[1601] | 1 | ! |
---|
| 2 | ! $Id $ |
---|
| 3 | ! |
---|
[1108] | 4 | MODULE filtreg_mod |
---|
[1086] | 5 | |
---|
| 6 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: matriceun,matriceus,matricevn |
---|
| 7 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: matricevs,matrinvn,matrinvs |
---|
| 8 | |
---|
| 9 | CONTAINS |
---|
| 10 | |
---|
| 11 | SUBROUTINE inifilr |
---|
[1279] | 12 | USE mod_filtre_fft |
---|
[1086] | 13 | ! |
---|
| 14 | ! ... H. Upadhyaya, O.Sharma ... |
---|
| 15 | ! |
---|
| 16 | IMPLICIT NONE |
---|
| 17 | ! |
---|
| 18 | ! version 3 ..... |
---|
| 19 | |
---|
| 20 | ! Correction le 28/10/97 P. Le Van . |
---|
| 21 | ! ------------------------------------------------------------------- |
---|
| 22 | #include "dimensions.h" |
---|
| 23 | #include "paramet.h" |
---|
| 24 | ! ------------------------------------------------------------------- |
---|
| 25 | #include "comgeom.h" |
---|
| 26 | #include "coefils.h" |
---|
| 27 | #include "logic.h" |
---|
| 28 | #include "serre.h" |
---|
| 29 | |
---|
| 30 | REAL dlonu(iim),dlatu(jjm) |
---|
| 31 | REAL rlamda( iim ), eignvl( iim ) |
---|
| 32 | ! |
---|
| 33 | |
---|
| 34 | REAL lamdamax,pi,cof |
---|
| 35 | INTEGER i,j,modemax,imx,k,kf,ii |
---|
| 36 | REAL dymin,dxmin,colat0 |
---|
| 37 | REAL eignft(iim,iim), coff |
---|
| 38 | |
---|
| 39 | LOGICAL, SAVE :: first_call_inifilr = .TRUE. |
---|
| 40 | |
---|
| 41 | #ifdef CRAY |
---|
| 42 | INTEGER ISMIN |
---|
| 43 | EXTERNAL ISMIN |
---|
| 44 | INTEGER iymin |
---|
| 45 | INTEGER ixmineq |
---|
| 46 | #endif |
---|
| 47 | ! |
---|
| 48 | ! ------------------------------------------------------------ |
---|
| 49 | ! This routine computes the eigenfunctions of the laplacien |
---|
| 50 | ! on the stretched grid, and the filtering coefficients |
---|
| 51 | ! |
---|
| 52 | ! We designate: |
---|
| 53 | ! eignfn eigenfunctions of the discrete laplacien |
---|
| 54 | ! eigenvl eigenvalues |
---|
| 55 | ! jfiltn indexof the last scalar line filtered in NH |
---|
| 56 | ! jfilts index of the first line filtered in SH |
---|
| 57 | ! modfrst index of the mode from WHERE modes are filtered |
---|
| 58 | ! modemax maximum number of modes ( im ) |
---|
| 59 | ! coefil filtering coefficients ( lamda_max*COS(rlat)/lamda ) |
---|
| 60 | ! sdd SQRT( dx ) |
---|
| 61 | ! |
---|
| 62 | ! the modes are filtered from modfrst to modemax |
---|
| 63 | ! |
---|
| 64 | !----------------------------------------------------------- |
---|
| 65 | ! |
---|
| 66 | |
---|
| 67 | pi = 2. * ASIN( 1. ) |
---|
| 68 | |
---|
| 69 | DO i = 1,iim |
---|
| 70 | dlonu(i) = xprimu( i ) |
---|
| 71 | ENDDO |
---|
| 72 | ! |
---|
| 73 | CALL inifgn(eignvl) |
---|
| 74 | ! |
---|
[1601] | 75 | PRINT *,'inifilr: EIGNVL ' |
---|
[1086] | 76 | PRINT 250,eignvl |
---|
[1601] | 77 | 250 FORMAT( 1x,5e14.6) |
---|
[1086] | 78 | ! |
---|
| 79 | ! compute eigenvalues and eigenfunctions |
---|
| 80 | ! |
---|
| 81 | ! |
---|
| 82 | !................................................................. |
---|
| 83 | ! |
---|
| 84 | ! compute the filtering coefficients for scalar lines and |
---|
| 85 | ! meridional wind v-lines |
---|
| 86 | ! |
---|
| 87 | ! we filter all those latitude lines WHERE coefil < 1 |
---|
| 88 | ! NO FILTERING AT POLES |
---|
| 89 | ! |
---|
| 90 | ! colat0 is to be used when alpha (stretching coefficient) |
---|
| 91 | ! is set equal to zero for the regular grid CASE |
---|
| 92 | ! |
---|
| 93 | ! ....... Calcul de colat0 ......... |
---|
| 94 | ! ..... colat0 = minimum de ( 0.5, min dy/ min dx ) ... |
---|
| 95 | ! |
---|
| 96 | ! |
---|
| 97 | DO j = 1,jjm |
---|
| 98 | dlatu( j ) = rlatu( j ) - rlatu( j+1 ) |
---|
| 99 | ENDDO |
---|
| 100 | ! |
---|
| 101 | #ifdef CRAY |
---|
| 102 | iymin = ISMIN( jjm, dlatu, 1 ) |
---|
| 103 | ixmineq = ISMIN( iim, dlonu, 1 ) |
---|
| 104 | dymin = dlatu( iymin ) |
---|
| 105 | dxmin = dlonu( ixmineq ) |
---|
| 106 | #else |
---|
| 107 | dxmin = dlonu(1) |
---|
| 108 | DO i = 2, iim |
---|
| 109 | dxmin = MIN( dxmin,dlonu(i) ) |
---|
| 110 | ENDDO |
---|
| 111 | dymin = dlatu(1) |
---|
| 112 | DO j = 2, jjm |
---|
| 113 | dymin = MIN( dymin,dlatu(j) ) |
---|
| 114 | ENDDO |
---|
| 115 | #endif |
---|
| 116 | ! |
---|
[1601] | 117 | ! For a regular grid, we want the filter to start at latitudes |
---|
| 118 | ! corresponding to lengths dx of the same size as dy (in terms |
---|
| 119 | ! of angles: dx=2*dy) => at colat0=0.5 (i.e. colatitude=30 degrees |
---|
| 120 | ! <=> latitude=60 degrees). |
---|
| 121 | ! Same idea for the zoomed grid: start filtering polewards as soon |
---|
| 122 | ! as length dx becomes of the same size as dy |
---|
[1086] | 123 | ! |
---|
| 124 | colat0 = MIN( 0.5, dymin/dxmin ) |
---|
| 125 | ! |
---|
| 126 | IF( .NOT.fxyhypb.AND.ysinus ) THEN |
---|
| 127 | colat0 = 0.6 |
---|
| 128 | ! ...... a revoir pour ysinus ! ....... |
---|
| 129 | alphax = 0. |
---|
| 130 | ENDIF |
---|
| 131 | ! |
---|
| 132 | PRINT 50, colat0,alphax |
---|
| 133 | 50 FORMAT(/15x,' Inifilr colat0 alphax ',2e16.7) |
---|
| 134 | ! |
---|
| 135 | IF(alphax.EQ.1. ) THEN |
---|
| 136 | PRINT *,' Inifilr alphax doit etre < a 1. Corriger ' |
---|
| 137 | STOP |
---|
| 138 | ENDIF |
---|
| 139 | ! |
---|
| 140 | lamdamax = iim / ( pi * colat0 * ( 1. - alphax ) ) |
---|
| 141 | |
---|
| 142 | ! ... Correction le 28/10/97 ( P.Le Van ) .. |
---|
| 143 | ! |
---|
| 144 | DO i = 2,iim |
---|
| 145 | rlamda( i ) = lamdamax/ SQRT( ABS( eignvl(i) ) ) |
---|
| 146 | ENDDO |
---|
| 147 | ! |
---|
| 148 | |
---|
| 149 | DO j = 1,jjm |
---|
| 150 | DO i = 1,iim |
---|
| 151 | coefilu( i,j ) = 0.0 |
---|
| 152 | coefilv( i,j ) = 0.0 |
---|
| 153 | coefilu2( i,j ) = 0.0 |
---|
| 154 | coefilv2( i,j ) = 0.0 |
---|
| 155 | ENDDO |
---|
| 156 | ENDDO |
---|
| 157 | |
---|
| 158 | ! |
---|
| 159 | ! ... Determination de jfiltnu,jfiltnv,jfiltsu,jfiltsv .... |
---|
| 160 | ! ......................................................... |
---|
| 161 | ! |
---|
| 162 | modemax = iim |
---|
| 163 | |
---|
| 164 | !!!! imx = modemax - 4 * (modemax/iim) |
---|
| 165 | |
---|
| 166 | imx = iim |
---|
| 167 | ! |
---|
[1601] | 168 | PRINT *,'inifilr: TRUNCATION AT ',imx |
---|
[1086] | 169 | ! |
---|
[1601] | 170 | ! Ehouarn: set up some defaults |
---|
| 171 | jfiltnu=2 ! avoid north pole |
---|
| 172 | jfiltsu=jjm ! avoid south pole (which is at jjm+1) |
---|
| 173 | jfiltnv=1 ! NB: no poles on the V grid |
---|
| 174 | jfiltsv=jjm |
---|
| 175 | |
---|
[1086] | 176 | DO j = 2, jjm/2+1 |
---|
| 177 | cof = COS( rlatu(j) )/ colat0 |
---|
| 178 | IF ( cof .LT. 1. ) THEN |
---|
[1601] | 179 | IF( rlamda(imx) * COS(rlatu(j) ).LT.1. ) THEN |
---|
| 180 | jfiltnu= j |
---|
| 181 | ENDIF |
---|
[1086] | 182 | ENDIF |
---|
| 183 | |
---|
| 184 | cof = COS( rlatu(jjp1-j+1) )/ colat0 |
---|
| 185 | IF ( cof .LT. 1. ) THEN |
---|
[1601] | 186 | IF( rlamda(imx) * COS(rlatu(jjp1-j+1) ).LT.1. ) THEN |
---|
[1086] | 187 | jfiltsu= jjp1-j+1 |
---|
[1601] | 188 | ENDIF |
---|
[1086] | 189 | ENDIF |
---|
| 190 | ENDDO |
---|
| 191 | ! |
---|
| 192 | DO j = 1, jjm/2 |
---|
| 193 | cof = COS( rlatv(j) )/ colat0 |
---|
| 194 | IF ( cof .LT. 1. ) THEN |
---|
[1601] | 195 | IF( rlamda(imx) * COS(rlatv(j) ).LT.1. ) THEN |
---|
| 196 | jfiltnv= j |
---|
| 197 | ENDIF |
---|
[1086] | 198 | ENDIF |
---|
| 199 | |
---|
| 200 | cof = COS( rlatv(jjm-j+1) )/ colat0 |
---|
| 201 | IF ( cof .LT. 1. ) THEN |
---|
[1601] | 202 | IF( rlamda(imx) * COS(rlatv(jjm-j+1) ).LT.1. ) THEN |
---|
[1086] | 203 | jfiltsv= jjm-j+1 |
---|
[1601] | 204 | ENDIF |
---|
[1086] | 205 | ENDIF |
---|
| 206 | ENDDO |
---|
| 207 | ! |
---|
| 208 | |
---|
| 209 | IF( jfiltnu.GT. jjm/2 +1 ) THEN |
---|
| 210 | PRINT *,' jfiltnu en dehors des valeurs acceptables ' ,jfiltnu |
---|
| 211 | STOP |
---|
| 212 | ENDIF |
---|
| 213 | |
---|
| 214 | IF( jfiltsu.GT. jjm +1 ) THEN |
---|
| 215 | PRINT *,' jfiltsu en dehors des valeurs acceptables ' ,jfiltsu |
---|
| 216 | STOP |
---|
| 217 | ENDIF |
---|
| 218 | |
---|
| 219 | IF( jfiltnv.GT. jjm/2 ) THEN |
---|
| 220 | PRINT *,' jfiltnv en dehors des valeurs acceptables ' ,jfiltnv |
---|
| 221 | STOP |
---|
| 222 | ENDIF |
---|
| 223 | |
---|
| 224 | IF( jfiltsv.GT. jjm ) THEN |
---|
| 225 | PRINT *,' jfiltsv en dehors des valeurs acceptables ' ,jfiltsv |
---|
| 226 | STOP |
---|
| 227 | ENDIF |
---|
| 228 | |
---|
[1601] | 229 | PRINT *,'inifilr: jfiltnv jfiltsv jfiltnu jfiltsu ' , & |
---|
[1086] | 230 | jfiltnv,jfiltsv,jfiltnu,jfiltsu |
---|
| 231 | |
---|
| 232 | IF(first_call_inifilr) THEN |
---|
| 233 | ALLOCATE(matriceun(iim,iim,jfiltnu)) |
---|
[1601] | 234 | ALLOCATE(matriceus(iim,iim,jjm-jfiltsu+1)) |
---|
[1086] | 235 | ALLOCATE(matricevn(iim,iim,jfiltnv)) |
---|
[1601] | 236 | ALLOCATE(matricevs(iim,iim,jjm-jfiltsv+1)) |
---|
[1086] | 237 | ALLOCATE( matrinvn(iim,iim,jfiltnu)) |
---|
[1601] | 238 | ALLOCATE( matrinvs(iim,iim,jjm-jfiltsu+1)) |
---|
[1086] | 239 | first_call_inifilr = .FALSE. |
---|
| 240 | ENDIF |
---|
| 241 | |
---|
| 242 | ! |
---|
| 243 | ! ... Determination de coefilu,coefilv,n=modfrstu,modfrstv .... |
---|
| 244 | !................................................................ |
---|
| 245 | ! |
---|
| 246 | ! |
---|
| 247 | DO j = 1,jjm |
---|
[1601] | 248 | !default initialization: all modes are retained (i.e. no filtering) |
---|
[1086] | 249 | modfrstu( j ) = iim |
---|
| 250 | modfrstv( j ) = iim |
---|
| 251 | ENDDO |
---|
| 252 | ! |
---|
| 253 | DO j = 2,jfiltnu |
---|
| 254 | DO k = 2,modemax |
---|
| 255 | cof = rlamda(k) * COS( rlatu(j) ) |
---|
| 256 | IF ( cof .LT. 1. ) GOTO 82 |
---|
| 257 | ENDDO |
---|
| 258 | GOTO 84 |
---|
| 259 | 82 modfrstu( j ) = k |
---|
| 260 | ! |
---|
| 261 | kf = modfrstu( j ) |
---|
| 262 | DO k = kf , modemax |
---|
| 263 | cof = rlamda(k) * COS( rlatu(j) ) |
---|
| 264 | coefilu(k,j) = cof - 1. |
---|
| 265 | coefilu2(k,j) = cof*cof - 1. |
---|
| 266 | ENDDO |
---|
| 267 | 84 CONTINUE |
---|
| 268 | ENDDO |
---|
| 269 | ! |
---|
| 270 | ! |
---|
| 271 | DO j = 1,jfiltnv |
---|
| 272 | ! |
---|
| 273 | DO k = 2,modemax |
---|
| 274 | cof = rlamda(k) * COS( rlatv(j) ) |
---|
| 275 | IF ( cof .LT. 1. ) GOTO 87 |
---|
| 276 | ENDDO |
---|
| 277 | GOTO 89 |
---|
| 278 | 87 modfrstv( j ) = k |
---|
| 279 | ! |
---|
| 280 | kf = modfrstv( j ) |
---|
| 281 | DO k = kf , modemax |
---|
| 282 | cof = rlamda(k) * COS( rlatv(j) ) |
---|
| 283 | coefilv(k,j) = cof - 1. |
---|
| 284 | coefilv2(k,j) = cof*cof - 1. |
---|
| 285 | ENDDO |
---|
| 286 | 89 CONTINUE |
---|
| 287 | ENDDO |
---|
| 288 | ! |
---|
| 289 | DO j = jfiltsu,jjm |
---|
| 290 | DO k = 2,modemax |
---|
| 291 | cof = rlamda(k) * COS( rlatu(j) ) |
---|
| 292 | IF ( cof .LT. 1. ) GOTO 92 |
---|
| 293 | ENDDO |
---|
| 294 | GOTO 94 |
---|
| 295 | 92 modfrstu( j ) = k |
---|
| 296 | ! |
---|
| 297 | kf = modfrstu( j ) |
---|
| 298 | DO k = kf , modemax |
---|
| 299 | cof = rlamda(k) * COS( rlatu(j) ) |
---|
| 300 | coefilu(k,j) = cof - 1. |
---|
| 301 | coefilu2(k,j) = cof*cof - 1. |
---|
| 302 | ENDDO |
---|
| 303 | 94 CONTINUE |
---|
| 304 | ENDDO |
---|
| 305 | ! |
---|
| 306 | DO j = jfiltsv,jjm |
---|
| 307 | DO k = 2,modemax |
---|
| 308 | cof = rlamda(k) * COS( rlatv(j) ) |
---|
| 309 | IF ( cof .LT. 1. ) GOTO 97 |
---|
| 310 | ENDDO |
---|
| 311 | GOTO 99 |
---|
| 312 | 97 modfrstv( j ) = k |
---|
| 313 | ! |
---|
| 314 | kf = modfrstv( j ) |
---|
| 315 | DO k = kf , modemax |
---|
| 316 | cof = rlamda(k) * COS( rlatv(j) ) |
---|
| 317 | coefilv(k,j) = cof - 1. |
---|
| 318 | coefilv2(k,j) = cof*cof - 1. |
---|
| 319 | ENDDO |
---|
| 320 | 99 CONTINUE |
---|
| 321 | ENDDO |
---|
| 322 | ! |
---|
| 323 | |
---|
| 324 | IF(jfiltnv.GE.jjm/2 .OR. jfiltnu.GE.jjm/2)THEN |
---|
[1601] | 325 | ! Ehouarn: and what are these for??? Trying to handle a limit case |
---|
| 326 | ! where filters extend to and meet at the equator? |
---|
[1086] | 327 | IF(jfiltnv.EQ.jfiltsv)jfiltsv=1+jfiltnv |
---|
| 328 | IF(jfiltnu.EQ.jfiltsu)jfiltsu=1+jfiltnu |
---|
| 329 | |
---|
| 330 | PRINT *,'jfiltnv jfiltsv jfiltnu jfiltsu' , & |
---|
| 331 | jfiltnv,jfiltsv,jfiltnu,jfiltsu |
---|
| 332 | ENDIF |
---|
| 333 | |
---|
| 334 | PRINT *,' Modes premiers v ' |
---|
| 335 | PRINT 334,modfrstv |
---|
| 336 | PRINT *,' Modes premiers u ' |
---|
| 337 | PRINT 334,modfrstu |
---|
| 338 | |
---|
| 339 | ! |
---|
| 340 | ! ................................................................... |
---|
| 341 | ! |
---|
| 342 | ! ... Calcul de la matrice filtre 'matriceu' pour les champs situes |
---|
| 343 | ! sur la grille scalaire ........ |
---|
| 344 | ! ................................................................... |
---|
| 345 | ! |
---|
| 346 | DO j = 2, jfiltnu |
---|
| 347 | |
---|
| 348 | DO i=1,iim |
---|
| 349 | coff = coefilu(i,j) |
---|
| 350 | IF( i.LT.modfrstu(j) ) coff = 0. |
---|
| 351 | DO k=1,iim |
---|
| 352 | eignft(i,k) = eignfnv(k,i) * coff |
---|
| 353 | ENDDO |
---|
[1601] | 354 | ENDDO ! of DO i=1,iim |
---|
[1086] | 355 | #ifdef CRAY |
---|
| 356 | CALL MXM( eignfnv,iim,eignft,iim,matriceun(1,1,j),iim ) |
---|
| 357 | #else |
---|
| 358 | #ifdef BLAS |
---|
| 359 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
| 360 | eignfnv, iim, eignft, iim, 0.0, matriceun(1,1,j), iim) |
---|
| 361 | #else |
---|
| 362 | DO k = 1, iim |
---|
| 363 | DO i = 1, iim |
---|
| 364 | matriceun(i,k,j) = 0.0 |
---|
| 365 | DO ii = 1, iim |
---|
| 366 | matriceun(i,k,j) = matriceun(i,k,j) & |
---|
| 367 | + eignfnv(i,ii)*eignft(ii,k) |
---|
| 368 | ENDDO |
---|
| 369 | ENDDO |
---|
[1601] | 370 | ENDDO ! of DO k = 1, iim |
---|
[1086] | 371 | #endif |
---|
| 372 | #endif |
---|
| 373 | |
---|
[1601] | 374 | ENDDO ! of DO j = 2, jfiltnu |
---|
[1086] | 375 | |
---|
| 376 | DO j = jfiltsu, jjm |
---|
| 377 | |
---|
| 378 | DO i=1,iim |
---|
| 379 | coff = coefilu(i,j) |
---|
| 380 | IF( i.LT.modfrstu(j) ) coff = 0. |
---|
| 381 | DO k=1,iim |
---|
| 382 | eignft(i,k) = eignfnv(k,i) * coff |
---|
| 383 | ENDDO |
---|
[1601] | 384 | ENDDO ! of DO i=1,iim |
---|
[1086] | 385 | #ifdef CRAY |
---|
| 386 | CALL MXM(eignfnv,iim,eignft,iim,matriceus(1,1,j-jfiltsu+1),iim) |
---|
| 387 | #else |
---|
| 388 | #ifdef BLAS |
---|
| 389 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
| 390 | eignfnv, iim, eignft, iim, 0.0, & |
---|
| 391 | matriceus(1,1,j-jfiltsu+1), iim) |
---|
| 392 | #else |
---|
| 393 | DO k = 1, iim |
---|
| 394 | DO i = 1, iim |
---|
| 395 | matriceus(i,k,j-jfiltsu+1) = 0.0 |
---|
| 396 | DO ii = 1, iim |
---|
| 397 | matriceus(i,k,j-jfiltsu+1) = matriceus(i,k,j-jfiltsu+1) & |
---|
| 398 | + eignfnv(i,ii)*eignft(ii,k) |
---|
| 399 | ENDDO |
---|
| 400 | ENDDO |
---|
[1601] | 401 | ENDDO ! of DO k = 1, iim |
---|
[1086] | 402 | #endif |
---|
| 403 | #endif |
---|
| 404 | |
---|
[1601] | 405 | ENDDO ! of DO j = jfiltsu, jjm |
---|
[1086] | 406 | |
---|
| 407 | ! ................................................................... |
---|
| 408 | ! |
---|
| 409 | ! ... Calcul de la matrice filtre 'matricev' pour les champs situes |
---|
| 410 | ! sur la grille de V ou de Z ........ |
---|
| 411 | ! ................................................................... |
---|
| 412 | ! |
---|
| 413 | DO j = 1, jfiltnv |
---|
| 414 | |
---|
| 415 | DO i = 1, iim |
---|
| 416 | coff = coefilv(i,j) |
---|
| 417 | IF( i.LT.modfrstv(j) ) coff = 0. |
---|
| 418 | DO k = 1, iim |
---|
| 419 | eignft(i,k) = eignfnu(k,i) * coff |
---|
| 420 | ENDDO |
---|
| 421 | ENDDO |
---|
| 422 | #ifdef CRAY |
---|
| 423 | CALL MXM( eignfnu,iim,eignft,iim,matricevn(1,1,j),iim ) |
---|
| 424 | #else |
---|
| 425 | #ifdef BLAS |
---|
| 426 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
| 427 | eignfnu, iim, eignft, iim, 0.0, matricevn(1,1,j), iim) |
---|
| 428 | #else |
---|
| 429 | DO k = 1, iim |
---|
| 430 | DO i = 1, iim |
---|
| 431 | matricevn(i,k,j) = 0.0 |
---|
| 432 | DO ii = 1, iim |
---|
| 433 | matricevn(i,k,j) = matricevn(i,k,j) & |
---|
| 434 | + eignfnu(i,ii)*eignft(ii,k) |
---|
| 435 | ENDDO |
---|
| 436 | ENDDO |
---|
| 437 | ENDDO |
---|
| 438 | #endif |
---|
| 439 | #endif |
---|
| 440 | |
---|
[1601] | 441 | ENDDO ! of DO j = 1, jfiltnv |
---|
[1086] | 442 | |
---|
| 443 | DO j = jfiltsv, jjm |
---|
| 444 | |
---|
| 445 | DO i = 1, iim |
---|
| 446 | coff = coefilv(i,j) |
---|
| 447 | IF( i.LT.modfrstv(j) ) coff = 0. |
---|
| 448 | DO k = 1, iim |
---|
| 449 | eignft(i,k) = eignfnu(k,i) * coff |
---|
| 450 | ENDDO |
---|
| 451 | ENDDO |
---|
| 452 | #ifdef CRAY |
---|
| 453 | CALL MXM(eignfnu,iim,eignft,iim,matricevs(1,1,j-jfiltsv+1),iim) |
---|
| 454 | #else |
---|
| 455 | #ifdef BLAS |
---|
| 456 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
| 457 | eignfnu, iim, eignft, iim, 0.0, & |
---|
| 458 | matricevs(1,1,j-jfiltsv+1), iim) |
---|
| 459 | #else |
---|
| 460 | DO k = 1, iim |
---|
| 461 | DO i = 1, iim |
---|
| 462 | matricevs(i,k,j-jfiltsv+1) = 0.0 |
---|
| 463 | DO ii = 1, iim |
---|
| 464 | matricevs(i,k,j-jfiltsv+1) = matricevs(i,k,j-jfiltsv+1) & |
---|
| 465 | + eignfnu(i,ii)*eignft(ii,k) |
---|
| 466 | ENDDO |
---|
| 467 | ENDDO |
---|
| 468 | ENDDO |
---|
| 469 | #endif |
---|
| 470 | #endif |
---|
| 471 | |
---|
[1601] | 472 | ENDDO ! of DO j = jfiltsv, jjm |
---|
[1086] | 473 | |
---|
| 474 | ! ................................................................... |
---|
| 475 | ! |
---|
| 476 | ! ... Calcul de la matrice filtre 'matrinv' pour les champs situes |
---|
| 477 | ! sur la grille scalaire , pour le filtre inverse ........ |
---|
| 478 | ! ................................................................... |
---|
| 479 | ! |
---|
| 480 | DO j = 2, jfiltnu |
---|
| 481 | |
---|
| 482 | DO i = 1,iim |
---|
| 483 | coff = coefilu(i,j)/ ( 1. + coefilu(i,j) ) |
---|
| 484 | IF( i.LT.modfrstu(j) ) coff = 0. |
---|
| 485 | DO k=1,iim |
---|
| 486 | eignft(i,k) = eignfnv(k,i) * coff |
---|
| 487 | ENDDO |
---|
| 488 | ENDDO |
---|
| 489 | #ifdef CRAY |
---|
| 490 | CALL MXM( eignfnv,iim,eignft,iim,matrinvn(1,1,j),iim ) |
---|
| 491 | #else |
---|
| 492 | #ifdef BLAS |
---|
| 493 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
| 494 | eignfnv, iim, eignft, iim, 0.0, matrinvn(1,1,j), iim) |
---|
| 495 | #else |
---|
| 496 | DO k = 1, iim |
---|
| 497 | DO i = 1, iim |
---|
| 498 | matrinvn(i,k,j) = 0.0 |
---|
| 499 | DO ii = 1, iim |
---|
| 500 | matrinvn(i,k,j) = matrinvn(i,k,j) & |
---|
| 501 | + eignfnv(i,ii)*eignft(ii,k) |
---|
| 502 | ENDDO |
---|
| 503 | ENDDO |
---|
| 504 | ENDDO |
---|
| 505 | #endif |
---|
| 506 | #endif |
---|
| 507 | |
---|
[1601] | 508 | ENDDO ! of DO j = 2, jfiltnu |
---|
[1086] | 509 | |
---|
| 510 | DO j = jfiltsu, jjm |
---|
| 511 | |
---|
| 512 | DO i = 1,iim |
---|
| 513 | coff = coefilu(i,j) / ( 1. + coefilu(i,j) ) |
---|
| 514 | IF( i.LT.modfrstu(j) ) coff = 0. |
---|
| 515 | DO k=1,iim |
---|
| 516 | eignft(i,k) = eignfnv(k,i) * coff |
---|
| 517 | ENDDO |
---|
| 518 | ENDDO |
---|
| 519 | #ifdef CRAY |
---|
| 520 | CALL MXM(eignfnv,iim,eignft,iim,matrinvs(1,1,j-jfiltsu+1),iim) |
---|
| 521 | #else |
---|
| 522 | #ifdef BLAS |
---|
| 523 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
| 524 | eignfnv, iim, eignft, iim, 0.0, matrinvs(1,1,j-jfiltsu+1), iim) |
---|
| 525 | #else |
---|
| 526 | DO k = 1, iim |
---|
| 527 | DO i = 1, iim |
---|
| 528 | matrinvs(i,k,j-jfiltsu+1) = 0.0 |
---|
| 529 | DO ii = 1, iim |
---|
| 530 | matrinvs(i,k,j-jfiltsu+1) = matrinvs(i,k,j-jfiltsu+1) & |
---|
| 531 | + eignfnv(i,ii)*eignft(ii,k) |
---|
| 532 | ENDDO |
---|
| 533 | ENDDO |
---|
| 534 | ENDDO |
---|
| 535 | #endif |
---|
| 536 | #endif |
---|
| 537 | |
---|
[1601] | 538 | ENDDO ! of DO j = jfiltsu, jjm |
---|
[1086] | 539 | |
---|
[1279] | 540 | IF (use_filtre_fft) THEN |
---|
| 541 | CALL Init_filtre_fft(coefilu,modfrstu,jfiltnu,jfiltsu, & |
---|
| 542 | coefilv,modfrstv,jfiltnv,jfiltsv) |
---|
| 543 | ENDIF |
---|
| 544 | |
---|
[1086] | 545 | ! ................................................................... |
---|
| 546 | |
---|
| 547 | ! |
---|
| 548 | 334 FORMAT(1x,24i3) |
---|
| 549 | 755 FORMAT(1x,6f10.3,i3) |
---|
| 550 | |
---|
| 551 | RETURN |
---|
| 552 | END SUBROUTINE inifilr |
---|
| 553 | |
---|
[1108] | 554 | END MODULE filtreg_mod |
---|