[878] | 1 | ! |
---|
[1299] | 2 | ! $Id: thermcell_main.F90 1399 2010-06-08 08:29:11Z oboucher $ |
---|
[878] | 3 | ! |
---|
[972] | 4 | SUBROUTINE thermcell_main(itap,ngrid,nlay,ptimestep & |
---|
[878] | 5 | & ,pplay,pplev,pphi,debut & |
---|
| 6 | & ,pu,pv,pt,po & |
---|
| 7 | & ,pduadj,pdvadj,pdtadj,pdoadj & |
---|
[1026] | 8 | & ,fm0,entr0,detr0,zqta,zqla,lmax & |
---|
[878] | 9 | & ,ratqscth,ratqsdiff,zqsatth & |
---|
[1311] | 10 | & ,r_aspect,l_mix,tau_thermals,iflag_thermals_ed & |
---|
[927] | 11 | & ,Ale_bl,Alp_bl,lalim_conv,wght_th & |
---|
[1399] | 12 | & ,zmax0, f0,zw2,fraca,ztv & |
---|
| 13 | & ,zpspsk,ztla,zthl) |
---|
[878] | 14 | |
---|
[972] | 15 | USE dimphy |
---|
[1026] | 16 | USE comgeomphy , ONLY:rlond,rlatd |
---|
[878] | 17 | IMPLICIT NONE |
---|
| 18 | |
---|
| 19 | !======================================================================= |
---|
| 20 | ! Auteurs: Frederic Hourdin, Catherine Rio, Anne Mathieu |
---|
| 21 | ! Version du 09.02.07 |
---|
| 22 | ! Calcul du transport vertical dans la couche limite en presence |
---|
| 23 | ! de "thermiques" explicitement representes avec processus nuageux |
---|
| 24 | ! |
---|
[1294] | 25 | ! Reecriture a partir d'un listing papier a Habas, le 14/02/00 |
---|
[878] | 26 | ! |
---|
[1294] | 27 | ! le thermique est suppose homogene et dissipe par melange avec |
---|
| 28 | ! son environnement. la longueur l_mix controle l'efficacite du |
---|
| 29 | ! melange |
---|
[878] | 30 | ! |
---|
[1294] | 31 | ! Le calcul du transport des differentes especes se fait en prenant |
---|
[878] | 32 | ! en compte: |
---|
| 33 | ! 1. un flux de masse montant |
---|
| 34 | ! 2. un flux de masse descendant |
---|
| 35 | ! 3. un entrainement |
---|
| 36 | ! 4. un detrainement |
---|
| 37 | ! |
---|
| 38 | !======================================================================= |
---|
| 39 | |
---|
| 40 | !----------------------------------------------------------------------- |
---|
| 41 | ! declarations: |
---|
| 42 | ! ------------- |
---|
| 43 | |
---|
| 44 | #include "dimensions.h" |
---|
| 45 | #include "YOMCST.h" |
---|
| 46 | #include "YOETHF.h" |
---|
| 47 | #include "FCTTRE.h" |
---|
[938] | 48 | #include "iniprint.h" |
---|
[878] | 49 | |
---|
| 50 | ! arguments: |
---|
| 51 | ! ---------- |
---|
| 52 | |
---|
[972] | 53 | !IM 140508 |
---|
| 54 | INTEGER itap |
---|
| 55 | |
---|
| 56 | INTEGER ngrid,nlay,w2di |
---|
| 57 | real tau_thermals |
---|
[1311] | 58 | integer iflag_thermals_ed |
---|
[878] | 59 | real ptimestep,l_mix,r_aspect |
---|
| 60 | REAL pt(ngrid,nlay),pdtadj(ngrid,nlay) |
---|
| 61 | REAL pu(ngrid,nlay),pduadj(ngrid,nlay) |
---|
| 62 | REAL pv(ngrid,nlay),pdvadj(ngrid,nlay) |
---|
| 63 | REAL po(ngrid,nlay),pdoadj(ngrid,nlay) |
---|
| 64 | REAL pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
| 65 | real pphi(ngrid,nlay) |
---|
| 66 | |
---|
| 67 | ! local: |
---|
| 68 | ! ------ |
---|
| 69 | |
---|
[972] | 70 | integer icount |
---|
| 71 | data icount/0/ |
---|
| 72 | save icount |
---|
[987] | 73 | !$OMP THREADPRIVATE(icount) |
---|
[972] | 74 | |
---|
[883] | 75 | integer,save :: igout=1 |
---|
[987] | 76 | !$OMP THREADPRIVATE(igout) |
---|
[938] | 77 | integer,save :: lunout1=6 |
---|
[987] | 78 | !$OMP THREADPRIVATE(lunout1) |
---|
[883] | 79 | integer,save :: lev_out=10 |
---|
[987] | 80 | !$OMP THREADPRIVATE(lev_out) |
---|
[878] | 81 | |
---|
| 82 | INTEGER ig,k,l,ll |
---|
| 83 | real zsortie1d(klon) |
---|
| 84 | INTEGER lmax(klon),lmin(klon),lalim(klon) |
---|
| 85 | INTEGER lmix(klon) |
---|
[1026] | 86 | INTEGER lmix_bis(klon) |
---|
[878] | 87 | real linter(klon) |
---|
| 88 | real zmix(klon) |
---|
[1294] | 89 | real zmax(klon),zw2(klon,klev+1),ztva(klon,klev),zw_est(klon,klev+1),ztva_est(klon,klev) |
---|
[1026] | 90 | ! real fraca(klon,klev) |
---|
| 91 | |
---|
[878] | 92 | real zmax_sec(klon) |
---|
| 93 | !on garde le zmax du pas de temps precedent |
---|
| 94 | real zmax0(klon) |
---|
[927] | 95 | !FH/IM save zmax0 |
---|
[878] | 96 | |
---|
[972] | 97 | real lambda |
---|
| 98 | |
---|
[878] | 99 | real zlev(klon,klev+1),zlay(klon,klev) |
---|
| 100 | real deltaz(klon,klev) |
---|
[972] | 101 | REAL zh(klon,klev) |
---|
[878] | 102 | real zthl(klon,klev),zdthladj(klon,klev) |
---|
| 103 | REAL ztv(klon,klev) |
---|
| 104 | real zu(klon,klev),zv(klon,klev),zo(klon,klev) |
---|
| 105 | real zl(klon,klev) |
---|
| 106 | real zsortie(klon,klev) |
---|
| 107 | real zva(klon,klev) |
---|
| 108 | real zua(klon,klev) |
---|
| 109 | real zoa(klon,klev) |
---|
| 110 | |
---|
| 111 | real zta(klon,klev) |
---|
| 112 | real zha(klon,klev) |
---|
| 113 | real fraca(klon,klev+1) |
---|
| 114 | real zf,zf2 |
---|
| 115 | real thetath2(klon,klev),wth2(klon,klev),wth3(klon,klev) |
---|
| 116 | real q2(klon,klev) |
---|
[972] | 117 | ! FH probleme de dimensionnement avec l'allocation dynamique |
---|
| 118 | ! common/comtherm/thetath2,wth2 |
---|
[1294] | 119 | real wq(klon,klev) |
---|
| 120 | real wthl(klon,klev) |
---|
| 121 | real wthv(klon,klev) |
---|
[878] | 122 | |
---|
| 123 | real ratqscth(klon,klev) |
---|
| 124 | real var |
---|
| 125 | real vardiff |
---|
| 126 | real ratqsdiff(klon,klev) |
---|
| 127 | |
---|
| 128 | logical sorties |
---|
[972] | 129 | real rho(klon,klev),rhobarz(klon,klev),masse(klon,klev) |
---|
[878] | 130 | real zpspsk(klon,klev) |
---|
| 131 | |
---|
| 132 | real wmax(klon) |
---|
[1338] | 133 | real wmax_tmp(klon) |
---|
[878] | 134 | real wmax_sec(klon) |
---|
[972] | 135 | real fm0(klon,klev+1),entr0(klon,klev),detr0(klon,klev) |
---|
| 136 | real fm(klon,klev+1),entr(klon,klev),detr(klon,klev) |
---|
[878] | 137 | |
---|
| 138 | real ztla(klon,klev),zqla(klon,klev),zqta(klon,klev) |
---|
| 139 | !niveau de condensation |
---|
[879] | 140 | integer nivcon(klon) |
---|
[878] | 141 | real zcon(klon) |
---|
| 142 | REAL CHI |
---|
| 143 | real zcon2(klon) |
---|
| 144 | real pcon(klon) |
---|
| 145 | real zqsat(klon,klev) |
---|
| 146 | real zqsatth(klon,klev) |
---|
| 147 | |
---|
| 148 | real f_star(klon,klev+1),entr_star(klon,klev) |
---|
| 149 | real detr_star(klon,klev) |
---|
[1294] | 150 | real alim_star_tot(klon) |
---|
[878] | 151 | real alim_star(klon,klev) |
---|
[1294] | 152 | real alim_star_clos(klon,klev) |
---|
[878] | 153 | real f(klon), f0(klon) |
---|
[927] | 154 | !FH/IM save f0 |
---|
[878] | 155 | real zlevinter(klon) |
---|
| 156 | logical debut |
---|
| 157 | real seuil |
---|
[1294] | 158 | real csc(klon,klev) |
---|
[878] | 159 | |
---|
| 160 | ! |
---|
[879] | 161 | !nouvelles variables pour la convection |
---|
| 162 | real Ale_bl(klon) |
---|
| 163 | real Alp_bl(klon) |
---|
| 164 | real alp_int(klon) |
---|
| 165 | real ale_int(klon) |
---|
| 166 | integer n_int(klon) |
---|
| 167 | real fm_tot(klon) |
---|
| 168 | real wght_th(klon,klev) |
---|
| 169 | integer lalim_conv(klon) |
---|
[926] | 170 | !v1d logical therm |
---|
| 171 | !v1d save therm |
---|
[878] | 172 | |
---|
| 173 | character*2 str2 |
---|
| 174 | character*10 str10 |
---|
| 175 | |
---|
[1299] | 176 | character (len=20) :: modname='thermcell_main' |
---|
| 177 | character (len=80) :: abort_message |
---|
| 178 | |
---|
[878] | 179 | EXTERNAL SCOPY |
---|
| 180 | ! |
---|
| 181 | |
---|
| 182 | !----------------------------------------------------------------------- |
---|
| 183 | ! initialisation: |
---|
| 184 | ! --------------- |
---|
| 185 | ! |
---|
| 186 | |
---|
| 187 | seuil=0.25 |
---|
| 188 | |
---|
[972] | 189 | if (debut) then |
---|
| 190 | fm0=0. |
---|
| 191 | entr0=0. |
---|
| 192 | detr0=0. |
---|
[1026] | 193 | |
---|
| 194 | |
---|
[1377] | 195 | #undef wrgrads_thermcell |
---|
[1026] | 196 | #ifdef wrgrads_thermcell |
---|
| 197 | ! Initialisation des sorties grads pour les thermiques. |
---|
| 198 | ! Pour l'instant en 1D sur le point igout. |
---|
| 199 | ! Utilise par thermcell_out3d.h |
---|
| 200 | str10='therm' |
---|
| 201 | call inigrads(1,1,rlond(igout),1.,-180.,180.,jjm, & |
---|
| 202 | & rlatd(igout),-90.,90.,1.,llm,pplay(igout,:),1., & |
---|
| 203 | & ptimestep,str10,'therm ') |
---|
| 204 | #endif |
---|
| 205 | |
---|
| 206 | |
---|
| 207 | |
---|
[972] | 208 | endif |
---|
| 209 | |
---|
| 210 | fm=0. ; entr=0. ; detr=0. |
---|
| 211 | |
---|
[1338] | 212 | print*,'THERMCELL MAIN OPT7' |
---|
| 213 | |
---|
[972] | 214 | icount=icount+1 |
---|
| 215 | |
---|
| 216 | !IM 090508 beg |
---|
| 217 | !print*,'=====================================================================' |
---|
| 218 | !print*,'=====================================================================' |
---|
| 219 | !print*,' PAS ',icount,' PAS ',icount,' PAS ',icount,' PAS ',icount |
---|
| 220 | !print*,'=====================================================================' |
---|
| 221 | !print*,'=====================================================================' |
---|
| 222 | !IM 090508 end |
---|
| 223 | |
---|
[938] | 224 | if (prt_level.ge.1) print*,'thermcell_main V4' |
---|
[878] | 225 | |
---|
| 226 | sorties=.true. |
---|
| 227 | IF(ngrid.NE.klon) THEN |
---|
| 228 | PRINT* |
---|
| 229 | PRINT*,'STOP dans convadj' |
---|
| 230 | PRINT*,'ngrid =',ngrid |
---|
| 231 | PRINT*,'klon =',klon |
---|
| 232 | ENDIF |
---|
| 233 | ! |
---|
[1311] | 234 | ! write(lunout,*)'WARNING thermcell_main f0=max(f0,1.e-2)' |
---|
[972] | 235 | do ig=1,klon |
---|
| 236 | if (prt_level.ge.20) then |
---|
| 237 | print*,'th_main ig f0',ig,f0(ig) |
---|
[878] | 238 | endif |
---|
[972] | 239 | f0(ig)=max(f0(ig),1.e-2) |
---|
[1294] | 240 | zmax0(ig)=max(zmax0(ig),40.) |
---|
[972] | 241 | !IMmarche pas ?! if (f0(ig)<1.e-2) f0(ig)=1.e-2 |
---|
| 242 | enddo |
---|
[878] | 243 | |
---|
| 244 | !----------------------------------------------------------------------- |
---|
| 245 | ! Calcul de T,q,ql a partir de Tl et qT dans l environnement |
---|
| 246 | ! -------------------------------------------------------------------- |
---|
| 247 | ! |
---|
| 248 | CALL thermcell_env(ngrid,nlay,po,pt,pu,pv,pplay, & |
---|
| 249 | & pplev,zo,zh,zl,ztv,zthl,zu,zv,zpspsk,zqsat,lev_out) |
---|
| 250 | |
---|
[938] | 251 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_env' |
---|
[878] | 252 | |
---|
| 253 | !------------------------------------------------------------------------ |
---|
| 254 | ! -------------------- |
---|
| 255 | ! |
---|
| 256 | ! |
---|
| 257 | ! + + + + + + + + + + + |
---|
| 258 | ! |
---|
| 259 | ! |
---|
| 260 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 261 | ! wh,wt,wo ... |
---|
| 262 | ! |
---|
| 263 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
| 264 | ! |
---|
| 265 | ! |
---|
| 266 | ! -------------------- zlev(1) |
---|
| 267 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
| 268 | ! |
---|
| 269 | ! |
---|
| 270 | |
---|
| 271 | !----------------------------------------------------------------------- |
---|
| 272 | ! Calcul des altitudes des couches |
---|
| 273 | !----------------------------------------------------------------------- |
---|
| 274 | |
---|
| 275 | do l=2,nlay |
---|
| 276 | zlev(:,l)=0.5*(pphi(:,l)+pphi(:,l-1))/RG |
---|
| 277 | enddo |
---|
| 278 | zlev(:,1)=0. |
---|
| 279 | zlev(:,nlay+1)=(2.*pphi(:,klev)-pphi(:,klev-1))/RG |
---|
| 280 | do l=1,nlay |
---|
| 281 | zlay(:,l)=pphi(:,l)/RG |
---|
| 282 | enddo |
---|
| 283 | !calcul de l epaisseur des couches |
---|
| 284 | do l=1,nlay |
---|
| 285 | deltaz(:,l)=zlev(:,l+1)-zlev(:,l) |
---|
| 286 | enddo |
---|
| 287 | |
---|
| 288 | ! print*,'2 OK convect8' |
---|
| 289 | !----------------------------------------------------------------------- |
---|
| 290 | ! Calcul des densites |
---|
| 291 | !----------------------------------------------------------------------- |
---|
| 292 | |
---|
| 293 | do l=1,nlay |
---|
| 294 | rho(:,l)=pplay(:,l)/(zpspsk(:,l)*RD*ztv(:,l)) |
---|
| 295 | enddo |
---|
| 296 | |
---|
[972] | 297 | !IM |
---|
[1146] | 298 | if (prt_level.ge.10)write(lunout,*) & |
---|
| 299 | & 'WARNING thermcell_main rhobarz(:,1)=rho(:,1)' |
---|
[972] | 300 | rhobarz(:,1)=rho(:,1) |
---|
| 301 | |
---|
[878] | 302 | do l=2,nlay |
---|
| 303 | rhobarz(:,l)=0.5*(rho(:,l)+rho(:,l-1)) |
---|
| 304 | enddo |
---|
| 305 | |
---|
| 306 | !calcul de la masse |
---|
| 307 | do l=1,nlay |
---|
| 308 | masse(:,l)=(pplev(:,l)-pplev(:,l+1))/RG |
---|
| 309 | enddo |
---|
| 310 | |
---|
[938] | 311 | if (prt_level.ge.1) print*,'thermcell_main apres initialisation' |
---|
[878] | 312 | |
---|
| 313 | !------------------------------------------------------------------ |
---|
| 314 | ! |
---|
| 315 | ! /|\ |
---|
| 316 | ! -------- | F_k+1 ------- |
---|
| 317 | ! ----> D_k |
---|
| 318 | ! /|\ <---- E_k , A_k |
---|
| 319 | ! -------- | F_k --------- |
---|
| 320 | ! ----> D_k-1 |
---|
| 321 | ! <---- E_k-1 , A_k-1 |
---|
| 322 | ! |
---|
| 323 | ! |
---|
| 324 | ! |
---|
| 325 | ! |
---|
| 326 | ! |
---|
| 327 | ! --------------------------- |
---|
| 328 | ! |
---|
| 329 | ! ----- F_lmax+1=0 ---------- \ |
---|
| 330 | ! lmax (zmax) | |
---|
| 331 | ! --------------------------- | |
---|
| 332 | ! | |
---|
| 333 | ! --------------------------- | |
---|
| 334 | ! | |
---|
| 335 | ! --------------------------- | |
---|
| 336 | ! | |
---|
| 337 | ! --------------------------- | |
---|
| 338 | ! | |
---|
| 339 | ! --------------------------- | |
---|
| 340 | ! | E |
---|
| 341 | ! --------------------------- | D |
---|
| 342 | ! | |
---|
| 343 | ! --------------------------- | |
---|
| 344 | ! | |
---|
| 345 | ! --------------------------- \ | |
---|
| 346 | ! lalim | | |
---|
| 347 | ! --------------------------- | | |
---|
| 348 | ! | | |
---|
| 349 | ! --------------------------- | | |
---|
| 350 | ! | A | |
---|
| 351 | ! --------------------------- | | |
---|
| 352 | ! | | |
---|
| 353 | ! --------------------------- | | |
---|
| 354 | ! lmin (=1 pour le moment) | | |
---|
| 355 | ! ----- F_lmin=0 ------------ / / |
---|
| 356 | ! |
---|
| 357 | ! --------------------------- |
---|
| 358 | ! ////////////////////////// |
---|
| 359 | ! |
---|
| 360 | ! |
---|
| 361 | !============================================================================= |
---|
| 362 | ! Calculs initiaux ne faisant pas intervenir les changements de phase |
---|
| 363 | !============================================================================= |
---|
| 364 | |
---|
| 365 | !------------------------------------------------------------------ |
---|
[1294] | 366 | ! 1. alim_star est le profil vertical de l'alimentation a la base du |
---|
| 367 | ! panache thermique, calcule a partir de la flotabilite de l'air sec |
---|
[878] | 368 | ! 2. lmin et lalim sont les indices inferieurs et superieurs de alim_star |
---|
| 369 | !------------------------------------------------------------------ |
---|
| 370 | ! |
---|
| 371 | entr_star=0. ; detr_star=0. ; alim_star=0. ; alim_star_tot=0. |
---|
[1294] | 372 | lmin=1 |
---|
[878] | 373 | |
---|
| 374 | !----------------------------------------------------------------------------- |
---|
| 375 | ! 3. wmax_sec et zmax_sec sont les vitesses et altitudes maximum d'un |
---|
| 376 | ! panache sec conservatif (e=d=0) alimente selon alim_star |
---|
| 377 | ! Il s'agit d'un calcul de type CAPE |
---|
[1294] | 378 | ! zmax_sec est utilise pour determiner la geometrie du thermique. |
---|
[878] | 379 | !------------------------------------------------------------------------------ |
---|
| 380 | !--------------------------------------------------------------------------------- |
---|
| 381 | !calcul du melange et des variables dans le thermique |
---|
| 382 | !-------------------------------------------------------------------------------- |
---|
| 383 | ! |
---|
[972] | 384 | if (prt_level.ge.1) print*,'avant thermcell_plume ',lev_out |
---|
| 385 | !IM 140508 CALL thermcell_plume(ngrid,nlay,ptimestep,ztv,zthl,po,zl,rhobarz, & |
---|
[1311] | 386 | |
---|
| 387 | ! Gestion temporaire de plusieurs appels à thermcell_plume au travers |
---|
| 388 | ! de la variable iflag_thermals |
---|
| 389 | |
---|
| 390 | ! print*,'THERM thermcell_main iflag_thermals_ed=',iflag_thermals_ed |
---|
| 391 | if (iflag_thermals_ed<=9) then |
---|
[1399] | 392 | ! print*,'THERM NOUVELLE/NOUVELLE Arnaud' |
---|
[1311] | 393 | CALL thermcell_plume(itap,ngrid,nlay,ptimestep,ztv,zthl,po,zl,rhobarz,& |
---|
| 394 | & zlev,pplev,pphi,zpspsk,alim_star,alim_star_tot, & |
---|
| 395 | & lalim,f0,detr_star,entr_star,f_star,csc,ztva, & |
---|
| 396 | & ztla,zqla,zqta,zha,zw2,zw_est,ztva_est,zqsatth,lmix,lmix_bis,linter & |
---|
| 397 | & ,lev_out,lunout1,igout) |
---|
| 398 | |
---|
[1399] | 399 | elseif (iflag_thermals_ed>9) then |
---|
[1338] | 400 | ! print*,'THERM RIO et al 2010, version d Arnaud' |
---|
[1311] | 401 | CALL thermcellV1_plume(itap,ngrid,nlay,ptimestep,ztv,zthl,po,zl,rhobarz,& |
---|
| 402 | & zlev,pplev,pphi,zpspsk,alim_star,alim_star_tot, & |
---|
| 403 | & lalim,f0,detr_star,entr_star,f_star,csc,ztva, & |
---|
| 404 | & ztla,zqla,zqta,zha,zw2,zw_est,ztva_est,zqsatth,lmix,lmix_bis,linter & |
---|
| 405 | & ,lev_out,lunout1,igout) |
---|
| 406 | |
---|
| 407 | endif |
---|
| 408 | |
---|
[972] | 409 | if (prt_level.ge.1) print*,'apres thermcell_plume ',lev_out |
---|
| 410 | |
---|
[878] | 411 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_plum lalim ') |
---|
| 412 | call test_ltherm(ngrid,nlay,pplev,pplay,lmix ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_plum lmix ') |
---|
| 413 | |
---|
[938] | 414 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_plume' |
---|
| 415 | if (prt_level.ge.10) then |
---|
[972] | 416 | write(lunout1,*) 'Dans thermcell_main 2' |
---|
| 417 | write(lunout1,*) 'lmin ',lmin(igout) |
---|
| 418 | write(lunout1,*) 'lalim ',lalim(igout) |
---|
| 419 | write(lunout1,*) ' ig l alim_star entr_star detr_star f_star ' |
---|
| 420 | write(lunout1,'(i6,i4,4e15.5)') (igout,l,alim_star(igout,l),entr_star(igout,l),detr_star(igout,l) & |
---|
[878] | 421 | & ,f_star(igout,l+1),l=1,nint(linter(igout))+5) |
---|
| 422 | endif |
---|
| 423 | |
---|
| 424 | !------------------------------------------------------------------------------- |
---|
| 425 | ! Calcul des caracteristiques du thermique:zmax,zmix,wmax |
---|
| 426 | !------------------------------------------------------------------------------- |
---|
| 427 | ! |
---|
| 428 | CALL thermcell_height(ngrid,nlay,lalim,lmin,linter,lmix,zw2, & |
---|
| 429 | & zlev,lmax,zmax,zmax0,zmix,wmax,lev_out) |
---|
[1338] | 430 | ! Attention, w2 est transforme en sa racine carree dans cette routine |
---|
| 431 | ! Le probleme vient du fait que linter et lmix sont souvent égaux à 1. |
---|
| 432 | wmax_tmp=0. |
---|
| 433 | do l=1,nlay |
---|
| 434 | wmax_tmp(:)=max(wmax_tmp(:),zw2(:,l)) |
---|
| 435 | enddo |
---|
| 436 | ! print*,"ZMAX ",lalim,lmin,linter,lmix,lmax,zmax,zmax0,zmix,wmax |
---|
[878] | 437 | |
---|
| 438 | |
---|
[1294] | 439 | |
---|
[878] | 440 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lalim ') |
---|
| 441 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmin ') |
---|
| 442 | call test_ltherm(ngrid,nlay,pplev,pplay,lmix ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmix ') |
---|
| 443 | call test_ltherm(ngrid,nlay,pplev,pplay,lmax ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmax ') |
---|
| 444 | |
---|
[938] | 445 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_height' |
---|
[878] | 446 | |
---|
| 447 | !------------------------------------------------------------------------------- |
---|
| 448 | ! Fermeture,determination de f |
---|
| 449 | !------------------------------------------------------------------------------- |
---|
[1026] | 450 | ! |
---|
[1294] | 451 | ! |
---|
[1311] | 452 | !! write(lunout,*)'THERM NOUVEAU XXXXX' |
---|
[1294] | 453 | CALL thermcell_dry(ngrid,nlay,zlev,pphi,ztv,alim_star, & |
---|
| 454 | & lalim,lmin,zmax_sec,wmax_sec,lev_out) |
---|
[878] | 455 | |
---|
[1294] | 456 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_dry lmin ') |
---|
| 457 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_dry lalim ') |
---|
| 458 | |
---|
| 459 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_dry' |
---|
| 460 | if (prt_level.ge.10) then |
---|
| 461 | write(lunout1,*) 'Dans thermcell_main 1b' |
---|
| 462 | write(lunout1,*) 'lmin ',lmin(igout) |
---|
| 463 | write(lunout1,*) 'lalim ',lalim(igout) |
---|
| 464 | write(lunout1,*) ' ig l alim_star entr_star detr_star f_star ' |
---|
| 465 | write(lunout1,'(i6,i4,e15.5)') (igout,l,alim_star(igout,l) & |
---|
| 466 | & ,l=1,lalim(igout)+4) |
---|
| 467 | endif |
---|
| 468 | |
---|
| 469 | |
---|
| 470 | |
---|
[1311] | 471 | !print*,'THERM 26JJJ' |
---|
[1294] | 472 | |
---|
| 473 | ! Choix de la fonction d'alimentation utilisee pour la fermeture. |
---|
| 474 | ! Apparemment sans importance |
---|
| 475 | alim_star_clos(:,:)=alim_star(:,:) |
---|
| 476 | alim_star_clos(:,:)=entr_star(:,:)+alim_star(:,:) |
---|
| 477 | |
---|
| 478 | ! Appel avec la version seche |
---|
[878] | 479 | CALL thermcell_closure(ngrid,nlay,r_aspect,ptimestep,rho, & |
---|
[1294] | 480 | & zlev,lalim,alim_star_clos,f_star,zmax_sec,wmax_sec,f,lev_out) |
---|
[878] | 481 | |
---|
[1294] | 482 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 483 | ! Appel avec les zmax et wmax tenant compte de la condensation |
---|
| 484 | ! Semble moins bien marcher |
---|
| 485 | ! CALL thermcell_closure(ngrid,nlay,r_aspect,ptimestep,rho, & |
---|
| 486 | ! & zlev,lalim,alim_star,f_star,zmax,wmax,f,lev_out) |
---|
| 487 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 488 | |
---|
[938] | 489 | if(prt_level.ge.1)print*,'thermcell_closure apres thermcell_closure' |
---|
[878] | 490 | |
---|
[972] | 491 | if (tau_thermals>1.) then |
---|
| 492 | lambda=exp(-ptimestep/tau_thermals) |
---|
| 493 | f0=(1.-lambda)*f+lambda*f0 |
---|
| 494 | else |
---|
| 495 | f0=f |
---|
| 496 | endif |
---|
| 497 | |
---|
| 498 | ! Test valable seulement en 1D mais pas genant |
---|
| 499 | if (.not. (f0(1).ge.0.) ) then |
---|
[1299] | 500 | abort_message = '.not. (f0(1).ge.0.)' |
---|
| 501 | CALL abort_gcm (modname,abort_message,1) |
---|
[972] | 502 | endif |
---|
| 503 | |
---|
[878] | 504 | !------------------------------------------------------------------------------- |
---|
| 505 | !deduction des flux |
---|
| 506 | !------------------------------------------------------------------------------- |
---|
| 507 | |
---|
[972] | 508 | CALL thermcell_flux2(ngrid,nlay,ptimestep,masse, & |
---|
[878] | 509 | & lalim,lmax,alim_star, & |
---|
| 510 | & entr_star,detr_star,f,rhobarz,zlev,zw2,fm,entr, & |
---|
[972] | 511 | & detr,zqla,lev_out,lunout1,igout) |
---|
| 512 | !IM 060508 & detr,zqla,zmax,lev_out,lunout,igout) |
---|
[878] | 513 | |
---|
[938] | 514 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_flux' |
---|
[878] | 515 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_flux lalim ') |
---|
| 516 | call test_ltherm(ngrid,nlay,pplev,pplay,lmax ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_flux lmax ') |
---|
| 517 | |
---|
| 518 | !------------------------------------------------------------------ |
---|
[972] | 519 | ! On ne prend pas directement les profils issus des calculs precedents |
---|
| 520 | ! mais on s'autorise genereusement une relaxation vers ceci avec |
---|
| 521 | ! une constante de temps tau_thermals (typiquement 1800s). |
---|
| 522 | !------------------------------------------------------------------ |
---|
[878] | 523 | |
---|
[972] | 524 | if (tau_thermals>1.) then |
---|
| 525 | lambda=exp(-ptimestep/tau_thermals) |
---|
| 526 | fm0=(1.-lambda)*fm+lambda*fm0 |
---|
| 527 | entr0=(1.-lambda)*entr+lambda*entr0 |
---|
[1294] | 528 | detr0=(1.-lambda)*detr+lambda*detr0 |
---|
[878] | 529 | else |
---|
| 530 | fm0=fm |
---|
| 531 | entr0=entr |
---|
| 532 | detr0=detr |
---|
| 533 | endif |
---|
| 534 | |
---|
[972] | 535 | !c------------------------------------------------------------------ |
---|
| 536 | ! calcul du transport vertical |
---|
| 537 | !------------------------------------------------------------------ |
---|
| 538 | |
---|
[878] | 539 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse, & |
---|
| 540 | & zthl,zdthladj,zta,lev_out) |
---|
| 541 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse, & |
---|
| 542 | & po,pdoadj,zoa,lev_out) |
---|
| 543 | |
---|
[883] | 544 | !------------------------------------------------------------------ |
---|
| 545 | ! Calcul de la fraction de l'ascendance |
---|
| 546 | !------------------------------------------------------------------ |
---|
| 547 | do ig=1,klon |
---|
| 548 | fraca(ig,1)=0. |
---|
| 549 | fraca(ig,nlay+1)=0. |
---|
| 550 | enddo |
---|
| 551 | do l=2,nlay |
---|
| 552 | do ig=1,klon |
---|
| 553 | if (zw2(ig,l).gt.1.e-10) then |
---|
| 554 | fraca(ig,l)=fm(ig,l)/(rhobarz(ig,l)*zw2(ig,l)) |
---|
| 555 | else |
---|
| 556 | fraca(ig,l)=0. |
---|
| 557 | endif |
---|
| 558 | enddo |
---|
| 559 | enddo |
---|
| 560 | |
---|
| 561 | !------------------------------------------------------------------ |
---|
| 562 | ! calcul du transport vertical du moment horizontal |
---|
| 563 | !------------------------------------------------------------------ |
---|
[878] | 564 | |
---|
[972] | 565 | !IM 090508 |
---|
[883] | 566 | if (1.eq.1) then |
---|
[972] | 567 | !IM 070508 vers. _dq |
---|
| 568 | ! if (1.eq.0) then |
---|
[883] | 569 | |
---|
| 570 | |
---|
[878] | 571 | ! Calcul du transport de V tenant compte d'echange par gradient |
---|
| 572 | ! de pression horizontal avec l'environnement |
---|
| 573 | |
---|
| 574 | call thermcell_dv2(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 575 | & ,fraca,zmax & |
---|
[972] | 576 | & ,zu,zv,pduadj,pdvadj,zua,zva,lev_out) |
---|
[1294] | 577 | |
---|
[878] | 578 | else |
---|
| 579 | |
---|
| 580 | ! calcul purement conservatif pour le transport de V |
---|
| 581 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 582 | & ,zu,pduadj,zua,lev_out) |
---|
| 583 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 584 | & ,zv,pdvadj,zva,lev_out) |
---|
| 585 | endif |
---|
| 586 | |
---|
| 587 | ! print*,'13 OK convect8' |
---|
| 588 | do l=1,nlay |
---|
| 589 | do ig=1,ngrid |
---|
| 590 | pdtadj(ig,l)=zdthladj(ig,l)*zpspsk(ig,l) |
---|
| 591 | enddo |
---|
| 592 | enddo |
---|
| 593 | |
---|
[972] | 594 | if (prt_level.ge.1) print*,'14 OK convect8' |
---|
[878] | 595 | !------------------------------------------------------------------ |
---|
| 596 | ! Calculs de diagnostiques pour les sorties |
---|
| 597 | !------------------------------------------------------------------ |
---|
| 598 | !calcul de fraca pour les sorties |
---|
| 599 | |
---|
| 600 | if (sorties) then |
---|
[972] | 601 | if (prt_level.ge.1) print*,'14a OK convect8' |
---|
[878] | 602 | ! calcul du niveau de condensation |
---|
| 603 | ! initialisation |
---|
| 604 | do ig=1,ngrid |
---|
[879] | 605 | nivcon(ig)=0 |
---|
[878] | 606 | zcon(ig)=0. |
---|
| 607 | enddo |
---|
| 608 | !nouveau calcul |
---|
| 609 | do ig=1,ngrid |
---|
| 610 | CHI=zh(ig,1)/(1669.0-122.0*zo(ig,1)/zqsat(ig,1)-zh(ig,1)) |
---|
| 611 | pcon(ig)=pplay(ig,1)*(zo(ig,1)/zqsat(ig,1))**CHI |
---|
| 612 | enddo |
---|
[1372] | 613 | !IM do k=1,nlay |
---|
| 614 | do k=1,nlay-1 |
---|
[878] | 615 | do ig=1,ngrid |
---|
| 616 | if ((pcon(ig).le.pplay(ig,k)) & |
---|
| 617 | & .and.(pcon(ig).gt.pplay(ig,k+1))) then |
---|
| 618 | zcon2(ig)=zlay(ig,k)-(pcon(ig)-pplay(ig,k))/(RG*rho(ig,k))/100. |
---|
| 619 | endif |
---|
| 620 | enddo |
---|
| 621 | enddo |
---|
[1372] | 622 | !IM |
---|
| 623 | do ig=1,ngrid |
---|
| 624 | if (pcon(ig).le.pplay(ig,nlay)) then |
---|
| 625 | zcon2(ig)=zlay(ig,nlay)-(pcon(ig)-pplay(ig,nlay))/(RG*rho(ig,nlay))/100. |
---|
| 626 | abort_message = 'thermcellV0_main: les thermiques vont trop haut ' |
---|
| 627 | CALL abort_gcm (modname,abort_message,1) |
---|
| 628 | endif |
---|
| 629 | enddo |
---|
[972] | 630 | if (prt_level.ge.1) print*,'14b OK convect8' |
---|
[878] | 631 | do k=nlay,1,-1 |
---|
| 632 | do ig=1,ngrid |
---|
| 633 | if (zqla(ig,k).gt.1e-10) then |
---|
| 634 | nivcon(ig)=k |
---|
| 635 | zcon(ig)=zlev(ig,k) |
---|
| 636 | endif |
---|
| 637 | enddo |
---|
| 638 | enddo |
---|
[972] | 639 | if (prt_level.ge.1) print*,'14c OK convect8' |
---|
[878] | 640 | !calcul des moments |
---|
| 641 | !initialisation |
---|
| 642 | do l=1,nlay |
---|
| 643 | do ig=1,ngrid |
---|
| 644 | q2(ig,l)=0. |
---|
| 645 | wth2(ig,l)=0. |
---|
| 646 | wth3(ig,l)=0. |
---|
| 647 | ratqscth(ig,l)=0. |
---|
| 648 | ratqsdiff(ig,l)=0. |
---|
| 649 | enddo |
---|
| 650 | enddo |
---|
[972] | 651 | if (prt_level.ge.1) print*,'14d OK convect8' |
---|
[1146] | 652 | if (prt_level.ge.10)write(lunout,*) & |
---|
| 653 | & 'WARNING thermcell_main wth2=0. si zw2 > 1.e-10' |
---|
[878] | 654 | do l=1,nlay |
---|
| 655 | do ig=1,ngrid |
---|
| 656 | zf=fraca(ig,l) |
---|
| 657 | zf2=zf/(1.-zf) |
---|
[972] | 658 | ! |
---|
| 659 | if (prt_level.ge.10) print*,'14e OK convect8 ig,l,zf,zf2',ig,l,zf,zf2 |
---|
| 660 | ! |
---|
| 661 | if (prt_level.ge.10) print*,'14f OK convect8 ig,l,zha zh zpspsk ',ig,l,zha(ig,l),zh(ig,l),zpspsk(ig,l) |
---|
[1294] | 662 | thetath2(ig,l)=zf2*(ztla(ig,l)-zthl(ig,l))**2 |
---|
[972] | 663 | if(zw2(ig,l).gt.1.e-10) then |
---|
| 664 | wth2(ig,l)=zf2*(zw2(ig,l))**2 |
---|
| 665 | else |
---|
| 666 | wth2(ig,l)=0. |
---|
| 667 | endif |
---|
[878] | 668 | ! print*,'wth2=',wth2(ig,l) |
---|
| 669 | wth3(ig,l)=zf2*(1-2.*fraca(ig,l))/(1-fraca(ig,l)) & |
---|
| 670 | & *zw2(ig,l)*zw2(ig,l)*zw2(ig,l) |
---|
[972] | 671 | if (prt_level.ge.10) print*,'14g OK convect8 ig,l,po',ig,l,po(ig,l) |
---|
[878] | 672 | q2(ig,l)=zf2*(zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
| 673 | !test: on calcul q2/po=ratqsc |
---|
| 674 | ratqscth(ig,l)=sqrt(max(q2(ig,l),1.e-6)/(po(ig,l)*1000.)) |
---|
| 675 | enddo |
---|
| 676 | enddo |
---|
[1294] | 677 | !calcul des flux: q, thetal et thetav |
---|
| 678 | do l=1,nlay |
---|
| 679 | do ig=1,ngrid |
---|
| 680 | wq(ig,l)=fraca(ig,l)*zw2(ig,l)*(zqta(ig,l)*1000.-po(ig,l)*1000.) |
---|
| 681 | wthl(ig,l)=fraca(ig,l)*zw2(ig,l)*(ztla(ig,l)-zthl(ig,l)) |
---|
| 682 | wthv(ig,l)=fraca(ig,l)*zw2(ig,l)*(ztva(ig,l)-ztv(ig,l)) |
---|
| 683 | enddo |
---|
| 684 | enddo |
---|
[972] | 685 | ! |
---|
[1338] | 686 | ! print*,'avant calcul ale et alp' |
---|
| 687 | !calcul de ALE et ALP pour la convection |
---|
| 688 | Alp_bl(:)=0. |
---|
| 689 | Ale_bl(:)=0. |
---|
| 690 | ! print*,'ALE,ALP ,l,zw2(ig,l),Ale_bl(ig),Alp_bl(ig)' |
---|
[972] | 691 | do l=1,nlay |
---|
[879] | 692 | do ig=1,ngrid |
---|
[1338] | 693 | Alp_bl(ig)=max(Alp_bl(ig),0.5*rhobarz(ig,l)*wth3(ig,l) ) |
---|
| 694 | Ale_bl(ig)=max(Ale_bl(ig),0.5*zw2(ig,l)**2) |
---|
| 695 | ! print*,'ALE,ALP',l,zw2(ig,l),Ale_bl(ig),Alp_bl(ig) |
---|
[879] | 696 | enddo |
---|
| 697 | enddo |
---|
[1338] | 698 | |
---|
| 699 | ! print*,'AAAAAAA ',Alp_bl,Ale_bl,lmix |
---|
| 700 | |
---|
| 701 | |
---|
| 702 | ! TEST. IL FAUT REECRIRE LES ALE et ALP |
---|
| 703 | ! Ale_bl(:)=0.5*wmax(:)*wmax(:) |
---|
| 704 | ! Alp_bl(:)=0.1*wmax(:)*wmax(:)*wmax(:) |
---|
| 705 | |
---|
[879] | 706 | !test:calcul de la ponderation des couches pour KE |
---|
| 707 | !initialisations |
---|
| 708 | ! print*,'ponderation' |
---|
| 709 | do ig=1,ngrid |
---|
| 710 | fm_tot(ig)=0. |
---|
| 711 | enddo |
---|
| 712 | do ig=1,ngrid |
---|
| 713 | do k=1,klev |
---|
| 714 | wght_th(ig,k)=1. |
---|
| 715 | enddo |
---|
| 716 | enddo |
---|
| 717 | do ig=1,ngrid |
---|
| 718 | ! lalim_conv(ig)=lmix_bis(ig) |
---|
| 719 | !la hauteur de la couche alim_conv = hauteur couche alim_therm |
---|
| 720 | lalim_conv(ig)=lalim(ig) |
---|
| 721 | ! zentr(ig)=zlev(ig,lalim(ig)) |
---|
| 722 | enddo |
---|
| 723 | do ig=1,ngrid |
---|
| 724 | do k=1,lalim_conv(ig) |
---|
| 725 | fm_tot(ig)=fm_tot(ig)+fm(ig,k) |
---|
| 726 | enddo |
---|
| 727 | enddo |
---|
| 728 | do ig=1,ngrid |
---|
| 729 | do k=1,lalim_conv(ig) |
---|
| 730 | if (fm_tot(ig).gt.1.e-10) then |
---|
| 731 | ! wght_th(ig,k)=fm(ig,k)/fm_tot(ig) |
---|
| 732 | endif |
---|
| 733 | !on pondere chaque couche par a* |
---|
| 734 | if (alim_star(ig,k).gt.1.e-10) then |
---|
| 735 | wght_th(ig,k)=alim_star(ig,k) |
---|
| 736 | else |
---|
| 737 | wght_th(ig,k)=1. |
---|
| 738 | endif |
---|
| 739 | enddo |
---|
| 740 | enddo |
---|
| 741 | ! print*,'apres wght_th' |
---|
| 742 | !test pour prolonger la convection |
---|
| 743 | do ig=1,ngrid |
---|
[926] | 744 | !v1d if ((alim_star(ig,1).lt.1.e-10).and.(therm)) then |
---|
| 745 | if ((alim_star(ig,1).lt.1.e-10)) then |
---|
[879] | 746 | lalim_conv(ig)=1 |
---|
| 747 | wght_th(ig,1)=1. |
---|
| 748 | ! print*,'lalim_conv ok',lalim_conv(ig),wght_th(ig,1) |
---|
| 749 | endif |
---|
| 750 | enddo |
---|
| 751 | |
---|
[878] | 752 | !calcul du ratqscdiff |
---|
[972] | 753 | if (prt_level.ge.1) print*,'14e OK convect8' |
---|
[878] | 754 | var=0. |
---|
| 755 | vardiff=0. |
---|
| 756 | ratqsdiff(:,:)=0. |
---|
| 757 | do ig=1,ngrid |
---|
| 758 | do l=1,lalim(ig) |
---|
| 759 | var=var+alim_star(ig,l)*zqta(ig,l)*1000. |
---|
| 760 | enddo |
---|
| 761 | enddo |
---|
[972] | 762 | if (prt_level.ge.1) print*,'14f OK convect8' |
---|
[878] | 763 | do ig=1,ngrid |
---|
| 764 | do l=1,lalim(ig) |
---|
| 765 | zf=fraca(ig,l) |
---|
| 766 | zf2=zf/(1.-zf) |
---|
| 767 | vardiff=vardiff+alim_star(ig,l) & |
---|
| 768 | & *(zqta(ig,l)*1000.-var)**2 |
---|
| 769 | ! ratqsdiff=ratqsdiff+alim_star(ig,l)* |
---|
| 770 | ! s (zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
| 771 | enddo |
---|
| 772 | enddo |
---|
[972] | 773 | if (prt_level.ge.1) print*,'14g OK convect8' |
---|
[878] | 774 | do l=1,nlay |
---|
| 775 | do ig=1,ngrid |
---|
| 776 | ratqsdiff(ig,l)=sqrt(vardiff)/(po(ig,l)*1000.) |
---|
| 777 | ! write(11,*)'ratqsdiff=',ratqsdiff(ig,l) |
---|
| 778 | enddo |
---|
| 779 | enddo |
---|
| 780 | !-------------------------------------------------------------------- |
---|
| 781 | ! |
---|
| 782 | !ecriture des fichiers sortie |
---|
| 783 | ! print*,'15 OK convect8' |
---|
| 784 | |
---|
[1294] | 785 | #ifdef wrgrads_thermcell |
---|
[938] | 786 | if (prt_level.ge.1) print*,'thermcell_main sorties 3D' |
---|
[878] | 787 | #include "thermcell_out3d.h" |
---|
| 788 | #endif |
---|
| 789 | |
---|
| 790 | endif |
---|
| 791 | |
---|
[938] | 792 | if (prt_level.ge.1) print*,'thermcell_main FIN OK' |
---|
[878] | 793 | |
---|
| 794 | return |
---|
| 795 | end |
---|
| 796 | |
---|
| 797 | !----------------------------------------------------------------------------- |
---|
| 798 | |
---|
| 799 | subroutine test_ltherm(klon,klev,pplev,pplay,long,seuil,ztv,po,ztva,zqla,f_star,zw2,comment) |
---|
[938] | 800 | IMPLICIT NONE |
---|
| 801 | #include "iniprint.h" |
---|
[878] | 802 | |
---|
[938] | 803 | integer i, k, klon,klev |
---|
[878] | 804 | real pplev(klon,klev+1),pplay(klon,klev) |
---|
| 805 | real ztv(klon,klev) |
---|
| 806 | real po(klon,klev) |
---|
| 807 | real ztva(klon,klev) |
---|
| 808 | real zqla(klon,klev) |
---|
| 809 | real f_star(klon,klev) |
---|
| 810 | real zw2(klon,klev) |
---|
| 811 | integer long(klon) |
---|
| 812 | real seuil |
---|
| 813 | character*21 comment |
---|
| 814 | |
---|
[938] | 815 | if (prt_level.ge.1) THEN |
---|
| 816 | print*,'WARNING !!! TEST ',comment |
---|
| 817 | endif |
---|
[879] | 818 | return |
---|
| 819 | |
---|
[878] | 820 | ! test sur la hauteur des thermiques ... |
---|
| 821 | do i=1,klon |
---|
[972] | 822 | !IMtemp if (pplay(i,long(i)).lt.seuil*pplev(i,1)) then |
---|
| 823 | if (prt_level.ge.10) then |
---|
[878] | 824 | print*,'WARNING ',comment,' au point ',i,' K= ',long(i) |
---|
| 825 | print*,' K P(MB) THV(K) Qenv(g/kg)THVA QLA(g/kg) F* W2' |
---|
| 826 | do k=1,klev |
---|
| 827 | write(6,'(i3,7f10.3)') k,pplay(i,k),ztv(i,k),1000*po(i,k),ztva(i,k),1000*zqla(i,k),f_star(i,k),zw2(i,k) |
---|
| 828 | enddo |
---|
[972] | 829 | endif |
---|
[878] | 830 | enddo |
---|
| 831 | |
---|
| 832 | |
---|
| 833 | return |
---|
| 834 | end |
---|
| 835 | |
---|