[878] | 1 | ! |
---|
[1299] | 2 | ! $Id: thermcell_main.F90 1338 2010-04-06 12:49:00Z musat $ |
---|
[878] | 3 | ! |
---|
[972] | 4 | SUBROUTINE thermcell_main(itap,ngrid,nlay,ptimestep & |
---|
[878] | 5 | & ,pplay,pplev,pphi,debut & |
---|
| 6 | & ,pu,pv,pt,po & |
---|
| 7 | & ,pduadj,pdvadj,pdtadj,pdoadj & |
---|
[1026] | 8 | & ,fm0,entr0,detr0,zqta,zqla,lmax & |
---|
[878] | 9 | & ,ratqscth,ratqsdiff,zqsatth & |
---|
[1311] | 10 | & ,r_aspect,l_mix,tau_thermals,iflag_thermals_ed & |
---|
[927] | 11 | & ,Ale_bl,Alp_bl,lalim_conv,wght_th & |
---|
[1026] | 12 | & ,zmax0, f0,zw2,fraca) |
---|
[878] | 13 | |
---|
[972] | 14 | USE dimphy |
---|
[1026] | 15 | USE comgeomphy , ONLY:rlond,rlatd |
---|
[878] | 16 | IMPLICIT NONE |
---|
| 17 | |
---|
| 18 | !======================================================================= |
---|
| 19 | ! Auteurs: Frederic Hourdin, Catherine Rio, Anne Mathieu |
---|
| 20 | ! Version du 09.02.07 |
---|
| 21 | ! Calcul du transport vertical dans la couche limite en presence |
---|
| 22 | ! de "thermiques" explicitement representes avec processus nuageux |
---|
| 23 | ! |
---|
[1294] | 24 | ! Reecriture a partir d'un listing papier a Habas, le 14/02/00 |
---|
[878] | 25 | ! |
---|
[1294] | 26 | ! le thermique est suppose homogene et dissipe par melange avec |
---|
| 27 | ! son environnement. la longueur l_mix controle l'efficacite du |
---|
| 28 | ! melange |
---|
[878] | 29 | ! |
---|
[1294] | 30 | ! Le calcul du transport des differentes especes se fait en prenant |
---|
[878] | 31 | ! en compte: |
---|
| 32 | ! 1. un flux de masse montant |
---|
| 33 | ! 2. un flux de masse descendant |
---|
| 34 | ! 3. un entrainement |
---|
| 35 | ! 4. un detrainement |
---|
| 36 | ! |
---|
| 37 | !======================================================================= |
---|
| 38 | |
---|
| 39 | !----------------------------------------------------------------------- |
---|
| 40 | ! declarations: |
---|
| 41 | ! ------------- |
---|
| 42 | |
---|
| 43 | #include "dimensions.h" |
---|
| 44 | #include "YOMCST.h" |
---|
| 45 | #include "YOETHF.h" |
---|
| 46 | #include "FCTTRE.h" |
---|
[938] | 47 | #include "iniprint.h" |
---|
[878] | 48 | |
---|
| 49 | ! arguments: |
---|
| 50 | ! ---------- |
---|
| 51 | |
---|
[972] | 52 | !IM 140508 |
---|
| 53 | INTEGER itap |
---|
| 54 | |
---|
| 55 | INTEGER ngrid,nlay,w2di |
---|
| 56 | real tau_thermals |
---|
[1311] | 57 | integer iflag_thermals_ed |
---|
[878] | 58 | real ptimestep,l_mix,r_aspect |
---|
| 59 | REAL pt(ngrid,nlay),pdtadj(ngrid,nlay) |
---|
| 60 | REAL pu(ngrid,nlay),pduadj(ngrid,nlay) |
---|
| 61 | REAL pv(ngrid,nlay),pdvadj(ngrid,nlay) |
---|
| 62 | REAL po(ngrid,nlay),pdoadj(ngrid,nlay) |
---|
| 63 | REAL pplay(ngrid,nlay),pplev(ngrid,nlay+1) |
---|
| 64 | real pphi(ngrid,nlay) |
---|
| 65 | |
---|
| 66 | ! local: |
---|
| 67 | ! ------ |
---|
| 68 | |
---|
[972] | 69 | integer icount |
---|
| 70 | data icount/0/ |
---|
| 71 | save icount |
---|
[987] | 72 | !$OMP THREADPRIVATE(icount) |
---|
[972] | 73 | |
---|
[883] | 74 | integer,save :: igout=1 |
---|
[987] | 75 | !$OMP THREADPRIVATE(igout) |
---|
[938] | 76 | integer,save :: lunout1=6 |
---|
[987] | 77 | !$OMP THREADPRIVATE(lunout1) |
---|
[883] | 78 | integer,save :: lev_out=10 |
---|
[987] | 79 | !$OMP THREADPRIVATE(lev_out) |
---|
[878] | 80 | |
---|
| 81 | INTEGER ig,k,l,ll |
---|
| 82 | real zsortie1d(klon) |
---|
| 83 | INTEGER lmax(klon),lmin(klon),lalim(klon) |
---|
| 84 | INTEGER lmix(klon) |
---|
[1026] | 85 | INTEGER lmix_bis(klon) |
---|
[878] | 86 | real linter(klon) |
---|
| 87 | real zmix(klon) |
---|
[1294] | 88 | real zmax(klon),zw2(klon,klev+1),ztva(klon,klev),zw_est(klon,klev+1),ztva_est(klon,klev) |
---|
[1026] | 89 | ! real fraca(klon,klev) |
---|
| 90 | |
---|
[878] | 91 | real zmax_sec(klon) |
---|
| 92 | !on garde le zmax du pas de temps precedent |
---|
| 93 | real zmax0(klon) |
---|
[927] | 94 | !FH/IM save zmax0 |
---|
[878] | 95 | |
---|
[972] | 96 | real lambda |
---|
| 97 | |
---|
[878] | 98 | real zlev(klon,klev+1),zlay(klon,klev) |
---|
| 99 | real deltaz(klon,klev) |
---|
[972] | 100 | REAL zh(klon,klev) |
---|
[878] | 101 | real zthl(klon,klev),zdthladj(klon,klev) |
---|
| 102 | REAL ztv(klon,klev) |
---|
| 103 | real zu(klon,klev),zv(klon,klev),zo(klon,klev) |
---|
| 104 | real zl(klon,klev) |
---|
| 105 | real zsortie(klon,klev) |
---|
| 106 | real zva(klon,klev) |
---|
| 107 | real zua(klon,klev) |
---|
| 108 | real zoa(klon,klev) |
---|
| 109 | |
---|
| 110 | real zta(klon,klev) |
---|
| 111 | real zha(klon,klev) |
---|
| 112 | real fraca(klon,klev+1) |
---|
| 113 | real zf,zf2 |
---|
| 114 | real thetath2(klon,klev),wth2(klon,klev),wth3(klon,klev) |
---|
| 115 | real q2(klon,klev) |
---|
[972] | 116 | ! FH probleme de dimensionnement avec l'allocation dynamique |
---|
| 117 | ! common/comtherm/thetath2,wth2 |
---|
[1294] | 118 | real wq(klon,klev) |
---|
| 119 | real wthl(klon,klev) |
---|
| 120 | real wthv(klon,klev) |
---|
[878] | 121 | |
---|
| 122 | real ratqscth(klon,klev) |
---|
| 123 | real var |
---|
| 124 | real vardiff |
---|
| 125 | real ratqsdiff(klon,klev) |
---|
| 126 | |
---|
| 127 | logical sorties |
---|
[972] | 128 | real rho(klon,klev),rhobarz(klon,klev),masse(klon,klev) |
---|
[878] | 129 | real zpspsk(klon,klev) |
---|
| 130 | |
---|
| 131 | real wmax(klon) |
---|
[1338] | 132 | real wmax_tmp(klon) |
---|
[878] | 133 | real wmax_sec(klon) |
---|
[972] | 134 | real fm0(klon,klev+1),entr0(klon,klev),detr0(klon,klev) |
---|
| 135 | real fm(klon,klev+1),entr(klon,klev),detr(klon,klev) |
---|
[878] | 136 | |
---|
| 137 | real ztla(klon,klev),zqla(klon,klev),zqta(klon,klev) |
---|
| 138 | !niveau de condensation |
---|
[879] | 139 | integer nivcon(klon) |
---|
[878] | 140 | real zcon(klon) |
---|
| 141 | REAL CHI |
---|
| 142 | real zcon2(klon) |
---|
| 143 | real pcon(klon) |
---|
| 144 | real zqsat(klon,klev) |
---|
| 145 | real zqsatth(klon,klev) |
---|
| 146 | |
---|
| 147 | real f_star(klon,klev+1),entr_star(klon,klev) |
---|
| 148 | real detr_star(klon,klev) |
---|
[1294] | 149 | real alim_star_tot(klon) |
---|
[878] | 150 | real alim_star(klon,klev) |
---|
[1294] | 151 | real alim_star_clos(klon,klev) |
---|
[878] | 152 | real f(klon), f0(klon) |
---|
[927] | 153 | !FH/IM save f0 |
---|
[878] | 154 | real zlevinter(klon) |
---|
| 155 | logical debut |
---|
| 156 | real seuil |
---|
[1294] | 157 | real csc(klon,klev) |
---|
[878] | 158 | |
---|
| 159 | ! |
---|
[879] | 160 | !nouvelles variables pour la convection |
---|
| 161 | real Ale_bl(klon) |
---|
| 162 | real Alp_bl(klon) |
---|
| 163 | real alp_int(klon) |
---|
| 164 | real ale_int(klon) |
---|
| 165 | integer n_int(klon) |
---|
| 166 | real fm_tot(klon) |
---|
| 167 | real wght_th(klon,klev) |
---|
| 168 | integer lalim_conv(klon) |
---|
[926] | 169 | !v1d logical therm |
---|
| 170 | !v1d save therm |
---|
[878] | 171 | |
---|
| 172 | character*2 str2 |
---|
| 173 | character*10 str10 |
---|
| 174 | |
---|
[1299] | 175 | character (len=20) :: modname='thermcell_main' |
---|
| 176 | character (len=80) :: abort_message |
---|
| 177 | |
---|
[878] | 178 | EXTERNAL SCOPY |
---|
| 179 | ! |
---|
| 180 | |
---|
| 181 | !----------------------------------------------------------------------- |
---|
| 182 | ! initialisation: |
---|
| 183 | ! --------------- |
---|
| 184 | ! |
---|
| 185 | |
---|
| 186 | seuil=0.25 |
---|
| 187 | |
---|
[972] | 188 | if (debut) then |
---|
| 189 | fm0=0. |
---|
| 190 | entr0=0. |
---|
| 191 | detr0=0. |
---|
[1026] | 192 | |
---|
| 193 | |
---|
[1338] | 194 | #define wrgrads_thermcell |
---|
[1026] | 195 | #ifdef wrgrads_thermcell |
---|
| 196 | ! Initialisation des sorties grads pour les thermiques. |
---|
| 197 | ! Pour l'instant en 1D sur le point igout. |
---|
| 198 | ! Utilise par thermcell_out3d.h |
---|
| 199 | str10='therm' |
---|
| 200 | call inigrads(1,1,rlond(igout),1.,-180.,180.,jjm, & |
---|
| 201 | & rlatd(igout),-90.,90.,1.,llm,pplay(igout,:),1., & |
---|
| 202 | & ptimestep,str10,'therm ') |
---|
| 203 | #endif |
---|
| 204 | |
---|
| 205 | |
---|
| 206 | |
---|
[972] | 207 | endif |
---|
| 208 | |
---|
| 209 | fm=0. ; entr=0. ; detr=0. |
---|
| 210 | |
---|
[1338] | 211 | print*,'THERMCELL MAIN OPT7' |
---|
| 212 | |
---|
[972] | 213 | icount=icount+1 |
---|
| 214 | |
---|
| 215 | !IM 090508 beg |
---|
| 216 | !print*,'=====================================================================' |
---|
| 217 | !print*,'=====================================================================' |
---|
| 218 | !print*,' PAS ',icount,' PAS ',icount,' PAS ',icount,' PAS ',icount |
---|
| 219 | !print*,'=====================================================================' |
---|
| 220 | !print*,'=====================================================================' |
---|
| 221 | !IM 090508 end |
---|
| 222 | |
---|
[938] | 223 | if (prt_level.ge.1) print*,'thermcell_main V4' |
---|
[878] | 224 | |
---|
| 225 | sorties=.true. |
---|
| 226 | IF(ngrid.NE.klon) THEN |
---|
| 227 | PRINT* |
---|
| 228 | PRINT*,'STOP dans convadj' |
---|
| 229 | PRINT*,'ngrid =',ngrid |
---|
| 230 | PRINT*,'klon =',klon |
---|
| 231 | ENDIF |
---|
| 232 | ! |
---|
[1311] | 233 | ! write(lunout,*)'WARNING thermcell_main f0=max(f0,1.e-2)' |
---|
[972] | 234 | do ig=1,klon |
---|
| 235 | if (prt_level.ge.20) then |
---|
| 236 | print*,'th_main ig f0',ig,f0(ig) |
---|
[878] | 237 | endif |
---|
[972] | 238 | f0(ig)=max(f0(ig),1.e-2) |
---|
[1294] | 239 | zmax0(ig)=max(zmax0(ig),40.) |
---|
[972] | 240 | !IMmarche pas ?! if (f0(ig)<1.e-2) f0(ig)=1.e-2 |
---|
| 241 | enddo |
---|
[878] | 242 | |
---|
| 243 | !----------------------------------------------------------------------- |
---|
| 244 | ! Calcul de T,q,ql a partir de Tl et qT dans l environnement |
---|
| 245 | ! -------------------------------------------------------------------- |
---|
| 246 | ! |
---|
| 247 | CALL thermcell_env(ngrid,nlay,po,pt,pu,pv,pplay, & |
---|
| 248 | & pplev,zo,zh,zl,ztv,zthl,zu,zv,zpspsk,zqsat,lev_out) |
---|
| 249 | |
---|
[938] | 250 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_env' |
---|
[878] | 251 | |
---|
| 252 | !------------------------------------------------------------------------ |
---|
| 253 | ! -------------------- |
---|
| 254 | ! |
---|
| 255 | ! |
---|
| 256 | ! + + + + + + + + + + + |
---|
| 257 | ! |
---|
| 258 | ! |
---|
| 259 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
| 260 | ! wh,wt,wo ... |
---|
| 261 | ! |
---|
| 262 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
| 263 | ! |
---|
| 264 | ! |
---|
| 265 | ! -------------------- zlev(1) |
---|
| 266 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
| 267 | ! |
---|
| 268 | ! |
---|
| 269 | |
---|
| 270 | !----------------------------------------------------------------------- |
---|
| 271 | ! Calcul des altitudes des couches |
---|
| 272 | !----------------------------------------------------------------------- |
---|
| 273 | |
---|
| 274 | do l=2,nlay |
---|
| 275 | zlev(:,l)=0.5*(pphi(:,l)+pphi(:,l-1))/RG |
---|
| 276 | enddo |
---|
| 277 | zlev(:,1)=0. |
---|
| 278 | zlev(:,nlay+1)=(2.*pphi(:,klev)-pphi(:,klev-1))/RG |
---|
| 279 | do l=1,nlay |
---|
| 280 | zlay(:,l)=pphi(:,l)/RG |
---|
| 281 | enddo |
---|
| 282 | !calcul de l epaisseur des couches |
---|
| 283 | do l=1,nlay |
---|
| 284 | deltaz(:,l)=zlev(:,l+1)-zlev(:,l) |
---|
| 285 | enddo |
---|
| 286 | |
---|
| 287 | ! print*,'2 OK convect8' |
---|
| 288 | !----------------------------------------------------------------------- |
---|
| 289 | ! Calcul des densites |
---|
| 290 | !----------------------------------------------------------------------- |
---|
| 291 | |
---|
| 292 | do l=1,nlay |
---|
| 293 | rho(:,l)=pplay(:,l)/(zpspsk(:,l)*RD*ztv(:,l)) |
---|
| 294 | enddo |
---|
| 295 | |
---|
[972] | 296 | !IM |
---|
[1146] | 297 | if (prt_level.ge.10)write(lunout,*) & |
---|
| 298 | & 'WARNING thermcell_main rhobarz(:,1)=rho(:,1)' |
---|
[972] | 299 | rhobarz(:,1)=rho(:,1) |
---|
| 300 | |
---|
[878] | 301 | do l=2,nlay |
---|
| 302 | rhobarz(:,l)=0.5*(rho(:,l)+rho(:,l-1)) |
---|
| 303 | enddo |
---|
| 304 | |
---|
| 305 | !calcul de la masse |
---|
| 306 | do l=1,nlay |
---|
| 307 | masse(:,l)=(pplev(:,l)-pplev(:,l+1))/RG |
---|
| 308 | enddo |
---|
| 309 | |
---|
[938] | 310 | if (prt_level.ge.1) print*,'thermcell_main apres initialisation' |
---|
[878] | 311 | |
---|
| 312 | !------------------------------------------------------------------ |
---|
| 313 | ! |
---|
| 314 | ! /|\ |
---|
| 315 | ! -------- | F_k+1 ------- |
---|
| 316 | ! ----> D_k |
---|
| 317 | ! /|\ <---- E_k , A_k |
---|
| 318 | ! -------- | F_k --------- |
---|
| 319 | ! ----> D_k-1 |
---|
| 320 | ! <---- E_k-1 , A_k-1 |
---|
| 321 | ! |
---|
| 322 | ! |
---|
| 323 | ! |
---|
| 324 | ! |
---|
| 325 | ! |
---|
| 326 | ! --------------------------- |
---|
| 327 | ! |
---|
| 328 | ! ----- F_lmax+1=0 ---------- \ |
---|
| 329 | ! lmax (zmax) | |
---|
| 330 | ! --------------------------- | |
---|
| 331 | ! | |
---|
| 332 | ! --------------------------- | |
---|
| 333 | ! | |
---|
| 334 | ! --------------------------- | |
---|
| 335 | ! | |
---|
| 336 | ! --------------------------- | |
---|
| 337 | ! | |
---|
| 338 | ! --------------------------- | |
---|
| 339 | ! | E |
---|
| 340 | ! --------------------------- | D |
---|
| 341 | ! | |
---|
| 342 | ! --------------------------- | |
---|
| 343 | ! | |
---|
| 344 | ! --------------------------- \ | |
---|
| 345 | ! lalim | | |
---|
| 346 | ! --------------------------- | | |
---|
| 347 | ! | | |
---|
| 348 | ! --------------------------- | | |
---|
| 349 | ! | A | |
---|
| 350 | ! --------------------------- | | |
---|
| 351 | ! | | |
---|
| 352 | ! --------------------------- | | |
---|
| 353 | ! lmin (=1 pour le moment) | | |
---|
| 354 | ! ----- F_lmin=0 ------------ / / |
---|
| 355 | ! |
---|
| 356 | ! --------------------------- |
---|
| 357 | ! ////////////////////////// |
---|
| 358 | ! |
---|
| 359 | ! |
---|
| 360 | !============================================================================= |
---|
| 361 | ! Calculs initiaux ne faisant pas intervenir les changements de phase |
---|
| 362 | !============================================================================= |
---|
| 363 | |
---|
| 364 | !------------------------------------------------------------------ |
---|
[1294] | 365 | ! 1. alim_star est le profil vertical de l'alimentation a la base du |
---|
| 366 | ! panache thermique, calcule a partir de la flotabilite de l'air sec |
---|
[878] | 367 | ! 2. lmin et lalim sont les indices inferieurs et superieurs de alim_star |
---|
| 368 | !------------------------------------------------------------------ |
---|
| 369 | ! |
---|
| 370 | entr_star=0. ; detr_star=0. ; alim_star=0. ; alim_star_tot=0. |
---|
[1294] | 371 | lmin=1 |
---|
[878] | 372 | |
---|
| 373 | !----------------------------------------------------------------------------- |
---|
| 374 | ! 3. wmax_sec et zmax_sec sont les vitesses et altitudes maximum d'un |
---|
| 375 | ! panache sec conservatif (e=d=0) alimente selon alim_star |
---|
| 376 | ! Il s'agit d'un calcul de type CAPE |
---|
[1294] | 377 | ! zmax_sec est utilise pour determiner la geometrie du thermique. |
---|
[878] | 378 | !------------------------------------------------------------------------------ |
---|
| 379 | !--------------------------------------------------------------------------------- |
---|
| 380 | !calcul du melange et des variables dans le thermique |
---|
| 381 | !-------------------------------------------------------------------------------- |
---|
| 382 | ! |
---|
[972] | 383 | if (prt_level.ge.1) print*,'avant thermcell_plume ',lev_out |
---|
| 384 | !IM 140508 CALL thermcell_plume(ngrid,nlay,ptimestep,ztv,zthl,po,zl,rhobarz, & |
---|
[1311] | 385 | |
---|
| 386 | ! Gestion temporaire de plusieurs appels à thermcell_plume au travers |
---|
| 387 | ! de la variable iflag_thermals |
---|
| 388 | |
---|
| 389 | ! print*,'THERM thermcell_main iflag_thermals_ed=',iflag_thermals_ed |
---|
| 390 | if (iflag_thermals_ed<=9) then |
---|
| 391 | ! print*,'THERM NOVUELLE/NOUVELLE/ANCIENNE' |
---|
| 392 | CALL thermcell_plume(itap,ngrid,nlay,ptimestep,ztv,zthl,po,zl,rhobarz,& |
---|
| 393 | & zlev,pplev,pphi,zpspsk,alim_star,alim_star_tot, & |
---|
| 394 | & lalim,f0,detr_star,entr_star,f_star,csc,ztva, & |
---|
| 395 | & ztla,zqla,zqta,zha,zw2,zw_est,ztva_est,zqsatth,lmix,lmix_bis,linter & |
---|
| 396 | & ,lev_out,lunout1,igout) |
---|
| 397 | |
---|
| 398 | elseif (iflag_thermals_ed<=19) then |
---|
[1338] | 399 | ! print*,'THERM RIO et al 2010, version d Arnaud' |
---|
[1311] | 400 | CALL thermcellV1_plume(itap,ngrid,nlay,ptimestep,ztv,zthl,po,zl,rhobarz,& |
---|
| 401 | & zlev,pplev,pphi,zpspsk,alim_star,alim_star_tot, & |
---|
| 402 | & lalim,f0,detr_star,entr_star,f_star,csc,ztva, & |
---|
| 403 | & ztla,zqla,zqta,zha,zw2,zw_est,ztva_est,zqsatth,lmix,lmix_bis,linter & |
---|
| 404 | & ,lev_out,lunout1,igout) |
---|
| 405 | |
---|
| 406 | endif |
---|
| 407 | |
---|
[972] | 408 | if (prt_level.ge.1) print*,'apres thermcell_plume ',lev_out |
---|
| 409 | |
---|
[878] | 410 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_plum lalim ') |
---|
| 411 | call test_ltherm(ngrid,nlay,pplev,pplay,lmix ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_plum lmix ') |
---|
| 412 | |
---|
[938] | 413 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_plume' |
---|
| 414 | if (prt_level.ge.10) then |
---|
[972] | 415 | write(lunout1,*) 'Dans thermcell_main 2' |
---|
| 416 | write(lunout1,*) 'lmin ',lmin(igout) |
---|
| 417 | write(lunout1,*) 'lalim ',lalim(igout) |
---|
| 418 | write(lunout1,*) ' ig l alim_star entr_star detr_star f_star ' |
---|
| 419 | write(lunout1,'(i6,i4,4e15.5)') (igout,l,alim_star(igout,l),entr_star(igout,l),detr_star(igout,l) & |
---|
[878] | 420 | & ,f_star(igout,l+1),l=1,nint(linter(igout))+5) |
---|
| 421 | endif |
---|
| 422 | |
---|
| 423 | !------------------------------------------------------------------------------- |
---|
| 424 | ! Calcul des caracteristiques du thermique:zmax,zmix,wmax |
---|
| 425 | !------------------------------------------------------------------------------- |
---|
| 426 | ! |
---|
| 427 | CALL thermcell_height(ngrid,nlay,lalim,lmin,linter,lmix,zw2, & |
---|
| 428 | & zlev,lmax,zmax,zmax0,zmix,wmax,lev_out) |
---|
[1338] | 429 | ! Attention, w2 est transforme en sa racine carree dans cette routine |
---|
| 430 | ! Le probleme vient du fait que linter et lmix sont souvent égaux à 1. |
---|
| 431 | wmax_tmp=0. |
---|
| 432 | do l=1,nlay |
---|
| 433 | wmax_tmp(:)=max(wmax_tmp(:),zw2(:,l)) |
---|
| 434 | enddo |
---|
| 435 | ! print*,"ZMAX ",lalim,lmin,linter,lmix,lmax,zmax,zmax0,zmix,wmax |
---|
[878] | 436 | |
---|
| 437 | |
---|
[1294] | 438 | |
---|
[878] | 439 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lalim ') |
---|
| 440 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmin ') |
---|
| 441 | call test_ltherm(ngrid,nlay,pplev,pplay,lmix ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmix ') |
---|
| 442 | call test_ltherm(ngrid,nlay,pplev,pplay,lmax ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_heig lmax ') |
---|
| 443 | |
---|
[938] | 444 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_height' |
---|
[878] | 445 | |
---|
| 446 | !------------------------------------------------------------------------------- |
---|
| 447 | ! Fermeture,determination de f |
---|
| 448 | !------------------------------------------------------------------------------- |
---|
[1026] | 449 | ! |
---|
[1294] | 450 | ! |
---|
[1311] | 451 | !! write(lunout,*)'THERM NOUVEAU XXXXX' |
---|
[1294] | 452 | CALL thermcell_dry(ngrid,nlay,zlev,pphi,ztv,alim_star, & |
---|
| 453 | & lalim,lmin,zmax_sec,wmax_sec,lev_out) |
---|
[878] | 454 | |
---|
[1294] | 455 | call test_ltherm(ngrid,nlay,pplev,pplay,lmin,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_dry lmin ') |
---|
| 456 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_dry lalim ') |
---|
| 457 | |
---|
| 458 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_dry' |
---|
| 459 | if (prt_level.ge.10) then |
---|
| 460 | write(lunout1,*) 'Dans thermcell_main 1b' |
---|
| 461 | write(lunout1,*) 'lmin ',lmin(igout) |
---|
| 462 | write(lunout1,*) 'lalim ',lalim(igout) |
---|
| 463 | write(lunout1,*) ' ig l alim_star entr_star detr_star f_star ' |
---|
| 464 | write(lunout1,'(i6,i4,e15.5)') (igout,l,alim_star(igout,l) & |
---|
| 465 | & ,l=1,lalim(igout)+4) |
---|
| 466 | endif |
---|
| 467 | |
---|
| 468 | |
---|
| 469 | |
---|
[1311] | 470 | !print*,'THERM 26JJJ' |
---|
[1294] | 471 | |
---|
| 472 | ! Choix de la fonction d'alimentation utilisee pour la fermeture. |
---|
| 473 | ! Apparemment sans importance |
---|
| 474 | alim_star_clos(:,:)=alim_star(:,:) |
---|
| 475 | alim_star_clos(:,:)=entr_star(:,:)+alim_star(:,:) |
---|
| 476 | |
---|
| 477 | ! Appel avec la version seche |
---|
[878] | 478 | CALL thermcell_closure(ngrid,nlay,r_aspect,ptimestep,rho, & |
---|
[1294] | 479 | & zlev,lalim,alim_star_clos,f_star,zmax_sec,wmax_sec,f,lev_out) |
---|
[878] | 480 | |
---|
[1294] | 481 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 482 | ! Appel avec les zmax et wmax tenant compte de la condensation |
---|
| 483 | ! Semble moins bien marcher |
---|
| 484 | ! CALL thermcell_closure(ngrid,nlay,r_aspect,ptimestep,rho, & |
---|
| 485 | ! & zlev,lalim,alim_star,f_star,zmax,wmax,f,lev_out) |
---|
| 486 | !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! |
---|
| 487 | |
---|
[938] | 488 | if(prt_level.ge.1)print*,'thermcell_closure apres thermcell_closure' |
---|
[878] | 489 | |
---|
[972] | 490 | if (tau_thermals>1.) then |
---|
| 491 | lambda=exp(-ptimestep/tau_thermals) |
---|
| 492 | f0=(1.-lambda)*f+lambda*f0 |
---|
| 493 | else |
---|
| 494 | f0=f |
---|
| 495 | endif |
---|
| 496 | |
---|
| 497 | ! Test valable seulement en 1D mais pas genant |
---|
| 498 | if (.not. (f0(1).ge.0.) ) then |
---|
[1299] | 499 | abort_message = '.not. (f0(1).ge.0.)' |
---|
| 500 | CALL abort_gcm (modname,abort_message,1) |
---|
[972] | 501 | endif |
---|
| 502 | |
---|
[878] | 503 | !------------------------------------------------------------------------------- |
---|
| 504 | !deduction des flux |
---|
| 505 | !------------------------------------------------------------------------------- |
---|
| 506 | |
---|
[972] | 507 | CALL thermcell_flux2(ngrid,nlay,ptimestep,masse, & |
---|
[878] | 508 | & lalim,lmax,alim_star, & |
---|
| 509 | & entr_star,detr_star,f,rhobarz,zlev,zw2,fm,entr, & |
---|
[972] | 510 | & detr,zqla,lev_out,lunout1,igout) |
---|
| 511 | !IM 060508 & detr,zqla,zmax,lev_out,lunout,igout) |
---|
[878] | 512 | |
---|
[938] | 513 | if (prt_level.ge.1) print*,'thermcell_main apres thermcell_flux' |
---|
[878] | 514 | call test_ltherm(ngrid,nlay,pplev,pplay,lalim,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_flux lalim ') |
---|
| 515 | call test_ltherm(ngrid,nlay,pplev,pplay,lmax ,seuil,ztv,po,ztva,zqla,f_star,zw2,'thermcell_flux lmax ') |
---|
| 516 | |
---|
| 517 | !------------------------------------------------------------------ |
---|
[972] | 518 | ! On ne prend pas directement les profils issus des calculs precedents |
---|
| 519 | ! mais on s'autorise genereusement une relaxation vers ceci avec |
---|
| 520 | ! une constante de temps tau_thermals (typiquement 1800s). |
---|
| 521 | !------------------------------------------------------------------ |
---|
[878] | 522 | |
---|
[972] | 523 | if (tau_thermals>1.) then |
---|
| 524 | lambda=exp(-ptimestep/tau_thermals) |
---|
| 525 | fm0=(1.-lambda)*fm+lambda*fm0 |
---|
| 526 | entr0=(1.-lambda)*entr+lambda*entr0 |
---|
[1294] | 527 | detr0=(1.-lambda)*detr+lambda*detr0 |
---|
[878] | 528 | else |
---|
| 529 | fm0=fm |
---|
| 530 | entr0=entr |
---|
| 531 | detr0=detr |
---|
| 532 | endif |
---|
| 533 | |
---|
[972] | 534 | !c------------------------------------------------------------------ |
---|
| 535 | ! calcul du transport vertical |
---|
| 536 | !------------------------------------------------------------------ |
---|
| 537 | |
---|
[878] | 538 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse, & |
---|
| 539 | & zthl,zdthladj,zta,lev_out) |
---|
| 540 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse, & |
---|
| 541 | & po,pdoadj,zoa,lev_out) |
---|
| 542 | |
---|
[883] | 543 | !------------------------------------------------------------------ |
---|
| 544 | ! Calcul de la fraction de l'ascendance |
---|
| 545 | !------------------------------------------------------------------ |
---|
| 546 | do ig=1,klon |
---|
| 547 | fraca(ig,1)=0. |
---|
| 548 | fraca(ig,nlay+1)=0. |
---|
| 549 | enddo |
---|
| 550 | do l=2,nlay |
---|
| 551 | do ig=1,klon |
---|
| 552 | if (zw2(ig,l).gt.1.e-10) then |
---|
| 553 | fraca(ig,l)=fm(ig,l)/(rhobarz(ig,l)*zw2(ig,l)) |
---|
| 554 | else |
---|
| 555 | fraca(ig,l)=0. |
---|
| 556 | endif |
---|
| 557 | enddo |
---|
| 558 | enddo |
---|
| 559 | |
---|
| 560 | !------------------------------------------------------------------ |
---|
| 561 | ! calcul du transport vertical du moment horizontal |
---|
| 562 | !------------------------------------------------------------------ |
---|
[878] | 563 | |
---|
[972] | 564 | !IM 090508 |
---|
[883] | 565 | if (1.eq.1) then |
---|
[972] | 566 | !IM 070508 vers. _dq |
---|
| 567 | ! if (1.eq.0) then |
---|
[883] | 568 | |
---|
| 569 | |
---|
[878] | 570 | ! Calcul du transport de V tenant compte d'echange par gradient |
---|
| 571 | ! de pression horizontal avec l'environnement |
---|
| 572 | |
---|
| 573 | call thermcell_dv2(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 574 | & ,fraca,zmax & |
---|
[972] | 575 | & ,zu,zv,pduadj,pdvadj,zua,zva,lev_out) |
---|
[1294] | 576 | |
---|
[878] | 577 | else |
---|
| 578 | |
---|
| 579 | ! calcul purement conservatif pour le transport de V |
---|
| 580 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 581 | & ,zu,pduadj,zua,lev_out) |
---|
| 582 | call thermcell_dq(ngrid,nlay,ptimestep,fm0,entr0,masse & |
---|
| 583 | & ,zv,pdvadj,zva,lev_out) |
---|
| 584 | endif |
---|
| 585 | |
---|
| 586 | ! print*,'13 OK convect8' |
---|
| 587 | do l=1,nlay |
---|
| 588 | do ig=1,ngrid |
---|
| 589 | pdtadj(ig,l)=zdthladj(ig,l)*zpspsk(ig,l) |
---|
| 590 | enddo |
---|
| 591 | enddo |
---|
| 592 | |
---|
[972] | 593 | if (prt_level.ge.1) print*,'14 OK convect8' |
---|
[878] | 594 | !------------------------------------------------------------------ |
---|
| 595 | ! Calculs de diagnostiques pour les sorties |
---|
| 596 | !------------------------------------------------------------------ |
---|
| 597 | !calcul de fraca pour les sorties |
---|
| 598 | |
---|
| 599 | if (sorties) then |
---|
[972] | 600 | if (prt_level.ge.1) print*,'14a OK convect8' |
---|
[878] | 601 | ! calcul du niveau de condensation |
---|
| 602 | ! initialisation |
---|
| 603 | do ig=1,ngrid |
---|
[879] | 604 | nivcon(ig)=0 |
---|
[878] | 605 | zcon(ig)=0. |
---|
| 606 | enddo |
---|
| 607 | !nouveau calcul |
---|
| 608 | do ig=1,ngrid |
---|
| 609 | CHI=zh(ig,1)/(1669.0-122.0*zo(ig,1)/zqsat(ig,1)-zh(ig,1)) |
---|
| 610 | pcon(ig)=pplay(ig,1)*(zo(ig,1)/zqsat(ig,1))**CHI |
---|
| 611 | enddo |
---|
| 612 | do k=1,nlay |
---|
| 613 | do ig=1,ngrid |
---|
| 614 | if ((pcon(ig).le.pplay(ig,k)) & |
---|
| 615 | & .and.(pcon(ig).gt.pplay(ig,k+1))) then |
---|
| 616 | zcon2(ig)=zlay(ig,k)-(pcon(ig)-pplay(ig,k))/(RG*rho(ig,k))/100. |
---|
| 617 | endif |
---|
| 618 | enddo |
---|
| 619 | enddo |
---|
[972] | 620 | if (prt_level.ge.1) print*,'14b OK convect8' |
---|
[878] | 621 | do k=nlay,1,-1 |
---|
| 622 | do ig=1,ngrid |
---|
| 623 | if (zqla(ig,k).gt.1e-10) then |
---|
| 624 | nivcon(ig)=k |
---|
| 625 | zcon(ig)=zlev(ig,k) |
---|
| 626 | endif |
---|
| 627 | enddo |
---|
| 628 | enddo |
---|
[972] | 629 | if (prt_level.ge.1) print*,'14c OK convect8' |
---|
[878] | 630 | !calcul des moments |
---|
| 631 | !initialisation |
---|
| 632 | do l=1,nlay |
---|
| 633 | do ig=1,ngrid |
---|
| 634 | q2(ig,l)=0. |
---|
| 635 | wth2(ig,l)=0. |
---|
| 636 | wth3(ig,l)=0. |
---|
| 637 | ratqscth(ig,l)=0. |
---|
| 638 | ratqsdiff(ig,l)=0. |
---|
| 639 | enddo |
---|
| 640 | enddo |
---|
[972] | 641 | if (prt_level.ge.1) print*,'14d OK convect8' |
---|
[1146] | 642 | if (prt_level.ge.10)write(lunout,*) & |
---|
| 643 | & 'WARNING thermcell_main wth2=0. si zw2 > 1.e-10' |
---|
[878] | 644 | do l=1,nlay |
---|
| 645 | do ig=1,ngrid |
---|
| 646 | zf=fraca(ig,l) |
---|
| 647 | zf2=zf/(1.-zf) |
---|
[972] | 648 | ! |
---|
| 649 | if (prt_level.ge.10) print*,'14e OK convect8 ig,l,zf,zf2',ig,l,zf,zf2 |
---|
| 650 | ! |
---|
| 651 | if (prt_level.ge.10) print*,'14f OK convect8 ig,l,zha zh zpspsk ',ig,l,zha(ig,l),zh(ig,l),zpspsk(ig,l) |
---|
[1294] | 652 | thetath2(ig,l)=zf2*(ztla(ig,l)-zthl(ig,l))**2 |
---|
[972] | 653 | if(zw2(ig,l).gt.1.e-10) then |
---|
| 654 | wth2(ig,l)=zf2*(zw2(ig,l))**2 |
---|
| 655 | else |
---|
| 656 | wth2(ig,l)=0. |
---|
| 657 | endif |
---|
[878] | 658 | ! print*,'wth2=',wth2(ig,l) |
---|
| 659 | wth3(ig,l)=zf2*(1-2.*fraca(ig,l))/(1-fraca(ig,l)) & |
---|
| 660 | & *zw2(ig,l)*zw2(ig,l)*zw2(ig,l) |
---|
[972] | 661 | if (prt_level.ge.10) print*,'14g OK convect8 ig,l,po',ig,l,po(ig,l) |
---|
[878] | 662 | q2(ig,l)=zf2*(zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
| 663 | !test: on calcul q2/po=ratqsc |
---|
| 664 | ratqscth(ig,l)=sqrt(max(q2(ig,l),1.e-6)/(po(ig,l)*1000.)) |
---|
| 665 | enddo |
---|
| 666 | enddo |
---|
[1294] | 667 | !calcul des flux: q, thetal et thetav |
---|
| 668 | do l=1,nlay |
---|
| 669 | do ig=1,ngrid |
---|
| 670 | wq(ig,l)=fraca(ig,l)*zw2(ig,l)*(zqta(ig,l)*1000.-po(ig,l)*1000.) |
---|
| 671 | wthl(ig,l)=fraca(ig,l)*zw2(ig,l)*(ztla(ig,l)-zthl(ig,l)) |
---|
| 672 | wthv(ig,l)=fraca(ig,l)*zw2(ig,l)*(ztva(ig,l)-ztv(ig,l)) |
---|
| 673 | enddo |
---|
| 674 | enddo |
---|
[972] | 675 | ! |
---|
[1338] | 676 | ! print*,'avant calcul ale et alp' |
---|
| 677 | !calcul de ALE et ALP pour la convection |
---|
| 678 | Alp_bl(:)=0. |
---|
| 679 | Ale_bl(:)=0. |
---|
| 680 | ! print*,'ALE,ALP ,l,zw2(ig,l),Ale_bl(ig),Alp_bl(ig)' |
---|
[972] | 681 | do l=1,nlay |
---|
[879] | 682 | do ig=1,ngrid |
---|
[1338] | 683 | Alp_bl(ig)=max(Alp_bl(ig),0.5*rhobarz(ig,l)*wth3(ig,l) ) |
---|
| 684 | Ale_bl(ig)=max(Ale_bl(ig),0.5*zw2(ig,l)**2) |
---|
| 685 | ! print*,'ALE,ALP',l,zw2(ig,l),Ale_bl(ig),Alp_bl(ig) |
---|
[879] | 686 | enddo |
---|
| 687 | enddo |
---|
[1338] | 688 | |
---|
| 689 | ! print*,'AAAAAAA ',Alp_bl,Ale_bl,lmix |
---|
| 690 | |
---|
| 691 | |
---|
| 692 | ! TEST. IL FAUT REECRIRE LES ALE et ALP |
---|
| 693 | ! Ale_bl(:)=0.5*wmax(:)*wmax(:) |
---|
| 694 | ! Alp_bl(:)=0.1*wmax(:)*wmax(:)*wmax(:) |
---|
| 695 | |
---|
[879] | 696 | !test:calcul de la ponderation des couches pour KE |
---|
| 697 | !initialisations |
---|
| 698 | ! print*,'ponderation' |
---|
| 699 | do ig=1,ngrid |
---|
| 700 | fm_tot(ig)=0. |
---|
| 701 | enddo |
---|
| 702 | do ig=1,ngrid |
---|
| 703 | do k=1,klev |
---|
| 704 | wght_th(ig,k)=1. |
---|
| 705 | enddo |
---|
| 706 | enddo |
---|
| 707 | do ig=1,ngrid |
---|
| 708 | ! lalim_conv(ig)=lmix_bis(ig) |
---|
| 709 | !la hauteur de la couche alim_conv = hauteur couche alim_therm |
---|
| 710 | lalim_conv(ig)=lalim(ig) |
---|
| 711 | ! zentr(ig)=zlev(ig,lalim(ig)) |
---|
| 712 | enddo |
---|
| 713 | do ig=1,ngrid |
---|
| 714 | do k=1,lalim_conv(ig) |
---|
| 715 | fm_tot(ig)=fm_tot(ig)+fm(ig,k) |
---|
| 716 | enddo |
---|
| 717 | enddo |
---|
| 718 | do ig=1,ngrid |
---|
| 719 | do k=1,lalim_conv(ig) |
---|
| 720 | if (fm_tot(ig).gt.1.e-10) then |
---|
| 721 | ! wght_th(ig,k)=fm(ig,k)/fm_tot(ig) |
---|
| 722 | endif |
---|
| 723 | !on pondere chaque couche par a* |
---|
| 724 | if (alim_star(ig,k).gt.1.e-10) then |
---|
| 725 | wght_th(ig,k)=alim_star(ig,k) |
---|
| 726 | else |
---|
| 727 | wght_th(ig,k)=1. |
---|
| 728 | endif |
---|
| 729 | enddo |
---|
| 730 | enddo |
---|
| 731 | ! print*,'apres wght_th' |
---|
| 732 | !test pour prolonger la convection |
---|
| 733 | do ig=1,ngrid |
---|
[926] | 734 | !v1d if ((alim_star(ig,1).lt.1.e-10).and.(therm)) then |
---|
| 735 | if ((alim_star(ig,1).lt.1.e-10)) then |
---|
[879] | 736 | lalim_conv(ig)=1 |
---|
| 737 | wght_th(ig,1)=1. |
---|
| 738 | ! print*,'lalim_conv ok',lalim_conv(ig),wght_th(ig,1) |
---|
| 739 | endif |
---|
| 740 | enddo |
---|
| 741 | |
---|
[878] | 742 | !calcul du ratqscdiff |
---|
[972] | 743 | if (prt_level.ge.1) print*,'14e OK convect8' |
---|
[878] | 744 | var=0. |
---|
| 745 | vardiff=0. |
---|
| 746 | ratqsdiff(:,:)=0. |
---|
| 747 | do ig=1,ngrid |
---|
| 748 | do l=1,lalim(ig) |
---|
| 749 | var=var+alim_star(ig,l)*zqta(ig,l)*1000. |
---|
| 750 | enddo |
---|
| 751 | enddo |
---|
[972] | 752 | if (prt_level.ge.1) print*,'14f OK convect8' |
---|
[878] | 753 | do ig=1,ngrid |
---|
| 754 | do l=1,lalim(ig) |
---|
| 755 | zf=fraca(ig,l) |
---|
| 756 | zf2=zf/(1.-zf) |
---|
| 757 | vardiff=vardiff+alim_star(ig,l) & |
---|
| 758 | & *(zqta(ig,l)*1000.-var)**2 |
---|
| 759 | ! ratqsdiff=ratqsdiff+alim_star(ig,l)* |
---|
| 760 | ! s (zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
| 761 | enddo |
---|
| 762 | enddo |
---|
[972] | 763 | if (prt_level.ge.1) print*,'14g OK convect8' |
---|
[878] | 764 | do l=1,nlay |
---|
| 765 | do ig=1,ngrid |
---|
| 766 | ratqsdiff(ig,l)=sqrt(vardiff)/(po(ig,l)*1000.) |
---|
| 767 | ! write(11,*)'ratqsdiff=',ratqsdiff(ig,l) |
---|
| 768 | enddo |
---|
| 769 | enddo |
---|
| 770 | !-------------------------------------------------------------------- |
---|
| 771 | ! |
---|
| 772 | !ecriture des fichiers sortie |
---|
| 773 | ! print*,'15 OK convect8' |
---|
| 774 | |
---|
[1294] | 775 | #ifdef wrgrads_thermcell |
---|
[938] | 776 | if (prt_level.ge.1) print*,'thermcell_main sorties 3D' |
---|
[878] | 777 | #include "thermcell_out3d.h" |
---|
| 778 | #endif |
---|
| 779 | |
---|
| 780 | endif |
---|
| 781 | |
---|
[938] | 782 | if (prt_level.ge.1) print*,'thermcell_main FIN OK' |
---|
[878] | 783 | |
---|
| 784 | return |
---|
| 785 | end |
---|
| 786 | |
---|
| 787 | !----------------------------------------------------------------------------- |
---|
| 788 | |
---|
| 789 | subroutine test_ltherm(klon,klev,pplev,pplay,long,seuil,ztv,po,ztva,zqla,f_star,zw2,comment) |
---|
[938] | 790 | IMPLICIT NONE |
---|
| 791 | #include "iniprint.h" |
---|
[878] | 792 | |
---|
[938] | 793 | integer i, k, klon,klev |
---|
[878] | 794 | real pplev(klon,klev+1),pplay(klon,klev) |
---|
| 795 | real ztv(klon,klev) |
---|
| 796 | real po(klon,klev) |
---|
| 797 | real ztva(klon,klev) |
---|
| 798 | real zqla(klon,klev) |
---|
| 799 | real f_star(klon,klev) |
---|
| 800 | real zw2(klon,klev) |
---|
| 801 | integer long(klon) |
---|
| 802 | real seuil |
---|
| 803 | character*21 comment |
---|
| 804 | |
---|
[938] | 805 | if (prt_level.ge.1) THEN |
---|
| 806 | print*,'WARNING !!! TEST ',comment |
---|
| 807 | endif |
---|
[879] | 808 | return |
---|
| 809 | |
---|
[878] | 810 | ! test sur la hauteur des thermiques ... |
---|
| 811 | do i=1,klon |
---|
[972] | 812 | !IMtemp if (pplay(i,long(i)).lt.seuil*pplev(i,1)) then |
---|
| 813 | if (prt_level.ge.10) then |
---|
[878] | 814 | print*,'WARNING ',comment,' au point ',i,' K= ',long(i) |
---|
| 815 | print*,' K P(MB) THV(K) Qenv(g/kg)THVA QLA(g/kg) F* W2' |
---|
| 816 | do k=1,klev |
---|
| 817 | write(6,'(i3,7f10.3)') k,pplay(i,k),ztv(i,k),1000*po(i,k),ztva(i,k),1000*zqla(i,k),f_star(i,k),zw2(i,k) |
---|
| 818 | enddo |
---|
[972] | 819 | endif |
---|
[878] | 820 | enddo |
---|
| 821 | |
---|
| 822 | |
---|
| 823 | return |
---|
| 824 | end |
---|
| 825 | |
---|