1 | SUBROUTINE drag_noro_strato (nlon,nlev,dtime,paprs,pplay, |
---|
2 | e pmea,pstd, psig, pgam, pthe,ppic,pval, |
---|
3 | e kgwd,kdx,ktest, |
---|
4 | e t, u, v, |
---|
5 | s pulow, pvlow, pustr, pvstr, |
---|
6 | s d_t, d_u, d_v) |
---|
7 | c |
---|
8 | USE dimphy |
---|
9 | IMPLICIT none |
---|
10 | c====================================================================== |
---|
11 | c Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
12 | c Object: Mountain drag interface. Made necessary because: |
---|
13 | C 1. in the LMD-GCM Layers are from bottom to top, |
---|
14 | C contrary to most European GCM. |
---|
15 | c 2. the altitude above ground of each model layers |
---|
16 | c needs to be known (variable zgeom) |
---|
17 | c====================================================================== |
---|
18 | c Explicit Arguments: |
---|
19 | c ================== |
---|
20 | c nlon----input-I-Total number of horizontal points that get into physics |
---|
21 | c nlev----input-I-Number of vertical levels |
---|
22 | c dtime---input-R-Time-step (s) |
---|
23 | c paprs---input-R-Pressure in semi layers (Pa) |
---|
24 | c pplay---input-R-Pressure model-layers (Pa) |
---|
25 | c t-------input-R-temperature (K) |
---|
26 | c u-------input-R-Horizontal wind (m/s) |
---|
27 | c v-------input-R-Meridional wind (m/s) |
---|
28 | c pmea----input-R-Mean Orography (m) |
---|
29 | C pstd----input-R-SSO standard deviation (m) |
---|
30 | c psig----input-R-SSO slope |
---|
31 | c pgam----input-R-SSO Anisotropy |
---|
32 | c pthe----input-R-SSO Angle |
---|
33 | c ppic----input-R-SSO Peacks elevation (m) |
---|
34 | c pval----input-R-SSO Valleys elevation (m) |
---|
35 | c |
---|
36 | c kgwd- -input-I: Total nb of points where the orography schemes are active |
---|
37 | c ktest--input-I: Flags to indicate active points |
---|
38 | c kdx----input-I: Locate the physical location of an active point. |
---|
39 | |
---|
40 | c pulow, pvlow -output-R: Low-level wind |
---|
41 | c pustr, pvstr -output-R: Surface stress due to SSO drag (Pa) |
---|
42 | c |
---|
43 | c d_t-----output-R: T increment |
---|
44 | c d_u-----output-R: U increment |
---|
45 | c d_v-----output-R: V increment |
---|
46 | c |
---|
47 | c Implicit Arguments: |
---|
48 | c =================== |
---|
49 | c |
---|
50 | c iim--common-I: Number of longitude intervals |
---|
51 | c jjm--common-I: Number of latitude intervals |
---|
52 | c klon-common-I: Number of points seen by the physics |
---|
53 | c (iim+1)*(jjm+1) for instance |
---|
54 | c klev-common-I: Number of vertical layers |
---|
55 | c====================================================================== |
---|
56 | c Local Variables: |
---|
57 | c ================ |
---|
58 | c |
---|
59 | c zgeom-----R: Altitude of layer above ground |
---|
60 | c pt, pu, pv --R: t u v from top to bottom |
---|
61 | c pdtdt, pdudt, pdvdt --R: t u v tendencies (from top to bottom) |
---|
62 | c papmf: pressure at model layer (from top to bottom) |
---|
63 | c papmh: pressure at model 1/2 layer (from top to bottom) |
---|
64 | c |
---|
65 | c====================================================================== |
---|
66 | cym#include "dimensions.h" |
---|
67 | cym#include "dimphy.h" |
---|
68 | #include "YOMCST.h" |
---|
69 | #include "YOEGWD.h" |
---|
70 | c |
---|
71 | c ARGUMENTS |
---|
72 | c |
---|
73 | INTEGER nlon,nlev |
---|
74 | REAL dtime |
---|
75 | REAL paprs(nlon,nlev+1) |
---|
76 | REAL pplay(nlon,nlev) |
---|
77 | REAL pmea(nlon),pstd(nlon),psig(nlon),pgam(nlon),pthe(nlon) |
---|
78 | REAL ppic(nlon),pval(nlon) |
---|
79 | REAL pulow(nlon),pvlow(nlon),pustr(nlon),pvstr(nlon) |
---|
80 | REAL t(nlon,nlev), u(nlon,nlev), v(nlon,nlev) |
---|
81 | REAL d_t(nlon,nlev), d_u(nlon,nlev), d_v(nlon,nlev) |
---|
82 | c |
---|
83 | INTEGER i, k, kgwd, kdx(nlon), ktest(nlon) |
---|
84 | c |
---|
85 | c LOCAL VARIABLES: |
---|
86 | c |
---|
87 | REAL zgeom(klon,klev) |
---|
88 | REAL pdtdt(klon,klev), pdudt(klon,klev), pdvdt(klon,klev) |
---|
89 | REAL pt(klon,klev), pu(klon,klev), pv(klon,klev) |
---|
90 | REAL papmf(klon,klev),papmh(klon,klev+1) |
---|
91 | CHARACTER (LEN=20) :: modname='orografi_strato' |
---|
92 | CHARACTER (LEN=80) :: abort_message |
---|
93 | c |
---|
94 | c INITIALIZE OUTPUT VARIABLES |
---|
95 | c |
---|
96 | DO i = 1,klon |
---|
97 | pulow(i) = 0.0 |
---|
98 | pvlow(i) = 0.0 |
---|
99 | pustr(i) = 0.0 |
---|
100 | pvstr(i) = 0.0 |
---|
101 | ENDDO |
---|
102 | DO k = 1, klev |
---|
103 | DO i = 1, klon |
---|
104 | d_t(i,k) = 0.0 |
---|
105 | d_u(i,k) = 0.0 |
---|
106 | d_v(i,k) = 0.0 |
---|
107 | pdudt(i,k)=0.0 |
---|
108 | pdvdt(i,k)=0.0 |
---|
109 | pdtdt(i,k)=0.0 |
---|
110 | ENDDO |
---|
111 | ENDDO |
---|
112 | c |
---|
113 | c PREPARE INPUT VARIABLES FOR ORODRAG (i.e., ORDERED FROM TOP TO BOTTOM) |
---|
114 | C CALCULATE LAYERS HEIGHT ABOVE GROUND) |
---|
115 | c |
---|
116 | DO k = 1, klev |
---|
117 | DO i = 1, klon |
---|
118 | pt(i,k) = t(i,klev-k+1) |
---|
119 | pu(i,k) = u(i,klev-k+1) |
---|
120 | pv(i,k) = v(i,klev-k+1) |
---|
121 | papmf(i,k) = pplay(i,klev-k+1) |
---|
122 | ENDDO |
---|
123 | ENDDO |
---|
124 | DO k = 1, klev+1 |
---|
125 | DO i = 1, klon |
---|
126 | papmh(i,k) = paprs(i,klev-k+2) |
---|
127 | ENDDO |
---|
128 | ENDDO |
---|
129 | DO i = 1, klon |
---|
130 | zgeom(i,klev) = RD * pt(i,klev) |
---|
131 | . * LOG(papmh(i,klev+1)/papmf(i,klev)) |
---|
132 | ENDDO |
---|
133 | DO k = klev-1, 1, -1 |
---|
134 | DO i = 1, klon |
---|
135 | zgeom(i,k) = zgeom(i,k+1) + RD * (pt(i,k)+pt(i,k+1))/2.0 |
---|
136 | . * LOG(papmf(i,k+1)/papmf(i,k)) |
---|
137 | ENDDO |
---|
138 | ENDDO |
---|
139 | c |
---|
140 | c CALL SSO DRAG ROUTINES |
---|
141 | c |
---|
142 | CALL orodrag_strato(klon,klev,kgwd,kdx,ktest, |
---|
143 | . dtime, |
---|
144 | . papmh, papmf, zgeom, |
---|
145 | . pt, pu, pv, |
---|
146 | . pmea, pstd, psig, pgam, pthe, ppic,pval, |
---|
147 | . pulow,pvlow, |
---|
148 | . pdudt,pdvdt,pdtdt) |
---|
149 | C |
---|
150 | C COMPUTE INCREMENTS AND STRESS FROM TENDENCIES |
---|
151 | |
---|
152 | DO k = 1, klev |
---|
153 | DO i = 1, klon |
---|
154 | d_u(i,klev+1-k) = dtime*pdudt(i,k) |
---|
155 | d_v(i,klev+1-k) = dtime*pdvdt(i,k) |
---|
156 | d_t(i,klev+1-k) = dtime*pdtdt(i,k) |
---|
157 | pustr(i) = pustr(i) |
---|
158 | . +pdudt(i,k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
159 | pvstr(i) = pvstr(i) |
---|
160 | . +pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
161 | ENDDO |
---|
162 | ENDDO |
---|
163 | c |
---|
164 | RETURN |
---|
165 | END |
---|
166 | |
---|
167 | SUBROUTINE orodrag_strato( nlon,nlev |
---|
168 | i , kgwd, kdx, ktest |
---|
169 | r , ptsphy |
---|
170 | r , paphm1,papm1,pgeom1,ptm1,pum1,pvm1 |
---|
171 | r , pmea, pstd, psig, pgam, pthe, ppic, pval |
---|
172 | c outputs |
---|
173 | r , pulow,pvlow |
---|
174 | r , pvom,pvol,pte ) |
---|
175 | |
---|
176 | USE dimphy |
---|
177 | IMPLICIT NONE |
---|
178 | c |
---|
179 | c |
---|
180 | c**** *orodrag* - does the SSO drag parametrization. |
---|
181 | c |
---|
182 | c purpose. |
---|
183 | c -------- |
---|
184 | c |
---|
185 | c this routine computes the physical tendencies of the |
---|
186 | c prognostic variables u,v and t due to vertical transports by |
---|
187 | c subgridscale orographically excited gravity waves, and to |
---|
188 | c low level blocked flow drag. |
---|
189 | c |
---|
190 | c** interface. |
---|
191 | c ---------- |
---|
192 | c called from *drag_noro*. |
---|
193 | c |
---|
194 | c the routine takes its input from the long-term storage: |
---|
195 | c u,v,t and p at t-1. |
---|
196 | c |
---|
197 | c explicit arguments : |
---|
198 | c -------------------- |
---|
199 | c ==== inputs === |
---|
200 | c nlon----input-I-Total number of horizontal points that get into physics |
---|
201 | c nlev----input-I-Number of vertical levels |
---|
202 | c |
---|
203 | c kgwd- -input-I: Total nb of points where the orography schemes are active |
---|
204 | c ktest--input-I: Flags to indicate active points |
---|
205 | c kdx----input-I: Locate the physical location of an active point. |
---|
206 | c ptsphy--input-R-Time-step (s) |
---|
207 | c paphm1--input-R: pressure at model 1/2 layer |
---|
208 | c papm1---input-R: pressure at model layer |
---|
209 | c pgeom1--input-R: Altitude of layer above ground |
---|
210 | c ptm1, pum1, pvm1--R-: t, u and v |
---|
211 | c pmea----input-R-Mean Orography (m) |
---|
212 | C pstd----input-R-SSO standard deviation (m) |
---|
213 | c psig----input-R-SSO slope |
---|
214 | c pgam----input-R-SSO Anisotropy |
---|
215 | c pthe----input-R-SSO Angle |
---|
216 | c ppic----input-R-SSO Peacks elevation (m) |
---|
217 | c pval----input-R-SSO Valleys elevation (m) |
---|
218 | |
---|
219 | integer nlon,nlev,kgwd |
---|
220 | real ptsphy |
---|
221 | |
---|
222 | c ==== outputs === |
---|
223 | c pulow, pvlow -output-R: Low-level wind |
---|
224 | c |
---|
225 | c pte -----output-R: T tendency |
---|
226 | c pvom-----output-R: U tendency |
---|
227 | c pvol-----output-R: V tendency |
---|
228 | c |
---|
229 | c |
---|
230 | c Implicit Arguments: |
---|
231 | c =================== |
---|
232 | c |
---|
233 | c klon-common-I: Number of points seen by the physics |
---|
234 | c klev-common-I: Number of vertical layers |
---|
235 | c |
---|
236 | c method. |
---|
237 | c ------- |
---|
238 | c |
---|
239 | c externals. |
---|
240 | c ---------- |
---|
241 | integer ismin, ismax |
---|
242 | external ismin, ismax |
---|
243 | c |
---|
244 | c reference. |
---|
245 | c ---------- |
---|
246 | c |
---|
247 | c author. |
---|
248 | c ------- |
---|
249 | c m.miller + b.ritter e.c.m.w.f. 15/06/86. |
---|
250 | c |
---|
251 | c f.lott + m. miller e.c.m.w.f. 22/11/94 |
---|
252 | c----------------------------------------------------------------------- |
---|
253 | c |
---|
254 | c |
---|
255 | cym#include "dimensions.h" |
---|
256 | cym#include "dimphy.h" |
---|
257 | #include "YOMCST.h" |
---|
258 | #include "YOEGWD.h" |
---|
259 | c----------------------------------------------------------------------- |
---|
260 | c |
---|
261 | c* 0.1 arguments |
---|
262 | c --------- |
---|
263 | c |
---|
264 | c |
---|
265 | real pte(nlon,nlev), |
---|
266 | * pvol(nlon,nlev), |
---|
267 | * pvom(nlon,nlev), |
---|
268 | * pulow(nlon), |
---|
269 | * pvlow(nlon) |
---|
270 | real pum1(nlon,nlev), |
---|
271 | * pvm1(nlon,nlev), |
---|
272 | * ptm1(nlon,nlev), |
---|
273 | * pmea(nlon),pstd(nlon),psig(nlon), |
---|
274 | * pgam(nlon),pthe(nlon),ppic(nlon),pval(nlon), |
---|
275 | * pgeom1(nlon,nlev), |
---|
276 | * papm1(nlon,nlev), |
---|
277 | * paphm1(nlon,nlev+1) |
---|
278 | c |
---|
279 | integer kdx(nlon),ktest(nlon) |
---|
280 | c----------------------------------------------------------------------- |
---|
281 | c |
---|
282 | c* 0.2 local arrays |
---|
283 | c ------------ |
---|
284 | integer isect(klon), |
---|
285 | * icrit(klon), |
---|
286 | * ikcrith(klon), |
---|
287 | * ikenvh(klon), |
---|
288 | * iknu(klon), |
---|
289 | * iknu2(klon), |
---|
290 | * ikcrit(klon), |
---|
291 | * ikhlim(klon) |
---|
292 | c |
---|
293 | real ztau(klon,klev+1), |
---|
294 | * zstab(klon,klev+1), |
---|
295 | * zvph(klon,klev+1), |
---|
296 | * zrho(klon,klev+1), |
---|
297 | * zri(klon,klev+1), |
---|
298 | * zpsi(klon,klev+1), |
---|
299 | * zzdep(klon,klev) |
---|
300 | real zdudt(klon), |
---|
301 | * zdvdt(klon), |
---|
302 | * zdtdt(klon), |
---|
303 | * zdedt(klon), |
---|
304 | * zvidis(klon), |
---|
305 | * ztfr(klon), |
---|
306 | * znu(klon), |
---|
307 | * zd1(klon), |
---|
308 | * zd2(klon), |
---|
309 | * zdmod(klon) |
---|
310 | |
---|
311 | |
---|
312 | c local quantities: |
---|
313 | |
---|
314 | integer jl,jk,ji |
---|
315 | real ztmst,zdelp,ztemp,zforc,ztend,rover |
---|
316 | real zb,zc,zconb,zabsv,zzd1,ratio,zbet,zust,zvst,zdis |
---|
317 | |
---|
318 | c |
---|
319 | c------------------------------------------------------------------ |
---|
320 | c |
---|
321 | c* 1. initialization |
---|
322 | c -------------- |
---|
323 | c |
---|
324 | c print *,' in orodrag' |
---|
325 | 100 continue |
---|
326 | c |
---|
327 | c ------------------------------------------------------------------ |
---|
328 | c |
---|
329 | c* 1.1 computational constants |
---|
330 | c ----------------------- |
---|
331 | c |
---|
332 | 110 continue |
---|
333 | c |
---|
334 | c ztmst=twodt |
---|
335 | c if(nstep.eq.nstart) ztmst=0.5*twodt |
---|
336 | ztmst=ptsphy |
---|
337 | c ------------------------------------------------------------------ |
---|
338 | c |
---|
339 | 120 continue |
---|
340 | c |
---|
341 | c ------------------------------------------------------------------ |
---|
342 | c |
---|
343 | c* 1.3 check whether row contains point for printing |
---|
344 | c --------------------------------------------- |
---|
345 | c |
---|
346 | 130 continue |
---|
347 | c |
---|
348 | c ------------------------------------------------------------------ |
---|
349 | c |
---|
350 | c* 2. precompute basic state variables. |
---|
351 | c* ---------- ----- ----- ---------- |
---|
352 | c* define low level wind, project winds in plane of |
---|
353 | c* low level wind, determine sector in which to take |
---|
354 | c* the variance and set indicator for critical levels. |
---|
355 | c |
---|
356 | |
---|
357 | 200 continue |
---|
358 | c |
---|
359 | c |
---|
360 | c |
---|
361 | call orosetup_strato |
---|
362 | * ( nlon, nlev , ktest |
---|
363 | * , ikcrit, ikcrith, icrit, isect, ikhlim, ikenvh,iknu,iknu2 |
---|
364 | * , paphm1, papm1 , pum1 , pvm1 , ptm1 , pgeom1, pstd |
---|
365 | * , zrho , zri , zstab , ztau , zvph , zpsi, zzdep |
---|
366 | * , pulow, pvlow |
---|
367 | * , pthe,pgam,pmea,ppic,pval,znu ,zd1, zd2, zdmod ) |
---|
368 | |
---|
369 | |
---|
370 | c |
---|
371 | c |
---|
372 | c |
---|
373 | c*********************************************************** |
---|
374 | c |
---|
375 | c |
---|
376 | c* 3. compute low level stresses using subcritical and |
---|
377 | c* supercritical forms.computes anisotropy coefficient |
---|
378 | c* as measure of orographic twodimensionality. |
---|
379 | c |
---|
380 | 300 continue |
---|
381 | c |
---|
382 | call gwstress_strato |
---|
383 | * ( nlon , nlev |
---|
384 | * , ikcrit, isect, ikhlim, ktest, ikcrith, icrit, ikenvh, iknu |
---|
385 | * , zrho , zstab, zvph , pstd, psig, pmea, ppic, pval |
---|
386 | * , ztfr , ztau |
---|
387 | * , pgeom1,pgam,zd1,zd2,zdmod,znu) |
---|
388 | |
---|
389 | c |
---|
390 | c |
---|
391 | c* 4. compute stress profile including |
---|
392 | c trapped waves, wave breaking, |
---|
393 | c linear decay in stratosphere. |
---|
394 | c |
---|
395 | 400 continue |
---|
396 | c |
---|
397 | c |
---|
398 | |
---|
399 | call gwprofil_strato |
---|
400 | * ( nlon , nlev |
---|
401 | * , kgwd , kdx , ktest |
---|
402 | * , ikcrit, ikcrith, icrit , ikenvh, iknu |
---|
403 | * ,iknu2 , paphm1, zrho , zstab , ztfr , zvph |
---|
404 | * , zri , ztau |
---|
405 | |
---|
406 | * , zdmod , znu , psig , pgam , pstd , ppic , pval) |
---|
407 | |
---|
408 | c |
---|
409 | c* 5. Compute tendencies from waves stress profile. |
---|
410 | c Compute low level blocked flow drag. |
---|
411 | c* -------------------------------------------- |
---|
412 | c |
---|
413 | 500 continue |
---|
414 | |
---|
415 | |
---|
416 | c |
---|
417 | c explicit solution at all levels for the gravity wave |
---|
418 | c implicit solution for the blocked levels |
---|
419 | |
---|
420 | do 510 jl=kidia,kfdia |
---|
421 | zvidis(jl)=0.0 |
---|
422 | zdudt(jl)=0.0 |
---|
423 | zdvdt(jl)=0.0 |
---|
424 | zdtdt(jl)=0.0 |
---|
425 | 510 continue |
---|
426 | c |
---|
427 | |
---|
428 | do 524 jk=1,klev |
---|
429 | c |
---|
430 | |
---|
431 | C WAVE STRESS |
---|
432 | C------------- |
---|
433 | c |
---|
434 | c |
---|
435 | do 523 ji=kidia,kfdia |
---|
436 | |
---|
437 | if(ktest(ji).eq.1) then |
---|
438 | |
---|
439 | zdelp=paphm1(ji,jk+1)-paphm1(ji,jk) |
---|
440 | ztemp=-rg*(ztau(ji,jk+1)-ztau(ji,jk))/(zvph(ji,klev+1)*zdelp) |
---|
441 | |
---|
442 | zdudt(ji)=(pulow(ji)*zd1(ji)-pvlow(ji)*zd2(ji))*ztemp/zdmod(ji) |
---|
443 | zdvdt(ji)=(pvlow(ji)*zd1(ji)+pulow(ji)*zd2(ji))*ztemp/zdmod(ji) |
---|
444 | c |
---|
445 | c Control Overshoots |
---|
446 | c |
---|
447 | |
---|
448 | if(jk.ge.nstra)then |
---|
449 | rover=0.10 |
---|
450 | if(abs(zdudt(ji)).gt.rover*abs(pum1(ji,jk))/ztmst) |
---|
451 | C zdudt(ji)=rover*abs(pum1(ji,jk))/ztmst* |
---|
452 | C zdudt(ji)/(abs(zdudt(ji))+1.E-10) |
---|
453 | if(abs(zdvdt(ji)).gt.rover*abs(pvm1(ji,jk))/ztmst) |
---|
454 | C zdvdt(ji)=rover*abs(pvm1(ji,jk))/ztmst* |
---|
455 | C zdvdt(ji)/(abs(zdvdt(ji))+1.E-10) |
---|
456 | endif |
---|
457 | |
---|
458 | rover=0.25 |
---|
459 | zforc=sqrt(zdudt(ji)**2+zdvdt(ji)**2) |
---|
460 | ztend=sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/ztmst |
---|
461 | |
---|
462 | if(zforc.ge.rover*ztend)then |
---|
463 | zdudt(ji)=rover*ztend/zforc*zdudt(ji) |
---|
464 | zdvdt(ji)=rover*ztend/zforc*zdvdt(ji) |
---|
465 | endif |
---|
466 | c |
---|
467 | c BLOCKED FLOW DRAG: |
---|
468 | C ----------------- |
---|
469 | c |
---|
470 | if(jk.gt.ikenvh(ji)) then |
---|
471 | zb=1.0-0.18*pgam(ji)-0.04*pgam(ji)**2 |
---|
472 | zc=0.48*pgam(ji)+0.3*pgam(ji)**2 |
---|
473 | zconb=2.*ztmst*gkwake*psig(ji)/(4.*pstd(ji)) |
---|
474 | zabsv=sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/2. |
---|
475 | zzd1=zb*cos(zpsi(ji,jk))**2+zc*sin(zpsi(ji,jk))**2 |
---|
476 | ratio=(cos(zpsi(ji,jk))**2+pgam(ji)*sin(zpsi(ji,jk))**2)/ |
---|
477 | * (pgam(ji)*cos(zpsi(ji,jk))**2+sin(zpsi(ji,jk))**2) |
---|
478 | zbet=max(0.,2.-1./ratio)*zconb*zzdep(ji,jk)*zzd1*zabsv |
---|
479 | c |
---|
480 | c OPPOSED TO THE WIND |
---|
481 | c |
---|
482 | zdudt(ji)=-pum1(ji,jk)/ztmst |
---|
483 | zdvdt(ji)=-pvm1(ji,jk)/ztmst |
---|
484 | c |
---|
485 | c PERPENDICULAR TO THE SSO MAIN AXIS: |
---|
486 | C |
---|
487 | cmod zdudt(ji)=-(pum1(ji,jk)*cos(pthe(ji)*rpi/180.) |
---|
488 | cmod * +pvm1(ji,jk)*sin(pthe(ji)*rpi/180.)) |
---|
489 | cmod * *cos(pthe(ji)*rpi/180.)/ztmst |
---|
490 | cmod zdvdt(ji)=-(pum1(ji,jk)*cos(pthe(ji)*rpi/180.) |
---|
491 | cmod * +pvm1(ji,jk)*sin(pthe(ji)*rpi/180.)) |
---|
492 | cmod * *sin(pthe(ji)*rpi/180.)/ztmst |
---|
493 | C |
---|
494 | zdudt(ji)=zdudt(ji)*(zbet/(1.+zbet)) |
---|
495 | zdvdt(ji)=zdvdt(ji)*(zbet/(1.+zbet)) |
---|
496 | end if |
---|
497 | pvom(ji,jk)=zdudt(ji) |
---|
498 | pvol(ji,jk)=zdvdt(ji) |
---|
499 | zust=pum1(ji,jk)+ztmst*zdudt(ji) |
---|
500 | zvst=pvm1(ji,jk)+ztmst*zdvdt(ji) |
---|
501 | zdis=0.5*(pum1(ji,jk)**2+pvm1(ji,jk)**2-zust**2-zvst**2) |
---|
502 | zdedt(ji)=zdis/ztmst |
---|
503 | zvidis(ji)=zvidis(ji)+zdis*zdelp |
---|
504 | zdtdt(ji)=zdedt(ji)/rcpd |
---|
505 | c |
---|
506 | c NO TENDENCIES ON TEMPERATURE ..... |
---|
507 | c |
---|
508 | c Instead of, pte(ji,jk)=zdtdt(ji), due to mechanical dissipation |
---|
509 | c |
---|
510 | pte(ji,jk)=0.0 |
---|
511 | |
---|
512 | endif |
---|
513 | |
---|
514 | 523 continue |
---|
515 | 524 continue |
---|
516 | c |
---|
517 | c |
---|
518 | 501 continue |
---|
519 | |
---|
520 | return |
---|
521 | end |
---|
522 | SUBROUTINE orosetup_strato |
---|
523 | * ( nlon , nlev , ktest |
---|
524 | * , kkcrit, kkcrith, kcrit, ksect , kkhlim |
---|
525 | * , kkenvh, kknu , kknu2 |
---|
526 | * , paphm1, papm1 , pum1 , pvm1 , ptm1 , pgeom1, pstd |
---|
527 | * , prho , pri , pstab , ptau , pvph ,ppsi, pzdep |
---|
528 | * , pulow , pvlow |
---|
529 | * , ptheta, pgam, pmea, ppic, pval |
---|
530 | * , pnu , pd1 , pd2 ,pdmod ) |
---|
531 | C |
---|
532 | c**** *gwsetup* |
---|
533 | c |
---|
534 | c purpose. |
---|
535 | c -------- |
---|
536 | c SET-UP THE ESSENTIAL PARAMETERS OF THE SSO DRAG SCHEME: |
---|
537 | C DEPTH OF LOW WBLOCKED LAYER, LOW-LEVEL FLOW, BACKGROUND |
---|
538 | C STRATIFICATION..... |
---|
539 | c |
---|
540 | c** interface. |
---|
541 | c ---------- |
---|
542 | c from *orodrag* |
---|
543 | c |
---|
544 | c explicit arguments : |
---|
545 | c -------------------- |
---|
546 | c ==== inputs === |
---|
547 | c |
---|
548 | c nlon----input-I-Total number of horizontal points that get into physics |
---|
549 | c nlev----input-I-Number of vertical levels |
---|
550 | c ktest--input-I: Flags to indicate active points |
---|
551 | c |
---|
552 | c ptsphy--input-R-Time-step (s) |
---|
553 | c paphm1--input-R: pressure at model 1/2 layer |
---|
554 | c papm1---input-R: pressure at model layer |
---|
555 | c pgeom1--input-R: Altitude of layer above ground |
---|
556 | c ptm1, pum1, pvm1--R-: t, u and v |
---|
557 | c pmea----input-R-Mean Orography (m) |
---|
558 | C pstd----input-R-SSO standard deviation (m) |
---|
559 | c psig----input-R-SSO slope |
---|
560 | c pgam----input-R-SSO Anisotropy |
---|
561 | c pthe----input-R-SSO Angle |
---|
562 | c ppic----input-R-SSO Peacks elevation (m) |
---|
563 | c pval----input-R-SSO Valleys elevation (m) |
---|
564 | |
---|
565 | c ==== outputs === |
---|
566 | c pulow, pvlow -output-R: Low-level wind |
---|
567 | c kkcrit----I-: Security value for top of low level flow |
---|
568 | c kcrit-----I-: Critical level |
---|
569 | c ksect-----I-: Not used |
---|
570 | c kkhlim----I-: Not used |
---|
571 | c kkenvh----I-: Top of blocked flow layer |
---|
572 | c kknu------I-: Layer that sees mountain peacks |
---|
573 | c kknu2-----I-: Layer that sees mountain peacks above mountain mean |
---|
574 | c kknub-----I-: Layer that sees mountain mean above valleys |
---|
575 | c prho------R-: Density at 1/2 layers |
---|
576 | c pri-------R-: Background Richardson Number, Wind shear measured along GW stress |
---|
577 | c pstab-----R-: Brunt-Vaisala freq. at 1/2 layers |
---|
578 | c pvph------R-: Wind in plan of GW stress, Half levels. |
---|
579 | c ppsi------R-: Angle between low level wind and SS0 main axis. |
---|
580 | c pd1-------R-| Compared the ratio of the stress |
---|
581 | c pd2-------R-| that is along the wind to that Normal to it. |
---|
582 | c pdi define the plane of low level stress |
---|
583 | c compared to the low level wind. |
---|
584 | c see p. 108 Lott & Miller (1997). |
---|
585 | c pdmod-----R-: Norme of pdi |
---|
586 | |
---|
587 | c === local arrays === |
---|
588 | c |
---|
589 | c zvpf------R-: Wind projected in the plan of the low-level stress. |
---|
590 | |
---|
591 | c ==== outputs === |
---|
592 | c |
---|
593 | c implicit arguments : none |
---|
594 | c -------------------- |
---|
595 | c |
---|
596 | c method. |
---|
597 | c ------- |
---|
598 | c |
---|
599 | c |
---|
600 | c externals. |
---|
601 | c ---------- |
---|
602 | c |
---|
603 | c |
---|
604 | c reference. |
---|
605 | c ---------- |
---|
606 | c |
---|
607 | c see ecmwf research department documentation of the "i.f.s." |
---|
608 | c |
---|
609 | c author. |
---|
610 | c ------- |
---|
611 | c |
---|
612 | c modifications. |
---|
613 | c -------------- |
---|
614 | c f.lott for the new-gwdrag scheme november 1993 |
---|
615 | c |
---|
616 | c----------------------------------------------------------------------- |
---|
617 | USE dimphy |
---|
618 | implicit none |
---|
619 | c |
---|
620 | |
---|
621 | cym#include "dimensions.h" |
---|
622 | cym#include "dimphy.h" |
---|
623 | #include "YOMCST.h" |
---|
624 | #include "YOEGWD.h" |
---|
625 | |
---|
626 | c----------------------------------------------------------------------- |
---|
627 | c |
---|
628 | c* 0.1 arguments |
---|
629 | c --------- |
---|
630 | c |
---|
631 | integer nlon,nlev |
---|
632 | integer kkcrit(nlon),kkcrith(nlon),kcrit(nlon),ksect(nlon), |
---|
633 | * kkhlim(nlon),ktest(nlon),kkenvh(nlon) |
---|
634 | |
---|
635 | c |
---|
636 | real paphm1(nlon,klev+1),papm1(nlon,klev),pum1(nlon,klev), |
---|
637 | * pvm1(nlon,klev),ptm1(nlon,klev),pgeom1(nlon,klev), |
---|
638 | * prho(nlon,klev+1),pri(nlon,klev+1),pstab(nlon,klev+1), |
---|
639 | * ptau(nlon,klev+1),pvph(nlon,klev+1),ppsi(nlon,klev+1), |
---|
640 | * pzdep(nlon,klev) |
---|
641 | real pulow(nlon),pvlow(nlon),ptheta(nlon),pgam(nlon),pnu(nlon), |
---|
642 | * pd1(nlon),pd2(nlon),pdmod(nlon) |
---|
643 | real pstd(nlon),pmea(nlon),ppic(nlon),pval(nlon) |
---|
644 | c |
---|
645 | c----------------------------------------------------------------------- |
---|
646 | c |
---|
647 | c* 0.2 local arrays |
---|
648 | c ------------ |
---|
649 | c |
---|
650 | c |
---|
651 | integer ilevh ,jl,jk |
---|
652 | real zcons1,zcons2,zhgeo,zu,zphi |
---|
653 | real zvt1,zvt2,zdwind,zwind,zdelp |
---|
654 | real zstabm,zstabp,zrhom,zrhop |
---|
655 | logical lo |
---|
656 | logical ll1(klon,klev+1) |
---|
657 | integer kknu(klon),kknu2(klon),kknub(klon),kknul(klon), |
---|
658 | * kentp(klon),ncount(klon) |
---|
659 | c |
---|
660 | real zhcrit(klon,klev),zvpf(klon,klev), |
---|
661 | * zdp(klon,klev) |
---|
662 | real znorm(klon),zb(klon),zc(klon), |
---|
663 | * zulow(klon),zvlow(klon),znup(klon),znum(klon) |
---|
664 | c |
---|
665 | c ------------------------------------------------------------------ |
---|
666 | c |
---|
667 | c* 1. initialization |
---|
668 | c -------------- |
---|
669 | c |
---|
670 | c PRINT *,' in orosetup' |
---|
671 | 100 continue |
---|
672 | c |
---|
673 | c ------------------------------------------------------------------ |
---|
674 | c |
---|
675 | c* 1.1 computational constants |
---|
676 | c ----------------------- |
---|
677 | c |
---|
678 | 110 continue |
---|
679 | c |
---|
680 | ilevh =klev/3 |
---|
681 | c |
---|
682 | zcons1=1./rd |
---|
683 | zcons2=rg**2/rcpd |
---|
684 | c |
---|
685 | c |
---|
686 | c ------------------------------------------------------------------ |
---|
687 | c |
---|
688 | c* 2. |
---|
689 | c -------------- |
---|
690 | c |
---|
691 | 200 continue |
---|
692 | c |
---|
693 | c ------------------------------------------------------------------ |
---|
694 | c |
---|
695 | c* 2.1 define low level wind, project winds in plane of |
---|
696 | c* low level wind, determine sector in which to take |
---|
697 | c* the variance and set indicator for critical levels. |
---|
698 | c |
---|
699 | c |
---|
700 | c |
---|
701 | do 2001 jl=kidia,kfdia |
---|
702 | kknu(jl) =klev |
---|
703 | kknu2(jl) =klev |
---|
704 | kknub(jl) =klev |
---|
705 | kknul(jl) =klev |
---|
706 | pgam(jl) =max(pgam(jl),gtsec) |
---|
707 | ll1(jl,klev+1)=.false. |
---|
708 | 2001 continue |
---|
709 | c |
---|
710 | c Ajouter une initialisation (L. Li, le 23fev99): |
---|
711 | c |
---|
712 | do jk=klev,ilevh,-1 |
---|
713 | do jl=kidia,kfdia |
---|
714 | ll1(jl,jk)= .false. |
---|
715 | ENDDO |
---|
716 | ENDDO |
---|
717 | c |
---|
718 | c* define top of low level flow |
---|
719 | c ---------------------------- |
---|
720 | do 2002 jk=klev,ilevh,-1 |
---|
721 | do 2003 jl=kidia,kfdia |
---|
722 | if(ktest(jl).eq.1) then |
---|
723 | lo=(paphm1(jl,jk)/paphm1(jl,klev+1)).ge.gsigcr |
---|
724 | if(lo) then |
---|
725 | kkcrit(jl)=jk |
---|
726 | endif |
---|
727 | zhcrit(jl,jk)=ppic(jl)-pval(jl) |
---|
728 | zhgeo=pgeom1(jl,jk)/rg |
---|
729 | ll1(jl,jk)=(zhgeo.gt.zhcrit(jl,jk)) |
---|
730 | if(ll1(jl,jk).neqv.ll1(jl,jk+1)) then |
---|
731 | kknu(jl)=jk |
---|
732 | endif |
---|
733 | if(.not.ll1(jl,ilevh))kknu(jl)=ilevh |
---|
734 | endif |
---|
735 | 2003 continue |
---|
736 | 2002 continue |
---|
737 | do 2004 jk=klev,ilevh,-1 |
---|
738 | do 2005 jl=kidia,kfdia |
---|
739 | if(ktest(jl).eq.1) then |
---|
740 | zhcrit(jl,jk)=ppic(jl)-pmea(jl) |
---|
741 | zhgeo=pgeom1(jl,jk)/rg |
---|
742 | ll1(jl,jk)=(zhgeo.gt.zhcrit(jl,jk)) |
---|
743 | if(ll1(jl,jk).neqv.ll1(jl,jk+1)) then |
---|
744 | kknu2(jl)=jk |
---|
745 | endif |
---|
746 | if(.not.ll1(jl,ilevh))kknu2(jl)=ilevh |
---|
747 | endif |
---|
748 | 2005 continue |
---|
749 | 2004 continue |
---|
750 | do 2006 jk=klev,ilevh,-1 |
---|
751 | do 2007 jl=kidia,kfdia |
---|
752 | if(ktest(jl).eq.1) then |
---|
753 | zhcrit(jl,jk)=amin1(ppic(jl)-pmea(jl),pmea(jl)-pval(jl)) |
---|
754 | zhgeo=pgeom1(jl,jk)/rg |
---|
755 | ll1(jl,jk)=(zhgeo.gt.zhcrit(jl,jk)) |
---|
756 | if(ll1(jl,jk).neqv.ll1(jl,jk+1)) then |
---|
757 | kknub(jl)=jk |
---|
758 | endif |
---|
759 | if(.not.ll1(jl,ilevh))kknub(jl)=ilevh |
---|
760 | endif |
---|
761 | 2007 continue |
---|
762 | 2006 continue |
---|
763 | c |
---|
764 | do 2010 jl=kidia,kfdia |
---|
765 | if(ktest(jl).eq.1) then |
---|
766 | kknu(jl)=min(kknu(jl),nktopg) |
---|
767 | kknu2(jl)=min(kknu2(jl),nktopg) |
---|
768 | kknub(jl)=min(kknub(jl),nktopg) |
---|
769 | kknul(jl)=klev |
---|
770 | endif |
---|
771 | 2010 continue |
---|
772 | c |
---|
773 | 210 continue |
---|
774 | c |
---|
775 | cc* initialize various arrays |
---|
776 | c |
---|
777 | do 2107 jl=kidia,kfdia |
---|
778 | prho(jl,klev+1) =0.0 |
---|
779 | cym correction en attendant mieux |
---|
780 | prho(jl,1) =0.0 |
---|
781 | pstab(jl,klev+1) =0.0 |
---|
782 | pstab(jl,1) =0.0 |
---|
783 | pri(jl,klev+1) =9999.0 |
---|
784 | ppsi(jl,klev+1) =0.0 |
---|
785 | pri(jl,1) =0.0 |
---|
786 | pvph(jl,1) =0.0 |
---|
787 | pvph(jl,klev+1) =0.0 |
---|
788 | cym correction en attendant mieux |
---|
789 | cym pvph(jl,klev) =0.0 |
---|
790 | pulow(jl) =0.0 |
---|
791 | pvlow(jl) =0.0 |
---|
792 | zulow(jl) =0.0 |
---|
793 | zvlow(jl) =0.0 |
---|
794 | kkcrith(jl) =klev |
---|
795 | kkenvh(jl) =klev |
---|
796 | kentp(jl) =klev |
---|
797 | kcrit(jl) =1 |
---|
798 | ncount(jl) =0 |
---|
799 | ll1(jl,klev+1) =.false. |
---|
800 | 2107 continue |
---|
801 | c |
---|
802 | c* define flow density and stratification (rho and N2) |
---|
803 | c at semi layers. |
---|
804 | c ------------------------------------------------------- |
---|
805 | c |
---|
806 | do 223 jk=klev,2,-1 |
---|
807 | do 222 jl=kidia,kfdia |
---|
808 | if(ktest(jl).eq.1) then |
---|
809 | zdp(jl,jk)=papm1(jl,jk)-papm1(jl,jk-1) |
---|
810 | prho(jl,jk)=2.*paphm1(jl,jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
811 | pstab(jl,jk)=2.*zcons2/(ptm1(jl,jk)+ptm1(jl,jk-1))* |
---|
812 | * (1.-rcpd*prho(jl,jk)*(ptm1(jl,jk)-ptm1(jl,jk-1))/zdp(jl,jk)) |
---|
813 | pstab(jl,jk)=max(pstab(jl,jk),gssec) |
---|
814 | endif |
---|
815 | 222 continue |
---|
816 | 223 continue |
---|
817 | c |
---|
818 | c******************************************************************** |
---|
819 | c |
---|
820 | c* define Low level flow (between ground and peacks-valleys) |
---|
821 | c --------------------------------------------------------- |
---|
822 | do 2115 jk=klev,ilevh,-1 |
---|
823 | do 2116 jl=kidia,kfdia |
---|
824 | if(ktest(jl).eq.1) then |
---|
825 | if(jk.ge.kknu2(jl).and.jk.le.kknul(jl)) then |
---|
826 | pulow(jl)=pulow(jl)+pum1(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
827 | pvlow(jl)=pvlow(jl)+pvm1(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
828 | pstab(jl,klev+1)=pstab(jl,klev+1) |
---|
829 | c +pstab(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
830 | prho(jl,klev+1)=prho(jl,klev+1) |
---|
831 | c +prho(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
832 | end if |
---|
833 | endif |
---|
834 | 2116 continue |
---|
835 | 2115 continue |
---|
836 | do 2110 jl=kidia,kfdia |
---|
837 | if(ktest(jl).eq.1) then |
---|
838 | pulow(jl)=pulow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknu2(jl))) |
---|
839 | pvlow(jl)=pvlow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknu2(jl))) |
---|
840 | znorm(jl)=max(sqrt(pulow(jl)**2+pvlow(jl)**2),gvsec) |
---|
841 | pvph(jl,klev+1)=znorm(jl) |
---|
842 | pstab(jl,klev+1)=pstab(jl,klev+1) |
---|
843 | c /(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknu2(jl))) |
---|
844 | prho(jl,klev+1)=prho(jl,klev+1) |
---|
845 | c /(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknu2(jl))) |
---|
846 | endif |
---|
847 | 2110 continue |
---|
848 | |
---|
849 | c |
---|
850 | c******* setup orography orientation relative to the low level |
---|
851 | C wind and define parameters of the Anisotropic wave stress. |
---|
852 | c |
---|
853 | do 2112 jl=kidia,kfdia |
---|
854 | if(ktest(jl).eq.1) then |
---|
855 | lo=(pulow(jl).lt.gvsec).and.(pulow(jl).ge.-gvsec) |
---|
856 | if(lo) then |
---|
857 | zu=pulow(jl)+2.*gvsec |
---|
858 | else |
---|
859 | zu=pulow(jl) |
---|
860 | endif |
---|
861 | zphi=atan(pvlow(jl)/zu) |
---|
862 | ppsi(jl,klev+1)=ptheta(jl)*rpi/180.-zphi |
---|
863 | zb(jl)=1.-0.18*pgam(jl)-0.04*pgam(jl)**2 |
---|
864 | zc(jl)=0.48*pgam(jl)+0.3*pgam(jl)**2 |
---|
865 | pd1(jl)=zb(jl)-(zb(jl)-zc(jl))*(sin(ppsi(jl,klev+1))**2) |
---|
866 | pd2(jl)=(zb(jl)-zc(jl))*sin(ppsi(jl,klev+1)) |
---|
867 | * *cos(ppsi(jl,klev+1)) |
---|
868 | pdmod(jl)=sqrt(pd1(jl)**2+pd2(jl)**2) |
---|
869 | endif |
---|
870 | 2112 continue |
---|
871 | c |
---|
872 | c ************ projet flow in plane of lowlevel stress ************* |
---|
873 | C ************ Find critical levels... ************* |
---|
874 | c |
---|
875 | do 213 jk=1,klev |
---|
876 | do 212 jl=kidia,kfdia |
---|
877 | if(ktest(jl).eq.1) then |
---|
878 | zvt1 =pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk) |
---|
879 | zvt2 =-pvlow(jl)*pum1(jl,jk)+pulow(jl)*pvm1(jl,jk) |
---|
880 | zvpf(jl,jk)=(zvt1*pd1(jl)+zvt2*pd2(jl))/(znorm(jl)*pdmod(jl)) |
---|
881 | endif |
---|
882 | ptau(jl,jk) =0.0 |
---|
883 | pzdep(jl,jk) =0.0 |
---|
884 | ppsi(jl,jk) =0.0 |
---|
885 | ll1(jl,jk) =.false. |
---|
886 | 212 continue |
---|
887 | 213 continue |
---|
888 | do 215 jk=2,klev |
---|
889 | do 214 jl=kidia,kfdia |
---|
890 | if(ktest(jl).eq.1) then |
---|
891 | zdp(jl,jk)=papm1(jl,jk)-papm1(jl,jk-1) |
---|
892 | pvph(jl,jk)=((paphm1(jl,jk)-papm1(jl,jk-1))*zvpf(jl,jk)+ |
---|
893 | * (papm1(jl,jk)-paphm1(jl,jk))*zvpf(jl,jk-1)) |
---|
894 | * /zdp(jl,jk) |
---|
895 | if(pvph(jl,jk).lt.gvsec) then |
---|
896 | pvph(jl,jk)=gvsec |
---|
897 | kcrit(jl)=jk |
---|
898 | endif |
---|
899 | endif |
---|
900 | 214 continue |
---|
901 | 215 continue |
---|
902 | c |
---|
903 | c* 2.3 mean flow richardson number. |
---|
904 | c |
---|
905 | 230 continue |
---|
906 | c |
---|
907 | do 232 jk=2,klev |
---|
908 | do 231 jl=kidia,kfdia |
---|
909 | if(ktest(jl).eq.1) then |
---|
910 | zdwind=max(abs(zvpf(jl,jk)-zvpf(jl,jk-1)),gvsec) |
---|
911 | pri(jl,jk)=pstab(jl,jk)*(zdp(jl,jk) |
---|
912 | * /(rg*prho(jl,jk)*zdwind))**2 |
---|
913 | pri(jl,jk)=max(pri(jl,jk),grcrit) |
---|
914 | endif |
---|
915 | 231 continue |
---|
916 | 232 continue |
---|
917 | |
---|
918 | c |
---|
919 | c |
---|
920 | c* define top of 'envelope' layer |
---|
921 | c ---------------------------- |
---|
922 | |
---|
923 | do 233 jl=kidia,kfdia |
---|
924 | pnu (jl)=0.0 |
---|
925 | znum(jl)=0.0 |
---|
926 | 233 continue |
---|
927 | |
---|
928 | do 234 jk=2,klev-1 |
---|
929 | do 234 jl=kidia,kfdia |
---|
930 | |
---|
931 | if(ktest(jl).eq.1) then |
---|
932 | |
---|
933 | if (jk.ge.kknu2(jl)) then |
---|
934 | |
---|
935 | znum(jl)=pnu(jl) |
---|
936 | zwind=(pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ |
---|
937 | * max(sqrt(pulow(jl)**2+pvlow(jl)**2),gvsec) |
---|
938 | zwind=max(sqrt(zwind**2),gvsec) |
---|
939 | zdelp=paphm1(jl,jk+1)-paphm1(jl,jk) |
---|
940 | zstabm=sqrt(max(pstab(jl,jk ),gssec)) |
---|
941 | zstabp=sqrt(max(pstab(jl,jk+1),gssec)) |
---|
942 | zrhom=prho(jl,jk ) |
---|
943 | zrhop=prho(jl,jk+1) |
---|
944 | pnu(jl) = pnu(jl) + (zdelp/rg)* |
---|
945 | * ((zstabp/zrhop+zstabm/zrhom)/2.)/zwind |
---|
946 | if((znum(jl).le.gfrcrit).and.(pnu(jl).gt.gfrcrit) |
---|
947 | * .and.(kkenvh(jl).eq.klev)) |
---|
948 | * kkenvh(jl)=jk |
---|
949 | |
---|
950 | endif |
---|
951 | |
---|
952 | endif |
---|
953 | |
---|
954 | 234 continue |
---|
955 | |
---|
956 | c calculation of a dynamical mixing height for when the waves |
---|
957 | C BREAK AT LOW LEVEL: The drag will be repartited over |
---|
958 | C a depths that depends on waves vertical wavelength, |
---|
959 | C not just between two adjacent model layers. |
---|
960 | c of gravity waves: |
---|
961 | |
---|
962 | do 235 jl=kidia,kfdia |
---|
963 | znup(jl)=0.0 |
---|
964 | znum(jl)=0.0 |
---|
965 | 235 continue |
---|
966 | |
---|
967 | do 236 jk=klev-1,2,-1 |
---|
968 | do 236 jl=kidia,kfdia |
---|
969 | |
---|
970 | if(ktest(jl).eq.1) then |
---|
971 | |
---|
972 | znum(jl)=znup(jl) |
---|
973 | zwind=(pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ |
---|
974 | * max(sqrt(pulow(jl)**2+pvlow(jl)**2),gvsec) |
---|
975 | zwind=max(sqrt(zwind**2),gvsec) |
---|
976 | zdelp=paphm1(jl,jk+1)-paphm1(jl,jk) |
---|
977 | zstabm=sqrt(max(pstab(jl,jk ),gssec)) |
---|
978 | zstabp=sqrt(max(pstab(jl,jk+1),gssec)) |
---|
979 | zrhom=prho(jl,jk ) |
---|
980 | zrhop=prho(jl,jk+1) |
---|
981 | znup(jl) = znup(jl) + (zdelp/rg)* |
---|
982 | * ((zstabp/zrhop+zstabm/zrhom)/2.)/zwind |
---|
983 | if((znum(jl).le.rpi/4.).and.(znup(jl).gt.rpi/4.) |
---|
984 | * .and.(kkcrith(jl).eq.klev)) |
---|
985 | * kkcrith(jl)=jk |
---|
986 | |
---|
987 | endif |
---|
988 | |
---|
989 | 236 continue |
---|
990 | |
---|
991 | do 237 jl=kidia,kfdia |
---|
992 | if(ktest(jl).eq.1) then |
---|
993 | kkcrith(jl)=max0(kkcrith(jl),ilevh*2) |
---|
994 | kkcrith(jl)=max0(kkcrith(jl),kknu(jl)) |
---|
995 | if(kcrit(jl).ge.kkcrith(jl))kcrit(jl)=1 |
---|
996 | endif |
---|
997 | 237 continue |
---|
998 | c |
---|
999 | c directional info for flow blocking ************************* |
---|
1000 | c |
---|
1001 | do 251 jk=1,klev |
---|
1002 | do 252 jl=kidia,kfdia |
---|
1003 | if(ktest(jl).eq.1) then |
---|
1004 | lo=(pum1(jl,jk).lt.gvsec).and.(pum1(jl,jk).ge.-gvsec) |
---|
1005 | if(lo) then |
---|
1006 | zu=pum1(jl,jk)+2.*gvsec |
---|
1007 | else |
---|
1008 | zu=pum1(jl,jk) |
---|
1009 | endif |
---|
1010 | zphi=atan(pvm1(jl,jk)/zu) |
---|
1011 | ppsi(jl,jk)=ptheta(jl)*rpi/180.-zphi |
---|
1012 | endif |
---|
1013 | 252 continue |
---|
1014 | 251 continue |
---|
1015 | |
---|
1016 | c forms the vertical 'leakiness' ************************** |
---|
1017 | |
---|
1018 | do 254 jk=ilevh,klev |
---|
1019 | do 253 jl=kidia,kfdia |
---|
1020 | if(ktest(jl).eq.1) then |
---|
1021 | pzdep(jl,jk)=0 |
---|
1022 | if(jk.ge.kkenvh(jl).and.kkenvh(jl).ne.klev) then |
---|
1023 | pzdep(jl,jk)=(pgeom1(jl,kkenvh(jl) )-pgeom1(jl, jk))/ |
---|
1024 | * (pgeom1(jl,kkenvh(jl) )-pgeom1(jl,klev)) |
---|
1025 | end if |
---|
1026 | endif |
---|
1027 | 253 continue |
---|
1028 | 254 continue |
---|
1029 | |
---|
1030 | return |
---|
1031 | end |
---|
1032 | SUBROUTINE gwstress_strato |
---|
1033 | * ( nlon , nlev |
---|
1034 | * , kkcrit, ksect, kkhlim, ktest, kkcrith, kcrit, kkenvh |
---|
1035 | * , kknu |
---|
1036 | * , prho , pstab , pvph , pstd, psig |
---|
1037 | * , pmea , ppic , pval , ptfr , ptau |
---|
1038 | * , pgeom1 , pgamma , pd1 , pd2 , pdmod , pnu ) |
---|
1039 | c |
---|
1040 | c**** *gwstress* |
---|
1041 | c |
---|
1042 | c purpose. |
---|
1043 | c -------- |
---|
1044 | c Compute the surface stress due to Gravity Waves, according |
---|
1045 | c to the Phillips (1979) theory of 3-D flow above |
---|
1046 | c anisotropic elliptic ridges. |
---|
1047 | |
---|
1048 | C The stress is reduced two account for cut-off flow over |
---|
1049 | C hill. The flow only see that part of the ridge located |
---|
1050 | c above the blocked layer (see zeff). |
---|
1051 | c |
---|
1052 | c** interface. |
---|
1053 | c ---------- |
---|
1054 | c call *gwstress* from *gwdrag* |
---|
1055 | c |
---|
1056 | c explicit arguments : |
---|
1057 | c -------------------- |
---|
1058 | c ==== inputs === |
---|
1059 | c ==== outputs === |
---|
1060 | c |
---|
1061 | c implicit arguments : none |
---|
1062 | c -------------------- |
---|
1063 | c |
---|
1064 | c method. |
---|
1065 | c ------- |
---|
1066 | c |
---|
1067 | c |
---|
1068 | c externals. |
---|
1069 | c ---------- |
---|
1070 | c |
---|
1071 | c |
---|
1072 | c reference. |
---|
1073 | c ---------- |
---|
1074 | c |
---|
1075 | c LOTT and MILLER (1997) & LOTT (1999) |
---|
1076 | c |
---|
1077 | c author. |
---|
1078 | c ------- |
---|
1079 | c |
---|
1080 | c modifications. |
---|
1081 | c -------------- |
---|
1082 | c f. lott put the new gwd on ifs 22/11/93 |
---|
1083 | c |
---|
1084 | c----------------------------------------------------------------------- |
---|
1085 | USE dimphy |
---|
1086 | implicit none |
---|
1087 | |
---|
1088 | cym#include "dimensions.h" |
---|
1089 | cym#include "dimphy.h" |
---|
1090 | #include "YOMCST.h" |
---|
1091 | #include "YOEGWD.h" |
---|
1092 | |
---|
1093 | c----------------------------------------------------------------------- |
---|
1094 | c |
---|
1095 | c* 0.1 arguments |
---|
1096 | c --------- |
---|
1097 | c |
---|
1098 | integer nlon,nlev |
---|
1099 | integer kkcrit(nlon),kkcrith(nlon),kcrit(nlon),ksect(nlon), |
---|
1100 | * kkhlim(nlon),ktest(nlon),kkenvh(nlon),kknu(nlon) |
---|
1101 | c |
---|
1102 | real prho(nlon,nlev+1),pstab(nlon,nlev+1),ptau(nlon,nlev+1), |
---|
1103 | * pvph(nlon,nlev+1),ptfr(nlon), |
---|
1104 | * pgeom1(nlon,nlev),pstd(nlon) |
---|
1105 | c |
---|
1106 | real pd1(nlon),pd2(nlon),pnu(nlon),psig(nlon),pgamma(nlon) |
---|
1107 | real pmea(nlon),ppic(nlon),pval(nlon) |
---|
1108 | real pdmod(nlon) |
---|
1109 | c |
---|
1110 | c----------------------------------------------------------------------- |
---|
1111 | c |
---|
1112 | c* 0.2 local arrays |
---|
1113 | c ------------ |
---|
1114 | c zeff--real: effective height seen by the flow when there is blocking |
---|
1115 | |
---|
1116 | integer jl |
---|
1117 | real zeff |
---|
1118 | c |
---|
1119 | c----------------------------------------------------------------------- |
---|
1120 | c |
---|
1121 | c* 0.3 functions |
---|
1122 | c --------- |
---|
1123 | c ------------------------------------------------------------------ |
---|
1124 | c |
---|
1125 | c* 1. initialization |
---|
1126 | c -------------- |
---|
1127 | c |
---|
1128 | c PRINT *,' in gwstress' |
---|
1129 | 100 continue |
---|
1130 | c |
---|
1131 | c* 3.1 gravity wave stress. |
---|
1132 | c |
---|
1133 | 300 continue |
---|
1134 | c |
---|
1135 | c |
---|
1136 | do 301 jl=kidia,kfdia |
---|
1137 | if(ktest(jl).eq.1) then |
---|
1138 | |
---|
1139 | c effective mountain height above the blocked flow |
---|
1140 | |
---|
1141 | zeff=ppic(jl)-pval(jl) |
---|
1142 | if(kkenvh(jl).lt.klev)then |
---|
1143 | zeff=amin1(GFRCRIT*pvph(jl,klev+1)/sqrt(pstab(jl,klev+1)) |
---|
1144 | c ,zeff) |
---|
1145 | endif |
---|
1146 | |
---|
1147 | |
---|
1148 | ptau(jl,klev+1)=gkdrag*prho(jl,klev+1) |
---|
1149 | * *psig(jl)*pdmod(jl)/4./pstd(jl) |
---|
1150 | * *pvph(jl,klev+1)*sqrt(pstab(jl,klev+1)) |
---|
1151 | * *zeff**2 |
---|
1152 | |
---|
1153 | |
---|
1154 | c too small value of stress or low level flow include critical level |
---|
1155 | c or low level flow: gravity wave stress nul. |
---|
1156 | |
---|
1157 | c lo=(ptau(jl,klev+1).lt.gtsec).or.(kcrit(jl).ge.kknu(jl)) |
---|
1158 | c * .or.(pvph(jl,klev+1).lt.gvcrit) |
---|
1159 | c if(lo) ptau(jl,klev+1)=0.0 |
---|
1160 | |
---|
1161 | c print *,jl,ptau(jl,klev+1) |
---|
1162 | |
---|
1163 | else |
---|
1164 | |
---|
1165 | ptau(jl,klev+1)=0.0 |
---|
1166 | |
---|
1167 | endif |
---|
1168 | |
---|
1169 | 301 continue |
---|
1170 | |
---|
1171 | c write(21)(ptau(jl,klev+1),jl=kidia,kfdia) |
---|
1172 | |
---|
1173 | return |
---|
1174 | end |
---|
1175 | |
---|
1176 | subroutine gwprofil_strato |
---|
1177 | * ( nlon, nlev |
---|
1178 | * , kgwd ,kdx , ktest |
---|
1179 | * , kkcrit, kkcrith, kcrit , kkenvh, kknu,kknu2 |
---|
1180 | * , paphm1, prho , pstab , ptfr , pvph , pri , ptau |
---|
1181 | * , pdmod , pnu , psig ,pgamma, pstd, ppic,pval) |
---|
1182 | |
---|
1183 | C**** *gwprofil* |
---|
1184 | C |
---|
1185 | C purpose. |
---|
1186 | C -------- |
---|
1187 | C |
---|
1188 | C** interface. |
---|
1189 | C ---------- |
---|
1190 | C from *gwdrag* |
---|
1191 | C |
---|
1192 | C explicit arguments : |
---|
1193 | C -------------------- |
---|
1194 | C ==== inputs === |
---|
1195 | C |
---|
1196 | C ==== outputs === |
---|
1197 | C |
---|
1198 | C implicit arguments : none |
---|
1199 | C -------------------- |
---|
1200 | C |
---|
1201 | C method: |
---|
1202 | C ------- |
---|
1203 | C the stress profile for gravity waves is computed as follows: |
---|
1204 | C it decreases linearly with heights from the ground |
---|
1205 | C to the low-level indicated by kkcrith, |
---|
1206 | C to simulates lee waves or |
---|
1207 | C low-level gravity wave breaking. |
---|
1208 | C above it is constant, except when the waves encounter a critical |
---|
1209 | C level (kcrit) or when they break. |
---|
1210 | C The stress is also uniformly distributed above the level |
---|
1211 | C nstra. |
---|
1212 | C |
---|
1213 | USE dimphy |
---|
1214 | IMPLICIT NONE |
---|
1215 | |
---|
1216 | cym#include "dimensions.h" |
---|
1217 | cym#include "dimphy.h" |
---|
1218 | #include "YOMCST.h" |
---|
1219 | #include "YOEGWD.h" |
---|
1220 | |
---|
1221 | C----------------------------------------------------------------------- |
---|
1222 | C |
---|
1223 | C* 0.1 ARGUMENTS |
---|
1224 | C --------- |
---|
1225 | C |
---|
1226 | integer nlon,nlev,kgwd |
---|
1227 | integer kkcrit(nlon),kkcrith(nlon),kcrit(nlon) |
---|
1228 | * ,kdx(nlon),ktest(nlon) |
---|
1229 | * ,kkenvh(nlon),kknu(nlon),kknu2(nlon) |
---|
1230 | C |
---|
1231 | real paphm1(nlon,nlev+1), pstab(nlon,nlev+1), |
---|
1232 | * prho (nlon,nlev+1), pvph (nlon,nlev+1), |
---|
1233 | * pri (nlon,nlev+1), ptfr (nlon), ptau(nlon,nlev+1) |
---|
1234 | |
---|
1235 | real pdmod (nlon) , pnu (nlon) , psig(nlon), |
---|
1236 | * pgamma(nlon) , pstd(nlon) , ppic(nlon), pval(nlon) |
---|
1237 | |
---|
1238 | C----------------------------------------------------------------------- |
---|
1239 | C |
---|
1240 | C* 0.2 local arrays |
---|
1241 | C ------------ |
---|
1242 | C |
---|
1243 | integer jl,jk |
---|
1244 | real zsqr,zalfa,zriw,zdel,zb,zalpha,zdz2n,zdelp,zdelpt |
---|
1245 | |
---|
1246 | real zdz2 (klon,klev) , znorm(klon) , zoro(klon) |
---|
1247 | real ztau (klon,klev+1) |
---|
1248 | C |
---|
1249 | C----------------------------------------------------------------------- |
---|
1250 | C |
---|
1251 | C* 1. INITIALIZATION |
---|
1252 | C -------------- |
---|
1253 | C |
---|
1254 | C print *,' entree gwprofil' |
---|
1255 | 100 CONTINUE |
---|
1256 | C |
---|
1257 | C |
---|
1258 | C* COMPUTATIONAL CONSTANTS. |
---|
1259 | C ------------- ---------- |
---|
1260 | C |
---|
1261 | do 400 jl=kidia,kfdia |
---|
1262 | if(ktest(jl).eq.1)then |
---|
1263 | zoro(jl)=psig(jl)*pdmod(jl)/4./pstd(jl) |
---|
1264 | ztau(jl,klev+1)=ptau(jl,klev+1) |
---|
1265 | c print *,jl,ptau(jl,klev+1) |
---|
1266 | ztau(jl,kkcrith(jl))=grahilo*ptau(jl,klev+1) |
---|
1267 | endif |
---|
1268 | 400 continue |
---|
1269 | |
---|
1270 | C |
---|
1271 | do 430 jk=klev+1,1,-1 |
---|
1272 | C |
---|
1273 | C |
---|
1274 | C* 4.1 constant shear stress until top of the |
---|
1275 | C low-level breaking/trapped layer |
---|
1276 | 410 CONTINUE |
---|
1277 | C |
---|
1278 | do 411 jl=kidia,kfdia |
---|
1279 | if(ktest(jl).eq.1)then |
---|
1280 | if(jk.gt.kkcrith(jl)) then |
---|
1281 | zdelp=paphm1(jl,jk)-paphm1(jl,klev+1) |
---|
1282 | zdelpt=paphm1(jl,kkcrith(jl))-paphm1(jl,klev+1) |
---|
1283 | ptau(jl,jk)=ztau(jl,klev+1)+zdelp/zdelpt* |
---|
1284 | c (ztau(jl,kkcrith(jl))-ztau(jl,klev+1)) |
---|
1285 | else |
---|
1286 | ptau(jl,jk)=ztau(jl,kkcrith(jl)) |
---|
1287 | endif |
---|
1288 | endif |
---|
1289 | 411 continue |
---|
1290 | C |
---|
1291 | C* 4.15 constant shear stress until the top of the |
---|
1292 | C low level flow layer. |
---|
1293 | 415 continue |
---|
1294 | C |
---|
1295 | C |
---|
1296 | C* 4.2 wave displacement at next level. |
---|
1297 | C |
---|
1298 | 420 continue |
---|
1299 | C |
---|
1300 | 430 continue |
---|
1301 | |
---|
1302 | C |
---|
1303 | C* 4.4 wave richardson number, new wave displacement |
---|
1304 | C* and stress: breaking evaluation and critical |
---|
1305 | C level |
---|
1306 | C |
---|
1307 | |
---|
1308 | do 440 jk=klev,1,-1 |
---|
1309 | |
---|
1310 | do 441 jl=kidia,kfdia |
---|
1311 | if(ktest(jl).eq.1)then |
---|
1312 | znorm(jl)=prho(jl,jk)*sqrt(pstab(jl,jk))*pvph(jl,jk) |
---|
1313 | zdz2(jl,jk)=ptau(jl,jk)/amax1(znorm(jl),gssec)/zoro(jl) |
---|
1314 | endif |
---|
1315 | 441 continue |
---|
1316 | |
---|
1317 | do 442 jl=kidia,kfdia |
---|
1318 | if(ktest(jl).eq.1)then |
---|
1319 | if(jk.lt.kkcrith(jl)) then |
---|
1320 | if((ptau(jl,jk+1).lt.gtsec).or.(jk.le.kcrit(jl))) then |
---|
1321 | ptau(jl,jk)=0.0 |
---|
1322 | else |
---|
1323 | zsqr=sqrt(pri(jl,jk)) |
---|
1324 | zalfa=sqrt(pstab(jl,jk)*zdz2(jl,jk))/pvph(jl,jk) |
---|
1325 | zriw=pri(jl,jk)*(1.-zalfa)/(1+zalfa*zsqr)**2 |
---|
1326 | if(zriw.lt.grcrit) then |
---|
1327 | C print *,' breaking!!!',ptau(jl,jk) |
---|
1328 | zdel=4./zsqr/grcrit+1./grcrit**2+4./grcrit |
---|
1329 | zb=1./grcrit+2./zsqr |
---|
1330 | zalpha=0.5*(-zb+sqrt(zdel)) |
---|
1331 | zdz2n=(pvph(jl,jk)*zalpha)**2/pstab(jl,jk) |
---|
1332 | ptau(jl,jk)=znorm(jl)*zdz2n*zoro(jl) |
---|
1333 | endif |
---|
1334 | |
---|
1335 | ptau(jl,jk)=amin1(ptau(jl,jk),ptau(jl,jk+1)) |
---|
1336 | |
---|
1337 | endif |
---|
1338 | endif |
---|
1339 | endif |
---|
1340 | 442 continue |
---|
1341 | 440 continue |
---|
1342 | |
---|
1343 | C REORGANISATION OF THE STRESS PROFILE AT LOW LEVEL |
---|
1344 | |
---|
1345 | do 530 jl=kidia,kfdia |
---|
1346 | if(ktest(jl).eq.1)then |
---|
1347 | ztau(jl,kkcrith(jl)-1)=ptau(jl,kkcrith(jl)-1) |
---|
1348 | ztau(jl,nstra)=ptau(jl,nstra) |
---|
1349 | endif |
---|
1350 | 530 continue |
---|
1351 | |
---|
1352 | do 531 jk=1,klev |
---|
1353 | |
---|
1354 | do 532 jl=kidia,kfdia |
---|
1355 | if(ktest(jl).eq.1)then |
---|
1356 | |
---|
1357 | if(jk.gt.kkcrith(jl)-1)then |
---|
1358 | |
---|
1359 | zdelp=paphm1(jl,jk)-paphm1(jl,klev+1 ) |
---|
1360 | zdelpt=paphm1(jl,kkcrith(jl)-1)-paphm1(jl,klev+1 ) |
---|
1361 | ptau(jl,jk)=ztau(jl,klev+1 ) + |
---|
1362 | . (ztau(jl,kkcrith(jl)-1)-ztau(jl,klev+1 ) )* |
---|
1363 | . zdelp/zdelpt |
---|
1364 | |
---|
1365 | endif |
---|
1366 | endif |
---|
1367 | |
---|
1368 | 532 continue |
---|
1369 | |
---|
1370 | C REORGANISATION AT THE MODEL TOP.... |
---|
1371 | |
---|
1372 | do 533 jl=kidia,kfdia |
---|
1373 | if(ktest(jl).eq.1)then |
---|
1374 | |
---|
1375 | if(jk.lt.nstra)then |
---|
1376 | |
---|
1377 | zdelp =paphm1(jl,nstra) |
---|
1378 | zdelpt=paphm1(jl,jk) |
---|
1379 | ptau(jl,jk)=ztau(jl,nstra)*zdelpt/zdelp |
---|
1380 | c ptau(jl,jk)=ztau(jl,nstra) |
---|
1381 | |
---|
1382 | endif |
---|
1383 | |
---|
1384 | endif |
---|
1385 | |
---|
1386 | 533 continue |
---|
1387 | |
---|
1388 | |
---|
1389 | 531 continue |
---|
1390 | |
---|
1391 | |
---|
1392 | 123 format(i4,1x,20(f6.3,1x)) |
---|
1393 | |
---|
1394 | |
---|
1395 | return |
---|
1396 | end |
---|
1397 | subroutine lift_noro_strato (nlon,nlev,dtime,paprs,pplay, |
---|
1398 | i plat,pmea,pstd, psig, pgam, pthe, ppic,pval, |
---|
1399 | i kgwd,kdx,ktest, |
---|
1400 | i t, u, v, |
---|
1401 | o pulow, pvlow, pustr, pvstr, |
---|
1402 | o d_t, d_u, d_v) |
---|
1403 | c |
---|
1404 | USE dimphy |
---|
1405 | implicit none |
---|
1406 | c====================================================================== |
---|
1407 | c Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
1408 | c Object: Mountain lift interface (enhanced vortex stretching). |
---|
1409 | c Made necessary because: |
---|
1410 | C 1. in the LMD-GCM Layers are from bottom to top, |
---|
1411 | C contrary to most European GCM. |
---|
1412 | c 2. the altitude above ground of each model layers |
---|
1413 | c needs to be known (variable zgeom) |
---|
1414 | c====================================================================== |
---|
1415 | c Explicit Arguments: |
---|
1416 | c ================== |
---|
1417 | c nlon----input-I-Total number of horizontal points that get into physics |
---|
1418 | c nlev----input-I-Number of vertical levels |
---|
1419 | c dtime---input-R-Time-step (s) |
---|
1420 | c paprs---input-R-Pressure in semi layers (Pa) |
---|
1421 | c pplay---input-R-Pressure model-layers (Pa) |
---|
1422 | c t-------input-R-temperature (K) |
---|
1423 | c u-------input-R-Horizontal wind (m/s) |
---|
1424 | c v-------input-R-Meridional wind (m/s) |
---|
1425 | c pmea----input-R-Mean Orography (m) |
---|
1426 | C pstd----input-R-SSO standard deviation (m) |
---|
1427 | c psig----input-R-SSO slope |
---|
1428 | c pgam----input-R-SSO Anisotropy |
---|
1429 | c pthe----input-R-SSO Angle |
---|
1430 | c ppic----input-R-SSO Peacks elevation (m) |
---|
1431 | c pval----input-R-SSO Valleys elevation (m) |
---|
1432 | c |
---|
1433 | c kgwd- -input-I: Total nb of points where the orography schemes are active |
---|
1434 | c ktest--input-I: Flags to indicate active points |
---|
1435 | c kdx----input-I: Locate the physical location of an active point. |
---|
1436 | |
---|
1437 | c pulow, pvlow -output-R: Low-level wind |
---|
1438 | c pustr, pvstr -output-R: Surface stress due to SSO drag (Pa) |
---|
1439 | c |
---|
1440 | c d_t-----output-R: T increment |
---|
1441 | c d_u-----output-R: U increment |
---|
1442 | c d_v-----output-R: V increment |
---|
1443 | c |
---|
1444 | c Implicit Arguments: |
---|
1445 | c =================== |
---|
1446 | c |
---|
1447 | c iim--common-I: Number of longitude intervals |
---|
1448 | c jjm--common-I: Number of latitude intervals |
---|
1449 | c klon-common-I: Number of points seen by the physics |
---|
1450 | c (iim+1)*(jjm+1) for instance |
---|
1451 | c klev-common-I: Number of vertical layers |
---|
1452 | c====================================================================== |
---|
1453 | c Local Variables: |
---|
1454 | c ================ |
---|
1455 | c |
---|
1456 | c zgeom-----R: Altitude of layer above ground |
---|
1457 | c pt, pu, pv --R: t u v from top to bottom |
---|
1458 | c pdtdt, pdudt, pdvdt --R: t u v tendencies (from top to bottom) |
---|
1459 | c papmf: pressure at model layer (from top to bottom) |
---|
1460 | c papmh: pressure at model 1/2 layer (from top to bottom) |
---|
1461 | c |
---|
1462 | c====================================================================== |
---|
1463 | |
---|
1464 | cym#include "dimensions.h" |
---|
1465 | cym#include "dimphy.h" |
---|
1466 | #include "YOMCST.h" |
---|
1467 | #include "YOEGWD.h" |
---|
1468 | c |
---|
1469 | c ARGUMENTS |
---|
1470 | c |
---|
1471 | INTEGER nlon,nlev |
---|
1472 | REAL dtime |
---|
1473 | REAL paprs(klon,klev+1) |
---|
1474 | REAL pplay(klon,klev) |
---|
1475 | REAL plat(nlon),pmea(nlon) |
---|
1476 | REAL pstd(nlon),psig(nlon),pgam(nlon),pthe(nlon) |
---|
1477 | REAL ppic(nlon),pval(nlon) |
---|
1478 | REAL pulow(nlon),pvlow(nlon),pustr(nlon),pvstr(nlon) |
---|
1479 | REAL t(nlon,nlev), u(nlon,nlev), v(nlon,nlev) |
---|
1480 | REAL d_t(nlon,nlev), d_u(nlon,nlev), d_v(nlon,nlev) |
---|
1481 | c |
---|
1482 | INTEGER i, k, kgwd, kdx(nlon), ktest(nlon) |
---|
1483 | c |
---|
1484 | c Variables locales: |
---|
1485 | c |
---|
1486 | REAL zgeom(klon,klev) |
---|
1487 | REAL pdtdt(klon,klev), pdudt(klon,klev), pdvdt(klon,klev) |
---|
1488 | REAL pt(klon,klev), pu(klon,klev), pv(klon,klev) |
---|
1489 | REAL papmf(klon,klev),papmh(klon,klev+1) |
---|
1490 | c |
---|
1491 | c initialiser les variables de sortie (pour securite) |
---|
1492 | c |
---|
1493 | |
---|
1494 | c print *,'in lift_noro' |
---|
1495 | DO i = 1,klon |
---|
1496 | pulow(i) = 0.0 |
---|
1497 | pvlow(i) = 0.0 |
---|
1498 | pustr(i) = 0.0 |
---|
1499 | pvstr(i) = 0.0 |
---|
1500 | ENDDO |
---|
1501 | DO k = 1, klev |
---|
1502 | DO i = 1, klon |
---|
1503 | d_t(i,k) = 0.0 |
---|
1504 | d_u(i,k) = 0.0 |
---|
1505 | d_v(i,k) = 0.0 |
---|
1506 | pdudt(i,k)=0.0 |
---|
1507 | pdvdt(i,k)=0.0 |
---|
1508 | pdtdt(i,k)=0.0 |
---|
1509 | ENDDO |
---|
1510 | ENDDO |
---|
1511 | c |
---|
1512 | c preparer les variables d'entree (attention: l'ordre des niveaux |
---|
1513 | c verticaux augmente du haut vers le bas) |
---|
1514 | c |
---|
1515 | DO k = 1, klev |
---|
1516 | DO i = 1, klon |
---|
1517 | pt(i,k) = t(i,klev-k+1) |
---|
1518 | pu(i,k) = u(i,klev-k+1) |
---|
1519 | pv(i,k) = v(i,klev-k+1) |
---|
1520 | papmf(i,k) = pplay(i,klev-k+1) |
---|
1521 | ENDDO |
---|
1522 | ENDDO |
---|
1523 | DO k = 1, klev+1 |
---|
1524 | DO i = 1, klon |
---|
1525 | papmh(i,k) = paprs(i,klev-k+2) |
---|
1526 | ENDDO |
---|
1527 | ENDDO |
---|
1528 | DO i = 1, klon |
---|
1529 | zgeom(i,klev) = RD * pt(i,klev) |
---|
1530 | . * LOG(papmh(i,klev+1)/papmf(i,klev)) |
---|
1531 | ENDDO |
---|
1532 | DO k = klev-1, 1, -1 |
---|
1533 | DO i = 1, klon |
---|
1534 | zgeom(i,k) = zgeom(i,k+1) + RD * (pt(i,k)+pt(i,k+1))/2.0 |
---|
1535 | . * LOG(papmf(i,k+1)/papmf(i,k)) |
---|
1536 | ENDDO |
---|
1537 | ENDDO |
---|
1538 | c |
---|
1539 | c appeler la routine principale |
---|
1540 | c |
---|
1541 | |
---|
1542 | CALL OROLIFT_strato(klon,klev,kgwd,kdx,ktest, |
---|
1543 | . dtime, |
---|
1544 | . papmh, papmf, zgeom, |
---|
1545 | . pt, pu, pv, |
---|
1546 | . plat,pmea, pstd, psig, pgam, pthe, ppic,pval, |
---|
1547 | . pulow,pvlow, |
---|
1548 | . pdudt,pdvdt,pdtdt) |
---|
1549 | C |
---|
1550 | DO k = 1, klev |
---|
1551 | DO i = 1, klon |
---|
1552 | d_u(i,klev+1-k) = dtime*pdudt(i,k) |
---|
1553 | d_v(i,klev+1-k) = dtime*pdvdt(i,k) |
---|
1554 | d_t(i,klev+1-k) = dtime*pdtdt(i,k) |
---|
1555 | pustr(i) = pustr(i) |
---|
1556 | . +pdudt(i,k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
1557 | pvstr(i) = pvstr(i) |
---|
1558 | . +pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
1559 | ENDDO |
---|
1560 | ENDDO |
---|
1561 | |
---|
1562 | c print *,' out lift_noro' |
---|
1563 | c |
---|
1564 | RETURN |
---|
1565 | END |
---|
1566 | subroutine orolift_strato( nlon,nlev |
---|
1567 | I , kgwd, kdx, ktest |
---|
1568 | R , ptsphy |
---|
1569 | R , paphm1,papm1,pgeom1,ptm1,pum1,pvm1 |
---|
1570 | R , plat |
---|
1571 | R , pmea, pstd, psig, pgam, pthe,ppic,pval |
---|
1572 | C OUTPUTS |
---|
1573 | R , pulow,pvlow |
---|
1574 | R , pvom,pvol,pte ) |
---|
1575 | |
---|
1576 | C |
---|
1577 | C**** *OROLIFT: SIMULATE THE GEOSTROPHIC LIFT. |
---|
1578 | C |
---|
1579 | C PURPOSE. |
---|
1580 | C -------- |
---|
1581 | C this routine computes the physical tendencies of the |
---|
1582 | C prognostic variables u,v when enhanced vortex stretching |
---|
1583 | C is needed. |
---|
1584 | C |
---|
1585 | C** INTERFACE. |
---|
1586 | C ---------- |
---|
1587 | C CALLED FROM *lift_noro |
---|
1588 | c explicit arguments : |
---|
1589 | c -------------------- |
---|
1590 | c ==== inputs === |
---|
1591 | c nlon----input-I-Total number of horizontal points that get into physics |
---|
1592 | c nlev----input-I-Number of vertical levels |
---|
1593 | c |
---|
1594 | c kgwd- -input-I: Total nb of points where the orography schemes are active |
---|
1595 | c ktest--input-I: Flags to indicate active points |
---|
1596 | c kdx----input-I: Locate the physical location of an active point. |
---|
1597 | c ptsphy--input-R-Time-step (s) |
---|
1598 | c paphm1--input-R: pressure at model 1/2 layer |
---|
1599 | c papm1---input-R: pressure at model layer |
---|
1600 | c pgeom1--input-R: Altitude of layer above ground |
---|
1601 | c ptm1, pum1, pvm1--R-: t, u and v |
---|
1602 | c pmea----input-R-Mean Orography (m) |
---|
1603 | C pstd----input-R-SSO standard deviation (m) |
---|
1604 | c psig----input-R-SSO slope |
---|
1605 | c pgam----input-R-SSO Anisotropy |
---|
1606 | c pthe----input-R-SSO Angle |
---|
1607 | c ppic----input-R-SSO Peacks elevation (m) |
---|
1608 | c pval----input-R-SSO Valleys elevation (m) |
---|
1609 | c plat----input-R-Latitude (degree) |
---|
1610 | c |
---|
1611 | c ==== outputs === |
---|
1612 | c pulow, pvlow -output-R: Low-level wind |
---|
1613 | c |
---|
1614 | c pte -----output-R: T tendency |
---|
1615 | c pvom-----output-R: U tendency |
---|
1616 | c pvol-----output-R: V tendency |
---|
1617 | c |
---|
1618 | c |
---|
1619 | c Implicit Arguments: |
---|
1620 | c =================== |
---|
1621 | c |
---|
1622 | c klon-common-I: Number of points seen by the physics |
---|
1623 | c klev-common-I: Number of vertical layers |
---|
1624 | c |
---|
1625 | |
---|
1626 | C ---------- |
---|
1627 | C |
---|
1628 | C AUTHOR. |
---|
1629 | C ------- |
---|
1630 | C F.LOTT LMD 22/11/95 |
---|
1631 | C |
---|
1632 | USE dimphy |
---|
1633 | implicit none |
---|
1634 | C |
---|
1635 | C |
---|
1636 | cym#include "dimensions.h" |
---|
1637 | cym#include "dimphy.h" |
---|
1638 | #include "YOMCST.h" |
---|
1639 | #include "YOEGWD.h" |
---|
1640 | C----------------------------------------------------------------------- |
---|
1641 | C |
---|
1642 | C* 0.1 ARGUMENTS |
---|
1643 | C --------- |
---|
1644 | C |
---|
1645 | C |
---|
1646 | integer nlon,nlev,kgwd |
---|
1647 | real ptsphy |
---|
1648 | real pte(nlon,nlev), |
---|
1649 | * pvol(nlon,nlev), |
---|
1650 | * pvom(nlon,nlev), |
---|
1651 | * pulow(nlon), |
---|
1652 | * pvlow(nlon) |
---|
1653 | real pum1(nlon,nlev), |
---|
1654 | * pvm1(nlon,nlev), |
---|
1655 | * ptm1(nlon,nlev), |
---|
1656 | * plat(nlon),pmea(nlon), |
---|
1657 | * pstd(nlon),psig(nlon),pgam(nlon), |
---|
1658 | * pthe(nlon),ppic(nlon),pval(nlon), |
---|
1659 | * pgeom1(nlon,nlev), |
---|
1660 | * papm1(nlon,nlev), |
---|
1661 | * paphm1(nlon,nlev+1) |
---|
1662 | C |
---|
1663 | INTEGER KDX(NLON),KTEST(NLON) |
---|
1664 | C----------------------------------------------------------------------- |
---|
1665 | C |
---|
1666 | C* 0.2 local arrays |
---|
1667 | |
---|
1668 | integer jl,ilevh,jk |
---|
1669 | real zhgeo,zdelp,zslow,zsqua,zscav,zbet |
---|
1670 | C ------------ |
---|
1671 | integer iknub(klon), |
---|
1672 | * iknul(klon) |
---|
1673 | logical ll1(klon,klev+1) |
---|
1674 | C |
---|
1675 | real ztau(klon,klev+1), |
---|
1676 | * ztav(klon,klev+1), |
---|
1677 | * zrho(klon,klev+1) |
---|
1678 | real zdudt(klon), |
---|
1679 | * zdvdt(klon) |
---|
1680 | real zhcrit(klon,klev) |
---|
1681 | |
---|
1682 | logical lifthigh |
---|
1683 | real zcons1,ztmst |
---|
1684 | CHARACTER (LEN=20) :: modname='orolift_strato' |
---|
1685 | CHARACTER (LEN=80) :: abort_message |
---|
1686 | |
---|
1687 | |
---|
1688 | C----------------------------------------------------------------------- |
---|
1689 | C |
---|
1690 | C* 1.1 initialisations |
---|
1691 | C --------------- |
---|
1692 | |
---|
1693 | lifthigh=.false. |
---|
1694 | |
---|
1695 | if(nlon.ne.klon.or.nlev.ne.klev) then |
---|
1696 | abort_message = 'pb dimension' |
---|
1697 | CALL abort_gcm (modname,abort_message,1) |
---|
1698 | ENDIF |
---|
1699 | zcons1=1./rd |
---|
1700 | ztmst=ptsphy |
---|
1701 | C |
---|
1702 | do 1001 jl=kidia,kfdia |
---|
1703 | zrho(jl,klev+1) =0.0 |
---|
1704 | pulow(jl) =0.0 |
---|
1705 | pvlow(jl) =0.0 |
---|
1706 | iknub(JL) =klev |
---|
1707 | iknul(JL) =klev |
---|
1708 | ilevh=klev/3 |
---|
1709 | ll1(jl,klev+1)=.false. |
---|
1710 | do 1000 jk=1,klev |
---|
1711 | pvom(jl,jk)=0.0 |
---|
1712 | pvol(jl,jk)=0.0 |
---|
1713 | pte (jl,jk)=0.0 |
---|
1714 | 1000 continue |
---|
1715 | 1001 continue |
---|
1716 | |
---|
1717 | C |
---|
1718 | C* 2.1 DEFINE LOW LEVEL WIND, PROJECT WINDS IN PLANE OF |
---|
1719 | C* LOW LEVEL WIND, DETERMINE SECTOR IN WHICH TO TAKE |
---|
1720 | C* THE VARIANCE AND SET INDICATOR FOR CRITICAL LEVELS. |
---|
1721 | C |
---|
1722 | C |
---|
1723 | C |
---|
1724 | do 2006 jk=klev,1,-1 |
---|
1725 | do 2007 jl=kidia,kfdia |
---|
1726 | if(ktest(jl).eq.1) then |
---|
1727 | zhcrit(jl,jk)=amax1(ppic(jl)-pval(jl),100.) |
---|
1728 | zhgeo=pgeom1(jl,jk)/rg |
---|
1729 | ll1(jl,jk)=(zhgeo.gt.zhcrit(jl,jk)) |
---|
1730 | if(ll1(jl,jk).neqv.ll1(jl,jk+1)) then |
---|
1731 | iknub(jl)=jk |
---|
1732 | endif |
---|
1733 | endif |
---|
1734 | 2007 continue |
---|
1735 | 2006 continue |
---|
1736 | C |
---|
1737 | |
---|
1738 | do 2010 jl=kidia,kfdia |
---|
1739 | if(ktest(jl).eq.1) then |
---|
1740 | iknub(jl)=max(iknub(jl),klev/2) |
---|
1741 | iknul(jl)=max(iknul(jl),2*klev/3) |
---|
1742 | if(iknub(jl).gt.nktopg) iknub(jl)=nktopg |
---|
1743 | if(iknub(jl).eq.nktopg) iknul(jl)=klev |
---|
1744 | if(iknub(jl).eq.iknul(jl)) iknub(jl)=iknul(jl)-1 |
---|
1745 | endif |
---|
1746 | 2010 continue |
---|
1747 | |
---|
1748 | do 223 jk=klev,2,-1 |
---|
1749 | do 222 jl=kidia,kfdia |
---|
1750 | zrho(jl,jk)=2.*paphm1(jl,jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
1751 | 222 continue |
---|
1752 | 223 continue |
---|
1753 | c print *,' dans orolift: 223' |
---|
1754 | |
---|
1755 | C******************************************************************** |
---|
1756 | C |
---|
1757 | c* define low level flow |
---|
1758 | C ------------------- |
---|
1759 | do 2115 jk=klev,1,-1 |
---|
1760 | do 2116 jl=kidia,kfdia |
---|
1761 | if(ktest(jl).eq.1) THEN |
---|
1762 | if(jk.ge.iknub(jl).and.jk.le.iknul(jl)) then |
---|
1763 | pulow(JL)=pulow(JL)+pum1(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
1764 | pvlow(JL)=pvlow(JL)+pvm1(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
1765 | zrho(JL,klev+1)=zrho(JL,klev+1) |
---|
1766 | * +zrho(JL,JK)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
1767 | endif |
---|
1768 | endif |
---|
1769 | 2116 continue |
---|
1770 | 2115 continue |
---|
1771 | do 2110 jl=kidia,kfdia |
---|
1772 | if(ktest(jl).eq.1) then |
---|
1773 | pulow(JL)=pulow(JL)/(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
---|
1774 | pvlow(JL)=pvlow(JL)/(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
---|
1775 | zrho(JL,klev+1)=zrho(Jl,klev+1) |
---|
1776 | * /(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
---|
1777 | endif |
---|
1778 | 2110 continue |
---|
1779 | |
---|
1780 | |
---|
1781 | 200 continue |
---|
1782 | |
---|
1783 | C*********************************************************** |
---|
1784 | C |
---|
1785 | C* 3. COMPUTE MOUNTAIN LIFT |
---|
1786 | C |
---|
1787 | 300 continue |
---|
1788 | C |
---|
1789 | do 301 jl=kidia,kfdia |
---|
1790 | if(ktest(jl).eq.1) then |
---|
1791 | ztau(jl,klev+1)= - gklift*zrho(jl,klev+1)*2.*romega* |
---|
1792 | c * (2*pstd(jl)+pmea(jl))* |
---|
1793 | * 2*pstd(jl)* |
---|
1794 | * sin(rpi/180.*plat(jl))*pvlow(jl) |
---|
1795 | ztav(jl,klev+1)= gklift*zrho(jl,klev+1)*2.*romega* |
---|
1796 | c * (2*pstd(jl)+pmea(jl))* |
---|
1797 | * 2*pstd(jl)* |
---|
1798 | * sin(rpi/180.*plat(jl))*pulow(jl) |
---|
1799 | else |
---|
1800 | ztau(jl,klev+1)=0.0 |
---|
1801 | ztav(jl,klev+1)=0.0 |
---|
1802 | endif |
---|
1803 | 301 continue |
---|
1804 | |
---|
1805 | C |
---|
1806 | C* 4. COMPUTE LIFT PROFILE |
---|
1807 | C* -------------------- |
---|
1808 | C |
---|
1809 | |
---|
1810 | 400 continue |
---|
1811 | |
---|
1812 | do 401 jk=1,klev |
---|
1813 | do 401 jl=kidia,kfdia |
---|
1814 | if(ktest(jl).eq.1) then |
---|
1815 | ztau(jl,jk)=ztau(jl,klev+1)*paphm1(jl,jk)/paphm1(jl,klev+1) |
---|
1816 | ztav(jl,jk)=ztav(jl,klev+1)*paphm1(jl,jk)/paphm1(jl,klev+1) |
---|
1817 | else |
---|
1818 | ztau(jl,jk)=0.0 |
---|
1819 | ztav(jl,jk)=0.0 |
---|
1820 | endif |
---|
1821 | 401 continue |
---|
1822 | C |
---|
1823 | C |
---|
1824 | C* 5. COMPUTE TENDENCIES. |
---|
1825 | C* ------------------- |
---|
1826 | if(lifthigh)then |
---|
1827 | C |
---|
1828 | 500 continue |
---|
1829 | C |
---|
1830 | C EXPLICIT SOLUTION AT ALL LEVELS |
---|
1831 | C |
---|
1832 | do 524 jk=1,klev |
---|
1833 | do 523 jl=kidia,kfdia |
---|
1834 | if(ktest(jl).eq.1) then |
---|
1835 | zdelp=paphm1(jl,jk+1)-paphm1(jl,jk) |
---|
1836 | zdudt(jl)=-rg*(ztau(jl,jk+1)-ztau(jl,jk))/zdelp |
---|
1837 | zdvdt(jl)=-rg*(ztav(jl,jk+1)-ztav(jl,jk))/zdelp |
---|
1838 | endif |
---|
1839 | 523 continue |
---|
1840 | 524 continue |
---|
1841 | C |
---|
1842 | C PROJECT PERPENDICULARLY TO U NOT TO DESTROY ENERGY |
---|
1843 | C |
---|
1844 | do 530 jk=1,klev |
---|
1845 | do 530 jl=kidia,kfdia |
---|
1846 | if(ktest(jl).eq.1) then |
---|
1847 | |
---|
1848 | zslow=sqrt(pulow(jl)**2+pvlow(jl)**2) |
---|
1849 | zsqua=amax1(sqrt(pum1(jl,jk)**2+pvm1(jl,jk)**2),gvsec) |
---|
1850 | zscav=-zdudt(jl)*pvm1(jl,jk)+zdvdt(jl)*pum1(jl,jk) |
---|
1851 | if(zsqua.gt.gvsec)then |
---|
1852 | pvom(jl,jk)=-zscav*pvm1(jl,jk)/zsqua**2 |
---|
1853 | pvol(jl,jk)= zscav*pum1(jl,jk)/zsqua**2 |
---|
1854 | else |
---|
1855 | pvom(jl,jk)=0.0 |
---|
1856 | pvol(jl,jk)=0.0 |
---|
1857 | endif |
---|
1858 | zsqua=sqrt(pum1(jl,jk)**2+pum1(jl,jk)**2) |
---|
1859 | if(zsqua.lt.zslow)then |
---|
1860 | pvom(jl,jk)=zsqua/zslow*pvom(jl,jk) |
---|
1861 | pvol(jl,jk)=zsqua/zslow*pvol(jl,jk) |
---|
1862 | endif |
---|
1863 | |
---|
1864 | endif |
---|
1865 | 530 continue |
---|
1866 | C |
---|
1867 | C 6. LOW LEVEL LIFT, SEMI IMPLICIT: |
---|
1868 | C ---------------------------------- |
---|
1869 | |
---|
1870 | else |
---|
1871 | |
---|
1872 | do 601 jl=kidia,kfdia |
---|
1873 | if(ktest(jl).eq.1) then |
---|
1874 | do jk=klev,iknub(jl),-1 |
---|
1875 | zbet=gklift*2.*romega*sin(rpi/180.*plat(jl))*ztmst* |
---|
1876 | * (pgeom1(jl,iknub(jl)-1)-pgeom1(jl, jk))/ |
---|
1877 | * (pgeom1(jl,iknub(jl)-1)-pgeom1(jl,klev)) |
---|
1878 | zdudt(jl)=-pum1(jl,jk)/ztmst/(1+zbet**2) |
---|
1879 | zdvdt(jl)=-pvm1(jl,jk)/ztmst/(1+zbet**2) |
---|
1880 | pvom(jl,jk)= zbet**2*zdudt(jl) - zbet *zdvdt(jl) |
---|
1881 | pvol(jl,jk)= zbet *zdudt(jl) + zbet**2*zdvdt(jl) |
---|
1882 | enddo |
---|
1883 | endif |
---|
1884 | 601 continue |
---|
1885 | |
---|
1886 | endif |
---|
1887 | |
---|
1888 | c print *,' out orolift' |
---|
1889 | |
---|
1890 | return |
---|
1891 | end |
---|
1892 | SUBROUTINE SUGWD_strato(NLON,NLEV,paprs,pplay) |
---|
1893 | C |
---|
1894 | C |
---|
1895 | C**** *SUGWD* INITIALIZE COMMON YOEGWD CONTROLLING GRAVITY WAVE DRAG |
---|
1896 | C |
---|
1897 | C PURPOSE. |
---|
1898 | C -------- |
---|
1899 | C INITIALIZE YOEGWD, THE COMMON THAT CONTROLS THE |
---|
1900 | C GRAVITY WAVE DRAG PARAMETRIZATION. |
---|
1901 | C VERY IMPORTANT: |
---|
1902 | C ______________ |
---|
1903 | C THIS ROUTINE SET_UP THE "TUNABLE PARAMETERS" OF THE |
---|
1904 | C VARIOUS SSO SCHEMES |
---|
1905 | C |
---|
1906 | C** INTERFACE. |
---|
1907 | C ---------- |
---|
1908 | C CALL *SUGWD* FROM *SUPHEC* |
---|
1909 | C ----- ------ |
---|
1910 | C |
---|
1911 | C EXPLICIT ARGUMENTS : |
---|
1912 | C -------------------- |
---|
1913 | C PAPRS,PPLAY : Pressure at semi and full model levels |
---|
1914 | C NLEV : number of model levels |
---|
1915 | c NLON : number of points treated in the physics |
---|
1916 | C |
---|
1917 | C IMPLICIT ARGUMENTS : |
---|
1918 | C -------------------- |
---|
1919 | C COMMON YOEGWD |
---|
1920 | C-GFRCRIT-R: Critical Non-dimensional mountain Height |
---|
1921 | C (HNC in (1), LOTT 1999) |
---|
1922 | C-GKWAKE--R: Bluff-body drag coefficient for low level wake |
---|
1923 | C (Cd in (2), LOTT 1999) |
---|
1924 | C-GRCRIT--R: Critical Richardson Number |
---|
1925 | C (Ric, End of first column p791 of LOTT 1999) |
---|
1926 | C-GKDRAG--R: Gravity wave drag coefficient |
---|
1927 | C (G in (3), LOTT 1999) |
---|
1928 | C-GKLIFT--R: Mountain Lift coefficient |
---|
1929 | C (Cl in (4), LOTT 1999) |
---|
1930 | C-GHMAX---R: Not used |
---|
1931 | C-GRAHILO-R: Set-up the trapped waves fraction |
---|
1932 | C (Beta , End of first column, LOTT 1999) |
---|
1933 | C |
---|
1934 | C-GSIGCR--R: Security value for blocked flow depth |
---|
1935 | C-NKTOPG--I: Security value for blocked flow level |
---|
1936 | C-nstra----I: An estimate to qualify the upper levels of |
---|
1937 | C the model where one wants to impose strees |
---|
1938 | C profiles |
---|
1939 | C-GSSECC--R: Security min value for low-level B-V frequency |
---|
1940 | C-GTSEC---R: Security min value for anisotropy and GW stress. |
---|
1941 | C-GVSEC---R: Security min value for ulow |
---|
1942 | C |
---|
1943 | C |
---|
1944 | C METHOD. |
---|
1945 | C ------- |
---|
1946 | C SEE DOCUMENTATION |
---|
1947 | C |
---|
1948 | C EXTERNALS. |
---|
1949 | C ---------- |
---|
1950 | C NONE |
---|
1951 | C |
---|
1952 | C REFERENCE. |
---|
1953 | C ---------- |
---|
1954 | C Lott, 1999: Alleviation of stationary biases in a GCM through... |
---|
1955 | C Monthly Weather Review, 127, pp 788-801. |
---|
1956 | C |
---|
1957 | C AUTHOR. |
---|
1958 | C ------- |
---|
1959 | C FRANCOIS LOTT *LMD* |
---|
1960 | C |
---|
1961 | C MODIFICATIONS. |
---|
1962 | C -------------- |
---|
1963 | C ORIGINAL : 90-01-01 (MARTIN MILLER, ECMWF) |
---|
1964 | C LAST: 99-07-09 (FRANCOIS LOTT,LMD) |
---|
1965 | C ------------------------------------------------------------------ |
---|
1966 | USE dimphy |
---|
1967 | USE mod_phys_lmdz_para |
---|
1968 | USE mod_grid_phy_lmdz |
---|
1969 | IMPLICIT NONE |
---|
1970 | C |
---|
1971 | C ----------------------------------------------------------------- |
---|
1972 | #include "YOEGWD.h" |
---|
1973 | C ---------------------------------------------------------------- |
---|
1974 | C |
---|
1975 | C ARGUMENTS |
---|
1976 | integer nlon,nlev |
---|
1977 | REAL paprs(nlon,nlev+1) |
---|
1978 | REAL pplay(nlon,nlev) |
---|
1979 | C |
---|
1980 | INTEGER JK |
---|
1981 | REAL ZPR,ZTOP,ZSIGT,ZPM1R |
---|
1982 | REAL :: pplay_glo(klon_glo,nlev) |
---|
1983 | REAL :: paprs_glo(klon_glo,nlev+1) |
---|
1984 | |
---|
1985 | C |
---|
1986 | C* 1. SET THE VALUES OF THE PARAMETERS |
---|
1987 | C -------------------------------- |
---|
1988 | C |
---|
1989 | 100 CONTINUE |
---|
1990 | C |
---|
1991 | PRINT *,' DANS SUGWD NLEV=',NLEV |
---|
1992 | GHMAX=10000. |
---|
1993 | C |
---|
1994 | ZPR=100000. |
---|
1995 | ZTOP=0.001 |
---|
1996 | ZSIGT=0.94 |
---|
1997 | cold ZPR=80000. |
---|
1998 | cold ZSIGT=0.85 |
---|
1999 | C |
---|
2000 | CALL gather(pplay,pplay_glo) |
---|
2001 | CALL bcast(pplay_glo) |
---|
2002 | CALL gather(paprs,paprs_glo) |
---|
2003 | CALL bcast(paprs_glo) |
---|
2004 | |
---|
2005 | DO 110 JK=1,NLEV |
---|
2006 | ZPM1R=pplay_glo(klon_glo/2,jk)/paprs_glo(klon_glo/2,1) |
---|
2007 | IF(ZPM1R.GE.ZSIGT)THEN |
---|
2008 | nktopg=JK |
---|
2009 | ENDIF |
---|
2010 | ZPM1R=pplay_glo(klon_glo/2,jk)/paprs_glo(klon_glo/2,1) |
---|
2011 | IF(ZPM1R.GE.ZTOP)THEN |
---|
2012 | nstra=JK |
---|
2013 | ENDIF |
---|
2014 | 110 CONTINUE |
---|
2015 | c |
---|
2016 | c inversion car dans orodrag on compte les niveaux a l'envers |
---|
2017 | nktopg=nlev-nktopg+1 |
---|
2018 | nstra=nlev-nstra |
---|
2019 | print *,' DANS SUGWD nktopg=', nktopg |
---|
2020 | print *,' DANS SUGWD nstra=', nstra |
---|
2021 | C |
---|
2022 | GSIGCR=0.80 |
---|
2023 | C |
---|
2024 | GKDRAG=0.1875 |
---|
2025 | GRAHILO=0.1 |
---|
2026 | GRCRIT=1.00 |
---|
2027 | GFRCRIT=1.00 |
---|
2028 | GKWAKE=0.50 |
---|
2029 | C |
---|
2030 | GKLIFT=0.25 |
---|
2031 | GVCRIT =0.1 |
---|
2032 | |
---|
2033 | WRITE(UNIT=6,FMT='('' *** SSO essential constants ***'')') |
---|
2034 | WRITE(UNIT=6,FMT='('' *** SPECIFIED IN SUGWD ***'')') |
---|
2035 | WRITE(UNIT=6,FMT='('' Gravity wave ct '',E13.7,'' '')')GKDRAG |
---|
2036 | WRITE(UNIT=6,FMT='('' Trapped/total wave dag '',E13.7,'' '')') |
---|
2037 | S GRAHILO |
---|
2038 | WRITE(UNIT=6,FMT='('' Critical Richardson = '',E13.7,'' '')') |
---|
2039 | S GRCRIT |
---|
2040 | WRITE(UNIT=6,FMT='('' Critical Froude'',e13.7)') GFRCRIT |
---|
2041 | WRITE(UNIT=6,FMT='('' Low level Wake bluff cte'',e13.7)') GKWAKE |
---|
2042 | WRITE(UNIT=6,FMT='('' Low level lift cte'',e13.7)') GKLIFT |
---|
2043 | |
---|
2044 | C |
---|
2045 | C |
---|
2046 | C ---------------------------------------------------------------- |
---|
2047 | C |
---|
2048 | C* 2. SET VALUES OF SECURITY PARAMETERS |
---|
2049 | C --------------------------------- |
---|
2050 | C |
---|
2051 | 200 CONTINUE |
---|
2052 | C |
---|
2053 | GVSEC=0.10 |
---|
2054 | GSSEC=0.0001 |
---|
2055 | C |
---|
2056 | GTSEC=0.00001 |
---|
2057 | C |
---|
2058 | RETURN |
---|
2059 | END |
---|
2060 | |
---|