|
1472 | c================================================================================ |
---|
1473 | cIM stations CFMIP |
---|
1474 | nCFMIP=npCFMIP |
---|
1475 | OPEN(98,file='npCFMIP_param.data',status='old', |
---|
1476 | $ form='formatted',iostat=iostat) |
---|
1477 | if (iostat == 0) then |
---|
1478 | READ(98,*,end=998) nCFMIP |
---|
1479 | 998 CONTINUE |
---|
1480 | CLOSE(98) |
---|
1481 | CONTINUE |
---|
1482 | IF(nCFMIP.GT.npCFMIP) THEN |
---|
1483 | print*,'nCFMIP > npCFMIP : augmenter npCFMIP et recompiler' |
---|
1484 | CALL abort |
---|
1485 | else |
---|
1486 | print*,'physiq npCFMIP=',npCFMIP,'nCFMIP=',nCFMIP |
---|
1487 | ENDIF |
---|
1488 | c |
---|
1489 | ALLOCATE(tabCFMIP(nCFMIP)) |
---|
1490 | ALLOCATE(lonCFMIP(nCFMIP), latCFMIP(nCFMIP)) |
---|
1491 | ALLOCATE(tabijGCM(nCFMIP)) |
---|
1492 | ALLOCATE(lonGCM(nCFMIP), latGCM(nCFMIP)) |
---|
1493 | ALLOCATE(iGCM(nCFMIP), jGCM(nCFMIP)) |
---|
1494 | c |
---|
1495 | c lecture des nCFMIP stations CFMIP, de leur numero |
---|
1496 | c et des coordonnees geographiques lonCFMIP, latCFMIP |
---|
1497 | c |
---|
1498 | CALL read_CFMIP_point_locations(nCFMIP, tabCFMIP, |
---|
1499 | $lonCFMIP, latCFMIP) |
---|
1500 | c |
---|
1501 | c identification des |
---|
1502 | c 1) coordonnees lonGCM, latGCM des points CFMIP dans la grille de LMDZ |
---|
1503 | c 2) indices points tabijGCM de la grille physique 1d sur klon points |
---|
1504 | c 3) indices iGCM, jGCM de la grille physique 2d |
---|
1505 | c |
---|
1506 | CALL LMDZ_CFMIP_point_locations(nCFMIP, lonCFMIP, latCFMIP, |
---|
1507 | $tabijGCM, lonGCM, latGCM, iGCM, jGCM) |
---|
1508 | c |
---|
1509 | else |
---|
1510 | ALLOCATE(tabijGCM(0)) |
---|
1511 | ALLOCATE(lonGCM(0), latGCM(0)) |
---|
1512 | ALLOCATE(iGCM(0), jGCM(0)) |
---|
1513 | end if |
---|
1514 | ENDIF !debut |
---|
1515 | |
---|
1516 | DO i=1,klon |
---|
1517 | rugoro(i) = f_rugoro * MAX(1.0e-05, zstd(i)*zsig(i)/2.0) |
---|
1518 | ENDDO |
---|
1519 | |
---|
1520 | c34EK |
---|
1521 | IF (ok_orodr) THEN |
---|
1522 | |
---|
1523 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1524 | ! FH sans doute a enlever de finitivement ou, si on le garde, l'activer |
---|
1525 | ! justement quand ok_orodr = false. |
---|
1526 | ! ce rugoro est utilise par la couche limite et fait double emploi |
---|
1527 | ! avec les paramétrisations spécifiques de Francois Lott. |
---|
1528 | ! DO i=1,klon |
---|
1529 | ! rugoro(i) = MAX(1.0e-05, zstd(i)*zsig(i)/2.0) |
---|
1530 | ! ENDDO |
---|
1531 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1532 | IF (ok_strato) THEN |
---|
1533 | CALL SUGWD_strato(klon,klev,paprs,pplay) |
---|
1534 | ELSE |
---|
1535 | CALL SUGWD(klon,klev,paprs,pplay) |
---|
1536 | ENDIF |
---|
1537 | |
---|
1538 | DO i=1,klon |
---|
1539 | zuthe(i)=0. |
---|
1540 | zvthe(i)=0. |
---|
1541 | if(zstd(i).gt.10.)then |
---|
1542 | zuthe(i)=(1.-zgam(i))*cos(zthe(i)) |
---|
1543 | zvthe(i)=(1.-zgam(i))*sin(zthe(i)) |
---|
1544 | endif |
---|
1545 | ENDDO |
---|
1546 | ENDIF |
---|
1547 | c |
---|
1548 | c |
---|
1549 | lmt_pas = NINT(86400./dtime * 1.0) ! tous les jours |
---|
1550 | WRITE(lunout,*)'La frequence de lecture surface est de ', |
---|
1551 | . lmt_pas |
---|
1552 | c |
---|
1553 | capemaxcels = 't_max(X)' |
---|
1554 | t2mincels = 't_min(X)' |
---|
1555 | t2maxcels = 't_max(X)' |
---|
1556 | tinst = 'inst(X)' |
---|
1557 | tave = 'ave(X)' |
---|
1558 | cIM cf. AM 081204 BEG |
---|
1559 | write(lunout,*)'AVANT HIST IFLAG_CON=',iflag_con |
---|
1560 | cIM cf. AM 081204 END |
---|
1561 | c |
---|
1562 | c============================================================= |
---|
1563 | c Initialisation des sorties |
---|
1564 | c============================================================= |
---|
1565 | |
---|
1566 | #ifdef CPP_IOIPSL |
---|
1567 | |
---|
1568 | c$OMP MASTER |
---|
1569 | call phys_output_open(rlon,rlat,nCFMIP,tabijGCM, |
---|
1570 | & iGCM,jGCM,lonGCM,latGCM, |
---|
1571 | & jjmp1,nlevSTD,clevSTD, |
---|
1572 | & nbteta, ctetaSTD, dtime,ok_veget, |
---|
1573 | & type_ocean,iflag_pbl,ok_mensuel,ok_journe, |
---|
1574 | & ok_hf,ok_instan,ok_LES,ok_ade,ok_aie, |
---|
1575 | & read_climoz, phys_out_filestations, |
---|
1576 | & new_aod, aerosol_couple |
---|
1577 | & ) |
---|
1578 | c$OMP END MASTER |
---|
1579 | c$OMP BARRIER |
---|
1580 | |
---|
1581 | #ifdef histISCCP |
---|
1582 | #include "ini_histISCCP.h" |
---|
1583 | #endif |
---|
1584 | |
---|
1585 | #ifdef histNMC |
---|
1586 | #include "ini_histhfNMC.h" |
---|
1587 | #include "ini_histdayNMC.h" |
---|
1588 | #include "ini_histmthNMC.h" |
---|
1589 | #endif |
---|
1590 | |
---|
1591 | #include "ini_histday_seri.h" |
---|
1592 | |
---|
1593 | #include "ini_paramLMDZ_phy.h" |
---|
1594 | |
---|
1595 | #endif |
---|
1596 | |
---|
1597 | ecrit_hf2mth = ecrit_mth/ecrit_hf |
---|
1598 | |
---|
1599 | ecrit_hf = ecrit_hf * un_jour |
---|
1600 | cIM |
---|
1601 | IF(ecrit_day.LE.1.) THEN |
---|
1602 | ecrit_day = ecrit_day * un_jour !en secondes |
---|
1603 | ENDIF |
---|
1604 | cIM |
---|
1605 | ecrit_mth = ecrit_mth * un_jour |
---|
1606 | ecrit_ins = ecrit_ins * un_jour |
---|
1607 | ecrit_reg = ecrit_reg * un_jour |
---|
1608 | ecrit_tra = ecrit_tra * un_jour |
---|
1609 | ecrit_LES = ecrit_LES * un_jour |
---|
1610 | c |
---|
1611 | PRINT*,'physiq ecrit_ hf day mth reg tra ISCCP hf2mth', |
---|
1612 | . ecrit_hf,ecrit_day,ecrit_mth,ecrit_reg,ecrit_tra,ecrit_ISCCP, |
---|
1613 | . ecrit_hf2mth |
---|
1614 | |
---|
1615 | cXXXPB Positionner date0 pour initialisation de ORCHIDEE |
---|
1616 | date0 = jD_ref |
---|
1617 | WRITE(*,*) 'physiq date0 : ',date0 |
---|
1618 | c |
---|
1619 | c |
---|
1620 | c |
---|
1621 | c Prescrire l'ozone dans l'atmosphere |
---|
1622 | c |
---|
1623 | c |
---|
1624 | cc DO i = 1, klon |
---|
1625 | cc DO k = 1, klev |
---|
1626 | cc CALL o3cm (paprs(i,k)/100.,paprs(i,k+1)/100., wo(i,k),20) |
---|
1627 | cc ENDDO |
---|
1628 | cc ENDDO |
---|
1629 | c |
---|
1630 | IF (config_inca /= 'none') THEN |
---|
1631 | #ifdef INCA |
---|
1632 | CALL VTe(VTphysiq) |
---|
1633 | CALL VTb(VTinca) |
---|
1634 | ! iii = MOD(NINT(xjour),360) |
---|
1635 | ! calday = FLOAT(iii) + jH_cur |
---|
1636 | calday = FLOAT(days_elapsed) + jH_cur |
---|
1637 | WRITE(lunout,*) 'initial time chemini', days_elapsed, calday |
---|
1638 | |
---|
1639 | CALL chemini( |
---|
1640 | $ rg, |
---|
1641 | $ ra, |
---|
1642 | $ airephy, |
---|
1643 | $ rlat, |
---|
1644 | $ rlon, |
---|
1645 | $ presnivs, |
---|
1646 | $ calday, |
---|
1647 | $ klon, |
---|
1648 | $ nqtot, |
---|
1649 | $ pdtphys, |
---|
1650 | $ annee_ref, |
---|
1651 | $ day_ref, |
---|
1652 | $ itau_phy) |
---|
1653 | |
---|
1654 | CALL VTe(VTinca) |
---|
1655 | CALL VTb(VTphysiq) |
---|
1656 | #endif |
---|
1657 | END IF |
---|
1658 | c |
---|
1659 | c |
---|
1660 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1661 | ! Nouvelle initialisation pour le rayonnement RRTM |
---|
1662 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
1663 | |
---|
1664 | call iniradia(klon,klev,paprs(1,1:klev+1)) |
---|
1665 | |
---|
1666 | C$omp single |
---|
1667 | if (read_climoz >= 1) then |
---|
1668 | call open_climoz(ncid_climoz, press_climoz) |
---|
1669 | END IF |
---|
1670 | C$omp end single |
---|
1671 | c |
---|
1672 | cIM betaCRF |
---|
1673 | pfree=70000. !Pa |
---|
1674 | beta_pbl=1. |
---|
1675 | beta_free=1. |
---|
1676 | lon1_beta=-180. |
---|
1677 | lon2_beta=+180. |
---|
1678 | lat1_beta=90. |
---|
1679 | lat2_beta=-90. |
---|
1680 | mskocean_beta=.FALSE. |
---|
1681 | |
---|
1682 | OPEN(99,file='beta_crf.data',status='old', |
---|
1683 | $ form='formatted',err=9999) |
---|
1684 | READ(99,*,end=9998) pfree |
---|
1685 | READ(99,*,end=9998) beta_pbl |
---|
1686 | READ(99,*,end=9998) beta_free |
---|
1687 | READ(99,*,end=9998) lon1_beta |
---|
1688 | READ(99,*,end=9998) lon2_beta |
---|
1689 | READ(99,*,end=9998) lat1_beta |
---|
1690 | READ(99,*,end=9998) lat2_beta |
---|
1691 | READ(99,*,end=9998) mskocean_beta |
---|
1692 | 9998 Continue |
---|
1693 | CLOSE(99) |
---|
1694 | 9999 Continue |
---|
1695 | WRITE(*,*)'pfree=',pfree |
---|
1696 | WRITE(*,*)'beta_pbl=',beta_pbl |
---|
1697 | WRITE(*,*)'beta_free=',beta_free |
---|
1698 | WRITE(*,*)'lon1_beta=',lon1_beta |
---|
1699 | WRITE(*,*)'lon2_beta=',lon2_beta |
---|
1700 | WRITE(*,*)'lat1_beta=',lat1_beta |
---|
1701 | WRITE(*,*)'lat2_beta=',lat2_beta |
---|
1702 | WRITE(*,*)'mskocean_beta=',mskocean_beta |
---|
1703 | ENDIF |
---|
1704 | ! |
---|
1705 | ! **************** Fin de IF ( debut ) *************** |
---|
1706 | ! |
---|
1707 | ! |
---|
1708 | ! Incrementer le compteur de la physique |
---|
1709 | ! |
---|
1710 | itap = itap + 1 |
---|
1711 | ! |
---|
1712 | ! Update fraction of the sub-surfaces (pctsrf) and |
---|
1713 | ! initialize, where a new fraction has appeared, all variables depending |
---|
1714 | ! on the surface fraction. |
---|
1715 | ! |
---|
1716 | CALL change_srf_frac(itap, dtime, days_elapsed+1, |
---|
1717 | * pctsrf, falb1, falb2, ftsol, u10m, v10m, pbl_tke) |
---|
1718 | |
---|
1719 | ! Tendances bidons pour les processus qui n'affectent pas certaines |
---|
1720 | ! variables. |
---|
1721 | du0(:,:)=0. |
---|
1722 | dv0(:,:)=0. |
---|
1723 | dq0(:,:)=0. |
---|
1724 | dql0(:,:)=0. |
---|
1725 | c |
---|
1726 | c Mettre a zero des variables de sortie (pour securite) |
---|
1727 | c |
---|
1728 | DO i = 1, klon |
---|
1729 | d_ps(i) = 0.0 |
---|
1730 | ENDDO |
---|
1731 | DO k = 1, klev |
---|
1732 | DO i = 1, klon |
---|
1733 | d_t(i,k) = 0.0 |
---|
1734 | d_u(i,k) = 0.0 |
---|
1735 | d_v(i,k) = 0.0 |
---|
1736 | ENDDO |
---|
1737 | ENDDO |
---|
1738 | DO iq = 1, nqtot |
---|
1739 | DO k = 1, klev |
---|
1740 | DO i = 1, klon |
---|
1741 | d_qx(i,k,iq) = 0.0 |
---|
1742 | ENDDO |
---|
1743 | ENDDO |
---|
1744 | ENDDO |
---|
1745 | da(:,:)=0. |
---|
1746 | mp(:,:)=0. |
---|
1747 | phi(:,:,:)=0. |
---|
1748 | c |
---|
1749 | c Ne pas affecter les valeurs entrees de u, v, h, et q |
---|
1750 | c |
---|
1751 | DO k = 1, klev |
---|
1752 | DO i = 1, klon |
---|
1753 | t_seri(i,k) = t(i,k) |
---|
1754 | u_seri(i,k) = u(i,k) |
---|
1755 | v_seri(i,k) = v(i,k) |
---|
1756 | q_seri(i,k) = qx(i,k,ivap) |
---|
1757 | ql_seri(i,k) = qx(i,k,iliq) |
---|
1758 | qs_seri(i,k) = 0. |
---|
1759 | ENDDO |
---|
1760 | ENDDO |
---|
1761 | IF (nqtot.GE.3) THEN |
---|
1762 | DO iq = 3, nqtot |
---|
1763 | DO k = 1, klev |
---|
1764 | DO i = 1, klon |
---|
1765 | tr_seri(i,k,iq-2) = qx(i,k,iq) |
---|
1766 | ENDDO |
---|
1767 | ENDDO |
---|
1768 | ENDDO |
---|
1769 | ELSE |
---|
1770 | DO k = 1, klev |
---|
1771 | DO i = 1, klon |
---|
1772 | tr_seri(i,k,1) = 0.0 |
---|
1773 | ENDDO |
---|
1774 | ENDDO |
---|
1775 | ENDIF |
---|
1776 | C |
---|
1777 | DO i = 1, klon |
---|
1778 | ztsol(i) = 0. |
---|
1779 | ENDDO |
---|
1780 | DO nsrf = 1, nbsrf |
---|
1781 | DO i = 1, klon |
---|
1782 | ztsol(i) = ztsol(i) + ftsol(i,nsrf)*pctsrf(i,nsrf) |
---|
1783 | ENDDO |
---|
1784 | ENDDO |
---|
1785 | cIM |
---|
1786 | IF (ip_ebil_phy.ge.1) THEN |
---|
1787 | ztit='after dynamic' |
---|
1788 | CALL diagetpq(airephy,ztit,ip_ebil_phy,1,1,dtime |
---|
1789 | e , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay |
---|
1790 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
1791 | C Comme les tendances de la physique sont ajoute dans la dynamique, |
---|
1792 | C on devrait avoir que la variation d'entalpie par la dynamique |
---|
1793 | C est egale a la variation de la physique au pas de temps precedent. |
---|
1794 | C Donc la somme de ces 2 variations devrait etre nulle. |
---|
1795 | call diagphy(airephy,ztit,ip_ebil_phy |
---|
1796 | e , zero_v, zero_v, zero_v, zero_v, zero_v |
---|
1797 | e , zero_v, zero_v, zero_v, ztsol |
---|
1798 | e , d_h_vcol+d_h_vcol_phy, d_qt, 0. |
---|
1799 | s , fs_bound, fq_bound ) |
---|
1800 | END IF |
---|
1801 | |
---|
1802 | c Diagnostiquer la tendance dynamique |
---|
1803 | c |
---|
1804 | IF (ancien_ok) THEN |
---|
1805 | DO k = 1, klev |
---|
1806 | DO i = 1, klon |
---|
1807 | d_u_dyn(i,k) = (u_seri(i,k)-u_ancien(i,k))/dtime |
---|
1808 | d_v_dyn(i,k) = (v_seri(i,k)-v_ancien(i,k))/dtime |
---|
1809 | d_t_dyn(i,k) = (t_seri(i,k)-t_ancien(i,k))/dtime |
---|
1810 | d_q_dyn(i,k) = (q_seri(i,k)-q_ancien(i,k))/dtime |
---|
1811 | ENDDO |
---|
1812 | ENDDO |
---|
1813 | ELSE |
---|
1814 | DO k = 1, klev |
---|
1815 | DO i = 1, klon |
---|
1816 | d_u_dyn(i,k) = 0.0 |
---|
1817 | d_v_dyn(i,k) = 0.0 |
---|
1818 | d_t_dyn(i,k) = 0.0 |
---|
1819 | d_q_dyn(i,k) = 0.0 |
---|
1820 | ENDDO |
---|
1821 | ENDDO |
---|
1822 | ancien_ok = .TRUE. |
---|
1823 | ENDIF |
---|
1824 | c |
---|
1825 | c Ajouter le geopotentiel du sol: |
---|
1826 | c |
---|
1827 | DO k = 1, klev |
---|
1828 | DO i = 1, klon |
---|
1829 | zphi(i,k) = pphi(i,k) + pphis(i) |
---|
1830 | ENDDO |
---|
1831 | ENDDO |
---|
1832 | c |
---|
1833 | c Verifier les temperatures |
---|
1834 | c |
---|
1835 | cIM BEG |
---|
1836 | IF (check) THEN |
---|
1837 | amn=MIN(ftsol(1,is_ter),1000.) |
---|
1838 | amx=MAX(ftsol(1,is_ter),-1000.) |
---|
1839 | DO i=2, klon |
---|
1840 | amn=MIN(ftsol(i,is_ter),amn) |
---|
1841 | amx=MAX(ftsol(i,is_ter),amx) |
---|
1842 | ENDDO |
---|
1843 | c |
---|
1844 | PRINT*,' debut avant hgardfou min max ftsol',itap,amn,amx |
---|
1845 | ENDIF !(check) THEN |
---|
1846 | cIM END |
---|
1847 | c |
---|
1848 | CALL hgardfou(t_seri,ftsol,'debutphy') |
---|
1849 | c |
---|
1850 | cIM BEG |
---|
1851 | IF (check) THEN |
---|
1852 | amn=MIN(ftsol(1,is_ter),1000.) |
---|
1853 | amx=MAX(ftsol(1,is_ter),-1000.) |
---|
1854 | DO i=2, klon |
---|
1855 | amn=MIN(ftsol(i,is_ter),amn) |
---|
1856 | amx=MAX(ftsol(i,is_ter),amx) |
---|
1857 | ENDDO |
---|
1858 | c |
---|
1859 | PRINT*,' debut apres hgardfou min max ftsol',itap,amn,amx |
---|
1860 | ENDIF !(check) THEN |
---|
1861 | cIM END |
---|
1862 | c |
---|
1863 | c Mettre en action les conditions aux limites (albedo, sst, etc.). |
---|
1864 | c Prescrire l'ozone et calculer l'albedo sur l'ocean. |
---|
1865 | c |
---|
1866 | if (read_climoz >= 1) then |
---|
1867 | C Ozone from a file |
---|
1868 | ! Update required ozone index: |
---|
1869 | ro3i = int((days_elapsed + jh_cur - jh_1jan) |
---|
1870 | $ / ioget_year_len(year_cur) * 360.) + 1 |
---|
1871 | if (ro3i == 361) ro3i = 360 |
---|
1872 | C (This should never occur, except perhaps because of roundup |
---|
1873 | C error. See documentation.) |
---|
1874 | if (ro3i /= co3i) then |
---|
1875 | C Update ozone field: |
---|
1876 | if (read_climoz == 1) then |
---|
1877 | call regr_pr_av(ncid_climoz, (/"tro3"/), julien=ro3i, |
---|
1878 | $ press_in_edg=press_climoz, paprs=paprs, v3=wo) |
---|
1879 | else |
---|
1880 | C read_climoz == 2 |
---|
1881 | call regr_pr_av(ncid_climoz, |
---|
1882 | $ (/"tro3 ", "tro3_daylight"/), |
---|
1883 | $ julien=ro3i, press_in_edg=press_climoz, paprs=paprs, |
---|
1884 | $ v3=wo) |
---|
1885 | end if |
---|
1886 | ! Convert from mole fraction of ozone to column density of ozone in a |
---|
1887 | ! cell, in kDU: |
---|
1888 | forall (l = 1: read_climoz) wo(:, :, l) = wo(:, :, l) |
---|
1889 | $ * rmo3 / rmd * zmasse / dobson_u / 1e3 |
---|
1890 | C (By regridding ozone values for LMDZ only once every 360th of |
---|
1891 | C year, we have already neglected the variation of pressure in one |
---|
1892 | C 360th of year. So do not recompute "wo" at each time step even if |
---|
1893 | C "zmasse" changes a little.) |
---|
1894 | co3i = ro3i |
---|
1895 | end if |
---|
1896 | elseif (MOD(itap-1,lmt_pas) == 0) THEN |
---|
1897 | C Once per day, update ozone from Royer: |
---|
1898 | wo(:, :, 1) = ozonecm(rlat, paprs, rjour=real(days_elapsed+1)) |
---|
1899 | ENDIF |
---|
1900 | c |
---|
1901 | c Re-evaporer l'eau liquide nuageuse |
---|
1902 | c |
---|
1903 | DO k = 1, klev ! re-evaporation de l'eau liquide nuageuse |
---|
1904 | DO i = 1, klon |
---|
1905 | zlvdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i,k)) |
---|
1906 | c zlsdcp=RLSTT/RCPD/(1.0+RVTMP2*q_seri(i,k)) |
---|
1907 | zlsdcp=RLVTT/RCPD/(1.0+RVTMP2*q_seri(i,k)) |
---|
1908 | zdelta = MAX(0.,SIGN(1.,RTT-t_seri(i,k))) |
---|
1909 | zb = MAX(0.0,ql_seri(i,k)) |
---|
1910 | za = - MAX(0.0,ql_seri(i,k)) |
---|
1911 | . * (zlvdcp*(1.-zdelta)+zlsdcp*zdelta) |
---|
1912 | t_seri(i,k) = t_seri(i,k) + za |
---|
1913 | q_seri(i,k) = q_seri(i,k) + zb |
---|
1914 | ql_seri(i,k) = 0.0 |
---|
1915 | d_t_eva(i,k) = za |
---|
1916 | d_q_eva(i,k) = zb |
---|
1917 | ENDDO |
---|
1918 | ENDDO |
---|
1919 | cIM |
---|
1920 | IF (ip_ebil_phy.ge.2) THEN |
---|
1921 | ztit='after reevap' |
---|
1922 | CALL diagetpq(airephy,ztit,ip_ebil_phy,2,1,dtime |
---|
1923 | e , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay |
---|
1924 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
1925 | call diagphy(airephy,ztit,ip_ebil_phy |
---|
1926 | e , zero_v, zero_v, zero_v, zero_v, zero_v |
---|
1927 | e , zero_v, zero_v, zero_v, ztsol |
---|
1928 | e , d_h_vcol, d_qt, d_ec |
---|
1929 | s , fs_bound, fq_bound ) |
---|
1930 | C |
---|
1931 | END IF |
---|
1932 | |
---|
1933 | c |
---|
1934 | c========================================================================= |
---|
1935 | ! Calculs de l'orbite. |
---|
1936 | ! Necessaires pour le rayonnement et la surface (calcul de l'albedo). |
---|
1937 | ! doit donc etre placé avant radlwsw et pbl_surface |
---|
1938 | |
---|
1939 | ! calcul selon la routine utilisee pour les planetes |
---|
1940 | if (new_orbit) then |
---|
1941 | call ymds2ju(year_cur, mth_eq, day_eq,0., jD_eq) |
---|
1942 | day_since_equinox = (jD_cur + jH_cur) - jD_eq |
---|
1943 | ! day_since_equinox = (jD_cur) - jD_eq |
---|
1944 | call solarlong(day_since_equinox, zlongi, dist) |
---|
1945 | else |
---|
1946 | ! calcul selon la routine utilisee pour l'AR4 |
---|
1947 | ! choix entre calcul de la longitude solaire vraie ou valeur fixee a |
---|
1948 | ! solarlong0 |
---|
1949 | if (solarlong0<-999.) then |
---|
1950 | CALL orbite(FLOAT(days_elapsed+1),zlongi,dist) |
---|
1951 | else |
---|
1952 | zlongi=solarlong0 ! longitude solaire vraie |
---|
1953 | dist=1. ! distance au soleil / moyenne |
---|
1954 | endif |
---|
1955 | endif |
---|
1956 | if(prt_level.ge.1) & |
---|
1957 | & write(lunout,*)'Longitude solaire ',zlongi,solarlong0,dist |
---|
1958 | |
---|
1959 | ! Avec ou sans cycle diurne |
---|
1960 | IF (cycle_diurne) THEN |
---|
1961 | zdtime=dtime*FLOAT(radpas) ! pas de temps du rayonnement (s) |
---|
1962 | CALL zenang(zlongi,jH_cur,zdtime,rlat,rlon,rmu0,fract) |
---|
1963 | ELSE |
---|
1964 | CALL angle(zlongi, rlat, fract, rmu0) |
---|
1965 | ENDIF |
---|
1966 | |
---|
1967 | if (mydebug) then |
---|
1968 | call writefield_phy('u_seri',u_seri,llm) |
---|
1969 | call writefield_phy('v_seri',v_seri,llm) |
---|
1970 | call writefield_phy('t_seri',t_seri,llm) |
---|
1971 | call writefield_phy('q_seri',q_seri,llm) |
---|
1972 | endif |
---|
1973 | |
---|
1974 | ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc |
---|
1975 | c Appel au pbl_surface : Planetary Boudary Layer et Surface |
---|
1976 | c Cela implique tous les interactions des sous-surfaces et la partie diffusion |
---|
1977 | c turbulent du couche limit. |
---|
1978 | c |
---|
1979 | c Certains varibales de sorties de pbl_surface sont utiliser que pour |
---|
1980 | c ecriture des fihiers hist_XXXX.nc, ces sont : |
---|
1981 | c qsol, zq2m, s_pblh, s_lcl, |
---|
1982 | c s_capCL, s_oliqCL, s_cteiCL,s_pblT, |
---|
1983 | c s_therm, s_trmb1, s_trmb2, s_trmb3, |
---|
1984 | c zxrugs, zu10m, zv10m, fder, |
---|
1985 | c zxqsurf, rh2m, zxfluxu, zxfluxv, |
---|
1986 | c frugs, agesno, fsollw, fsolsw, |
---|
1987 | c d_ts, fevap, fluxlat, t2m, |
---|
1988 | c wfbils, wfbilo, fluxt, fluxu, fluxv, |
---|
1989 | c |
---|
1990 | c Certains ne sont pas utiliser du tout : |
---|
1991 | c dsens, devap, zxsnow, zxfluxt, zxfluxq, q2m, fluxq |
---|
1992 | c |
---|
1993 | |
---|
1994 | CALL pbl_surface( |
---|
1995 | e dtime, date0, itap, days_elapsed+1, |
---|
1996 | e debut, lafin, |
---|
1997 | e rlon, rlat, rugoro, rmu0, |
---|
1998 | e rain_fall, snow_fall, solsw, sollw, |
---|
1999 | e t_seri, q_seri, u_seri, v_seri, |
---|
2000 | e pplay, paprs, pctsrf, |
---|
2001 | + ftsol, falb1, falb2, u10m, v10m, |
---|
2002 | s sollwdown, cdragh, cdragm, u1, v1, |
---|
2003 | s albsol1, albsol2, sens, evap, |
---|
2004 | s zxtsol, zxfluxlat, zt2m, qsat2m, |
---|
2005 | s d_t_vdf, d_q_vdf, d_u_vdf, d_v_vdf, |
---|
2006 | s coefh, coefm, slab_wfbils, |
---|
2007 | d qsol, zq2m, s_pblh, s_lcl, |
---|
2008 | d s_capCL, s_oliqCL, s_cteiCL,s_pblT, |
---|
2009 | d s_therm, s_trmb1, s_trmb2, s_trmb3, |
---|
2010 | d zxrugs, zu10m, zv10m, fder, |
---|
2011 | d zxqsurf, rh2m, zxfluxu, zxfluxv, |
---|
2012 | d frugs, agesno, fsollw, fsolsw, |
---|
2013 | d d_ts, fevap, fluxlat, t2m, |
---|
2014 | d wfbils, wfbilo, fluxt, fluxu, fluxv, |
---|
2015 | - dsens, devap, zxsnow, |
---|
2016 | - zxfluxt, zxfluxq, q2m, fluxq, pbl_tke ) |
---|
2017 | |
---|
2018 | |
---|
2019 | !----------------------------------------------------------------------------------------- |
---|
2020 | ! ajout des tendances de la diffusion turbulente |
---|
2021 | CALL add_phys_tend(d_u_vdf,d_v_vdf,d_t_vdf,d_q_vdf,dql0,'vdf') |
---|
2022 | !----------------------------------------------------------------------------------------- |
---|
2023 | |
---|
2024 | if (mydebug) then |
---|
2025 | call writefield_phy('u_seri',u_seri,llm) |
---|
2026 | call writefield_phy('v_seri',v_seri,llm) |
---|
2027 | call writefield_phy('t_seri',t_seri,llm) |
---|
2028 | call writefield_phy('q_seri',q_seri,llm) |
---|
2029 | endif |
---|
2030 | |
---|
2031 | |
---|
2032 | IF (ip_ebil_phy.ge.2) THEN |
---|
2033 | ztit='after surface_main' |
---|
2034 | CALL diagetpq(airephy,ztit,ip_ebil_phy,2,2,dtime |
---|
2035 | e , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay |
---|
2036 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
2037 | call diagphy(airephy,ztit,ip_ebil_phy |
---|
2038 | e , zero_v, zero_v, zero_v, zero_v, sens |
---|
2039 | e , evap , zero_v, zero_v, ztsol |
---|
2040 | e , d_h_vcol, d_qt, d_ec |
---|
2041 | s , fs_bound, fq_bound ) |
---|
2042 | END IF |
---|
2043 | |
---|
2044 | c =================================================================== c |
---|
2045 | c Calcul de Qsat |
---|
2046 | |
---|
2047 | DO k = 1, klev |
---|
2048 | DO i = 1, klon |
---|
2049 | zx_t = t_seri(i,k) |
---|
2050 | IF (thermcep) THEN |
---|
2051 | zdelta = MAX(0.,SIGN(1.,rtt-zx_t)) |
---|
2052 | zx_qs = r2es * FOEEW(zx_t,zdelta)/pplay(i,k) |
---|
2053 | zx_qs = MIN(0.5,zx_qs) |
---|
2054 | zcor = 1./(1.-retv*zx_qs) |
---|
2055 | zx_qs = zx_qs*zcor |
---|
2056 | ELSE |
---|
2057 | IF (zx_t.LT.t_coup) THEN |
---|
2058 | zx_qs = qsats(zx_t)/pplay(i,k) |
---|
2059 | ELSE |
---|
2060 | zx_qs = qsatl(zx_t)/pplay(i,k) |
---|
2061 | ENDIF |
---|
2062 | ENDIF |
---|
2063 | zqsat(i,k)=zx_qs |
---|
2064 | ENDDO |
---|
2065 | ENDDO |
---|
2066 | |
---|
2067 | if (prt_level.ge.1) then |
---|
2068 | write(lunout,*) 'L qsat (g/kg) avant clouds_gno' |
---|
2069 | write(lunout,'(i4,f15.4)') (k,1000.*zqsat(igout,k),k=1,klev) |
---|
2070 | endif |
---|
2071 | c |
---|
2072 | c Appeler la convection (au choix) |
---|
2073 | c |
---|
2074 | DO k = 1, klev |
---|
2075 | DO i = 1, klon |
---|
2076 | conv_q(i,k) = d_q_dyn(i,k) |
---|
2077 | . + d_q_vdf(i,k)/dtime |
---|
2078 | conv_t(i,k) = d_t_dyn(i,k) |
---|
2079 | . + d_t_vdf(i,k)/dtime |
---|
2080 | ENDDO |
---|
2081 | ENDDO |
---|
2082 | IF (check) THEN |
---|
2083 | za = qcheck(klon,klev,paprs,q_seri,ql_seri,airephy) |
---|
2084 | WRITE(lunout,*) "avantcon=", za |
---|
2085 | ENDIF |
---|
2086 | zx_ajustq = .FALSE. |
---|
2087 | IF (iflag_con.EQ.2) zx_ajustq=.TRUE. |
---|
2088 | IF (zx_ajustq) THEN |
---|
2089 | DO i = 1, klon |
---|
2090 | z_avant(i) = 0.0 |
---|
2091 | ENDDO |
---|
2092 | DO k = 1, klev |
---|
2093 | DO i = 1, klon |
---|
2094 | z_avant(i) = z_avant(i) + (q_seri(i,k)+ql_seri(i,k)) |
---|
2095 | . *(paprs(i,k)-paprs(i,k+1))/RG |
---|
2096 | ENDDO |
---|
2097 | ENDDO |
---|
2098 | ENDIF |
---|
2099 | |
---|
2100 | c Calcule de vitesse verticale a partir de flux de masse verticale |
---|
2101 | DO k = 1, klev |
---|
2102 | DO i = 1, klon |
---|
2103 | omega(i,k) = RG*flxmass_w(i,k) / airephy(i) |
---|
2104 | END DO |
---|
2105 | END DO |
---|
2106 | if (prt_level.ge.1) write(lunout,*) 'omega(igout, :) = ', |
---|
2107 | $ omega(igout, :) |
---|
2108 | |
---|
2109 | IF (iflag_con.EQ.1) THEN |
---|
2110 | stop'reactiver le call conlmd dans physiq.F' |
---|
2111 | c CALL conlmd (dtime, paprs, pplay, t_seri, q_seri, conv_q, |
---|
2112 | c . d_t_con, d_q_con, |
---|
2113 | c . rain_con, snow_con, ibas_con, itop_con) |
---|
2114 | ELSE IF (iflag_con.EQ.2) THEN |
---|
2115 | CALL conflx(dtime, paprs, pplay, t_seri, q_seri, |
---|
2116 | e conv_t, conv_q, -evap, omega, |
---|
2117 | s d_t_con, d_q_con, rain_con, snow_con, |
---|
2118 | s pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, |
---|
2119 | s kcbot, kctop, kdtop, pmflxr, pmflxs) |
---|
2120 | d_u_con = 0. |
---|
2121 | d_v_con = 0. |
---|
2122 | |
---|
2123 | WHERE (rain_con < 0.) rain_con = 0. |
---|
2124 | WHERE (snow_con < 0.) snow_con = 0. |
---|
2125 | DO i = 1, klon |
---|
2126 | ibas_con(i) = klev+1 - kcbot(i) |
---|
2127 | itop_con(i) = klev+1 - kctop(i) |
---|
2128 | ENDDO |
---|
2129 | ELSE IF (iflag_con.GE.3) THEN |
---|
2130 | c nb of tracers for the KE convection: |
---|
2131 | c MAF la partie traceurs est faite dans phytrac |
---|
2132 | c on met ntra=1 pour limiter les appels mais on peut |
---|
2133 | c supprimer les calculs / ftra. |
---|
2134 | ntra = 1 |
---|
2135 | |
---|
2136 | c===================================================================================== |
---|
2137 | cajout pour la parametrisation des poches froides: |
---|
2138 | ccalcul de t_wake et t_undi: si pas de poches froides, t_wake=t_undi=t_seri |
---|
2139 | do k=1,klev |
---|
2140 | do i=1,klon |
---|
2141 | if (iflag_wake.eq.1) then |
---|
2142 | t_wake(i,k) = t_seri(i,k) |
---|
2143 | . +(1-wake_s(i))*wake_deltat(i,k) |
---|
2144 | q_wake(i,k) = q_seri(i,k) |
---|
2145 | . +(1-wake_s(i))*wake_deltaq(i,k) |
---|
2146 | t_undi(i,k) = t_seri(i,k) |
---|
2147 | . -wake_s(i)*wake_deltat(i,k) |
---|
2148 | q_undi(i,k) = q_seri(i,k) |
---|
2149 | . -wake_s(i)*wake_deltaq(i,k) |
---|
2150 | else |
---|
2151 | t_wake(i,k) = t_seri(i,k) |
---|
2152 | q_wake(i,k) = q_seri(i,k) |
---|
2153 | t_undi(i,k) = t_seri(i,k) |
---|
2154 | q_undi(i,k) = q_seri(i,k) |
---|
2155 | endif |
---|
2156 | enddo |
---|
2157 | enddo |
---|
2158 | |
---|
2159 | cc-- Calcul de l'energie disponible ALE (J/kg) et de la puissance disponible ALP (W/m2) |
---|
2160 | cc-- pour le soulevement des particules dans le modele convectif |
---|
2161 | c |
---|
2162 | do i = 1,klon |
---|
2163 | ALE(i) = 0. |
---|
2164 | ALP(i) = 0. |
---|
2165 | enddo |
---|
2166 | c |
---|
2167 | ccalcul de ale_wake et alp_wake |
---|
2168 | do i = 1,klon |
---|
2169 | if (iflag_wake.eq.1) then |
---|
2170 | ale_wake(i) = 0.5*wake_cstar(i)**2 |
---|
2171 | alp_wake(i) = wake_fip(i) |
---|
2172 | else |
---|
2173 | ale_wake(i) = 0. |
---|
2174 | alp_wake(i) = 0. |
---|
2175 | endif |
---|
2176 | enddo |
---|
2177 | ccombinaison avec ale et alp de couche limite: constantes si pas de couplage, valeurs calculees |
---|
2178 | cdans le thermique sinon |
---|
2179 | if (iflag_coupl.eq.0) then |
---|
2180 | if (debut) print*,'ALE et ALP imposes' |
---|
2181 | do i = 1,klon |
---|
2182 | con ne couple que ale |
---|
2183 | c ALE(i) = max(ale_wake(i),Ale_bl(i)) |
---|
2184 | ALE(i) = max(ale_wake(i),ale_bl_prescr) |
---|
2185 | con ne couple que alp |
---|
2186 | c ALP(i) = alp_wake(i) + Alp_bl(i) |
---|
2187 | ALP(i) = alp_wake(i) + alp_bl_prescr |
---|
2188 | enddo |
---|
2189 | else |
---|
2190 | IF(prt_level>9)WRITE(lunout,*)'ALE et ALP couples au thermique' |
---|
2191 | do i = 1,klon |
---|
2192 | ALE(i) = max(ale_wake(i),Ale_bl(i)) |
---|
2193 | ALP(i) = alp_wake(i) + Alp_bl(i) |
---|
2194 | c write(20,*)'ALE',ALE(i),Ale_bl(i),ale_wake(i) |
---|
2195 | c write(21,*)'ALP',ALP(i),Alp_bl(i),alp_wake(i) |
---|
2196 | enddo |
---|
2197 | endif |
---|
2198 | do i=1,klon |
---|
2199 | if (alp(i)>alp_max) then |
---|
2200 | IF(prt_level>9)WRITE(lunout,*) & |
---|
2201 | & 'WARNING SUPER ALP (seuil=',alp_max, |
---|
2202 | , '): i, alp, alp_wake,ale',i,alp(i),alp_wake(i),ale(i) |
---|
2203 | alp(i)=alp_max |
---|
2204 | endif |
---|
2205 | if (ale(i)>ale_max) then |
---|
2206 | IF(prt_level>9)WRITE(lunout,*) & |
---|
2207 | & 'WARNING SUPER ALE (seuil=',ale_max, |
---|
2208 | , '): i, alp, alp_wake,ale',i,ale(i),ale_wake(i),alp(i) |
---|
2209 | ale(i)=ale_max |
---|
2210 | endif |
---|
2211 | enddo |
---|
2212 | |
---|
2213 | cfin calcul ale et alp |
---|
2214 | c================================================================================================= |
---|
2215 | |
---|
2216 | |
---|
2217 | c sb, oct02: |
---|
2218 | c Schema de convection modularise et vectorise: |
---|
2219 | c (driver commun aux versions 3 et 4) |
---|
2220 | c |
---|
2221 | IF (ok_cvl) THEN ! new driver for convectL |
---|
2222 | |
---|
2223 | CALL concvl (iflag_con,iflag_clos, |
---|
2224 | . dtime,paprs,pplay,t_undi,q_undi, |
---|
2225 | . t_wake,q_wake,wake_s, |
---|
2226 | . u_seri,v_seri,tr_seri,nbtr, |
---|
2227 | . ALE,ALP, |
---|
2228 | . ema_work1,ema_work2, |
---|
2229 | . d_t_con,d_q_con,d_u_con,d_v_con,d_tr, |
---|
2230 | . rain_con, snow_con, ibas_con, itop_con, sigd, |
---|
2231 | . ema_cbmf,upwd,dnwd,dnwd0, |
---|
2232 | . Ma,mip,Vprecip,cape,cin,tvp,Tconv,iflagctrl, |
---|
2233 | . pbase,bbase,dtvpdt1,dtvpdq1,dplcldt,dplcldr,qcondc,wd, |
---|
2234 | . pmflxr,pmflxs,da,phi,mp, |
---|
2235 | . ftd,fqd,lalim_conv,wght_th) |
---|
2236 | |
---|
2237 | cIM begin |
---|
2238 | c print*,'physiq: cin pbase dnwd0 ftd fqd ',cin(1),pbase(1), |
---|
2239 | c .dnwd0(1,1),ftd(1,1),fqd(1,1) |
---|
2240 | cIM end |
---|
2241 | cIM cf. FH |
---|
2242 | clwcon0=qcondc |
---|
2243 | pmfu(:,:)=upwd(:,:)+dnwd(:,:) |
---|
2244 | |
---|
2245 | do i = 1, klon |
---|
2246 | if (iflagctrl(i).le.1) itau_con(i)=itau_con(i)+1 |
---|
2247 | enddo |
---|
2248 | |
---|
2249 | ELSE ! ok_cvl |
---|
2250 | |
---|
2251 | c MAF conema3 ne contient pas les traceurs |
---|
2252 | CALL conema3 (dtime, |
---|
2253 | . paprs,pplay,t_seri,q_seri, |
---|
2254 | . u_seri,v_seri,tr_seri,ntra, |
---|
2255 | . ema_work1,ema_work2, |
---|
2256 | . d_t_con,d_q_con,d_u_con,d_v_con,d_tr, |
---|
2257 | . rain_con, snow_con, ibas_con, itop_con, |
---|
2258 | . upwd,dnwd,dnwd0,bas,top, |
---|
2259 | . Ma,cape,tvp,rflag, |
---|
2260 | . pbase |
---|
2261 | . ,bbase,dtvpdt1,dtvpdq1,dplcldt,dplcldr |
---|
2262 | . ,clwcon0) |
---|
2263 | |
---|
2264 | ENDIF ! ok_cvl |
---|
2265 | |
---|
2266 | c |
---|
2267 | c Correction precip |
---|
2268 | rain_con = rain_con * cvl_corr |
---|
2269 | snow_con = snow_con * cvl_corr |
---|
2270 | c |
---|
2271 | |
---|
2272 | IF (.NOT. ok_gust) THEN |
---|
2273 | do i = 1, klon |
---|
2274 | wd(i)=0.0 |
---|
2275 | enddo |
---|
2276 | ENDIF |
---|
2277 | |
---|
2278 | c =================================================================== c |
---|
2279 | c Calcul des proprietes des nuages convectifs |
---|
2280 | c |
---|
2281 | |
---|
2282 | c calcul des proprietes des nuages convectifs |
---|
2283 | clwcon0(:,:)=fact_cldcon*clwcon0(:,:) |
---|
2284 | call clouds_gno |
---|
2285 | s (klon,klev,q_seri,zqsat,clwcon0,ptconv,ratqsc,rnebcon0) |
---|
2286 | |
---|
2287 | c =================================================================== c |
---|
2288 | |
---|
2289 | DO i = 1, klon |
---|
2290 | ema_pcb(i) = paprs(i,ibas_con(i)) |
---|
2291 | ENDDO |
---|
2292 | DO i = 1, klon |
---|
2293 | ! L'idicage de itop_con peut cacher un pb potentiel |
---|
2294 | ! FH sous la dictee de JYG, CR |
---|
2295 | ema_pct(i) = paprs(i,itop_con(i)+1) |
---|
2296 | |
---|
2297 | if (itop_con(i).gt.klev-3) then |
---|
2298 | if(prt_level >= 9) then |
---|
2299 | write(lunout,*)'La convection monte trop haut ' |
---|
2300 | write(lunout,*)'itop_con(,',i,',)=',itop_con(i) |
---|
2301 | endif |
---|
2302 | endif |
---|
2303 | ENDDO |
---|
2304 | ELSE IF (iflag_con.eq.0) THEN |
---|
2305 | write(lunout,*) 'On n appelle pas la convection' |
---|
2306 | clwcon0=0. |
---|
2307 | rnebcon0=0. |
---|
2308 | d_t_con=0. |
---|
2309 | d_q_con=0. |
---|
2310 | d_u_con=0. |
---|
2311 | d_v_con=0. |
---|
2312 | rain_con=0. |
---|
2313 | snow_con=0. |
---|
2314 | bas=1 |
---|
2315 | top=1 |
---|
2316 | ELSE |
---|
2317 | WRITE(lunout,*) "iflag_con non-prevu", iflag_con |
---|
2318 | CALL abort |
---|
2319 | ENDIF |
---|
2320 | |
---|
2321 | c CALL homogene(paprs, q_seri, d_q_con, u_seri,v_seri, |
---|
2322 | c . d_u_con, d_v_con) |
---|
2323 | |
---|
2324 | !----------------------------------------------------------------------------------------- |
---|
2325 | ! ajout des tendances de la diffusion turbulente |
---|
2326 | CALL add_phys_tend(d_u_con,d_v_con,d_t_con,d_q_con,dql0,'con') |
---|
2327 | !----------------------------------------------------------------------------------------- |
---|
2328 | |
---|
2329 | if (mydebug) then |
---|
2330 | call writefield_phy('u_seri',u_seri,llm) |
---|
2331 | call writefield_phy('v_seri',v_seri,llm) |
---|
2332 | call writefield_phy('t_seri',t_seri,llm) |
---|
2333 | call writefield_phy('q_seri',q_seri,llm) |
---|
2334 | endif |
---|
2335 | |
---|
2336 | cIM |
---|
2337 | IF (ip_ebil_phy.ge.2) THEN |
---|
2338 | ztit='after convect' |
---|
2339 | CALL diagetpq(airephy,ztit,ip_ebil_phy,2,2,dtime |
---|
2340 | e , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay |
---|
2341 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
2342 | call diagphy(airephy,ztit,ip_ebil_phy |
---|
2343 | e , zero_v, zero_v, zero_v, zero_v, zero_v |
---|
2344 | e , zero_v, rain_con, snow_con, ztsol |
---|
2345 | e , d_h_vcol, d_qt, d_ec |
---|
2346 | s , fs_bound, fq_bound ) |
---|
2347 | END IF |
---|
2348 | C |
---|
2349 | IF (check) THEN |
---|
2350 | za = qcheck(klon,klev,paprs,q_seri,ql_seri,airephy) |
---|
2351 | WRITE(lunout,*)"aprescon=", za |
---|
2352 | zx_t = 0.0 |
---|
2353 | za = 0.0 |
---|
2354 | DO i = 1, klon |
---|
2355 | za = za + airephy(i)/FLOAT(klon) |
---|
2356 | zx_t = zx_t + (rain_con(i)+ |
---|
2357 | . snow_con(i))*airephy(i)/FLOAT(klon) |
---|
2358 | ENDDO |
---|
2359 | zx_t = zx_t/za*dtime |
---|
2360 | WRITE(lunout,*)"Precip=", zx_t |
---|
2361 | ENDIF |
---|
2362 | IF (zx_ajustq) THEN |
---|
2363 | DO i = 1, klon |
---|
2364 | z_apres(i) = 0.0 |
---|
2365 | ENDDO |
---|
2366 | DO k = 1, klev |
---|
2367 | DO i = 1, klon |
---|
2368 | z_apres(i) = z_apres(i) + (q_seri(i,k)+ql_seri(i,k)) |
---|
2369 | . *(paprs(i,k)-paprs(i,k+1))/RG |
---|
2370 | ENDDO |
---|
2371 | ENDDO |
---|
2372 | DO i = 1, klon |
---|
2373 | z_factor(i) = (z_avant(i)-(rain_con(i)+snow_con(i))*dtime) |
---|
2374 | . /z_apres(i) |
---|
2375 | ENDDO |
---|
2376 | DO k = 1, klev |
---|
2377 | DO i = 1, klon |
---|
2378 | IF (z_factor(i).GT.(1.0+1.0E-08) .OR. |
---|
2379 | . z_factor(i).LT.(1.0-1.0E-08)) THEN |
---|
2380 | q_seri(i,k) = q_seri(i,k) * z_factor(i) |
---|
2381 | ENDIF |
---|
2382 | ENDDO |
---|
2383 | ENDDO |
---|
2384 | ENDIF |
---|
2385 | zx_ajustq=.FALSE. |
---|
2386 | |
---|
2387 | c |
---|
2388 | c============================================================================= |
---|
2389 | cRR:Evolution de la poche froide: on ne fait pas de separation wake/env |
---|
2390 | cpour la couche limite diffuse pour l instant |
---|
2391 | c |
---|
2392 | if (iflag_wake.eq.1) then |
---|
2393 | DO k=1,klev |
---|
2394 | DO i=1,klon |
---|
2395 | dt_dwn(i,k) = ftd(i,k) |
---|
2396 | wdt_PBL(i,k) = 0. |
---|
2397 | dq_dwn(i,k) = fqd(i,k) |
---|
2398 | wdq_PBL(i,k) = 0. |
---|
2399 | M_dwn(i,k) = dnwd0(i,k) |
---|
2400 | M_up(i,k) = upwd(i,k) |
---|
2401 | dt_a(i,k) = d_t_con(i,k)/dtime - ftd(i,k) |
---|
2402 | udt_PBL(i,k) = 0. |
---|
2403 | dq_a(i,k) = d_q_con(i,k)/dtime - fqd(i,k) |
---|
2404 | udq_PBL(i,k) = 0. |
---|
2405 | ENDDO |
---|
2406 | ENDDO |
---|
2407 | c |
---|
2408 | ccalcul caracteristiques de la poche froide |
---|
2409 | call calWAKE (paprs,pplay,dtime |
---|
2410 | : ,t_seri,q_seri,omega |
---|
2411 | : ,dt_dwn,dq_dwn,M_dwn,M_up |
---|
2412 | : ,dt_a,dq_a,sigd |
---|
2413 | : ,wdt_PBL,wdq_PBL |
---|
2414 | : ,udt_PBL,udq_PBL |
---|
2415 | o ,wake_deltat,wake_deltaq,wake_dth |
---|
2416 | o ,wake_h,wake_s,wake_dens |
---|
2417 | o ,wake_pe,wake_fip,wake_gfl |
---|
2418 | o ,dt_wake,dq_wake |
---|
2419 | o ,wake_k, t_undi,q_undi |
---|
2420 | o ,wake_omgbdth,wake_dp_omgb |
---|
2421 | o ,wake_dtKE,wake_dqKE |
---|
2422 | o ,wake_dtPBL,wake_dqPBL |
---|
2423 | o ,wake_omg,wake_dp_deltomg |
---|
2424 | o ,wake_spread,wake_Cstar,wake_d_deltat_gw |
---|
2425 | o ,wake_ddeltat,wake_ddeltaq) |
---|
2426 | c |
---|
2427 | !----------------------------------------------------------------------------------------- |
---|
2428 | ! ajout des tendances des poches froides |
---|
2429 | ! Faire rapidement disparaitre l'ancien dt_wake pour garder un d_t_wake |
---|
2430 | ! coherent avec les autres d_t_... |
---|
2431 | d_t_wake(:,:)=dt_wake(:,:)*dtime |
---|
2432 | d_q_wake(:,:)=dq_wake(:,:)*dtime |
---|
2433 | CALL add_phys_tend(du0,dv0,d_t_wake,d_q_wake,dql0,'wake') |
---|
2434 | !----------------------------------------------------------------------------------------- |
---|
2435 | |
---|
2436 | endif |
---|
2437 | c print*,'apres callwake iflag_cldcon=', iflag_cldcon |
---|
2438 | c |
---|
2439 | c=================================================================== |
---|
2440 | c Convection seche (thermiques ou ajustement) |
---|
2441 | c=================================================================== |
---|
2442 | c |
---|
2443 | call stratocu_if(klon,klev,pctsrf,paprs, pplay,t_seri |
---|
2444 | s ,seuil_inversion,weak_inversion,dthmin) |
---|
2445 | |
---|
2446 | |
---|
2447 | |
---|
2448 | d_t_ajsb(:,:)=0. |
---|
2449 | d_q_ajsb(:,:)=0. |
---|
2450 | d_t_ajs(:,:)=0. |
---|
2451 | d_u_ajs(:,:)=0. |
---|
2452 | d_v_ajs(:,:)=0. |
---|
2453 | d_q_ajs(:,:)=0. |
---|
2454 | clwcon0th(:,:)=0. |
---|
2455 | c |
---|
2456 | fm_therm(:,:)=0. |
---|
2457 | entr_therm(:,:)=0. |
---|
2458 | detr_therm(:,:)=0. |
---|
2459 | c |
---|
2460 | IF(prt_level>9)WRITE(lunout,*) |
---|
2461 | . 'AVANT LA CONVECTION SECHE , iflag_thermals=' |
---|
2462 | s ,iflag_thermals,' nsplit_thermals=',nsplit_thermals |
---|
2463 | if(iflag_thermals.lt.0) then |
---|
2464 | c Rien |
---|
2465 | c ==== |
---|
2466 | IF(prt_level>9)WRITE(lunout,*)'pas de convection' |
---|
2467 | |
---|
2468 | |
---|
2469 | else |
---|
2470 | |
---|
2471 | c Thermiques |
---|
2472 | c ========== |
---|
2473 | IF(prt_level>9)WRITE(lunout,*)'JUSTE AVANT , iflag_thermals=' |
---|
2474 | s ,iflag_thermals,' nsplit_thermals=',nsplit_thermals |
---|
2475 | |
---|
2476 | |
---|
2477 | if (iflag_thermals.gt.1) then |
---|
2478 | call calltherm(pdtphys |
---|
2479 | s ,pplay,paprs,pphi,weak_inversion |
---|
2480 | s ,u_seri,v_seri,t_seri,q_seri,zqsat,debut |
---|
2481 | s ,d_u_ajs,d_v_ajs,d_t_ajs,d_q_ajs |
---|
2482 | s ,fm_therm,entr_therm,detr_therm |
---|
2483 | s ,zqasc,clwcon0th,lmax_th,ratqscth |
---|
2484 | s ,ratqsdiff,zqsatth |
---|
2485 | con rajoute ale et alp, et les caracteristiques de la couche alim |
---|
2486 | s ,Ale_bl,Alp_bl,lalim_conv,wght_th, zmax0, f0, zw2,fraca) |
---|
2487 | endif |
---|
2488 | |
---|
2489 | |
---|
2490 | c Ajustement sec |
---|
2491 | c ============== |
---|
2492 | |
---|
2493 | ! Dans le cas où on active les thermiques, on fait partir l'ajustement |
---|
2494 | ! a partir du sommet des thermiques. |
---|
2495 | ! Dans le cas contraire, on demarre au niveau 1. |
---|
2496 | |
---|
2497 | if (iflag_thermals.ge.13.or.iflag_thermals.eq.0) then |
---|
2498 | |
---|
2499 | if(iflag_thermals.eq.0) then |
---|
2500 | IF(prt_level>9)WRITE(lunout,*)'ajsec' |
---|
2501 | limbas(:)=1 |
---|
2502 | else |
---|
2503 | limbas(:)=lmax_th(:) |
---|
2504 | endif |
---|
2505 | |
---|
2506 | ! Attention : le call ajsec_convV2 n'est maintenu que momentanneement |
---|
2507 | ! pour des test de convergence numerique. |
---|
2508 | ! Le nouveau ajsec est a priori mieux, meme pour le cas |
---|
2509 | ! iflag_thermals = 0 (l'ancienne version peut faire des tendances |
---|
2510 | ! non nulles numeriquement pour des mailles non concernees. |
---|
2511 | |
---|
2512 | if (iflag_thermals.eq.0) then |
---|
2513 | CALL ajsec_convV2(paprs, pplay, t_seri,q_seri |
---|
2514 | s , d_t_ajsb, d_q_ajsb) |
---|
2515 | else |
---|
2516 | CALL ajsec(paprs, pplay, t_seri,q_seri,limbas |
---|
2517 | s , d_t_ajsb, d_q_ajsb) |
---|
2518 | endif |
---|
2519 | |
---|
2520 | !----------------------------------------------------------------------------------------- |
---|
2521 | ! ajout des tendances de l'ajustement sec ou des thermiques |
---|
2522 | CALL add_phys_tend(du0,dv0,d_t_ajsb,d_q_ajsb,dql0,'ajsb') |
---|
2523 | d_t_ajs(:,:)=d_t_ajs(:,:)+d_t_ajsb(:,:) |
---|
2524 | d_q_ajs(:,:)=d_q_ajs(:,:)+d_q_ajsb(:,:) |
---|
2525 | |
---|
2526 | !----------------------------------------------------------------------------------------- |
---|
2527 | |
---|
2528 | endif |
---|
2529 | |
---|
2530 | endif |
---|
2531 | c |
---|
2532 | c=================================================================== |
---|
2533 | cIM |
---|
2534 | IF (ip_ebil_phy.ge.2) THEN |
---|
2535 | ztit='after dry_adjust' |
---|
2536 | CALL diagetpq(airephy,ztit,ip_ebil_phy,2,2,dtime |
---|
2537 | e , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay |
---|
2538 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
2539 | END IF |
---|
2540 | |
---|
2541 | |
---|
2542 | c------------------------------------------------------------------------- |
---|
2543 | c Caclul des ratqs |
---|
2544 | c------------------------------------------------------------------------- |
---|
2545 | |
---|
2546 | c print*,'calcul des ratqs' |
---|
2547 | c ratqs convectifs a l'ancienne en fonction de q(z=0)-q / q |
---|
2548 | c ---------------- |
---|
2549 | c on ecrase le tableau ratqsc calcule par clouds_gno |
---|
2550 | if (iflag_cldcon.eq.1) then |
---|
2551 | do k=1,klev |
---|
2552 | do i=1,klon |
---|
2553 | if(ptconv(i,k)) then |
---|
2554 | ratqsc(i,k)=ratqsbas |
---|
2555 | s +fact_cldcon*(q_seri(i,1)-q_seri(i,k))/q_seri(i,k) |
---|
2556 | else |
---|
2557 | ratqsc(i,k)=0. |
---|
2558 | endif |
---|
2559 | enddo |
---|
2560 | enddo |
---|
2561 | |
---|
2562 | c----------------------------------------------------------------------- |
---|
2563 | c par nversion de la fonction log normale |
---|
2564 | c----------------------------------------------------------------------- |
---|
2565 | else if (iflag_cldcon.eq.4) then |
---|
2566 | ptconvth(:,:)=.false. |
---|
2567 | ratqsc(:,:)=0. |
---|
2568 | if(prt_level.ge.9) print*,'avant clouds_gno thermique' |
---|
2569 | call clouds_gno |
---|
2570 | s (klon,klev,q_seri,zqsat,clwcon0th,ptconvth,ratqsc,rnebcon0th) |
---|
2571 | if(prt_level.ge.9) print*,' CLOUDS_GNO OK' |
---|
2572 | |
---|
2573 | c----------------------------------------------------------------------- |
---|
2574 | c par calcul direct de l'ecart-type |
---|
2575 | c----------------------------------------------------------------------- |
---|
2576 | |
---|
2577 | else if (iflag_cldcon>=5) then |
---|
2578 | wmax_th(:)=0. |
---|
2579 | zmax_th(:)=0. |
---|
2580 | do k=1,klev |
---|
2581 | do i=1,klon |
---|
2582 | wmax_th(i)=max(wmax_th(i),zw2(i,k)) |
---|
2583 | if (detr_therm(i,k).gt.0.) zmax_th(i)=pphi(i,k)/rg |
---|
2584 | enddo |
---|
2585 | enddo |
---|
2586 | tau_overturning_th(:)=zmax_th(:)/max(0.5*wmax_th(:),0.1) |
---|
2587 | print*,'TAU TH OK ',tau_overturning_th(1),detr_therm(1,3) |
---|
2588 | |
---|
2589 | c On impose que l'air autour de la fraction couverte par le thermique |
---|
2590 | c plus son air detraine durant tau_overturning_th soit superieur |
---|
2591 | c a 0.1 q_seri |
---|
2592 | zz=0.1 |
---|
2593 | do k=1,klev |
---|
2594 | do i=1,klon |
---|
2595 | lambda_th(i,k)=0.5*(fraca(i,k)+fraca(i,k+1))+ |
---|
2596 | s tau_overturning_th(i)*detr_therm(i,k) |
---|
2597 | s *rg/(paprs(i,k)-paprs(i,k+1)) |
---|
2598 | znum=(1.-zz)*q_seri(i,k) |
---|
2599 | zden=zqasc(i,k)-zz*q_seri(i,k) |
---|
2600 | if (znum-lambda_th(i,k)*zden<0.) lambda_th(i,k)=znum/zden |
---|
2601 | lambda_th(i,k)=min(lambda_th(i,k),0.9) |
---|
2602 | enddo |
---|
2603 | enddo |
---|
2604 | |
---|
2605 | if(iflag_cldcon==5) then |
---|
2606 | do k=1,klev |
---|
2607 | do i=1,klon |
---|
2608 | ratqsc(i,k)=sqrt(lambda_th(i,k)/(1.-lambda_th(i,k)))* |
---|
2609 | s abs((zqasc(i,k)-q_seri(i,k))/q_seri(i,k)) |
---|
2610 | enddo |
---|
2611 | enddo |
---|
2612 | else if(iflag_cldcon==6) then |
---|
2613 | do k=1,klev |
---|
2614 | do i=1,klon |
---|
2615 | ratqsc(i,k)=sqrt(lambda_th(i,k))* |
---|
2616 | s (zqasc(i,k)-q_seri(i,k))/q_seri(i,k) |
---|
2617 | enddo |
---|
2618 | enddo |
---|
2619 | endif |
---|
2620 | |
---|
2621 | endif |
---|
2622 | |
---|
2623 | c ratqs stables |
---|
2624 | c ------------- |
---|
2625 | |
---|
2626 | if (iflag_ratqs.eq.0) then |
---|
2627 | |
---|
2628 | ! Le cas iflag_ratqs=0 correspond a la version IPCC 2005 du modele. |
---|
2629 | do k=1,klev |
---|
2630 | do i=1, klon |
---|
2631 | ratqss(i,k)=ratqsbas+(ratqshaut-ratqsbas)* |
---|
2632 | s min((paprs(i,1)-pplay(i,k))/(paprs(i,1)-30000.),1.) |
---|
2633 | enddo |
---|
2634 | enddo |
---|
2635 | |
---|
2636 | ! Pour iflag_ratqs=1 ou 2, le ratqs est constant au dessus de |
---|
2637 | ! 300 hPa (ratqshaut), varie lineariement en fonction de la pression |
---|
2638 | ! entre 600 et 300 hPa et est soit constant (ratqsbas) pour iflag_ratqs=1 |
---|
2639 | ! soit lineaire (entre 0 a la surface et ratqsbas) pour iflag_ratqs=2 |
---|
2640 | ! Il s'agit de differents tests dans la phase de reglage du modele |
---|
2641 | ! avec thermiques. |
---|
2642 | |
---|
2643 | else if (iflag_ratqs.eq.1) then |
---|
2644 | |
---|
2645 | do k=1,klev |
---|
2646 | do i=1, klon |
---|
2647 | if (pplay(i,k).ge.60000.) then |
---|
2648 | ratqss(i,k)=ratqsbas |
---|
2649 | else if ((pplay(i,k).ge.30000.).and. |
---|
2650 | s (pplay(i,k).lt.60000.)) then |
---|
2651 | ratqss(i,k)=ratqsbas+(ratqshaut-ratqsbas)* |
---|
2652 | s (60000.-pplay(i,k))/(60000.-30000.) |
---|
2653 | else |
---|
2654 | ratqss(i,k)=ratqshaut |
---|
2655 | endif |
---|
2656 | enddo |
---|
2657 | enddo |
---|
2658 | |
---|
2659 | else |
---|
2660 | |
---|
2661 | do k=1,klev |
---|
2662 | do i=1, klon |
---|
2663 | if (pplay(i,k).ge.60000.) then |
---|
2664 | ratqss(i,k)=ratqsbas |
---|
2665 | s *(paprs(i,1)-pplay(i,k))/(paprs(i,1)-60000.) |
---|
2666 | else if ((pplay(i,k).ge.30000.).and. |
---|
2667 | s (pplay(i,k).lt.60000.)) then |
---|
2668 | ratqss(i,k)=ratqsbas+(ratqshaut-ratqsbas)* |
---|
2669 | s (60000.-pplay(i,k))/(60000.-30000.) |
---|
2670 | else |
---|
2671 | ratqss(i,k)=ratqshaut |
---|
2672 | endif |
---|
2673 | enddo |
---|
2674 | enddo |
---|
2675 | endif |
---|
2676 | |
---|
2677 | |
---|
2678 | |
---|
2679 | |
---|
2680 | c ratqs final |
---|
2681 | c ----------- |
---|
2682 | |
---|
2683 | if (iflag_cldcon.eq.1 .or.iflag_cldcon.eq.2 |
---|
2684 | s .or.iflag_cldcon.ge.4) then |
---|
2685 | |
---|
2686 | ! On ajoute une constante au ratqsc*2 pour tenir compte de |
---|
2687 | ! fluctuations turbulentes de petite echelle |
---|
2688 | |
---|
2689 | do k=1,klev |
---|
2690 | do i=1,klon |
---|
2691 | if ((fm_therm(i,k).gt.1.e-10)) then |
---|
2692 | ratqsc(i,k)=sqrt(ratqsc(i,k)**2+0.05**2) |
---|
2693 | endif |
---|
2694 | enddo |
---|
2695 | enddo |
---|
2696 | |
---|
2697 | ! les ratqs sont une combinaison de ratqss et ratqsc |
---|
2698 | ! print*,'PHYLMD NOUVEAU TAU_RATQS ',tau_ratqs |
---|
2699 | |
---|
2700 | if (tau_ratqs>1.e-10) then |
---|
2701 | facteur=exp(-pdtphys/tau_ratqs) |
---|
2702 | else |
---|
2703 | facteur=0. |
---|
2704 | endif |
---|
2705 | ratqs(:,:)=ratqsc(:,:)*(1.-facteur)+ratqs(:,:)*facteur |
---|
2706 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2707 | ! FH 22/09/2009 |
---|
2708 | ! La ligne ci-dessous faisait osciller le modele et donnait une solution |
---|
2709 | ! assymptotique bidon et dépendant fortement du pas de temps. |
---|
2710 | ! ratqs(:,:)=sqrt(ratqs(:,:)**2+ratqss(:,:)**2) |
---|
2711 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
2712 | ratqs(:,:)=max(ratqs(:,:),ratqss(:,:)) |
---|
2713 | else |
---|
2714 | ! on ne prend que le ratqs stable pour fisrtilp |
---|
2715 | ratqs(:,:)=ratqss(:,:) |
---|
2716 | endif |
---|
2717 | |
---|
2718 | |
---|
2719 | c |
---|
2720 | c Appeler le processus de condensation a grande echelle |
---|
2721 | c et le processus de precipitation |
---|
2722 | c------------------------------------------------------------------------- |
---|
2723 | CALL fisrtilp(dtime,paprs,pplay, |
---|
2724 | . t_seri, q_seri,ptconv,ratqs, |
---|
2725 | . d_t_lsc, d_q_lsc, d_ql_lsc, rneb, cldliq, |
---|
2726 | . rain_lsc, snow_lsc, |
---|
2727 | . pfrac_impa, pfrac_nucl, pfrac_1nucl, |
---|
2728 | . frac_impa, frac_nucl, |
---|
2729 | . prfl, psfl, rhcl) |
---|
2730 | |
---|
2731 | WHERE (rain_lsc < 0) rain_lsc = 0. |
---|
2732 | WHERE (snow_lsc < 0) snow_lsc = 0. |
---|
2733 | !----------------------------------------------------------------------------------------- |
---|
2734 | ! ajout des tendances de la diffusion turbulente |
---|
2735 | CALL add_phys_tend(du0,dv0,d_t_lsc,d_q_lsc,d_ql_lsc,'lsc') |
---|
2736 | !----------------------------------------------------------------------------------------- |
---|
2737 | DO k = 1, klev |
---|
2738 | DO i = 1, klon |
---|
2739 | cldfra(i,k) = rneb(i,k) |
---|
2740 | IF (.NOT.new_oliq) cldliq(i,k) = ql_seri(i,k) |
---|
2741 | ENDDO |
---|
2742 | ENDDO |
---|
2743 | IF (check) THEN |
---|
2744 | za = qcheck(klon,klev,paprs,q_seri,ql_seri,airephy) |
---|
2745 | WRITE(lunout,*)"apresilp=", za |
---|
2746 | zx_t = 0.0 |
---|
2747 | za = 0.0 |
---|
2748 | DO i = 1, klon |
---|
2749 | za = za + airephy(i)/FLOAT(klon) |
---|
2750 | zx_t = zx_t + (rain_lsc(i) |
---|
2751 | . + snow_lsc(i))*airephy(i)/FLOAT(klon) |
---|
2752 | ENDDO |
---|
2753 | zx_t = zx_t/za*dtime |
---|
2754 | WRITE(lunout,*)"Precip=", zx_t |
---|
2755 | ENDIF |
---|
2756 | cIM |
---|
2757 | IF (ip_ebil_phy.ge.2) THEN |
---|
2758 | ztit='after fisrt' |
---|
2759 | CALL diagetpq(airephy,ztit,ip_ebil_phy,2,2,dtime |
---|
2760 | e , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay |
---|
2761 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
2762 | call diagphy(airephy,ztit,ip_ebil_phy |
---|
2763 | e , zero_v, zero_v, zero_v, zero_v, zero_v |
---|
2764 | e , zero_v, rain_lsc, snow_lsc, ztsol |
---|
2765 | e , d_h_vcol, d_qt, d_ec |
---|
2766 | s , fs_bound, fq_bound ) |
---|
2767 | END IF |
---|
2768 | |
---|
2769 | if (mydebug) then |
---|
2770 | call writefield_phy('u_seri',u_seri,llm) |
---|
2771 | call writefield_phy('v_seri',v_seri,llm) |
---|
2772 | call writefield_phy('t_seri',t_seri,llm) |
---|
2773 | call writefield_phy('q_seri',q_seri,llm) |
---|
2774 | endif |
---|
2775 | |
---|
2776 | c |
---|
2777 | c------------------------------------------------------------------- |
---|
2778 | c PRESCRIPTION DES NUAGES POUR LE RAYONNEMENT |
---|
2779 | c------------------------------------------------------------------- |
---|
2780 | |
---|
2781 | c 1. NUAGES CONVECTIFS |
---|
2782 | c |
---|
2783 | cIM cf FH |
---|
2784 | c IF (iflag_cldcon.eq.-1) THEN ! seulement pour Tiedtke |
---|
2785 | IF (iflag_cldcon.le.-1) THEN ! seulement pour Tiedtke |
---|
2786 | snow_tiedtke=0. |
---|
2787 | c print*,'avant calcul de la pseudo precip ' |
---|
2788 | c print*,'iflag_cldcon',iflag_cldcon |
---|
2789 | if (iflag_cldcon.eq.-1) then |
---|
2790 | rain_tiedtke=rain_con |
---|
2791 | else |
---|
2792 | c print*,'calcul de la pseudo precip ' |
---|
2793 | rain_tiedtke=0. |
---|
2794 | c print*,'calcul de la pseudo precip 0' |
---|
2795 | do k=1,klev |
---|
2796 | do i=1,klon |
---|
2797 | if (d_q_con(i,k).lt.0.) then |
---|
2798 | rain_tiedtke(i)=rain_tiedtke(i)-d_q_con(i,k)/pdtphys |
---|
2799 | s *(paprs(i,k)-paprs(i,k+1))/rg |
---|
2800 | endif |
---|
2801 | enddo |
---|
2802 | enddo |
---|
2803 | endif |
---|
2804 | c |
---|
2805 | c call dump2d(iim,jjm,rain_tiedtke(2:klon-1),'PSEUDO PRECIP ') |
---|
2806 | c |
---|
2807 | |
---|
2808 | c Nuages diagnostiques pour Tiedtke |
---|
2809 | CALL diagcld1(paprs,pplay, |
---|
2810 | cIM cf FH . rain_con,snow_con,ibas_con,itop_con, |
---|
2811 | . rain_tiedtke,snow_tiedtke,ibas_con,itop_con, |
---|
2812 | . diafra,dialiq) |
---|
2813 | DO k = 1, klev |
---|
2814 | DO i = 1, klon |
---|
2815 | IF (diafra(i,k).GT.cldfra(i,k)) THEN |
---|
2816 | cldliq(i,k) = dialiq(i,k) |
---|
2817 | cldfra(i,k) = diafra(i,k) |
---|
2818 | ENDIF |
---|
2819 | ENDDO |
---|
2820 | ENDDO |
---|
2821 | |
---|
2822 | ELSE IF (iflag_cldcon.ge.3) THEN |
---|
2823 | c On prend pour les nuages convectifs le max du calcul de la |
---|
2824 | c convection et du calcul du pas de temps precedent diminue d'un facteur |
---|
2825 | c facttemps |
---|
2826 | facteur = pdtphys *facttemps |
---|
2827 | do k=1,klev |
---|
2828 | do i=1,klon |
---|
2829 | rnebcon(i,k)=rnebcon(i,k)*facteur |
---|
2830 | if (rnebcon0(i,k)*clwcon0(i,k).gt.rnebcon(i,k)*clwcon(i,k)) |
---|
2831 | s then |
---|
2832 | rnebcon(i,k)=rnebcon0(i,k) |
---|
2833 | clwcon(i,k)=clwcon0(i,k) |
---|
2834 | endif |
---|
2835 | enddo |
---|
2836 | enddo |
---|
2837 | |
---|
2838 | c |
---|
2839 | cjq - introduce the aerosol direct and first indirect radiative forcings |
---|
2840 | cjq - Johannes Quaas, 27/11/2003 (quaas@lmd.jussieu.fr) |
---|
2841 | IF (ok_ade.OR.ok_aie) THEN |
---|
2842 | IF (.NOT. aerosol_couple) |
---|
2843 | & CALL readaerosol_optic( |
---|
2844 | & debut, new_aod, flag_aerosol, itap, jD_cur-jD_ref, |
---|
2845 | & pdtphys, pplay, paprs, t_seri, rhcl, presnivs, |
---|
2846 | & mass_solu_aero, mass_solu_aero_pi, |
---|
2847 | & tau_aero, piz_aero, cg_aero, |
---|
2848 | & tausum_aero, tau3d_aero) |
---|
2849 | ELSE |
---|
2850 | tau_aero(:,:,:,:) = 0. |
---|
2851 | piz_aero(:,:,:,:) = 0. |
---|
2852 | cg_aero(:,:,:,:) = 0. |
---|
2853 | ENDIF |
---|
2854 | |
---|
2855 | cIM calcul nuages par le simulateur ISCCP |
---|
2856 | c |
---|
2857 | #ifdef histISCCP |
---|
2858 | IF (ok_isccp) THEN |
---|
2859 | c |
---|
2860 | cIM lecture invtau, tautab des fichiers formattes |
---|
2861 | c |
---|
2862 | IF (debut) THEN |
---|
2863 | c$OMP MASTER |
---|
2864 | c |
---|
2865 | open(99,file='tautab.formatted', FORM='FORMATTED') |
---|
2866 | read(99,'(f30.20)') tautab_omp |
---|
2867 | close(99) |
---|
2868 | c |
---|
2869 | open(99,file='invtau.formatted',form='FORMATTED') |
---|
2870 | read(99,'(i10)') invtau_omp |
---|
2871 | |
---|
2872 | c print*,'calcul_simulISCCP invtau_omp',invtau_omp |
---|
2873 | c write(6,'(a,8i10)') 'invtau_omp',(invtau_omp(i),i=1,100) |
---|
2874 | |
---|
2875 | close(99) |
---|
2876 | c$OMP END MASTER |
---|
2877 | c$OMP BARRIER |
---|
2878 | tautab=tautab_omp |
---|
2879 | invtau=invtau_omp |
---|
2880 | c |
---|
2881 | ENDIF !debut |
---|
2882 | c |
---|
2883 | cIM appel simulateur toutes les NINT(freq_ISCCP/dtime) heures |
---|
2884 | IF (MOD(itap,NINT(freq_ISCCP/dtime)).EQ.0) THEN |
---|
2885 | #include "calcul_simulISCCP.h" |
---|
2886 | ENDIF !(MOD(itap,NINT(freq_ISCCP/dtime)) |
---|
2887 | ENDIF !ok_isccp |
---|
2888 | #endif |
---|
2889 | |
---|
2890 | c On prend la somme des fractions nuageuses et des contenus en eau |
---|
2891 | cldfra(:,:)=min(max(cldfra(:,:),rnebcon(:,:)),1.) |
---|
2892 | cldliq(:,:)=cldliq(:,:)+rnebcon(:,:)*clwcon(:,:) |
---|
2893 | |
---|
2894 | ENDIF |
---|
2895 | c |
---|
2896 | c 2. NUAGES STARTIFORMES |
---|
2897 | c |
---|
2898 | IF (ok_stratus) THEN |
---|
2899 | CALL diagcld2(paprs,pplay,t_seri,q_seri, diafra,dialiq) |
---|
2900 | DO k = 1, klev |
---|
2901 | DO i = 1, klon |
---|
2902 | IF (diafra(i,k).GT.cldfra(i,k)) THEN |
---|
2903 | cldliq(i,k) = dialiq(i,k) |
---|
2904 | cldfra(i,k) = diafra(i,k) |
---|
2905 | ENDIF |
---|
2906 | ENDDO |
---|
2907 | ENDDO |
---|
2908 | ENDIF |
---|
2909 | c |
---|
2910 | c Precipitation totale |
---|
2911 | c |
---|
2912 | DO i = 1, klon |
---|
2913 | rain_fall(i) = rain_con(i) + rain_lsc(i) |
---|
2914 | snow_fall(i) = snow_con(i) + snow_lsc(i) |
---|
2915 | ENDDO |
---|
2916 | cIM |
---|
2917 | IF (ip_ebil_phy.ge.2) THEN |
---|
2918 | ztit="after diagcld" |
---|
2919 | CALL diagetpq(airephy,ztit,ip_ebil_phy,2,2,dtime |
---|
2920 | e , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay |
---|
2921 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
2922 | END IF |
---|
2923 | c |
---|
2924 | c Calculer l'humidite relative pour diagnostique |
---|
2925 | c |
---|
2926 | DO k = 1, klev |
---|
2927 | DO i = 1, klon |
---|
2928 | zx_t = t_seri(i,k) |
---|
2929 | IF (thermcep) THEN |
---|
2930 | zdelta = MAX(0.,SIGN(1.,rtt-zx_t)) |
---|
2931 | zx_qs = r2es * FOEEW(zx_t,zdelta)/pplay(i,k) |
---|
2932 | zx_qs = MIN(0.5,zx_qs) |
---|
2933 | zcor = 1./(1.-retv*zx_qs) |
---|
2934 | zx_qs = zx_qs*zcor |
---|
2935 | ELSE |
---|
2936 | IF (zx_t.LT.t_coup) THEN |
---|
2937 | zx_qs = qsats(zx_t)/pplay(i,k) |
---|
2938 | ELSE |
---|
2939 | zx_qs = qsatl(zx_t)/pplay(i,k) |
---|
2940 | ENDIF |
---|
2941 | ENDIF |
---|
2942 | zx_rh(i,k) = q_seri(i,k)/zx_qs |
---|
2943 | zqsat(i,k)=zx_qs |
---|
2944 | ENDDO |
---|
2945 | ENDDO |
---|
2946 | |
---|
2947 | cIM Calcul temp.potentielle a 2m (tpot) et temp. potentielle |
---|
2948 | c equivalente a 2m (tpote) pour diagnostique |
---|
2949 | c |
---|
2950 | DO i = 1, klon |
---|
2951 | tpot(i)=zt2m(i)*(100000./paprs(i,1))**RKAPPA |
---|
2952 | IF (thermcep) THEN |
---|
2953 | IF(zt2m(i).LT.RTT) then |
---|
2954 | Lheat=RLSTT |
---|
2955 | ELSE |
---|
2956 | Lheat=RLVTT |
---|
2957 | ENDIF |
---|
2958 | ELSE |
---|
2959 | IF (zt2m(i).LT.RTT) THEN |
---|
2960 | Lheat=RLSTT |
---|
2961 | ELSE |
---|
2962 | Lheat=RLVTT |
---|
2963 | ENDIF |
---|
2964 | ENDIF |
---|
2965 | tpote(i) = tpot(i)* |
---|
2966 | . EXP((Lheat *qsat2m(i))/(RCPD*zt2m(i))) |
---|
2967 | ENDDO |
---|
2968 | |
---|
2969 | IF (config_inca /= 'none') THEN |
---|
2970 | #ifdef INCA |
---|
2971 | CALL VTe(VTphysiq) |
---|
2972 | CALL VTb(VTinca) |
---|
2973 | calday = FLOAT(days_elapsed + 1) + jH_cur |
---|
2974 | |
---|
2975 | call chemtime(itap+itau_phy-1, date0, dtime) |
---|
2976 | IF (config_inca == 'aero') THEN |
---|
2977 | CALL AEROSOL_METEO_CALC( |
---|
2978 | $ calday,pdtphys,pplay,paprs,t,pmflxr,pmflxs, |
---|
2979 | $ prfl,psfl,pctsrf,airephy,rlat,rlon,u10m,v10m) |
---|
2980 | END IF |
---|
2981 | |
---|
2982 | zxsnow_dummy(:) = 0.0 |
---|
2983 | |
---|
2984 | CALL chemhook_begin (calday, |
---|
2985 | $ days_elapsed+1, |
---|
2986 | $ jH_cur, |
---|
2987 | $ pctsrf(1,1), |
---|
2988 | $ rlat, |
---|
2989 | $ rlon, |
---|
2990 | $ airephy, |
---|
2991 | $ paprs, |
---|
2992 | $ pplay, |
---|
2993 | $ coefh, |
---|
2994 | $ pphi, |
---|
2995 | $ t_seri, |
---|
2996 | $ u, |
---|
2997 | $ v, |
---|
2998 | $ wo(:, :, 1), |
---|
2999 | $ q_seri, |
---|
3000 | $ zxtsol, |
---|
3001 | $ zxsnow_dummy, |
---|
3002 | $ solsw, |
---|
3003 | $ albsol1, |
---|
3004 | $ rain_fall, |
---|
3005 | $ snow_fall, |
---|
3006 | $ itop_con, |
---|
3007 | $ ibas_con, |
---|
3008 | $ cldfra, |
---|
3009 | $ iim, |
---|
3010 | $ jjm, |
---|
3011 | $ tr_seri, |
---|
3012 | $ ftsol, |
---|
3013 | $ paprs, |
---|
3014 | $ cdragh, |
---|
3015 | $ cdragm, |
---|
3016 | $ pctsrf, |
---|
3017 | $ pdtphys, |
---|
3018 | $ itap) |
---|
3019 | |
---|
3020 | CALL VTe(VTinca) |
---|
3021 | CALL VTb(VTphysiq) |
---|
3022 | #endif |
---|
3023 | END IF !config_inca /= 'none' |
---|
3024 | c |
---|
3025 | c Calculer les parametres optiques des nuages et quelques |
---|
3026 | c parametres pour diagnostiques: |
---|
3027 | c |
---|
3028 | |
---|
3029 | IF (aerosol_couple) THEN |
---|
3030 | mass_solu_aero(:,:) = ccm(:,:,1) |
---|
3031 | mass_solu_aero_pi(:,:) = ccm(:,:,2) |
---|
3032 | END IF |
---|
3033 | c |
---|
3034 | if (ok_newmicro) then |
---|
3035 | CALL newmicro (paprs, pplay,ok_newmicro, |
---|
3036 | . t_seri, cldliq, cldfra, cldtau, cldemi, |
---|
3037 | . cldh, cldl, cldm, cldt, cldq, |
---|
3038 | . flwp, fiwp, flwc, fiwc, |
---|
3039 | e ok_aie, |
---|
3040 | e mass_solu_aero, mass_solu_aero_pi, |
---|
3041 | e bl95_b0, bl95_b1, |
---|
3042 | s cldtaupi, re, fl, ref_liq, ref_ice) |
---|
3043 | else |
---|
3044 | CALL nuage (paprs, pplay, |
---|
3045 | . t_seri, cldliq, cldfra, cldtau, cldemi, |
---|
3046 | . cldh, cldl, cldm, cldt, cldq, |
---|
3047 | e ok_aie, |
---|
3048 | e mass_solu_aero, mass_solu_aero_pi, |
---|
3049 | e bl95_b0, bl95_b1, |
---|
3050 | s cldtaupi, re, fl) |
---|
3051 | |
---|
3052 | endif |
---|
3053 | c |
---|
3054 | cIM betaCRF |
---|
3055 | c |
---|
3056 | cldtaurad = cldtau |
---|
3057 | cldemirad = cldemi |
---|
3058 | c |
---|
3059 | if(lon1_beta.EQ.-180..AND.lon2_beta.EQ.180..AND. |
---|
3060 | $lat1_beta.EQ.90..AND.lat2_beta.EQ.-90.) THEN |
---|
3061 | c |
---|
3062 | c global |
---|
3063 | c |
---|
3064 | DO k=1, klev |
---|
3065 | DO i=1, klon |
---|
3066 | if (pplay(i,k).GE.pfree) THEN |
---|
3067 | beta(i,k) = beta_pbl |
---|
3068 | else |
---|
3069 | beta(i,k) = beta_free |
---|
3070 | endif |
---|
3071 | if (mskocean_beta) THEN |
---|
3072 | beta(i,k) = beta(i,k) * pctsrf(i,is_oce) |
---|
3073 | endif |
---|
3074 | cldtaurad(i,k) = cldtau(i,k) * beta(i,k) |
---|
3075 | cldemirad(i,k) = cldemi(i,k) * beta(i,k) |
---|
3076 | ENDDO |
---|
3077 | ENDDO |
---|
3078 | c |
---|
3079 | else |
---|
3080 | c |
---|
3081 | c regional |
---|
3082 | c |
---|
3083 | DO k=1, klev |
---|
3084 | DO i=1,klon |
---|
3085 | c |
---|
3086 | if (rlon(i).ge.lon1_beta.AND.rlon(i).le.lon2_beta.AND. |
---|
3087 | $ rlat(i).le.lat1_beta.AND.rlat(i).ge.lat2_beta) THEN |
---|
3088 | if (pplay(i,k).GE.pfree) THEN |
---|
3089 | beta(i,k) = beta_pbl |
---|
3090 | else |
---|
3091 | beta(i,k) = beta_free |
---|
3092 | endif |
---|
3093 | if (mskocean_beta) THEN |
---|
3094 | beta(i,k) = beta(i,k) * pctsrf(i,is_oce) |
---|
3095 | endif |
---|
3096 | cldtaurad(i,k) = cldtau(i,k) * beta(i,k) |
---|
3097 | cldemirad(i,k) = cldemi(i,k) * beta(i,k) |
---|
3098 | endif |
---|
3099 | c |
---|
3100 | ENDDO |
---|
3101 | ENDDO |
---|
3102 | c |
---|
3103 | endif |
---|
3104 | c |
---|
3105 | c Appeler le rayonnement mais calculer tout d'abord l'albedo du sol. |
---|
3106 | c |
---|
3107 | IF (MOD(itaprad,radpas).EQ.0) THEN |
---|
3108 | |
---|
3109 | DO i = 1, klon |
---|
3110 | albsol1(i) = falb1(i,is_oce) * pctsrf(i,is_oce) |
---|
3111 | . + falb1(i,is_lic) * pctsrf(i,is_lic) |
---|
3112 | . + falb1(i,is_ter) * pctsrf(i,is_ter) |
---|
3113 | . + falb1(i,is_sic) * pctsrf(i,is_sic) |
---|
3114 | albsol2(i) = falb2(i,is_oce) * pctsrf(i,is_oce) |
---|
3115 | . + falb2(i,is_lic) * pctsrf(i,is_lic) |
---|
3116 | . + falb2(i,is_ter) * pctsrf(i,is_ter) |
---|
3117 | . + falb2(i,is_sic) * pctsrf(i,is_sic) |
---|
3118 | ENDDO |
---|
3119 | |
---|
3120 | if (mydebug) then |
---|
3121 | call writefield_phy('u_seri',u_seri,llm) |
---|
3122 | call writefield_phy('v_seri',v_seri,llm) |
---|
3123 | call writefield_phy('t_seri',t_seri,llm) |
---|
3124 | call writefield_phy('q_seri',q_seri,llm) |
---|
3125 | endif |
---|
3126 | |
---|
3127 | IF (aerosol_couple) THEN |
---|
3128 | #ifdef INCA |
---|
3129 | CALL radlwsw_inca |
---|
3130 | e (kdlon,kflev,dist, rmu0, fract, solaire, |
---|
3131 | e paprs, pplay,zxtsol,albsol1, albsol2, t_seri,q_seri, |
---|
3132 | e wo(:, :, 1), |
---|
3133 | e cldfra, cldemirad, cldtaurad, |
---|
3134 | s heat,heat0,cool,cool0,radsol,albpla, |
---|
3135 | s topsw,toplw,solsw,sollw, |
---|
3136 | s sollwdown, |
---|
3137 | s topsw0,toplw0,solsw0,sollw0, |
---|
3138 | s lwdn0, lwdn, lwup0, lwup, |
---|
3139 | s swdn0, swdn, swup0, swup, |
---|
3140 | e ok_ade, ok_aie, |
---|
3141 | e tau_aero, piz_aero, cg_aero, |
---|
3142 | s topswad_aero, solswad_aero, |
---|
3143 | s topswad0_aero, solswad0_aero, |
---|
3144 | s topsw_aero, topsw0_aero, |
---|
3145 | s solsw_aero, solsw0_aero, |
---|
3146 | e cldtaupi, |
---|
3147 | s topswai_aero, solswai_aero) |
---|
3148 | |
---|
3149 | #endif |
---|
3150 | ELSE |
---|
3151 | c |
---|
3152 | cIM calcul radiatif pour le cas actuel |
---|
3153 | c |
---|
3154 | RCO2 = RCO2_act |
---|
3155 | RCH4 = RCH4_act |
---|
3156 | RN2O = RN2O_act |
---|
3157 | RCFC11 = RCFC11_act |
---|
3158 | RCFC12 = RCFC12_act |
---|
3159 | c |
---|
3160 | CALL radlwsw |
---|
3161 | e (dist, rmu0, fract, |
---|
3162 | e paprs, pplay,zxtsol,albsol1, albsol2, |
---|
3163 | e t_seri,q_seri,wo, |
---|
3164 | e cldfra, cldemirad, cldtaurad, |
---|
3165 | e ok_ade, ok_aie, |
---|
3166 | e tau_aero, piz_aero, cg_aero, |
---|
3167 | e cldtaupi,new_aod, |
---|
3168 | e zqsat, flwc, fiwc, |
---|
3169 | s heat,heat0,cool,cool0,radsol,albpla, |
---|
3170 | s topsw,toplw,solsw,sollw, |
---|
3171 | s sollwdown, |
---|
3172 | s topsw0,toplw0,solsw0,sollw0, |
---|
3173 | s lwdn0, lwdn, lwup0, lwup, |
---|
3174 | s swdn0, swdn, swup0, swup, |
---|
3175 | s topswad_aero, solswad_aero, |
---|
3176 | s topswai_aero, solswai_aero, |
---|
3177 | o topswad0_aero, solswad0_aero, |
---|
3178 | o topsw_aero, topsw0_aero, |
---|
3179 | o solsw_aero, solsw0_aero, |
---|
3180 | o topswcf_aero, solswcf_aero) |
---|
3181 | |
---|
3182 | c |
---|
3183 | cIM 2eme calcul radiatif pour le cas perturbe ou au moins un |
---|
3184 | cIM des taux doit etre different du taux actuel |
---|
3185 | cIM Par defaut on a les taux perturbes egaux aux taux actuels |
---|
3186 | c |
---|
3187 | if (RCO2_per.NE.RCO2_act.OR.RCH4_per.NE.RCH4_act.OR. |
---|
3188 | $RN2O_per.NE.RN2O_act.OR.RCFC11_per.NE.RCFC11_act.OR. |
---|
3189 | $RCFC12_per.NE.RCFC12_act) THEN |
---|
3190 | c |
---|
3191 | RCO2 = RCO2_per |
---|
3192 | RCH4 = RCH4_per |
---|
3193 | RN2O = RN2O_per |
---|
3194 | RCFC11 = RCFC11_per |
---|
3195 | RCFC12 = RCFC12_per |
---|
3196 | c |
---|
3197 | CALL radlwsw |
---|
3198 | e (dist, rmu0, fract, |
---|
3199 | e paprs, pplay,zxtsol,albsol1, albsol2, |
---|
3200 | e t_seri,q_seri,wo, |
---|
3201 | e cldfra, cldemi, cldtau, |
---|
3202 | e ok_ade, ok_aie, |
---|
3203 | e tau_aero, piz_aero, cg_aero, |
---|
3204 | e cldtaupi,new_aod, |
---|
3205 | e zqsat, flwc, fiwc, |
---|
3206 | s heatp,heat0p,coolp,cool0p,radsolp,albplap, |
---|
3207 | s topswp,toplwp,solswp,sollwp, |
---|
3208 | s sollwdownp, |
---|
3209 | s topsw0p,toplw0p,solsw0p,sollw0p, |
---|
3210 | s lwdn0p, lwdnp, lwup0p, lwupp, |
---|
3211 | s swdn0p, swdnp, swup0p, swupp, |
---|
3212 | s topswad_aerop, solswad_aerop, |
---|
3213 | s topswai_aerop, solswai_aerop, |
---|
3214 | o topswad0_aerop, solswad0_aerop, |
---|
3215 | o topsw_aerop, topsw0_aerop, |
---|
3216 | o solsw_aerop, solsw0_aerop, |
---|
3217 | o topswcf_aerop, solswcf_aerop) |
---|
3218 | endif |
---|
3219 | c |
---|
3220 | ENDIF ! aerosol_couple |
---|
3221 | itaprad = 0 |
---|
3222 | ENDIF ! MOD(itaprad,radpas) |
---|
3223 | itaprad = itaprad + 1 |
---|
3224 | |
---|
3225 | if (iflag_radia.eq.0) then |
---|
3226 | print *,'--------------------------------------------------' |
---|
3227 | print *,'>>>> ATTENTION rayonnement desactive pour ce cas' |
---|
3228 | print *,'>>>> heat et cool mis a zero ' |
---|
3229 | print *,'--------------------------------------------------' |
---|
3230 | heat=0. |
---|
3231 | cool=0. |
---|
3232 | endif |
---|
3233 | |
---|
3234 | c |
---|
3235 | c Ajouter la tendance des rayonnements (tous les pas) |
---|
3236 | c |
---|
3237 | DO k = 1, klev |
---|
3238 | DO i = 1, klon |
---|
3239 | t_seri(i,k) = t_seri(i,k) |
---|
3240 | . + (heat(i,k)-cool(i,k)) * dtime/RDAY |
---|
3241 | ENDDO |
---|
3242 | ENDDO |
---|
3243 | c |
---|
3244 | if (mydebug) then |
---|
3245 | call writefield_phy('u_seri',u_seri,llm) |
---|
3246 | call writefield_phy('v_seri',v_seri,llm) |
---|
3247 | call writefield_phy('t_seri',t_seri,llm) |
---|
3248 | call writefield_phy('q_seri',q_seri,llm) |
---|
3249 | endif |
---|
3250 | |
---|
3251 | cIM |
---|
3252 | IF (ip_ebil_phy.ge.2) THEN |
---|
3253 | ztit='after rad' |
---|
3254 | CALL diagetpq(airephy,ztit,ip_ebil_phy,2,2,dtime |
---|
3255 | e , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay |
---|
3256 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
3257 | call diagphy(airephy,ztit,ip_ebil_phy |
---|
3258 | e , topsw, toplw, solsw, sollw, zero_v |
---|
3259 | e , zero_v, zero_v, zero_v, ztsol |
---|
3260 | e , d_h_vcol, d_qt, d_ec |
---|
3261 | s , fs_bound, fq_bound ) |
---|
3262 | END IF |
---|
3263 | c |
---|
3264 | c |
---|
3265 | c Calculer l'hydrologie de la surface |
---|
3266 | c |
---|
3267 | c CALL hydrol(dtime,pctsrf,rain_fall, snow_fall, zxevap, |
---|
3268 | c . agesno, ftsol,fqsurf,fsnow, ruis) |
---|
3269 | c |
---|
3270 | |
---|
3271 | c |
---|
3272 | c Calculer le bilan du sol et la derive de temperature (couplage) |
---|
3273 | c |
---|
3274 | DO i = 1, klon |
---|
3275 | c bils(i) = radsol(i) - sens(i) - evap(i)*RLVTT |
---|
3276 | c a la demande de JLD |
---|
3277 | bils(i) = radsol(i) - sens(i) + zxfluxlat(i) |
---|
3278 | ENDDO |
---|
3279 | c |
---|
3280 | cmoddeblott(jan95) |
---|
3281 | c Appeler le programme de parametrisation de l'orographie |
---|
3282 | c a l'echelle sous-maille: |
---|
3283 | c |
---|
3284 | IF (ok_orodr) THEN |
---|
3285 | c |
---|
3286 | c selection des points pour lesquels le shema est actif: |
---|
3287 | igwd=0 |
---|
3288 | DO i=1,klon |
---|
3289 | itest(i)=0 |
---|
3290 | c IF ((zstd(i).gt.10.0)) THEN |
---|
3291 | IF (((zpic(i)-zmea(i)).GT.100.).AND.(zstd(i).GT.10.0)) THEN |
---|
3292 | itest(i)=1 |
---|
3293 | igwd=igwd+1 |
---|
3294 | idx(igwd)=i |
---|
3295 | ENDIF |
---|
3296 | ENDDO |
---|
3297 | c igwdim=MAX(1,igwd) |
---|
3298 | c |
---|
3299 | IF (ok_strato) THEN |
---|
3300 | |
---|
3301 | CALL drag_noro_strato(klon,klev,dtime,paprs,pplay, |
---|
3302 | e zmea,zstd, zsig, zgam, zthe,zpic,zval, |
---|
3303 | e igwd,idx,itest, |
---|
3304 | e t_seri, u_seri, v_seri, |
---|
3305 | s zulow, zvlow, zustrdr, zvstrdr, |
---|
3306 | s d_t_oro, d_u_oro, d_v_oro) |
---|
3307 | |
---|
3308 | ELSE |
---|
3309 | CALL drag_noro(klon,klev,dtime,paprs,pplay, |
---|
3310 | e zmea,zstd, zsig, zgam, zthe,zpic,zval, |
---|
3311 | e igwd,idx,itest, |
---|
3312 | e t_seri, u_seri, v_seri, |
---|
3313 | s zulow, zvlow, zustrdr, zvstrdr, |
---|
3314 | s d_t_oro, d_u_oro, d_v_oro) |
---|
3315 | ENDIF |
---|
3316 | c |
---|
3317 | c ajout des tendances |
---|
3318 | !----------------------------------------------------------------------------------------- |
---|
3319 | ! ajout des tendances de la trainee de l'orographie |
---|
3320 | CALL add_phys_tend(d_u_oro,d_v_oro,d_t_oro,dq0,dql0,'oro') |
---|
3321 | !----------------------------------------------------------------------------------------- |
---|
3322 | c |
---|
3323 | ENDIF ! fin de test sur ok_orodr |
---|
3324 | c |
---|
3325 | if (mydebug) then |
---|
3326 | call writefield_phy('u_seri',u_seri,llm) |
---|
3327 | call writefield_phy('v_seri',v_seri,llm) |
---|
3328 | call writefield_phy('t_seri',t_seri,llm) |
---|
3329 | call writefield_phy('q_seri',q_seri,llm) |
---|
3330 | endif |
---|
3331 | |
---|
3332 | IF (ok_orolf) THEN |
---|
3333 | c |
---|
3334 | c selection des points pour lesquels le shema est actif: |
---|
3335 | igwd=0 |
---|
3336 | DO i=1,klon |
---|
3337 | itest(i)=0 |
---|
3338 | IF ((zpic(i)-zmea(i)).GT.100.) THEN |
---|
3339 | itest(i)=1 |
---|
3340 | igwd=igwd+1 |
---|
3341 | idx(igwd)=i |
---|
3342 | ENDIF |
---|
3343 | ENDDO |
---|
3344 | c igwdim=MAX(1,igwd) |
---|
3345 | c |
---|
3346 | IF (ok_strato) THEN |
---|
3347 | |
---|
3348 | CALL lift_noro_strato(klon,klev,dtime,paprs,pplay, |
---|
3349 | e rlat,zmea,zstd,zpic,zgam,zthe,zpic,zval, |
---|
3350 | e igwd,idx,itest, |
---|
3351 | e t_seri, u_seri, v_seri, |
---|
3352 | s zulow, zvlow, zustrli, zvstrli, |
---|
3353 | s d_t_lif, d_u_lif, d_v_lif ) |
---|
3354 | |
---|
3355 | ELSE |
---|
3356 | CALL lift_noro(klon,klev,dtime,paprs,pplay, |
---|
3357 | e rlat,zmea,zstd,zpic, |
---|
3358 | e itest, |
---|
3359 | e t_seri, u_seri, v_seri, |
---|
3360 | s zulow, zvlow, zustrli, zvstrli, |
---|
3361 | s d_t_lif, d_u_lif, d_v_lif) |
---|
3362 | ENDIF |
---|
3363 | c |
---|
3364 | !----------------------------------------------------------------------------------------- |
---|
3365 | ! ajout des tendances de la portance de l'orographie |
---|
3366 | CALL add_phys_tend(d_u_lif,d_v_lif,d_t_lif,dq0,dql0,'lif') |
---|
3367 | !----------------------------------------------------------------------------------------- |
---|
3368 | c |
---|
3369 | ENDIF ! fin de test sur ok_orolf |
---|
3370 | C HINES GWD PARAMETRIZATION |
---|
3371 | |
---|
3372 | IF (ok_hines) then |
---|
3373 | |
---|
3374 | CALL hines_gwd(klon,klev,dtime,paprs,pplay, |
---|
3375 | i rlat,t_seri,u_seri,v_seri, |
---|
3376 | o zustrhi,zvstrhi, |
---|
3377 | o d_t_hin, d_u_hin, d_v_hin) |
---|
3378 | c |
---|
3379 | c ajout des tendances |
---|
3380 | CALL add_phys_tend(d_u_hin,d_v_hin,d_t_hin,dq0,dql0,'hin') |
---|
3381 | |
---|
3382 | ENDIF |
---|
3383 | c |
---|
3384 | |
---|
3385 | c |
---|
3386 | cIM cf. FLott BEG |
---|
3387 | C STRESS NECESSAIRES: TOUTE LA PHYSIQUE |
---|
3388 | |
---|
3389 | if (mydebug) then |
---|
3390 | call writefield_phy('u_seri',u_seri,llm) |
---|
3391 | call writefield_phy('v_seri',v_seri,llm) |
---|
3392 | call writefield_phy('t_seri',t_seri,llm) |
---|
3393 | call writefield_phy('q_seri',q_seri,llm) |
---|
3394 | endif |
---|
3395 | |
---|
3396 | DO i = 1, klon |
---|
3397 | zustrph(i)=0. |
---|
3398 | zvstrph(i)=0. |
---|
3399 | ENDDO |
---|
3400 | DO k = 1, klev |
---|
3401 | DO i = 1, klon |
---|
3402 | zustrph(i)=zustrph(i)+(u_seri(i,k)-u(i,k))/dtime* |
---|
3403 | c (paprs(i,k)-paprs(i,k+1))/rg |
---|
3404 | zvstrph(i)=zvstrph(i)+(v_seri(i,k)-v(i,k))/dtime* |
---|
3405 | c (paprs(i,k)-paprs(i,k+1))/rg |
---|
3406 | ENDDO |
---|
3407 | ENDDO |
---|
3408 | c |
---|
3409 | cIM calcul composantes axiales du moment angulaire et couple des montagnes |
---|
3410 | c |
---|
3411 | IF (is_sequential) THEN |
---|
3412 | |
---|
3413 | CALL aaam_bud (27,klon,klev,jD_cur-jD_ref,jH_cur, |
---|
3414 | C ra,rg,romega, |
---|
3415 | C rlat,rlon,pphis, |
---|
3416 | C zustrdr,zustrli,zustrph, |
---|
3417 | C zvstrdr,zvstrli,zvstrph, |
---|
3418 | C paprs,u,v, |
---|
3419 | C aam, torsfc) |
---|
3420 | ENDIF |
---|
3421 | cIM cf. FLott END |
---|
3422 | cIM |
---|
3423 | IF (ip_ebil_phy.ge.2) THEN |
---|
3424 | ztit='after orography' |
---|
3425 | CALL diagetpq(airephy,ztit,ip_ebil_phy,2,2,dtime |
---|
3426 | e , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay |
---|
3427 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
3428 | END IF |
---|
3429 | c |
---|
3430 | c |
---|
3431 | !==================================================================== |
---|
3432 | ! Interface Simulateur COSP (Calipso, ISCCP, MISR, ..) |
---|
3433 | !==================================================================== |
---|
3434 | ! Abderrahmane 24.08.09 |
---|
3435 | |
---|
3436 | IF (ok_cosp) THEN |
---|
3437 | ! adeclarer |
---|
3438 | #ifdef CPP_COSP |
---|
3439 | IF (MOD(itap,NINT(freq_cosp/dtime)).EQ.0) THEN |
---|
3440 | |
---|
3441 | print*,'freq_cosp',freq_cosp |
---|
3442 | mr_ozone=wo(:, :, 1) * dobson_u * 1e3 / zmasse |
---|
3443 | ! print*,'Dans physiq.F avant appel cosp ref_liq,ref_ice=', |
---|
3444 | ! s ref_liq,ref_ice |
---|
3445 | call phys_cosp(itap,dtime,freq_cosp, |
---|
3446 | $ ok_mensuelCOSP,ok_journeCOSP,ok_hfCOSP, |
---|
3447 | $ ecrit_mth,ecrit_day,ecrit_hf, |
---|
3448 | $ klon,klev,rlon,rlat,presnivs,overlap, |
---|
3449 | $ fract,ref_liq,ref_ice, |
---|
3450 | $ pctsrf(:,is_ter)+pctsrf(:,is_lic), |
---|
3451 | $ zu10m,zv10m,pphis, |
---|
3452 | $ zphi,paprs(:,1:klev),pplay,zxtsol,t_seri, |
---|
3453 | $ qx(:,:,ivap),zx_rh,cldfra,rnebcon,flwc,fiwc, |
---|
3454 | $ prfl(:,1:klev),psfl(:,1:klev), |
---|
3455 | $ pmflxr(:,1:klev),pmflxs(:,1:klev), |
---|
3456 | $ mr_ozone,cldtaurad, cldemirad) |
---|
3457 | |
---|
3458 | ! L calipso2D,calipso3D,cfadlidar,parasolrefl,atb,betamol, |
---|
3459 | ! L cfaddbze,clcalipso2,dbze,cltlidarradar, |
---|
3460 | ! M clMISR, |
---|
3461 | ! R clisccp2,boxtauisccp,boxptopisccp,tclisccp,ctpisccp, |
---|
3462 | ! I tauisccp,albisccp,meantbisccp,meantbclrisccp) |
---|
3463 | |
---|
3464 | ENDIF |
---|
3465 | |
---|
3466 | #endif |
---|
3467 | ENDIF !ok_cosp |
---|
3468 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
3469 | cAA |
---|
3470 | cAA Installation de l'interface online-offline pour traceurs |
---|
3471 | cAA |
---|
3472 | c==================================================================== |
---|
3473 | c Calcul des tendances traceurs |
---|
3474 | c==================================================================== |
---|
3475 | C |
---|
3476 | |
---|
3477 | call phytrac ( |
---|
3478 | I itap, days_elapsed+1, jH_cur, debut, |
---|
3479 | I lafin, dtime, u, v, t, |
---|
3480 | I paprs, pplay, pmfu, pmfd, |
---|
3481 | I pen_u, pde_u, pen_d, pde_d, |
---|
3482 | I cdragh, coefh, fm_therm, entr_therm, |
---|
3483 | I u1, v1, ftsol, pctsrf, |
---|
3484 | I rlat, frac_impa, frac_nucl,rlon, |
---|
3485 | I presnivs, pphis, pphi, albsol1, |
---|
3486 | I qx(:,:,ivap),rhcl, cldfra, rneb, |
---|
3487 | I diafra, cldliq, itop_con, ibas_con, |
---|
3488 | I pmflxr, pmflxs, prfl, psfl, |
---|
3489 | I da, phi, mp, upwd, |
---|
3490 | I dnwd, aerosol_couple, flxmass_w, |
---|
3491 | I tau_aero, piz_aero, cg_aero, ccm, |
---|
3492 | I rfname, |
---|
3493 | O tr_seri) |
---|
3494 | |
---|
3495 | IF (offline) THEN |
---|
3496 | |
---|
3497 | print*,'Attention on met a 0 les thermiques pour phystoke' |
---|
3498 | call phystokenc ( |
---|
3499 | I nlon,klev,pdtphys,rlon,rlat, |
---|
3500 | I t,pmfu, pmfd, pen_u, pde_u, pen_d, pde_d, |
---|
3501 | I fm_therm,entr_therm, |
---|
3502 | I cdragh,coefh,u1,v1,ftsol,pctsrf, |
---|
3503 | I frac_impa, frac_nucl, |
---|
3504 | I pphis,airephy,dtime,itap) |
---|
3505 | |
---|
3506 | |
---|
3507 | ENDIF |
---|
3508 | |
---|
3509 | c |
---|
3510 | c Calculer le transport de l'eau et de l'energie (diagnostique) |
---|
3511 | c |
---|
3512 | CALL transp (paprs,zxtsol, |
---|
3513 | e t_seri, q_seri, u_seri, v_seri, zphi, |
---|
3514 | s ve, vq, ue, uq) |
---|
3515 | c |
---|
3516 | cIM global posePB BEG |
---|
3517 | IF(1.EQ.0) THEN |
---|
3518 | c |
---|
3519 | CALL transp_lay (paprs,zxtsol, |
---|
3520 | e t_seri, q_seri, u_seri, v_seri, zphi, |
---|
3521 | s ve_lay, vq_lay, ue_lay, uq_lay) |
---|
3522 | c |
---|
3523 | ENDIF !(1.EQ.0) THEN |
---|
3524 | cIM global posePB END |
---|
3525 | c Accumuler les variables a stocker dans les fichiers histoire: |
---|
3526 | c |
---|
3527 | c+jld ec_conser |
---|
3528 | DO k = 1, klev |
---|
3529 | DO i = 1, klon |
---|
3530 | ZRCPD = RCPD*(1.0+RVTMP2*q_seri(i,k)) |
---|
3531 | d_t_ec(i,k)=0.5/ZRCPD |
---|
3532 | $ *(u(i,k)**2+v(i,k)**2-u_seri(i,k)**2-v_seri(i,k)**2) |
---|
3533 | ENDDO |
---|
3534 | ENDDO |
---|
3535 | |
---|
3536 | DO k = 1, klev |
---|
3537 | DO i = 1, klon |
---|
3538 | t_seri(i,k)=t_seri(i,k)+d_t_ec(i,k) |
---|
3539 | d_t_ec(i,k) = d_t_ec(i,k)/dtime |
---|
3540 | END DO |
---|
3541 | END DO |
---|
3542 | c-jld ec_conser |
---|
3543 | cIM |
---|
3544 | IF (ip_ebil_phy.ge.1) THEN |
---|
3545 | ztit='after physic' |
---|
3546 | CALL diagetpq(airephy,ztit,ip_ebil_phy,1,1,dtime |
---|
3547 | e , t_seri,q_seri,ql_seri,qs_seri,u_seri,v_seri,paprs,pplay |
---|
3548 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
3549 | C Comme les tendances de la physique sont ajoute dans la dynamique, |
---|
3550 | C on devrait avoir que la variation d'entalpie par la dynamique |
---|
3551 | C est egale a la variation de la physique au pas de temps precedent. |
---|
3552 | C Donc la somme de ces 2 variations devrait etre nulle. |
---|
3553 | |
---|
3554 | call diagphy(airephy,ztit,ip_ebil_phy |
---|
3555 | e , topsw, toplw, solsw, sollw, sens |
---|
3556 | e , evap, rain_fall, snow_fall, ztsol |
---|
3557 | e , d_h_vcol, d_qt, d_ec |
---|
3558 | s , fs_bound, fq_bound ) |
---|
3559 | C |
---|
3560 | d_h_vcol_phy=d_h_vcol |
---|
3561 | C |
---|
3562 | END IF |
---|
3563 | C |
---|
3564 | c======================================================================= |
---|
3565 | c SORTIES |
---|
3566 | c======================================================================= |
---|
3567 | |
---|
3568 | cIM Interpolation sur les niveaux de pression du NMC |
---|
3569 | c ------------------------------------------------- |
---|
3570 | c |
---|
3571 | #include "calcul_STDlev.h" |
---|
3572 | twriteSTD(:,:,1)=tsumSTD(:,:,1) |
---|
3573 | qwriteSTD(:,:,1)=qsumSTD(:,:,1) |
---|
3574 | rhwriteSTD(:,:,1)=rhsumSTD(:,:,1) |
---|
3575 | phiwriteSTD(:,:,1)=phisumSTD(:,:,1) |
---|
3576 | uwriteSTD(:,:,1)=usumSTD(:,:,1) |
---|
3577 | vwriteSTD(:,:,1)=vsumSTD(:,:,1) |
---|
3578 | wwriteSTD(:,:,1)=wsumSTD(:,:,1) |
---|
3579 | |
---|
3580 | twriteSTD(:,:,2)=tsumSTD(:,:,2) |
---|
3581 | qwriteSTD(:,:,2)=qsumSTD(:,:,2) |
---|
3582 | rhwriteSTD(:,:,2)=rhsumSTD(:,:,2) |
---|
3583 | phiwriteSTD(:,:,2)=phisumSTD(:,:,2) |
---|
3584 | uwriteSTD(:,:,2)=usumSTD(:,:,2) |
---|
3585 | vwriteSTD(:,:,2)=vsumSTD(:,:,2) |
---|
3586 | wwriteSTD(:,:,2)=wsumSTD(:,:,2) |
---|
3587 | |
---|
3588 | twriteSTD(:,:,3)=tlevSTD(:,:) |
---|
3589 | qwriteSTD(:,:,3)=qlevSTD(:,:) |
---|
3590 | rhwriteSTD(:,:,3)=rhlevSTD(:,:) |
---|
3591 | phiwriteSTD(:,:,3)=philevSTD(:,:) |
---|
3592 | uwriteSTD(:,:,3)=ulevSTD(:,:) |
---|
3593 | vwriteSTD(:,:,3)=vlevSTD(:,:) |
---|
3594 | wwriteSTD(:,:,3)=wlevSTD(:,:) |
---|
3595 | |
---|
3596 | twriteSTD(:,:,4)=tlevSTD(:,:) |
---|
3597 | qwriteSTD(:,:,4)=qlevSTD(:,:) |
---|
3598 | rhwriteSTD(:,:,4)=rhlevSTD(:,:) |
---|
3599 | phiwriteSTD(:,:,4)=philevSTD(:,:) |
---|
3600 | uwriteSTD(:,:,4)=ulevSTD(:,:) |
---|
3601 | vwriteSTD(:,:,4)=vlevSTD(:,:) |
---|
3602 | wwriteSTD(:,:,4)=wlevSTD(:,:) |
---|
3603 | c |
---|
3604 | cIM initialisation 5eme fichier de sortie |
---|
3605 | twriteSTD(:,:,5)=tlevSTD(:,:) |
---|
3606 | qwriteSTD(:,:,5)=qlevSTD(:,:) |
---|
3607 | rhwriteSTD(:,:,5)=rhlevSTD(:,:) |
---|
3608 | phiwriteSTD(:,:,5)=philevSTD(:,:) |
---|
3609 | uwriteSTD(:,:,5)=ulevSTD(:,:) |
---|
3610 | vwriteSTD(:,:,5)=vlevSTD(:,:) |
---|
3611 | wwriteSTD(:,:,5)=wlevSTD(:,:) |
---|
3612 | c |
---|
3613 | cIM initialisation 6eme fichier de sortie |
---|
3614 | twriteSTD(:,:,6)=tlevSTD(:,:) |
---|
3615 | qwriteSTD(:,:,6)=qlevSTD(:,:) |
---|
3616 | rhwriteSTD(:,:,6)=rhlevSTD(:,:) |
---|
3617 | phiwriteSTD(:,:,6)=philevSTD(:,:) |
---|
3618 | uwriteSTD(:,:,6)=ulevSTD(:,:) |
---|
3619 | vwriteSTD(:,:,6)=vlevSTD(:,:) |
---|
3620 | wwriteSTD(:,:,6)=wlevSTD(:,:) |
---|
3621 | cIM for NMC files |
---|
3622 | DO n=1, nlevSTD3 |
---|
3623 | DO k=1, nlevSTD |
---|
3624 | if(rlevSTD3(n).EQ.rlevSTD(k)) THEN |
---|
3625 | twriteSTD3(:,n)=tlevSTD(:,k) |
---|
3626 | qwriteSTD3(:,n)=qlevSTD(:,k) |
---|
3627 | rhwriteSTD3(:,n)=rhlevSTD(:,k) |
---|
3628 | phiwriteSTD3(:,n)=philevSTD(:,k) |
---|
3629 | uwriteSTD3(:,n)=ulevSTD(:,k) |
---|
3630 | vwriteSTD3(:,n)=vlevSTD(:,k) |
---|
3631 | wwriteSTD3(:,n)=wlevSTD(:,k) |
---|
3632 | endif !rlevSTD3(n).EQ.rlevSTD(k) |
---|
3633 | ENDDO |
---|
3634 | ENDDO |
---|
3635 | c |
---|
3636 | DO n=1, nlevSTD8 |
---|
3637 | DO k=1, nlevSTD |
---|
3638 | if(rlevSTD8(n).EQ.rlevSTD(k)) THEN |
---|
3639 | tnondefSTD8(:,n)=tnondef(:,k,2) |
---|
3640 | twriteSTD8(:,n)=tsumSTD(:,k,2) |
---|
3641 | qwriteSTD8(:,n)=qsumSTD(:,k,2) |
---|
3642 | rhwriteSTD8(:,n)=rhsumSTD(:,k,2) |
---|
3643 | phiwriteSTD8(:,n)=phisumSTD(:,k,2) |
---|
3644 | uwriteSTD8(:,n)=usumSTD(:,k,2) |
---|
3645 | vwriteSTD8(:,n)=vsumSTD(:,k,2) |
---|
3646 | wwriteSTD8(:,n)=wsumSTD(:,k,2) |
---|
3647 | endif !rlevSTD8(n).EQ.rlevSTD(k) |
---|
3648 | ENDDO |
---|
3649 | ENDDO |
---|
3650 | c |
---|
3651 | c slp sea level pressure |
---|
3652 | slp(:) = paprs(:,1)*exp(pphis(:)/(RD*t_seri(:,1))) |
---|
3653 | c |
---|
3654 | ccc prw = eau precipitable |
---|
3655 | DO i = 1, klon |
---|
3656 | prw(i) = 0. |
---|
3657 | DO k = 1, klev |
---|
3658 | prw(i) = prw(i) + |
---|
3659 | . q_seri(i,k)*(paprs(i,k)-paprs(i,k+1))/RG |
---|
3660 | ENDDO |
---|
3661 | ENDDO |
---|
3662 | c |
---|
3663 | cIM initialisation + calculs divers diag AMIP2 |
---|
3664 | c |
---|
3665 | #include "calcul_divers.h" |
---|
3666 | c |
---|
3667 | IF (config_inca /= 'none') THEN |
---|
3668 | #ifdef INCA |
---|
3669 | CALL VTe(VTphysiq) |
---|
3670 | CALL VTb(VTinca) |
---|
3671 | |
---|
3672 | CALL chemhook_end ( |
---|
3673 | $ dtime, |
---|
3674 | $ pplay, |
---|
3675 | $ t_seri, |
---|
3676 | $ tr_seri, |
---|
3677 | $ nbtr, |
---|
3678 | $ paprs, |
---|
3679 | $ q_seri, |
---|
3680 | $ airephy, |
---|
3681 | $ pphi, |
---|
3682 | $ pphis, |
---|
3683 | $ zx_rh) |
---|
3684 | |
---|
3685 | CALL VTe(VTinca) |
---|
3686 | CALL VTb(VTphysiq) |
---|
3687 | #endif |
---|
3688 | END IF |
---|
3689 | |
---|
3690 | c============================================================= |
---|
3691 | c |
---|
3692 | c Convertir les incrementations en tendances |
---|
3693 | c |
---|
3694 | if (mydebug) then |
---|
3695 | call writefield_phy('u_seri',u_seri,llm) |
---|
3696 | call writefield_phy('v_seri',v_seri,llm) |
---|
3697 | call writefield_phy('t_seri',t_seri,llm) |
---|
3698 | call writefield_phy('q_seri',q_seri,llm) |
---|
3699 | endif |
---|
3700 | |
---|
3701 | DO k = 1, klev |
---|
3702 | DO i = 1, klon |
---|
3703 | d_u(i,k) = ( u_seri(i,k) - u(i,k) ) / dtime |
---|
3704 | d_v(i,k) = ( v_seri(i,k) - v(i,k) ) / dtime |
---|
3705 | d_t(i,k) = ( t_seri(i,k)-t(i,k) ) / dtime |
---|
3706 | d_qx(i,k,ivap) = ( q_seri(i,k) - qx(i,k,ivap) ) / dtime |
---|
3707 | d_qx(i,k,iliq) = ( ql_seri(i,k) - qx(i,k,iliq) ) / dtime |
---|
3708 | ENDDO |
---|
3709 | ENDDO |
---|
3710 | c |
---|
3711 | IF (nqtot.GE.3) THEN |
---|
3712 | DO iq = 3, nqtot |
---|
3713 | DO k = 1, klev |
---|
3714 | DO i = 1, klon |
---|
3715 | d_qx(i,k,iq) = ( tr_seri(i,k,iq-2) - qx(i,k,iq) ) / dtime |
---|
3716 | ENDDO |
---|
3717 | ENDDO |
---|
3718 | ENDDO |
---|
3719 | ENDIF |
---|
3720 | c |
---|
3721 | cIM rajout diagnostiques bilan KP pour analyse MJO par Jun-Ichi Yano |
---|
3722 | cIM global posePB#include "write_bilKP_ins.h" |
---|
3723 | cIM global posePB#include "write_bilKP_ave.h" |
---|
3724 | c |
---|
3725 | |
---|
3726 | c Sauvegarder les valeurs de t et q a la fin de la physique: |
---|
3727 | c |
---|
3728 | DO k = 1, klev |
---|
3729 | DO i = 1, klon |
---|
3730 | u_ancien(i,k) = u_seri(i,k) |
---|
3731 | v_ancien(i,k) = v_seri(i,k) |
---|
3732 | t_ancien(i,k) = t_seri(i,k) |
---|
3733 | q_ancien(i,k) = q_seri(i,k) |
---|
3734 | ENDDO |
---|
3735 | ENDDO |
---|
3736 | c |
---|
3737 | !========================================================================== |
---|
3738 | ! Sorties des tendances pour un point particulier |
---|
3739 | ! a utiliser en 1D, avec igout=1 ou en 3D sur un point particulier |
---|
3740 | ! pour le debug |
---|
3741 | ! La valeur de igout est attribuee plus haut dans le programme |
---|
3742 | !========================================================================== |
---|
3743 | |
---|
3744 | if (prt_level.ge.1) then |
---|
3745 | write(lunout,*) 'FIN DE PHYSIQ !!!!!!!!!!!!!!!!!!!!' |
---|
3746 | write(lunout,*) |
---|
3747 | s 'nlon,klev,nqtot,debut,lafin,jD_cur, jH_cur, pdtphys pct tlos' |
---|
3748 | write(lunout,*) |
---|
3749 | s nlon,klev,nqtot,debut,lafin, jD_cur, jH_cur ,pdtphys, |
---|
3750 | s pctsrf(igout,is_ter), pctsrf(igout,is_lic),pctsrf(igout,is_oce), |
---|
3751 | s pctsrf(igout,is_sic) |
---|
3752 | write(lunout,*) 'd_t_dyn,d_t_con,d_t_lsc,d_t_ajsb,d_t_ajs,d_t_eva' |
---|
3753 | do k=1,klev |
---|
3754 | write(lunout,*) d_t_dyn(igout,k),d_t_con(igout,k), |
---|
3755 | s d_t_lsc(igout,k),d_t_ajsb(igout,k),d_t_ajs(igout,k), |
---|
3756 | s d_t_eva(igout,k) |
---|
3757 | enddo |
---|
3758 | write(lunout,*) 'cool,heat' |
---|
3759 | do k=1,klev |
---|
3760 | write(lunout,*) cool(igout,k),heat(igout,k) |
---|
3761 | enddo |
---|
3762 | |
---|
3763 | write(lunout,*) 'd_t_oli,d_t_vdf,d_t_oro,d_t_lif,d_t_ec' |
---|
3764 | do k=1,klev |
---|
3765 | write(lunout,*) d_t_oli(igout,k),d_t_vdf(igout,k), |
---|
3766 | s d_t_oro(igout,k),d_t_lif(igout,k),d_t_ec(igout,k) |
---|
3767 | enddo |
---|
3768 | |
---|
3769 | write(lunout,*) 'd_ps ',d_ps(igout) |
---|
3770 | write(lunout,*) 'd_u, d_v, d_t, d_qx1, d_qx2 ' |
---|
3771 | do k=1,klev |
---|
3772 | write(lunout,*) d_u(igout,k),d_v(igout,k),d_t(igout,k), |
---|
3773 | s d_qx(igout,k,1),d_qx(igout,k,2) |
---|
3774 | enddo |
---|
3775 | endif |
---|
3776 | |
---|
3777 | !========================================================================== |
---|
3778 | |
---|
3779 | c============================================================ |
---|
3780 | c Calcul de la temperature potentielle |
---|
3781 | c============================================================ |
---|
3782 | DO k = 1, klev |
---|
3783 | DO i = 1, klon |
---|
3784 | cJYG/IM theta en debut du pas de temps |
---|
3785 | cJYG/IM theta(i,k)=t(i,k)*(100000./pplay(i,k))**(RD/RCPD) |
---|
3786 | cJYG/IM theta en fin de pas de temps de physique |
---|
3787 | theta(i,k)=t_seri(i,k)*(100000./pplay(i,k))**(RD/RCPD) |
---|
3788 | ENDDO |
---|
3789 | ENDDO |
---|
3790 | c |
---|
3791 | |
---|
3792 | c 22.03.04 BEG |
---|
3793 | c============================================================= |
---|
3794 | c Ecriture des sorties |
---|
3795 | c============================================================= |
---|
3796 | #ifdef CPP_IOIPSL |
---|
3797 | |
---|
3798 | c Recupere des varibles calcule dans differents modules |
---|
3799 | c pour ecriture dans histxxx.nc |
---|
3800 | |
---|
3801 | ! Get some variables from module fonte_neige_mod |
---|
3802 | CALL fonte_neige_get_vars(pctsrf, |
---|
3803 | . zxfqcalving, zxfqfonte, zxffonte) |
---|
3804 | |
---|
3805 | |
---|
3806 | #include "phys_output_write.h" |
---|
3807 | |
---|
3808 | #ifdef histISCCP |
---|
3809 | #include "write_histISCCP.h" |
---|
3810 | #endif |
---|
3811 | |
---|
3812 | #ifdef histNMC |
---|
3813 | #include "write_histhfNMC.h" |
---|
3814 | #include "write_histdayNMC.h" |
---|
3815 | #include "write_histmthNMC.h" |
---|
3816 | #endif |
---|
3817 | |
---|
3818 | #include "write_histday_seri.h" |
---|
3819 | |
---|
3820 | #include "write_paramLMDZ_phy.h" |
---|
3821 | |
---|
3822 | #endif |
---|
3823 | |
---|
3824 | c 22.03.04 END |
---|
3825 | c |
---|
3826 | c==================================================================== |
---|
3827 | c Si c'est la fin, il faut conserver l'etat de redemarrage |
---|
3828 | c==================================================================== |
---|
3829 | c |
---|
3830 | |
---|
3831 | |
---|
3832 | IF (lafin) THEN |
---|
3833 | itau_phy = itau_phy + itap |
---|
3834 | CALL phyredem ("restartphy.nc") |
---|
3835 | ! open(97,form="unformatted",file="finbin") |
---|
3836 | ! write(97) u_seri,v_seri,t_seri,q_seri |
---|
3837 | ! close(97) |
---|
3838 | C$OMP MASTER |
---|
3839 | if (read_climoz >= 1) then |
---|
3840 | if (is_mpi_root) then |
---|
3841 | call nf95_close(ncid_climoz) |
---|
3842 | end if |
---|
3843 | deallocate(press_climoz) ! pointer |
---|
3844 | end if |
---|
3845 | C$OMP END MASTER |
---|
3846 | ENDIF |
---|
3847 | |
---|
3848 | ! first=.false. |
---|
3849 | |
---|
3850 | RETURN |
---|
3851 | END |
---|
3852 | FUNCTION qcheck(klon,klev,paprs,q,ql,aire) |
---|
3853 | IMPLICIT none |
---|
3854 | c |
---|
3855 | c Calculer et imprimer l'eau totale. A utiliser pour verifier |
---|
3856 | c la conservation de l'eau |
---|
3857 | c |
---|
3858 | #include "YOMCST.h" |
---|
3859 | INTEGER klon,klev |
---|
3860 | REAL paprs(klon,klev+1), q(klon,klev), ql(klon,klev) |
---|
3861 | REAL aire(klon) |
---|
3862 | REAL qtotal, zx, qcheck |
---|
3863 | INTEGER i, k |
---|
3864 | c |
---|
3865 | zx = 0.0 |
---|
3866 | DO i = 1, klon |
---|
3867 | zx = zx + aire(i) |
---|
3868 | ENDDO |
---|
3869 | qtotal = 0.0 |
---|
3870 | DO k = 1, klev |
---|
3871 | DO i = 1, klon |
---|
3872 | qtotal = qtotal + (q(i,k)+ql(i,k)) * aire(i) |
---|
3873 | . *(paprs(i,k)-paprs(i,k+1))/RG |
---|
3874 | ENDDO |
---|
3875 | ENDDO |
---|
3876 | c |
---|
3877 | qcheck = qtotal/zx |
---|
3878 | c |
---|
3879 | RETURN |
---|
3880 | END |
---|
3881 | SUBROUTINE gr_fi_ecrit(nfield,nlon,iim,jjmp1,fi,ecrit) |
---|
3882 | IMPLICIT none |
---|
3883 | c |
---|
3884 | c Tranformer une variable de la grille physique a |
---|
3885 | c la grille d'ecriture |
---|
3886 | c |
---|
3887 | INTEGER nfield,nlon,iim,jjmp1, jjm |
---|
3888 | REAL fi(nlon,nfield), ecrit(iim*jjmp1,nfield) |
---|
3889 | c |
---|
3890 | INTEGER i, n, ig |
---|
3891 | c |
---|
3892 | jjm = jjmp1 - 1 |
---|
3893 | DO n = 1, nfield |
---|
3894 | DO i=1,iim |
---|
3895 | ecrit(i,n) = fi(1,n) |
---|
3896 | ecrit(i+jjm*iim,n) = fi(nlon,n) |
---|
3897 | ENDDO |
---|
3898 | DO ig = 1, nlon - 2 |
---|
3899 | ecrit(iim+ig,n) = fi(1+ig,n) |
---|
3900 | ENDDO |
---|
3901 | ENDDO |
---|
3902 | RETURN |
---|
3903 | END |
---|