[524] | 1 | ! |
---|
[1299] | 2 | ! $Id: cv_routines.F 1299 2010-01-20 14:27:21Z musat $ |
---|
[524] | 3 | ! |
---|
| 4 | SUBROUTINE cv_param(nd) |
---|
| 5 | implicit none |
---|
| 6 | |
---|
| 7 | c------------------------------------------------------------ |
---|
| 8 | c Set parameters for convectL |
---|
| 9 | c (includes microphysical parameters and parameters that |
---|
| 10 | c control the rate of approach to quasi-equilibrium) |
---|
| 11 | c------------------------------------------------------------ |
---|
| 12 | |
---|
| 13 | C *** ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) *** |
---|
| 14 | C *** TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- *** |
---|
| 15 | C *** CONVERSION THRESHOLD IS ASSUMED TO BE ZERO *** |
---|
| 16 | C *** (THE AUTOCONVERSION THRESHOLD VARIES LINEARLY *** |
---|
| 17 | C *** BETWEEN 0 C AND TLCRIT) *** |
---|
| 18 | C *** ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT *** |
---|
| 19 | C *** FORMULATION *** |
---|
| 20 | C *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
---|
| 21 | C *** SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
---|
| 22 | C *** OF CLOUD *** |
---|
| 23 | C *** OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN *** |
---|
| 24 | C *** OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW *** |
---|
| 25 | C *** COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
| 26 | C *** OF RAIN *** |
---|
| 27 | C *** COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
| 28 | C *** OF SNOW *** |
---|
| 29 | C *** CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM *** |
---|
| 30 | C *** TRANSPORT *** |
---|
| 31 | C *** DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION *** |
---|
| 32 | C *** A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC *** |
---|
| 33 | C *** ALPHA AND DAMP ARE PARAMETERS THAT CONTROL THE RATE OF *** |
---|
| 34 | C *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
| 35 | C *** (THEIR STANDARD VALUES ARE 0.20 AND 0.1, RESPECTIVELY) *** |
---|
| 36 | C *** (DAMP MUST BE LESS THAN 1) *** |
---|
| 37 | |
---|
| 38 | #include "cvparam.h" |
---|
| 39 | integer nd |
---|
[1299] | 40 | CHARACTER (LEN=20) :: modname='cv_routines' |
---|
| 41 | CHARACTER (LEN=80) :: abort_message |
---|
[524] | 42 | |
---|
| 43 | c noff: integer limit for convection (nd-noff) |
---|
| 44 | c minorig: First level of convection |
---|
| 45 | |
---|
| 46 | noff = 2 |
---|
| 47 | minorig = 2 |
---|
| 48 | |
---|
| 49 | nl=nd-noff |
---|
| 50 | nlp=nl+1 |
---|
| 51 | nlm=nl-1 |
---|
| 52 | |
---|
| 53 | elcrit=0.0011 |
---|
| 54 | tlcrit=-55.0 |
---|
| 55 | entp=1.5 |
---|
| 56 | sigs=0.12 |
---|
| 57 | sigd=0.05 |
---|
| 58 | omtrain=50.0 |
---|
| 59 | omtsnow=5.5 |
---|
| 60 | coeffr=1.0 |
---|
| 61 | coeffs=0.8 |
---|
| 62 | dtmax=0.9 |
---|
| 63 | c |
---|
| 64 | cu=0.70 |
---|
| 65 | c |
---|
| 66 | betad=10.0 |
---|
| 67 | c |
---|
| 68 | damp=0.1 |
---|
| 69 | alpha=0.2 |
---|
| 70 | c |
---|
| 71 | delta=0.01 ! cld |
---|
| 72 | c |
---|
| 73 | return |
---|
| 74 | end |
---|
| 75 | |
---|
| 76 | SUBROUTINE cv_prelim(len,nd,ndp1,t,q,p,ph |
---|
| 77 | : ,lv,cpn,tv,gz,h,hm) |
---|
| 78 | implicit none |
---|
| 79 | |
---|
| 80 | !===================================================================== |
---|
| 81 | ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
---|
| 82 | !===================================================================== |
---|
| 83 | |
---|
| 84 | c inputs: |
---|
| 85 | integer len, nd, ndp1 |
---|
| 86 | real t(len,nd), q(len,nd), p(len,nd), ph(len,ndp1) |
---|
| 87 | |
---|
| 88 | c outputs: |
---|
| 89 | real lv(len,nd), cpn(len,nd), tv(len,nd) |
---|
| 90 | real gz(len,nd), h(len,nd), hm(len,nd) |
---|
| 91 | |
---|
| 92 | c local variables: |
---|
| 93 | integer k, i |
---|
| 94 | real cpx(len,nd) |
---|
| 95 | |
---|
| 96 | #include "cvthermo.h" |
---|
| 97 | #include "cvparam.h" |
---|
| 98 | |
---|
| 99 | |
---|
| 100 | do 110 k=1,nlp |
---|
| 101 | do 100 i=1,len |
---|
| 102 | lv(i,k)= lv0-clmcpv*(t(i,k)-t0) |
---|
| 103 | cpn(i,k)=cpd*(1.0-q(i,k))+cpv*q(i,k) |
---|
| 104 | cpx(i,k)=cpd*(1.0-q(i,k))+cl*q(i,k) |
---|
| 105 | tv(i,k)=t(i,k)*(1.0+q(i,k)*epsim1) |
---|
| 106 | 100 continue |
---|
| 107 | 110 continue |
---|
| 108 | c |
---|
| 109 | c gz = phi at the full levels (same as p). |
---|
| 110 | c |
---|
| 111 | do 120 i=1,len |
---|
| 112 | gz(i,1)=0.0 |
---|
| 113 | 120 continue |
---|
| 114 | do 140 k=2,nlp |
---|
| 115 | do 130 i=1,len |
---|
| 116 | gz(i,k)=gz(i,k-1)+hrd*(tv(i,k-1)+tv(i,k)) |
---|
| 117 | & *(p(i,k-1)-p(i,k))/ph(i,k) |
---|
| 118 | 130 continue |
---|
| 119 | 140 continue |
---|
| 120 | c |
---|
| 121 | c h = phi + cpT (dry static energy). |
---|
| 122 | c hm = phi + cp(T-Tbase)+Lq |
---|
| 123 | c |
---|
| 124 | do 170 k=1,nlp |
---|
| 125 | do 160 i=1,len |
---|
| 126 | h(i,k)=gz(i,k)+cpn(i,k)*t(i,k) |
---|
| 127 | hm(i,k)=gz(i,k)+cpx(i,k)*(t(i,k)-t(i,1))+lv(i,k)*q(i,k) |
---|
| 128 | 160 continue |
---|
| 129 | 170 continue |
---|
| 130 | |
---|
| 131 | return |
---|
| 132 | end |
---|
| 133 | |
---|
| 134 | SUBROUTINE cv_feed(len,nd,t,q,qs,p,hm,gz |
---|
| 135 | : ,nk,icb,icbmax,iflag,tnk,qnk,gznk,plcl) |
---|
| 136 | implicit none |
---|
| 137 | |
---|
| 138 | C================================================================ |
---|
| 139 | C Purpose: CONVECTIVE FEED |
---|
| 140 | C================================================================ |
---|
| 141 | |
---|
| 142 | #include "cvparam.h" |
---|
| 143 | |
---|
| 144 | c inputs: |
---|
| 145 | integer len, nd |
---|
| 146 | real t(len,nd), q(len,nd), qs(len,nd), p(len,nd) |
---|
| 147 | real hm(len,nd), gz(len,nd) |
---|
| 148 | |
---|
| 149 | c outputs: |
---|
| 150 | integer iflag(len), nk(len), icb(len), icbmax |
---|
| 151 | real tnk(len), qnk(len), gznk(len), plcl(len) |
---|
| 152 | |
---|
| 153 | c local variables: |
---|
| 154 | integer i, k |
---|
| 155 | integer ihmin(len) |
---|
| 156 | real work(len) |
---|
| 157 | real pnk(len), qsnk(len), rh(len), chi(len) |
---|
| 158 | |
---|
| 159 | !------------------------------------------------------------------- |
---|
| 160 | ! --- Find level of minimum moist static energy |
---|
| 161 | ! --- If level of minimum moist static energy coincides with |
---|
| 162 | ! --- or is lower than minimum allowable parcel origin level, |
---|
| 163 | ! --- set iflag to 6. |
---|
| 164 | !------------------------------------------------------------------- |
---|
| 165 | |
---|
| 166 | do 180 i=1,len |
---|
| 167 | work(i)=1.0e12 |
---|
| 168 | ihmin(i)=nl |
---|
| 169 | 180 continue |
---|
| 170 | do 200 k=2,nlp |
---|
| 171 | do 190 i=1,len |
---|
| 172 | if((hm(i,k).lt.work(i)).and. |
---|
| 173 | & (hm(i,k).lt.hm(i,k-1)))then |
---|
| 174 | work(i)=hm(i,k) |
---|
| 175 | ihmin(i)=k |
---|
| 176 | endif |
---|
| 177 | 190 continue |
---|
| 178 | 200 continue |
---|
| 179 | do 210 i=1,len |
---|
| 180 | ihmin(i)=min(ihmin(i),nlm) |
---|
| 181 | if(ihmin(i).le.minorig)then |
---|
| 182 | iflag(i)=6 |
---|
| 183 | endif |
---|
| 184 | 210 continue |
---|
| 185 | c |
---|
| 186 | !------------------------------------------------------------------- |
---|
| 187 | ! --- Find that model level below the level of minimum moist static |
---|
| 188 | ! --- energy that has the maximum value of moist static energy |
---|
| 189 | !------------------------------------------------------------------- |
---|
| 190 | |
---|
| 191 | do 220 i=1,len |
---|
| 192 | work(i)=hm(i,minorig) |
---|
| 193 | nk(i)=minorig |
---|
| 194 | 220 continue |
---|
| 195 | do 240 k=minorig+1,nl |
---|
| 196 | do 230 i=1,len |
---|
| 197 | if((hm(i,k).gt.work(i)).and.(k.le.ihmin(i)))then |
---|
| 198 | work(i)=hm(i,k) |
---|
| 199 | nk(i)=k |
---|
| 200 | endif |
---|
| 201 | 230 continue |
---|
| 202 | 240 continue |
---|
| 203 | !------------------------------------------------------------------- |
---|
| 204 | ! --- Check whether parcel level temperature and specific humidity |
---|
| 205 | ! --- are reasonable |
---|
| 206 | !------------------------------------------------------------------- |
---|
| 207 | do 250 i=1,len |
---|
| 208 | if(((t(i,nk(i)).lt.250.0).or. |
---|
| 209 | & (q(i,nk(i)).le.0.0).or. |
---|
| 210 | & (p(i,ihmin(i)).lt.400.0)).and. |
---|
| 211 | & (iflag(i).eq.0))iflag(i)=7 |
---|
| 212 | 250 continue |
---|
| 213 | !------------------------------------------------------------------- |
---|
| 214 | ! --- Calculate lifted condensation level of air at parcel origin level |
---|
| 215 | ! --- (Within 0.2% of formula of Bolton, MON. WEA. REV.,1980) |
---|
| 216 | !------------------------------------------------------------------- |
---|
| 217 | do 260 i=1,len |
---|
| 218 | tnk(i)=t(i,nk(i)) |
---|
| 219 | qnk(i)=q(i,nk(i)) |
---|
| 220 | gznk(i)=gz(i,nk(i)) |
---|
| 221 | pnk(i)=p(i,nk(i)) |
---|
| 222 | qsnk(i)=qs(i,nk(i)) |
---|
| 223 | c |
---|
| 224 | rh(i)=qnk(i)/qsnk(i) |
---|
| 225 | rh(i)=min(1.0,rh(i)) |
---|
| 226 | chi(i)=tnk(i)/(1669.0-122.0*rh(i)-tnk(i)) |
---|
| 227 | plcl(i)=pnk(i)*(rh(i)**chi(i)) |
---|
| 228 | if(((plcl(i).lt.200.0).or.(plcl(i).ge.2000.0)) |
---|
| 229 | & .and.(iflag(i).eq.0))iflag(i)=8 |
---|
| 230 | 260 continue |
---|
| 231 | !------------------------------------------------------------------- |
---|
| 232 | ! --- Calculate first level above lcl (=icb) |
---|
| 233 | !------------------------------------------------------------------- |
---|
| 234 | do 270 i=1,len |
---|
| 235 | icb(i)=nlm |
---|
| 236 | 270 continue |
---|
| 237 | c |
---|
| 238 | do 290 k=minorig,nl |
---|
| 239 | do 280 i=1,len |
---|
| 240 | if((k.ge.(nk(i)+1)).and.(p(i,k).lt.plcl(i))) |
---|
| 241 | & icb(i)=min(icb(i),k) |
---|
| 242 | 280 continue |
---|
| 243 | 290 continue |
---|
| 244 | c |
---|
| 245 | do 300 i=1,len |
---|
| 246 | if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
---|
| 247 | 300 continue |
---|
| 248 | c |
---|
| 249 | c Compute icbmax. |
---|
| 250 | c |
---|
| 251 | icbmax=2 |
---|
| 252 | do 310 i=1,len |
---|
| 253 | icbmax=max(icbmax,icb(i)) |
---|
| 254 | 310 continue |
---|
| 255 | |
---|
| 256 | return |
---|
| 257 | end |
---|
| 258 | |
---|
| 259 | SUBROUTINE cv_undilute1(len,nd,t,q,qs,gz,p,nk,icb,icbmax |
---|
| 260 | : ,tp,tvp,clw) |
---|
| 261 | implicit none |
---|
| 262 | |
---|
| 263 | #include "cvthermo.h" |
---|
| 264 | #include "cvparam.h" |
---|
| 265 | |
---|
| 266 | c inputs: |
---|
| 267 | integer len, nd |
---|
| 268 | integer nk(len), icb(len), icbmax |
---|
| 269 | real t(len,nd), q(len,nd), qs(len,nd), gz(len,nd) |
---|
| 270 | real p(len,nd) |
---|
| 271 | |
---|
| 272 | c outputs: |
---|
| 273 | real tp(len,nd), tvp(len,nd), clw(len,nd) |
---|
| 274 | |
---|
| 275 | c local variables: |
---|
| 276 | integer i, k |
---|
| 277 | real tg, qg, alv, s, ahg, tc, denom, es, rg |
---|
| 278 | real ah0(len), cpp(len) |
---|
| 279 | real tnk(len), qnk(len), gznk(len), ticb(len), gzicb(len) |
---|
| 280 | |
---|
| 281 | !------------------------------------------------------------------- |
---|
| 282 | ! --- Calculates the lifted parcel virtual temperature at nk, |
---|
| 283 | ! --- the actual temperature, and the adiabatic |
---|
| 284 | ! --- liquid water content. The procedure is to solve the equation. |
---|
| 285 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
| 286 | !------------------------------------------------------------------- |
---|
| 287 | |
---|
| 288 | do 320 i=1,len |
---|
| 289 | tnk(i)=t(i,nk(i)) |
---|
| 290 | qnk(i)=q(i,nk(i)) |
---|
| 291 | gznk(i)=gz(i,nk(i)) |
---|
| 292 | ticb(i)=t(i,icb(i)) |
---|
| 293 | gzicb(i)=gz(i,icb(i)) |
---|
| 294 | 320 continue |
---|
| 295 | c |
---|
| 296 | c *** Calculate certain parcel quantities, including static energy *** |
---|
| 297 | c |
---|
| 298 | do 330 i=1,len |
---|
| 299 | ah0(i)=(cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) |
---|
| 300 | & +qnk(i)*(lv0-clmcpv*(tnk(i)-273.15))+gznk(i) |
---|
| 301 | cpp(i)=cpd*(1.-qnk(i))+qnk(i)*cpv |
---|
| 302 | 330 continue |
---|
| 303 | c |
---|
| 304 | c *** Calculate lifted parcel quantities below cloud base *** |
---|
| 305 | c |
---|
| 306 | do 350 k=minorig,icbmax-1 |
---|
| 307 | do 340 i=1,len |
---|
| 308 | tp(i,k)=tnk(i)-(gz(i,k)-gznk(i))/cpp(i) |
---|
| 309 | tvp(i,k)=tp(i,k)*(1.+qnk(i)*epsi) |
---|
| 310 | 340 continue |
---|
| 311 | 350 continue |
---|
| 312 | c |
---|
| 313 | c *** Find lifted parcel quantities above cloud base *** |
---|
| 314 | c |
---|
| 315 | do 360 i=1,len |
---|
| 316 | tg=ticb(i) |
---|
| 317 | qg=qs(i,icb(i)) |
---|
| 318 | alv=lv0-clmcpv*(ticb(i)-t0) |
---|
| 319 | c |
---|
| 320 | c First iteration. |
---|
| 321 | c |
---|
| 322 | s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 323 | s=1./s |
---|
| 324 | ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
| 325 | tg=tg+s*(ah0(i)-ahg) |
---|
| 326 | tg=max(tg,35.0) |
---|
| 327 | tc=tg-t0 |
---|
| 328 | denom=243.5+tc |
---|
| 329 | if(tc.ge.0.0)then |
---|
| 330 | es=6.112*exp(17.67*tc/denom) |
---|
| 331 | else |
---|
| 332 | es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 333 | endif |
---|
| 334 | qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 335 | c |
---|
| 336 | c Second iteration. |
---|
| 337 | c |
---|
| 338 | s=cpd+alv*alv*qg/(rrv*ticb(i)*ticb(i)) |
---|
| 339 | s=1./s |
---|
| 340 | ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
| 341 | tg=tg+s*(ah0(i)-ahg) |
---|
| 342 | tg=max(tg,35.0) |
---|
| 343 | tc=tg-t0 |
---|
| 344 | denom=243.5+tc |
---|
| 345 | if(tc.ge.0.0)then |
---|
| 346 | es=6.112*exp(17.67*tc/denom) |
---|
| 347 | else |
---|
| 348 | es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 349 | end if |
---|
| 350 | qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
| 351 | c |
---|
| 352 | alv=lv0-clmcpv*(ticb(i)-273.15) |
---|
| 353 | tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
---|
| 354 | & -gz(i,icb(i))-alv*qg)/cpd |
---|
| 355 | clw(i,icb(i))=qnk(i)-qg |
---|
| 356 | clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
---|
| 357 | rg=qg/(1.-qnk(i)) |
---|
| 358 | tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
---|
| 359 | 360 continue |
---|
| 360 | c |
---|
| 361 | do 380 k=minorig,icbmax |
---|
| 362 | do 370 i=1,len |
---|
| 363 | tvp(i,k)=tvp(i,k)-tp(i,k)*qnk(i) |
---|
| 364 | 370 continue |
---|
| 365 | 380 continue |
---|
| 366 | c |
---|
| 367 | return |
---|
| 368 | end |
---|
| 369 | |
---|
| 370 | SUBROUTINE cv_trigger(len,nd,icb,cbmf,tv,tvp,iflag) |
---|
| 371 | implicit none |
---|
| 372 | |
---|
| 373 | !------------------------------------------------------------------- |
---|
| 374 | ! --- Test for instability. |
---|
| 375 | ! --- If there was no convection at last time step and parcel |
---|
| 376 | ! --- is stable at icb, then set iflag to 4. |
---|
| 377 | !------------------------------------------------------------------- |
---|
| 378 | |
---|
| 379 | #include "cvparam.h" |
---|
| 380 | |
---|
| 381 | c inputs: |
---|
| 382 | integer len, nd, icb(len) |
---|
| 383 | real cbmf(len), tv(len,nd), tvp(len,nd) |
---|
| 384 | |
---|
| 385 | c outputs: |
---|
| 386 | integer iflag(len) ! also an input |
---|
| 387 | |
---|
| 388 | c local variables: |
---|
| 389 | integer i |
---|
| 390 | |
---|
| 391 | |
---|
| 392 | do 390 i=1,len |
---|
| 393 | if((cbmf(i).eq.0.0) .and.(iflag(i).eq.0).and. |
---|
| 394 | & (tvp(i,icb(i)).le.(tv(i,icb(i))-dtmax)))iflag(i)=4 |
---|
| 395 | 390 continue |
---|
| 396 | |
---|
| 397 | return |
---|
| 398 | end |
---|
| 399 | |
---|
| 400 | SUBROUTINE cv_compress( len,nloc,ncum,nd |
---|
| 401 | : ,iflag1,nk1,icb1 |
---|
| 402 | : ,cbmf1,plcl1,tnk1,qnk1,gznk1 |
---|
| 403 | : ,t1,q1,qs1,u1,v1,gz1 |
---|
| 404 | : ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1 |
---|
| 405 | o ,iflag,nk,icb |
---|
| 406 | o ,cbmf,plcl,tnk,qnk,gznk |
---|
| 407 | o ,t,q,qs,u,v,gz,h,lv,cpn,p,ph,tv,tp,tvp,clw |
---|
| 408 | o ,dph ) |
---|
| 409 | implicit none |
---|
| 410 | |
---|
| 411 | #include "cvparam.h" |
---|
| 412 | |
---|
| 413 | c inputs: |
---|
| 414 | integer len,ncum,nd,nloc |
---|
| 415 | integer iflag1(len),nk1(len),icb1(len) |
---|
| 416 | real cbmf1(len),plcl1(len),tnk1(len),qnk1(len),gznk1(len) |
---|
| 417 | real t1(len,nd),q1(len,nd),qs1(len,nd),u1(len,nd),v1(len,nd) |
---|
| 418 | real gz1(len,nd),h1(len,nd),lv1(len,nd),cpn1(len,nd) |
---|
| 419 | real p1(len,nd),ph1(len,nd+1),tv1(len,nd),tp1(len,nd) |
---|
| 420 | real tvp1(len,nd),clw1(len,nd) |
---|
| 421 | |
---|
| 422 | c outputs: |
---|
| 423 | integer iflag(nloc),nk(nloc),icb(nloc) |
---|
| 424 | real cbmf(nloc),plcl(nloc),tnk(nloc),qnk(nloc),gznk(nloc) |
---|
| 425 | real t(nloc,nd),q(nloc,nd),qs(nloc,nd),u(nloc,nd),v(nloc,nd) |
---|
| 426 | real gz(nloc,nd),h(nloc,nd),lv(nloc,nd),cpn(nloc,nd) |
---|
| 427 | real p(nloc,nd),ph(nloc,nd+1),tv(nloc,nd),tp(nloc,nd) |
---|
| 428 | real tvp(nloc,nd),clw(nloc,nd) |
---|
| 429 | real dph(nloc,nd) |
---|
| 430 | |
---|
| 431 | c local variables: |
---|
| 432 | integer i,k,nn |
---|
[1299] | 433 | CHARACTER (LEN=20) :: modname='cv_compress' |
---|
| 434 | CHARACTER (LEN=80) :: abort_message |
---|
[524] | 435 | |
---|
[1299] | 436 | include 'iniprint.h' |
---|
[524] | 437 | |
---|
[1299] | 438 | |
---|
[524] | 439 | do 110 k=1,nl+1 |
---|
| 440 | nn=0 |
---|
| 441 | do 100 i=1,len |
---|
| 442 | if(iflag1(i).eq.0)then |
---|
| 443 | nn=nn+1 |
---|
| 444 | t(nn,k)=t1(i,k) |
---|
| 445 | q(nn,k)=q1(i,k) |
---|
| 446 | qs(nn,k)=qs1(i,k) |
---|
| 447 | u(nn,k)=u1(i,k) |
---|
| 448 | v(nn,k)=v1(i,k) |
---|
| 449 | gz(nn,k)=gz1(i,k) |
---|
| 450 | h(nn,k)=h1(i,k) |
---|
| 451 | lv(nn,k)=lv1(i,k) |
---|
| 452 | cpn(nn,k)=cpn1(i,k) |
---|
| 453 | p(nn,k)=p1(i,k) |
---|
| 454 | ph(nn,k)=ph1(i,k) |
---|
| 455 | tv(nn,k)=tv1(i,k) |
---|
| 456 | tp(nn,k)=tp1(i,k) |
---|
| 457 | tvp(nn,k)=tvp1(i,k) |
---|
| 458 | clw(nn,k)=clw1(i,k) |
---|
| 459 | endif |
---|
| 460 | 100 continue |
---|
| 461 | 110 continue |
---|
| 462 | |
---|
| 463 | if (nn.ne.ncum) then |
---|
[1299] | 464 | write(lunout,*)'strange! nn not equal to ncum: ',nn,ncum |
---|
| 465 | abort_message = '' |
---|
| 466 | CALL abort_gcm (modname,abort_message,1) |
---|
[524] | 467 | endif |
---|
| 468 | |
---|
| 469 | nn=0 |
---|
| 470 | do 150 i=1,len |
---|
| 471 | if(iflag1(i).eq.0)then |
---|
| 472 | nn=nn+1 |
---|
| 473 | cbmf(nn)=cbmf1(i) |
---|
| 474 | plcl(nn)=plcl1(i) |
---|
| 475 | tnk(nn)=tnk1(i) |
---|
| 476 | qnk(nn)=qnk1(i) |
---|
| 477 | gznk(nn)=gznk1(i) |
---|
| 478 | nk(nn)=nk1(i) |
---|
| 479 | icb(nn)=icb1(i) |
---|
| 480 | iflag(nn)=iflag1(i) |
---|
| 481 | endif |
---|
| 482 | 150 continue |
---|
| 483 | |
---|
| 484 | do 170 k=1,nl |
---|
| 485 | do 160 i=1,ncum |
---|
| 486 | dph(i,k)=ph(i,k)-ph(i,k+1) |
---|
| 487 | 160 continue |
---|
| 488 | 170 continue |
---|
| 489 | |
---|
| 490 | return |
---|
| 491 | end |
---|
| 492 | |
---|
| 493 | SUBROUTINE cv_undilute2(nloc,ncum,nd,icb,nk |
---|
| 494 | : ,tnk,qnk,gznk,t,q,qs,gz |
---|
| 495 | : ,p,dph,h,tv,lv |
---|
| 496 | o ,inb,inb1,tp,tvp,clw,hp,ep,sigp,frac) |
---|
| 497 | implicit none |
---|
| 498 | |
---|
| 499 | C--------------------------------------------------------------------- |
---|
| 500 | C Purpose: |
---|
| 501 | C FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
| 502 | C & |
---|
| 503 | C COMPUTE THE PRECIPITATION EFFICIENCIES AND THE |
---|
| 504 | C FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
| 505 | C & |
---|
| 506 | C FIND THE LEVEL OF NEUTRAL BUOYANCY |
---|
| 507 | C--------------------------------------------------------------------- |
---|
| 508 | |
---|
| 509 | #include "cvthermo.h" |
---|
| 510 | #include "cvparam.h" |
---|
| 511 | |
---|
| 512 | c inputs: |
---|
| 513 | integer ncum, nd, nloc |
---|
| 514 | integer icb(nloc), nk(nloc) |
---|
| 515 | real t(nloc,nd), q(nloc,nd), qs(nloc,nd), gz(nloc,nd) |
---|
| 516 | real p(nloc,nd), dph(nloc,nd) |
---|
| 517 | real tnk(nloc), qnk(nloc), gznk(nloc) |
---|
| 518 | real lv(nloc,nd), tv(nloc,nd), h(nloc,nd) |
---|
| 519 | |
---|
| 520 | c outputs: |
---|
| 521 | integer inb(nloc), inb1(nloc) |
---|
| 522 | real tp(nloc,nd), tvp(nloc,nd), clw(nloc,nd) |
---|
| 523 | real ep(nloc,nd), sigp(nloc,nd), hp(nloc,nd) |
---|
| 524 | real frac(nloc) |
---|
| 525 | |
---|
| 526 | c local variables: |
---|
| 527 | integer i, k |
---|
| 528 | real tg,qg,ahg,alv,s,tc,es,denom,rg,tca,elacrit |
---|
| 529 | real by, defrac |
---|
| 530 | real ah0(nloc), cape(nloc), capem(nloc), byp(nloc) |
---|
| 531 | logical lcape(nloc) |
---|
| 532 | |
---|
| 533 | !===================================================================== |
---|
| 534 | ! --- SOME INITIALIZATIONS |
---|
| 535 | !===================================================================== |
---|
| 536 | |
---|
| 537 | do 170 k=1,nl |
---|
| 538 | do 160 i=1,ncum |
---|
| 539 | ep(i,k)=0.0 |
---|
| 540 | sigp(i,k)=sigs |
---|
| 541 | 160 continue |
---|
| 542 | 170 continue |
---|
| 543 | |
---|
| 544 | !===================================================================== |
---|
| 545 | ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
| 546 | !===================================================================== |
---|
| 547 | c |
---|
| 548 | c --- The procedure is to solve the equation. |
---|
| 549 | c cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
| 550 | c |
---|
| 551 | c *** Calculate certain parcel quantities, including static energy *** |
---|
| 552 | c |
---|
| 553 | c |
---|
| 554 | do 240 i=1,ncum |
---|
| 555 | ah0(i)=(cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) |
---|
| 556 | & +qnk(i)*(lv0-clmcpv*(tnk(i)-t0))+gznk(i) |
---|
| 557 | 240 continue |
---|
| 558 | c |
---|
| 559 | c |
---|
| 560 | c *** Find lifted parcel quantities above cloud base *** |
---|
| 561 | c |
---|
| 562 | c |
---|
| 563 | do 300 k=minorig+1,nl |
---|
| 564 | do 290 i=1,ncum |
---|
| 565 | if(k.ge.(icb(i)+1))then |
---|
| 566 | tg=t(i,k) |
---|
| 567 | qg=qs(i,k) |
---|
| 568 | alv=lv0-clmcpv*(t(i,k)-t0) |
---|
| 569 | c |
---|
| 570 | c First iteration. |
---|
| 571 | c |
---|
| 572 | s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
| 573 | s=1./s |
---|
| 574 | ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
| 575 | tg=tg+s*(ah0(i)-ahg) |
---|
| 576 | tg=max(tg,35.0) |
---|
| 577 | tc=tg-t0 |
---|
| 578 | denom=243.5+tc |
---|
| 579 | if(tc.ge.0.0)then |
---|
| 580 | es=6.112*exp(17.67*tc/denom) |
---|
| 581 | else |
---|
| 582 | es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 583 | endif |
---|
| 584 | qg=eps*es/(p(i,k)-es*(1.-eps)) |
---|
| 585 | c |
---|
| 586 | c Second iteration. |
---|
| 587 | c |
---|
| 588 | s=cpd+alv*alv*qg/(rrv*t(i,k)*t(i,k)) |
---|
| 589 | s=1./s |
---|
| 590 | ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
| 591 | tg=tg+s*(ah0(i)-ahg) |
---|
| 592 | tg=max(tg,35.0) |
---|
| 593 | tc=tg-t0 |
---|
| 594 | denom=243.5+tc |
---|
| 595 | if(tc.ge.0.0)then |
---|
| 596 | es=6.112*exp(17.67*tc/denom) |
---|
| 597 | else |
---|
| 598 | es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 599 | endif |
---|
| 600 | qg=eps*es/(p(i,k)-es*(1.-eps)) |
---|
| 601 | c |
---|
| 602 | alv=lv0-clmcpv*(t(i,k)-t0) |
---|
| 603 | c print*,'cpd dans convect2 ',cpd |
---|
| 604 | c print*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
---|
| 605 | c print*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
---|
| 606 | tp(i,k)=(ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg)/cpd |
---|
| 607 | c if (.not.cpd.gt.1000.) then |
---|
| 608 | c print*,'CPD=',cpd |
---|
| 609 | c stop |
---|
| 610 | c endif |
---|
| 611 | clw(i,k)=qnk(i)-qg |
---|
| 612 | clw(i,k)=max(0.0,clw(i,k)) |
---|
| 613 | rg=qg/(1.-qnk(i)) |
---|
| 614 | tvp(i,k)=tp(i,k)*(1.+rg*epsi) |
---|
| 615 | endif |
---|
| 616 | 290 continue |
---|
| 617 | 300 continue |
---|
| 618 | c |
---|
| 619 | !===================================================================== |
---|
| 620 | ! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
---|
| 621 | ! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
| 622 | ! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
---|
| 623 | !===================================================================== |
---|
| 624 | c |
---|
| 625 | do 320 k=minorig+1,nl |
---|
| 626 | do 310 i=1,ncum |
---|
| 627 | if(k.ge.(nk(i)+1))then |
---|
| 628 | tca=tp(i,k)-t0 |
---|
| 629 | if(tca.ge.0.0)then |
---|
| 630 | elacrit=elcrit |
---|
| 631 | else |
---|
| 632 | elacrit=elcrit*(1.0-tca/tlcrit) |
---|
| 633 | endif |
---|
| 634 | elacrit=max(elacrit,0.0) |
---|
| 635 | ep(i,k)=1.0-elacrit/max(clw(i,k),1.0e-8) |
---|
| 636 | ep(i,k)=max(ep(i,k),0.0 ) |
---|
| 637 | ep(i,k)=min(ep(i,k),1.0 ) |
---|
| 638 | sigp(i,k)=sigs |
---|
| 639 | endif |
---|
| 640 | 310 continue |
---|
| 641 | 320 continue |
---|
| 642 | c |
---|
| 643 | !===================================================================== |
---|
| 644 | ! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
---|
| 645 | ! --- VIRTUAL TEMPERATURE |
---|
| 646 | !===================================================================== |
---|
| 647 | c |
---|
| 648 | do 340 k=minorig+1,nl |
---|
| 649 | do 330 i=1,ncum |
---|
| 650 | if(k.ge.(icb(i)+1))then |
---|
| 651 | tvp(i,k)=tvp(i,k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) |
---|
| 652 | c print*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
---|
| 653 | c print*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
---|
| 654 | endif |
---|
| 655 | 330 continue |
---|
| 656 | 340 continue |
---|
| 657 | do 350 i=1,ncum |
---|
| 658 | tvp(i,nlp)=tvp(i,nl)-(gz(i,nlp)-gz(i,nl))/cpd |
---|
| 659 | 350 continue |
---|
| 660 | c |
---|
| 661 | c===================================================================== |
---|
| 662 | c --- FIND THE FIRST MODEL LEVEL (INB1) ABOVE THE PARCEL'S |
---|
| 663 | c --- HIGHEST LEVEL OF NEUTRAL BUOYANCY |
---|
| 664 | c --- AND THE HIGHEST LEVEL OF POSITIVE CAPE (INB) |
---|
| 665 | c===================================================================== |
---|
| 666 | c |
---|
| 667 | do 510 i=1,ncum |
---|
| 668 | cape(i)=0.0 |
---|
| 669 | capem(i)=0.0 |
---|
| 670 | inb(i)=icb(i)+1 |
---|
| 671 | inb1(i)=inb(i) |
---|
| 672 | 510 continue |
---|
| 673 | c |
---|
| 674 | c Originial Code |
---|
| 675 | c |
---|
| 676 | c do 530 k=minorig+1,nl-1 |
---|
| 677 | c do 520 i=1,ncum |
---|
| 678 | c if(k.ge.(icb(i)+1))then |
---|
| 679 | c by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 680 | c byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 681 | c cape(i)=cape(i)+by |
---|
| 682 | c if(by.ge.0.0)inb1(i)=k+1 |
---|
| 683 | c if(cape(i).gt.0.0)then |
---|
| 684 | c inb(i)=k+1 |
---|
| 685 | c capem(i)=cape(i) |
---|
| 686 | c endif |
---|
| 687 | c endif |
---|
| 688 | c520 continue |
---|
| 689 | c530 continue |
---|
| 690 | c do 540 i=1,ncum |
---|
| 691 | c byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
---|
| 692 | c cape(i)=capem(i)+byp |
---|
| 693 | c defrac=capem(i)-cape(i) |
---|
| 694 | c defrac=max(defrac,0.001) |
---|
| 695 | c frac(i)=-cape(i)/defrac |
---|
| 696 | c frac(i)=min(frac(i),1.0) |
---|
| 697 | c frac(i)=max(frac(i),0.0) |
---|
| 698 | c540 continue |
---|
| 699 | c |
---|
| 700 | c K Emanuel fix |
---|
| 701 | c |
---|
| 702 | c call zilch(byp,ncum) |
---|
| 703 | c do 530 k=minorig+1,nl-1 |
---|
| 704 | c do 520 i=1,ncum |
---|
| 705 | c if(k.ge.(icb(i)+1))then |
---|
| 706 | c by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 707 | c cape(i)=cape(i)+by |
---|
| 708 | c if(by.ge.0.0)inb1(i)=k+1 |
---|
| 709 | c if(cape(i).gt.0.0)then |
---|
| 710 | c inb(i)=k+1 |
---|
| 711 | c capem(i)=cape(i) |
---|
| 712 | c byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 713 | c endif |
---|
| 714 | c endif |
---|
| 715 | c520 continue |
---|
| 716 | c530 continue |
---|
| 717 | c do 540 i=1,ncum |
---|
| 718 | c inb(i)=max(inb(i),inb1(i)) |
---|
| 719 | c cape(i)=capem(i)+byp(i) |
---|
| 720 | c defrac=capem(i)-cape(i) |
---|
| 721 | c defrac=max(defrac,0.001) |
---|
| 722 | c frac(i)=-cape(i)/defrac |
---|
| 723 | c frac(i)=min(frac(i),1.0) |
---|
| 724 | c frac(i)=max(frac(i),0.0) |
---|
| 725 | c540 continue |
---|
| 726 | c |
---|
| 727 | c J Teixeira fix |
---|
| 728 | c |
---|
| 729 | call zilch(byp,ncum) |
---|
| 730 | do 515 i=1,ncum |
---|
| 731 | lcape(i)=.true. |
---|
| 732 | 515 continue |
---|
| 733 | do 530 k=minorig+1,nl-1 |
---|
| 734 | do 520 i=1,ncum |
---|
| 735 | if(cape(i).lt.0.0)lcape(i)=.false. |
---|
| 736 | if((k.ge.(icb(i)+1)).and.lcape(i))then |
---|
| 737 | by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 738 | byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 739 | cape(i)=cape(i)+by |
---|
| 740 | if(by.ge.0.0)inb1(i)=k+1 |
---|
| 741 | if(cape(i).gt.0.0)then |
---|
| 742 | inb(i)=k+1 |
---|
| 743 | capem(i)=cape(i) |
---|
| 744 | endif |
---|
| 745 | endif |
---|
| 746 | 520 continue |
---|
| 747 | 530 continue |
---|
| 748 | do 540 i=1,ncum |
---|
| 749 | cape(i)=capem(i)+byp(i) |
---|
| 750 | defrac=capem(i)-cape(i) |
---|
| 751 | defrac=max(defrac,0.001) |
---|
| 752 | frac(i)=-cape(i)/defrac |
---|
| 753 | frac(i)=min(frac(i),1.0) |
---|
| 754 | frac(i)=max(frac(i),0.0) |
---|
| 755 | 540 continue |
---|
| 756 | c |
---|
| 757 | c===================================================================== |
---|
| 758 | c --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
---|
| 759 | c===================================================================== |
---|
| 760 | c |
---|
| 761 | c initialization: |
---|
| 762 | do i=1,ncum*nlp |
---|
| 763 | hp(i,1)=h(i,1) |
---|
| 764 | enddo |
---|
| 765 | |
---|
| 766 | do 600 k=minorig+1,nl |
---|
| 767 | do 590 i=1,ncum |
---|
| 768 | if((k.ge.icb(i)).and.(k.le.inb(i)))then |
---|
| 769 | hp(i,k)=h(i,nk(i))+(lv(i,k)+(cpd-cpv)*t(i,k))*ep(i,k)*clw(i,k) |
---|
| 770 | endif |
---|
| 771 | 590 continue |
---|
| 772 | 600 continue |
---|
| 773 | c |
---|
| 774 | return |
---|
| 775 | end |
---|
| 776 | c |
---|
| 777 | SUBROUTINE cv_closure(nloc,ncum,nd,nk,icb |
---|
| 778 | : ,tv,tvp,p,ph,dph,plcl,cpn |
---|
| 779 | : ,iflag,cbmf) |
---|
| 780 | implicit none |
---|
| 781 | |
---|
| 782 | c inputs: |
---|
| 783 | integer ncum, nd, nloc |
---|
| 784 | integer nk(nloc), icb(nloc) |
---|
| 785 | real tv(nloc,nd), tvp(nloc,nd), p(nloc,nd), dph(nloc,nd) |
---|
| 786 | real ph(nloc,nd+1) ! caution nd instead ndp1 to be consistent... |
---|
| 787 | real plcl(nloc), cpn(nloc,nd) |
---|
| 788 | |
---|
| 789 | c outputs: |
---|
| 790 | integer iflag(nloc) |
---|
| 791 | real cbmf(nloc) ! also an input |
---|
| 792 | |
---|
| 793 | c local variables: |
---|
| 794 | integer i, k, icbmax |
---|
| 795 | real dtpbl(nloc), dtmin(nloc), tvpplcl(nloc), tvaplcl(nloc) |
---|
| 796 | real work(nloc) |
---|
| 797 | |
---|
| 798 | #include "cvthermo.h" |
---|
| 799 | #include "cvparam.h" |
---|
| 800 | |
---|
| 801 | c------------------------------------------------------------------- |
---|
| 802 | c Compute icbmax. |
---|
| 803 | c------------------------------------------------------------------- |
---|
| 804 | |
---|
| 805 | icbmax=2 |
---|
| 806 | do 230 i=1,ncum |
---|
| 807 | icbmax=max(icbmax,icb(i)) |
---|
| 808 | 230 continue |
---|
| 809 | |
---|
| 810 | c===================================================================== |
---|
| 811 | c --- CALCULATE CLOUD BASE MASS FLUX |
---|
| 812 | c===================================================================== |
---|
| 813 | c |
---|
| 814 | c tvpplcl = parcel temperature lifted adiabatically from level |
---|
| 815 | c icb-1 to the LCL. |
---|
| 816 | c tvaplcl = virtual temperature at the LCL. |
---|
| 817 | c |
---|
| 818 | do 610 i=1,ncum |
---|
| 819 | dtpbl(i)=0.0 |
---|
| 820 | tvpplcl(i)=tvp(i,icb(i)-1) |
---|
| 821 | & -rrd*tvp(i,icb(i)-1)*(p(i,icb(i)-1)-plcl(i)) |
---|
| 822 | & /(cpn(i,icb(i)-1)*p(i,icb(i)-1)) |
---|
| 823 | tvaplcl(i)=tv(i,icb(i)) |
---|
| 824 | & +(tvp(i,icb(i))-tvp(i,icb(i)+1))*(plcl(i)-p(i,icb(i))) |
---|
| 825 | & /(p(i,icb(i))-p(i,icb(i)+1)) |
---|
| 826 | 610 continue |
---|
| 827 | |
---|
| 828 | c------------------------------------------------------------------- |
---|
| 829 | c --- Interpolate difference between lifted parcel and |
---|
| 830 | c --- environmental temperatures to lifted condensation level |
---|
| 831 | c------------------------------------------------------------------- |
---|
| 832 | c |
---|
| 833 | c dtpbl = average of tvp-tv in the PBL (k=nk to icb-1). |
---|
| 834 | c |
---|
| 835 | do 630 k=minorig,icbmax |
---|
| 836 | do 620 i=1,ncum |
---|
| 837 | if((k.ge.nk(i)).and.(k.le.(icb(i)-1)))then |
---|
| 838 | dtpbl(i)=dtpbl(i)+(tvp(i,k)-tv(i,k))*dph(i,k) |
---|
| 839 | endif |
---|
| 840 | 620 continue |
---|
| 841 | 630 continue |
---|
| 842 | do 640 i=1,ncum |
---|
| 843 | dtpbl(i)=dtpbl(i)/(ph(i,nk(i))-ph(i,icb(i))) |
---|
| 844 | dtmin(i)=tvpplcl(i)-tvaplcl(i)+dtmax+dtpbl(i) |
---|
| 845 | 640 continue |
---|
| 846 | c |
---|
| 847 | c------------------------------------------------------------------- |
---|
| 848 | c --- Adjust cloud base mass flux |
---|
| 849 | c------------------------------------------------------------------- |
---|
| 850 | c |
---|
| 851 | do 650 i=1,ncum |
---|
| 852 | work(i)=cbmf(i) |
---|
| 853 | cbmf(i)=max(0.0,(1.0-damp)*cbmf(i)+0.1*alpha*dtmin(i)) |
---|
| 854 | if((work(i).eq.0.0).and.(cbmf(i).eq.0.0))then |
---|
| 855 | iflag(i)=3 |
---|
| 856 | endif |
---|
| 857 | 650 continue |
---|
| 858 | |
---|
| 859 | return |
---|
| 860 | end |
---|
| 861 | |
---|
| 862 | SUBROUTINE cv_mixing(nloc,ncum,nd,icb,nk,inb,inb1 |
---|
| 863 | : ,ph,t,q,qs,u,v,h,lv,qnk |
---|
| 864 | : ,hp,tv,tvp,ep,clw,cbmf |
---|
| 865 | : ,m,ment,qent,uent,vent,nent,sij,elij) |
---|
| 866 | implicit none |
---|
| 867 | |
---|
| 868 | #include "cvthermo.h" |
---|
| 869 | #include "cvparam.h" |
---|
| 870 | |
---|
| 871 | c inputs: |
---|
| 872 | integer ncum, nd, nloc |
---|
| 873 | integer icb(nloc), inb(nloc), inb1(nloc), nk(nloc) |
---|
| 874 | real cbmf(nloc), qnk(nloc) |
---|
| 875 | real ph(nloc,nd+1) |
---|
| 876 | real t(nloc,nd), q(nloc,nd), qs(nloc,nd), lv(nloc,nd) |
---|
| 877 | real u(nloc,nd), v(nloc,nd), h(nloc,nd), hp(nloc,nd) |
---|
| 878 | real tv(nloc,nd), tvp(nloc,nd), ep(nloc,nd), clw(nloc,nd) |
---|
| 879 | |
---|
| 880 | c outputs: |
---|
| 881 | integer nent(nloc,nd) |
---|
| 882 | real m(nloc,nd), ment(nloc,nd,nd), qent(nloc,nd,nd) |
---|
| 883 | real uent(nloc,nd,nd), vent(nloc,nd,nd) |
---|
| 884 | real sij(nloc,nd,nd), elij(nloc,nd,nd) |
---|
| 885 | |
---|
| 886 | c local variables: |
---|
| 887 | integer i, j, k, ij |
---|
| 888 | integer num1, num2 |
---|
| 889 | real dbo, qti, bf2, anum, denom, dei, altem, cwat, stemp |
---|
| 890 | real alt, qp1, smid, sjmin, sjmax, delp, delm |
---|
| 891 | real work(nloc), asij(nloc), smin(nloc), scrit(nloc) |
---|
| 892 | real bsum(nloc,nd) |
---|
| 893 | logical lwork(nloc) |
---|
| 894 | |
---|
| 895 | c===================================================================== |
---|
| 896 | c --- INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
---|
| 897 | c===================================================================== |
---|
| 898 | c |
---|
| 899 | do 360 i=1,ncum*nlp |
---|
| 900 | nent(i,1)=0 |
---|
| 901 | m(i,1)=0.0 |
---|
| 902 | 360 continue |
---|
| 903 | c |
---|
| 904 | do 400 k=1,nlp |
---|
| 905 | do 390 j=1,nlp |
---|
| 906 | do 385 i=1,ncum |
---|
| 907 | qent(i,k,j)=q(i,j) |
---|
| 908 | uent(i,k,j)=u(i,j) |
---|
| 909 | vent(i,k,j)=v(i,j) |
---|
| 910 | elij(i,k,j)=0.0 |
---|
| 911 | ment(i,k,j)=0.0 |
---|
| 912 | sij(i,k,j)=0.0 |
---|
| 913 | 385 continue |
---|
| 914 | 390 continue |
---|
| 915 | 400 continue |
---|
| 916 | c |
---|
| 917 | c------------------------------------------------------------------- |
---|
| 918 | c --- Calculate rates of mixing, m(i) |
---|
| 919 | c------------------------------------------------------------------- |
---|
| 920 | c |
---|
| 921 | call zilch(work,ncum) |
---|
| 922 | c |
---|
| 923 | do 670 j=minorig+1,nl |
---|
| 924 | do 660 i=1,ncum |
---|
| 925 | if((j.ge.(icb(i)+1)).and.(j.le.inb(i)))then |
---|
| 926 | k=min(j,inb1(i)) |
---|
| 927 | dbo=abs(tv(i,k+1)-tvp(i,k+1)-tv(i,k-1)+tvp(i,k-1)) |
---|
| 928 | & +entp*0.04*(ph(i,k)-ph(i,k+1)) |
---|
| 929 | work(i)=work(i)+dbo |
---|
| 930 | m(i,j)=cbmf(i)*dbo |
---|
| 931 | endif |
---|
| 932 | 660 continue |
---|
| 933 | 670 continue |
---|
| 934 | do 690 k=minorig+1,nl |
---|
| 935 | do 680 i=1,ncum |
---|
| 936 | if((k.ge.(icb(i)+1)).and.(k.le.inb(i)))then |
---|
| 937 | m(i,k)=m(i,k)/work(i) |
---|
| 938 | endif |
---|
| 939 | 680 continue |
---|
| 940 | 690 continue |
---|
| 941 | c |
---|
| 942 | c |
---|
| 943 | c===================================================================== |
---|
| 944 | c --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
---|
| 945 | c --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
---|
| 946 | c --- FRACTION (sij) |
---|
| 947 | c===================================================================== |
---|
| 948 | c |
---|
| 949 | c |
---|
| 950 | do 750 i=minorig+1,nl |
---|
| 951 | do 710 j=minorig+1,nl |
---|
| 952 | do 700 ij=1,ncum |
---|
| 953 | if((i.ge.(icb(ij)+1)).and.(j.ge.icb(ij)) |
---|
| 954 | & .and.(i.le.inb(ij)).and.(j.le.inb(ij)))then |
---|
| 955 | qti=qnk(ij)-ep(ij,i)*clw(ij,i) |
---|
| 956 | bf2=1.+lv(ij,j)*lv(ij,j)*qs(ij,j) |
---|
| 957 | & /(rrv*t(ij,j)*t(ij,j)*cpd) |
---|
| 958 | anum=h(ij,j)-hp(ij,i)+(cpv-cpd)*t(ij,j)*(qti-q(ij,j)) |
---|
| 959 | denom=h(ij,i)-hp(ij,i)+(cpd-cpv)*(q(ij,i)-qti)*t(ij,j) |
---|
| 960 | dei=denom |
---|
| 961 | if(abs(dei).lt.0.01)dei=0.01 |
---|
| 962 | sij(ij,i,j)=anum/dei |
---|
| 963 | sij(ij,i,i)=1.0 |
---|
| 964 | altem=sij(ij,i,j)*q(ij,i)+(1.-sij(ij,i,j))*qti-qs(ij,j) |
---|
| 965 | altem=altem/bf2 |
---|
| 966 | cwat=clw(ij,j)*(1.-ep(ij,j)) |
---|
| 967 | stemp=sij(ij,i,j) |
---|
| 968 | if((stemp.lt.0.0.or.stemp.gt.1.0.or. |
---|
| 969 | 1 altem.gt.cwat).and.j.gt.i)then |
---|
| 970 | anum=anum-lv(ij,j)*(qti-qs(ij,j)-cwat*bf2) |
---|
| 971 | denom=denom+lv(ij,j)*(q(ij,i)-qti) |
---|
| 972 | if(abs(denom).lt.0.01)denom=0.01 |
---|
| 973 | sij(ij,i,j)=anum/denom |
---|
| 974 | altem=sij(ij,i,j)*q(ij,i)+(1.-sij(ij,i,j))*qti-qs(ij,j) |
---|
| 975 | altem=altem-(bf2-1.)*cwat |
---|
| 976 | endif |
---|
| 977 | if(sij(ij,i,j).gt.0.0.and.sij(ij,i,j).lt.0.9)then |
---|
| 978 | qent(ij,i,j)=sij(ij,i,j)*q(ij,i) |
---|
| 979 | & +(1.-sij(ij,i,j))*qti |
---|
| 980 | uent(ij,i,j)=sij(ij,i,j)*u(ij,i) |
---|
| 981 | & +(1.-sij(ij,i,j))*u(ij,nk(ij)) |
---|
| 982 | vent(ij,i,j)=sij(ij,i,j)*v(ij,i) |
---|
| 983 | & +(1.-sij(ij,i,j))*v(ij,nk(ij)) |
---|
| 984 | elij(ij,i,j)=altem |
---|
| 985 | elij(ij,i,j)=max(0.0,elij(ij,i,j)) |
---|
| 986 | ment(ij,i,j)=m(ij,i)/(1.-sij(ij,i,j)) |
---|
| 987 | nent(ij,i)=nent(ij,i)+1 |
---|
| 988 | endif |
---|
| 989 | sij(ij,i,j)=max(0.0,sij(ij,i,j)) |
---|
| 990 | sij(ij,i,j)=min(1.0,sij(ij,i,j)) |
---|
| 991 | endif |
---|
| 992 | 700 continue |
---|
| 993 | 710 continue |
---|
| 994 | c |
---|
| 995 | c *** If no air can entrain at level i assume that updraft detrains *** |
---|
| 996 | c *** at that level and calculate detrained air flux and properties *** |
---|
| 997 | c |
---|
| 998 | do 740 ij=1,ncum |
---|
| 999 | if((i.ge.(icb(ij)+1)).and.(i.le.inb(ij)) |
---|
| 1000 | & .and.(nent(ij,i).eq.0))then |
---|
| 1001 | ment(ij,i,i)=m(ij,i) |
---|
| 1002 | qent(ij,i,i)=q(ij,nk(ij))-ep(ij,i)*clw(ij,i) |
---|
| 1003 | uent(ij,i,i)=u(ij,nk(ij)) |
---|
| 1004 | vent(ij,i,i)=v(ij,nk(ij)) |
---|
| 1005 | elij(ij,i,i)=clw(ij,i) |
---|
| 1006 | sij(ij,i,i)=1.0 |
---|
| 1007 | endif |
---|
| 1008 | 740 continue |
---|
| 1009 | 750 continue |
---|
| 1010 | c |
---|
| 1011 | do 770 i=1,ncum |
---|
| 1012 | sij(i,inb(i),inb(i))=1.0 |
---|
| 1013 | 770 continue |
---|
| 1014 | c |
---|
| 1015 | c===================================================================== |
---|
| 1016 | c --- NORMALIZE ENTRAINED AIR MASS FLUXES |
---|
| 1017 | c --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
---|
| 1018 | c===================================================================== |
---|
| 1019 | c |
---|
| 1020 | call zilch(bsum,ncum*nlp) |
---|
| 1021 | do 780 ij=1,ncum |
---|
| 1022 | lwork(ij)=.false. |
---|
| 1023 | 780 continue |
---|
| 1024 | do 789 i=minorig+1,nl |
---|
| 1025 | c |
---|
| 1026 | num1=0 |
---|
| 1027 | do 779 ij=1,ncum |
---|
| 1028 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)))num1=num1+1 |
---|
| 1029 | 779 continue |
---|
| 1030 | if(num1.le.0)go to 789 |
---|
| 1031 | c |
---|
| 1032 | do 781 ij=1,ncum |
---|
| 1033 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)))then |
---|
| 1034 | lwork(ij)=(nent(ij,i).ne.0) |
---|
| 1035 | qp1=q(ij,nk(ij))-ep(ij,i)*clw(ij,i) |
---|
| 1036 | anum=h(ij,i)-hp(ij,i)-lv(ij,i)*(qp1-qs(ij,i)) |
---|
| 1037 | denom=h(ij,i)-hp(ij,i)+lv(ij,i)*(q(ij,i)-qp1) |
---|
| 1038 | if(abs(denom).lt.0.01)denom=0.01 |
---|
| 1039 | scrit(ij)=anum/denom |
---|
| 1040 | alt=qp1-qs(ij,i)+scrit(ij)*(q(ij,i)-qp1) |
---|
| 1041 | if(scrit(ij).lt.0.0.or.alt.lt.0.0)scrit(ij)=1.0 |
---|
| 1042 | asij(ij)=0.0 |
---|
| 1043 | smin(ij)=1.0 |
---|
| 1044 | endif |
---|
| 1045 | 781 continue |
---|
| 1046 | do 783 j=minorig,nl |
---|
| 1047 | c |
---|
| 1048 | num2=0 |
---|
| 1049 | do 778 ij=1,ncum |
---|
| 1050 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)) |
---|
| 1051 | & .and.(j.ge.icb(ij)).and.(j.le.inb(ij)) |
---|
| 1052 | & .and.lwork(ij))num2=num2+1 |
---|
| 1053 | 778 continue |
---|
| 1054 | if(num2.le.0)go to 783 |
---|
| 1055 | c |
---|
| 1056 | do 782 ij=1,ncum |
---|
| 1057 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)) |
---|
| 1058 | & .and.(j.ge.icb(ij)).and.(j.le.inb(ij)).and.lwork(ij))then |
---|
| 1059 | if(sij(ij,i,j).gt.0.0.and.sij(ij,i,j).lt.0.9)then |
---|
| 1060 | if(j.gt.i)then |
---|
| 1061 | smid=min(sij(ij,i,j),scrit(ij)) |
---|
| 1062 | sjmax=smid |
---|
| 1063 | sjmin=smid |
---|
| 1064 | if(smid.lt.smin(ij) |
---|
| 1065 | & .and.sij(ij,i,j+1).lt.smid)then |
---|
| 1066 | smin(ij)=smid |
---|
| 1067 | sjmax=min(sij(ij,i,j+1),sij(ij,i,j),scrit(ij)) |
---|
| 1068 | sjmin=max(sij(ij,i,j-1),sij(ij,i,j)) |
---|
| 1069 | sjmin=min(sjmin,scrit(ij)) |
---|
| 1070 | endif |
---|
| 1071 | else |
---|
| 1072 | sjmax=max(sij(ij,i,j+1),scrit(ij)) |
---|
| 1073 | smid=max(sij(ij,i,j),scrit(ij)) |
---|
| 1074 | sjmin=0.0 |
---|
| 1075 | if(j.gt.1)sjmin=sij(ij,i,j-1) |
---|
| 1076 | sjmin=max(sjmin,scrit(ij)) |
---|
| 1077 | endif |
---|
| 1078 | delp=abs(sjmax-smid) |
---|
| 1079 | delm=abs(sjmin-smid) |
---|
| 1080 | asij(ij)=asij(ij)+(delp+delm) |
---|
| 1081 | & *(ph(ij,j)-ph(ij,j+1)) |
---|
| 1082 | ment(ij,i,j)=ment(ij,i,j)*(delp+delm) |
---|
| 1083 | & *(ph(ij,j)-ph(ij,j+1)) |
---|
| 1084 | endif |
---|
| 1085 | endif |
---|
| 1086 | 782 continue |
---|
| 1087 | 783 continue |
---|
| 1088 | do 784 ij=1,ncum |
---|
| 1089 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)).and.lwork(ij))then |
---|
| 1090 | asij(ij)=max(1.0e-21,asij(ij)) |
---|
| 1091 | asij(ij)=1.0/asij(ij) |
---|
| 1092 | bsum(ij,i)=0.0 |
---|
| 1093 | endif |
---|
| 1094 | 784 continue |
---|
| 1095 | do 786 j=minorig,nl+1 |
---|
| 1096 | do 785 ij=1,ncum |
---|
| 1097 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)) |
---|
| 1098 | & .and.(j.ge.icb(ij)).and.(j.le.inb(ij)) |
---|
| 1099 | & .and.lwork(ij))then |
---|
| 1100 | ment(ij,i,j)=ment(ij,i,j)*asij(ij) |
---|
| 1101 | bsum(ij,i)=bsum(ij,i)+ment(ij,i,j) |
---|
| 1102 | endif |
---|
| 1103 | 785 continue |
---|
| 1104 | 786 continue |
---|
| 1105 | do 787 ij=1,ncum |
---|
| 1106 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)) |
---|
| 1107 | & .and.(bsum(ij,i).lt.1.0e-18).and.lwork(ij))then |
---|
| 1108 | nent(ij,i)=0 |
---|
| 1109 | ment(ij,i,i)=m(ij,i) |
---|
| 1110 | qent(ij,i,i)=q(ij,nk(ij))-ep(ij,i)*clw(ij,i) |
---|
| 1111 | uent(ij,i,i)=u(ij,nk(ij)) |
---|
| 1112 | vent(ij,i,i)=v(ij,nk(ij)) |
---|
| 1113 | elij(ij,i,i)=clw(ij,i) |
---|
| 1114 | sij(ij,i,i)=1.0 |
---|
| 1115 | endif |
---|
| 1116 | 787 continue |
---|
| 1117 | 789 continue |
---|
| 1118 | c |
---|
| 1119 | return |
---|
| 1120 | end |
---|
| 1121 | |
---|
| 1122 | SUBROUTINE cv_unsat(nloc,ncum,nd,inb,t,q,qs,gz,u,v,p,ph |
---|
| 1123 | : ,h,lv,ep,sigp,clw,m,ment,elij |
---|
| 1124 | : ,iflag,mp,qp,up,vp,wt,water,evap) |
---|
| 1125 | implicit none |
---|
| 1126 | |
---|
| 1127 | |
---|
| 1128 | #include "cvthermo.h" |
---|
| 1129 | #include "cvparam.h" |
---|
| 1130 | |
---|
| 1131 | c inputs: |
---|
| 1132 | integer ncum, nd, nloc |
---|
| 1133 | integer inb(nloc) |
---|
| 1134 | real t(nloc,nd), q(nloc,nd), qs(nloc,nd) |
---|
| 1135 | real gz(nloc,nd), u(nloc,nd), v(nloc,nd) |
---|
| 1136 | real p(nloc,nd), ph(nloc,nd+1), h(nloc,nd) |
---|
| 1137 | real lv(nloc,nd), ep(nloc,nd), sigp(nloc,nd), clw(nloc,nd) |
---|
| 1138 | real m(nloc,nd), ment(nloc,nd,nd), elij(nloc,nd,nd) |
---|
| 1139 | |
---|
| 1140 | c outputs: |
---|
| 1141 | integer iflag(nloc) ! also an input |
---|
| 1142 | real mp(nloc,nd), qp(nloc,nd), up(nloc,nd), vp(nloc,nd) |
---|
| 1143 | real water(nloc,nd), evap(nloc,nd), wt(nloc,nd) |
---|
| 1144 | |
---|
| 1145 | c local variables: |
---|
| 1146 | integer i,j,k,ij,num1 |
---|
| 1147 | integer jtt(nloc) |
---|
| 1148 | real awat, coeff, qsm, afac, sigt, b6, c6, revap |
---|
| 1149 | real dhdp, fac, qstm, rat |
---|
| 1150 | real wdtrain(nloc) |
---|
| 1151 | logical lwork(nloc) |
---|
| 1152 | |
---|
| 1153 | c===================================================================== |
---|
| 1154 | c --- PRECIPITATING DOWNDRAFT CALCULATION |
---|
| 1155 | c===================================================================== |
---|
| 1156 | c |
---|
| 1157 | c Initializations: |
---|
| 1158 | c |
---|
| 1159 | do i = 1, ncum |
---|
| 1160 | do k = 1, nl+1 |
---|
| 1161 | wt(i,k) = omtsnow |
---|
| 1162 | mp(i,k) = 0.0 |
---|
| 1163 | evap(i,k) = 0.0 |
---|
| 1164 | water(i,k) = 0.0 |
---|
| 1165 | enddo |
---|
| 1166 | enddo |
---|
| 1167 | |
---|
| 1168 | do 420 i=1,ncum |
---|
| 1169 | qp(i,1)=q(i,1) |
---|
| 1170 | up(i,1)=u(i,1) |
---|
| 1171 | vp(i,1)=v(i,1) |
---|
| 1172 | 420 continue |
---|
| 1173 | |
---|
| 1174 | do 440 k=2,nl+1 |
---|
| 1175 | do 430 i=1,ncum |
---|
| 1176 | qp(i,k)=q(i,k-1) |
---|
| 1177 | up(i,k)=u(i,k-1) |
---|
| 1178 | vp(i,k)=v(i,k-1) |
---|
| 1179 | 430 continue |
---|
| 1180 | 440 continue |
---|
| 1181 | |
---|
| 1182 | |
---|
| 1183 | c *** Check whether ep(inb)=0, if so, skip precipitating *** |
---|
| 1184 | c *** downdraft calculation *** |
---|
| 1185 | c |
---|
| 1186 | c |
---|
| 1187 | c *** Integrate liquid water equation to find condensed water *** |
---|
| 1188 | c *** and condensed water flux *** |
---|
| 1189 | c |
---|
| 1190 | c |
---|
| 1191 | do 890 i=1,ncum |
---|
| 1192 | jtt(i)=2 |
---|
| 1193 | if(ep(i,inb(i)).le.0.0001)iflag(i)=2 |
---|
| 1194 | if(iflag(i).eq.0)then |
---|
| 1195 | lwork(i)=.true. |
---|
| 1196 | else |
---|
| 1197 | lwork(i)=.false. |
---|
| 1198 | endif |
---|
| 1199 | 890 continue |
---|
| 1200 | c |
---|
| 1201 | c *** Begin downdraft loop *** |
---|
| 1202 | c |
---|
| 1203 | c |
---|
| 1204 | call zilch(wdtrain,ncum) |
---|
| 1205 | do 899 i=nl+1,1,-1 |
---|
| 1206 | c |
---|
| 1207 | num1=0 |
---|
| 1208 | do 879 ij=1,ncum |
---|
| 1209 | if((i.le.inb(ij)).and.lwork(ij))num1=num1+1 |
---|
| 1210 | 879 continue |
---|
| 1211 | if(num1.le.0)go to 899 |
---|
| 1212 | c |
---|
| 1213 | c |
---|
| 1214 | c *** Calculate detrained precipitation *** |
---|
| 1215 | c |
---|
| 1216 | do 891 ij=1,ncum |
---|
| 1217 | if((i.le.inb(ij)).and.(lwork(ij)))then |
---|
| 1218 | wdtrain(ij)=g*ep(ij,i)*m(ij,i)*clw(ij,i) |
---|
| 1219 | endif |
---|
| 1220 | 891 continue |
---|
| 1221 | c |
---|
| 1222 | if(i.gt.1)then |
---|
| 1223 | do 893 j=1,i-1 |
---|
| 1224 | do 892 ij=1,ncum |
---|
| 1225 | if((i.le.inb(ij)).and.(lwork(ij)))then |
---|
| 1226 | awat=elij(ij,j,i)-(1.-ep(ij,i))*clw(ij,i) |
---|
| 1227 | awat=max(0.0,awat) |
---|
| 1228 | wdtrain(ij)=wdtrain(ij)+g*awat*ment(ij,j,i) |
---|
| 1229 | endif |
---|
| 1230 | 892 continue |
---|
| 1231 | 893 continue |
---|
| 1232 | endif |
---|
| 1233 | c |
---|
| 1234 | c *** Find rain water and evaporation using provisional *** |
---|
| 1235 | c *** estimates of qp(i)and qp(i-1) *** |
---|
| 1236 | c |
---|
| 1237 | c |
---|
| 1238 | c *** Value of terminal velocity and coeffecient of evaporation for snow *** |
---|
| 1239 | c |
---|
| 1240 | do 894 ij=1,ncum |
---|
| 1241 | if((i.le.inb(ij)).and.(lwork(ij)))then |
---|
| 1242 | coeff=coeffs |
---|
| 1243 | wt(ij,i)=omtsnow |
---|
| 1244 | c |
---|
| 1245 | c *** Value of terminal velocity and coeffecient of evaporation for rain *** |
---|
| 1246 | c |
---|
| 1247 | if(t(ij,i).gt.273.0)then |
---|
| 1248 | coeff=coeffr |
---|
| 1249 | wt(ij,i)=omtrain |
---|
| 1250 | endif |
---|
| 1251 | qsm=0.5*(q(ij,i)+qp(ij,i+1)) |
---|
| 1252 | afac=coeff*ph(ij,i)*(qs(ij,i)-qsm) |
---|
| 1253 | & /(1.0e4+2.0e3*ph(ij,i)*qs(ij,i)) |
---|
| 1254 | afac=max(afac,0.0) |
---|
| 1255 | sigt=sigp(ij,i) |
---|
| 1256 | sigt=max(0.0,sigt) |
---|
| 1257 | sigt=min(1.0,sigt) |
---|
| 1258 | b6=100.*(ph(ij,i)-ph(ij,i+1))*sigt*afac/wt(ij,i) |
---|
| 1259 | c6=(water(ij,i+1)*wt(ij,i+1)+wdtrain(ij)/sigd)/wt(ij,i) |
---|
| 1260 | revap=0.5*(-b6+sqrt(b6*b6+4.*c6)) |
---|
| 1261 | evap(ij,i)=sigt*afac*revap |
---|
| 1262 | water(ij,i)=revap*revap |
---|
| 1263 | c |
---|
| 1264 | c *** Calculate precipitating downdraft mass flux under *** |
---|
| 1265 | c *** hydrostatic approximation *** |
---|
| 1266 | c |
---|
| 1267 | if(i.gt.1)then |
---|
| 1268 | dhdp=(h(ij,i)-h(ij,i-1))/(p(ij,i-1)-p(ij,i)) |
---|
| 1269 | dhdp=max(dhdp,10.0) |
---|
| 1270 | mp(ij,i)=100.*ginv*lv(ij,i)*sigd*evap(ij,i)/dhdp |
---|
| 1271 | mp(ij,i)=max(mp(ij,i),0.0) |
---|
| 1272 | c |
---|
| 1273 | c *** Add small amount of inertia to downdraft *** |
---|
| 1274 | c |
---|
| 1275 | fac=20.0/(ph(ij,i-1)-ph(ij,i)) |
---|
| 1276 | mp(ij,i)=(fac*mp(ij,i+1)+mp(ij,i))/(1.+fac) |
---|
| 1277 | c |
---|
| 1278 | c *** Force mp to decrease linearly to zero *** |
---|
| 1279 | c *** between about 950 mb and the surface *** |
---|
| 1280 | c |
---|
| 1281 | if(p(ij,i).gt.(0.949*p(ij,1)))then |
---|
| 1282 | jtt(ij)=max(jtt(ij),i) |
---|
| 1283 | mp(ij,i)=mp(ij,jtt(ij))*(p(ij,1)-p(ij,i)) |
---|
| 1284 | & /(p(ij,1)-p(ij,jtt(ij))) |
---|
| 1285 | endif |
---|
| 1286 | endif |
---|
| 1287 | c |
---|
| 1288 | c *** Find mixing ratio of precipitating downdraft *** |
---|
| 1289 | c |
---|
| 1290 | if(i.ne.inb(ij))then |
---|
| 1291 | if(i.eq.1)then |
---|
| 1292 | qstm=qs(ij,1) |
---|
| 1293 | else |
---|
| 1294 | qstm=qs(ij,i-1) |
---|
| 1295 | endif |
---|
| 1296 | if(mp(ij,i).gt.mp(ij,i+1))then |
---|
| 1297 | rat=mp(ij,i+1)/mp(ij,i) |
---|
| 1298 | qp(ij,i)=qp(ij,i+1)*rat+q(ij,i)*(1.0-rat)+100.*ginv* |
---|
| 1299 | & sigd*(ph(ij,i)-ph(ij,i+1))*(evap(ij,i)/mp(ij,i)) |
---|
| 1300 | up(ij,i)=up(ij,i+1)*rat+u(ij,i)*(1.-rat) |
---|
| 1301 | vp(ij,i)=vp(ij,i+1)*rat+v(ij,i)*(1.-rat) |
---|
| 1302 | else |
---|
| 1303 | if(mp(ij,i+1).gt.0.0)then |
---|
| 1304 | qp(ij,i)=(gz(ij,i+1)-gz(ij,i) |
---|
| 1305 | & +qp(ij,i+1)*(lv(ij,i+1)+t(ij,i+1) |
---|
| 1306 | & *(cl-cpd))+cpd*(t(ij,i+1)-t(ij,i))) |
---|
| 1307 | & /(lv(ij,i)+t(ij,i)*(cl-cpd)) |
---|
| 1308 | up(ij,i)=up(ij,i+1) |
---|
| 1309 | vp(ij,i)=vp(ij,i+1) |
---|
| 1310 | endif |
---|
| 1311 | endif |
---|
| 1312 | qp(ij,i)=min(qp(ij,i),qstm) |
---|
| 1313 | qp(ij,i)=max(qp(ij,i),0.0) |
---|
| 1314 | endif |
---|
| 1315 | endif |
---|
| 1316 | 894 continue |
---|
| 1317 | 899 continue |
---|
| 1318 | c |
---|
| 1319 | return |
---|
| 1320 | end |
---|
| 1321 | |
---|
| 1322 | SUBROUTINE cv_yield(nloc,ncum,nd,nk,icb,inb,delt |
---|
| 1323 | : ,t,q,u,v,gz,p,ph,h,hp,lv,cpn |
---|
| 1324 | : ,ep,clw,frac,m,mp,qp,up,vp |
---|
| 1325 | : ,wt,water,evap |
---|
| 1326 | : ,ment,qent,uent,vent,nent,elij |
---|
| 1327 | : ,tv,tvp |
---|
| 1328 | o ,iflag,wd,qprime,tprime |
---|
| 1329 | o ,precip,cbmf,ft,fq,fu,fv,Ma,qcondc) |
---|
| 1330 | implicit none |
---|
| 1331 | |
---|
| 1332 | #include "cvthermo.h" |
---|
| 1333 | #include "cvparam.h" |
---|
| 1334 | |
---|
| 1335 | c inputs |
---|
| 1336 | integer ncum, nd, nloc |
---|
| 1337 | integer nk(nloc), icb(nloc), inb(nloc) |
---|
| 1338 | integer nent(nloc,nd) |
---|
| 1339 | real delt |
---|
| 1340 | real t(nloc,nd), q(nloc,nd), u(nloc,nd), v(nloc,nd) |
---|
| 1341 | real gz(nloc,nd) |
---|
| 1342 | real p(nloc,nd), ph(nloc,nd+1), h(nloc,nd) |
---|
| 1343 | real hp(nloc,nd), lv(nloc,nd) |
---|
| 1344 | real cpn(nloc,nd), ep(nloc,nd), clw(nloc,nd), frac(nloc) |
---|
| 1345 | real m(nloc,nd), mp(nloc,nd), qp(nloc,nd) |
---|
| 1346 | real up(nloc,nd), vp(nloc,nd) |
---|
| 1347 | real wt(nloc,nd), water(nloc,nd), evap(nloc,nd) |
---|
| 1348 | real ment(nloc,nd,nd), qent(nloc,nd,nd), elij(nloc,nd,nd) |
---|
| 1349 | real uent(nloc,nd,nd), vent(nloc,nd,nd) |
---|
| 1350 | real tv(nloc,nd), tvp(nloc,nd) |
---|
| 1351 | |
---|
| 1352 | c outputs |
---|
| 1353 | integer iflag(nloc) ! also an input |
---|
| 1354 | real cbmf(nloc) ! also an input |
---|
| 1355 | real wd(nloc), tprime(nloc), qprime(nloc) |
---|
| 1356 | real precip(nloc) |
---|
| 1357 | real ft(nloc,nd), fq(nloc,nd), fu(nloc,nd), fv(nloc,nd) |
---|
| 1358 | real Ma(nloc,nd) |
---|
| 1359 | real qcondc(nloc,nd) |
---|
| 1360 | |
---|
| 1361 | c local variables |
---|
| 1362 | integer i,j,ij,k,num1 |
---|
| 1363 | real dpinv,cpinv,awat,fqold,ftold,fuold,fvold,delti |
---|
| 1364 | real work(nloc), am(nloc),amp1(nloc),ad(nloc) |
---|
| 1365 | real ents(nloc), uav(nloc),vav(nloc),lvcp(nloc,nd) |
---|
| 1366 | real qcond(nloc,nd), nqcond(nloc,nd), wa(nloc,nd) ! cld |
---|
| 1367 | real siga(nloc,nd), ax(nloc,nd), mac(nloc,nd) ! cld |
---|
| 1368 | |
---|
| 1369 | |
---|
| 1370 | c -- initializations: |
---|
| 1371 | |
---|
| 1372 | delti = 1.0/delt |
---|
| 1373 | |
---|
| 1374 | do 160 i=1,ncum |
---|
| 1375 | precip(i)=0.0 |
---|
| 1376 | wd(i)=0.0 |
---|
| 1377 | tprime(i)=0.0 |
---|
| 1378 | qprime(i)=0.0 |
---|
| 1379 | do 170 k=1,nl+1 |
---|
| 1380 | ft(i,k)=0.0 |
---|
| 1381 | fu(i,k)=0.0 |
---|
| 1382 | fv(i,k)=0.0 |
---|
| 1383 | fq(i,k)=0.0 |
---|
| 1384 | lvcp(i,k)=lv(i,k)/cpn(i,k) |
---|
| 1385 | qcondc(i,k)=0.0 ! cld |
---|
| 1386 | qcond(i,k)=0.0 ! cld |
---|
| 1387 | nqcond(i,k)=0.0 ! cld |
---|
| 1388 | 170 continue |
---|
| 1389 | 160 continue |
---|
| 1390 | |
---|
| 1391 | c |
---|
| 1392 | c *** Calculate surface precipitation in mm/day *** |
---|
| 1393 | c |
---|
| 1394 | do 1190 i=1,ncum |
---|
| 1395 | if(iflag(i).le.1)then |
---|
| 1396 | cc precip(i)=precip(i)+wt(i,1)*sigd*water(i,1)*3600.*24000. |
---|
| 1397 | cc & /(rowl*g) |
---|
| 1398 | cc precip(i)=precip(i)*delt/86400. |
---|
| 1399 | precip(i) = wt(i,1)*sigd*water(i,1)*86400/g |
---|
| 1400 | endif |
---|
| 1401 | 1190 continue |
---|
| 1402 | c |
---|
| 1403 | c |
---|
| 1404 | c *** Calculate downdraft velocity scale and surface temperature and *** |
---|
| 1405 | c *** water vapor fluctuations *** |
---|
| 1406 | c |
---|
| 1407 | do i=1,ncum |
---|
| 1408 | wd(i)=betad*abs(mp(i,icb(i)))*0.01*rrd*t(i,icb(i)) |
---|
| 1409 | : /(sigd*p(i,icb(i))) |
---|
| 1410 | qprime(i)=0.5*(qp(i,1)-q(i,1)) |
---|
| 1411 | tprime(i)=lv0*qprime(i)/cpd |
---|
| 1412 | enddo |
---|
| 1413 | c |
---|
| 1414 | c *** Calculate tendencies of lowest level potential temperature *** |
---|
| 1415 | c *** and mixing ratio *** |
---|
| 1416 | c |
---|
| 1417 | do 1200 i=1,ncum |
---|
| 1418 | work(i)=0.01/(ph(i,1)-ph(i,2)) |
---|
| 1419 | am(i)=0.0 |
---|
| 1420 | 1200 continue |
---|
| 1421 | do 1220 k=2,nl |
---|
| 1422 | do 1210 i=1,ncum |
---|
| 1423 | if((nk(i).eq.1).and.(k.le.inb(i)).and.(nk(i).eq.1))then |
---|
| 1424 | am(i)=am(i)+m(i,k) |
---|
| 1425 | endif |
---|
| 1426 | 1210 continue |
---|
| 1427 | 1220 continue |
---|
| 1428 | do 1240 i=1,ncum |
---|
| 1429 | if((g*work(i)*am(i)).ge.delti)iflag(i)=1 |
---|
| 1430 | ft(i,1)=ft(i,1)+g*work(i)*am(i)*(t(i,2)-t(i,1) |
---|
| 1431 | & +(gz(i,2)-gz(i,1))/cpn(i,1)) |
---|
| 1432 | ft(i,1)=ft(i,1)-lvcp(i,1)*sigd*evap(i,1) |
---|
| 1433 | ft(i,1)=ft(i,1)+sigd*wt(i,2)*(cl-cpd)*water(i,2)*(t(i,2) |
---|
| 1434 | & -t(i,1))*work(i)/cpn(i,1) |
---|
| 1435 | fq(i,1)=fq(i,1)+g*mp(i,2)*(qp(i,2)-q(i,1))* |
---|
| 1436 | & work(i)+sigd*evap(i,1) |
---|
| 1437 | fq(i,1)=fq(i,1)+g*am(i)*(q(i,2)-q(i,1))*work(i) |
---|
| 1438 | fu(i,1)=fu(i,1)+g*work(i)*(mp(i,2)*(up(i,2)-u(i,1)) |
---|
| 1439 | & +am(i)*(u(i,2)-u(i,1))) |
---|
| 1440 | fv(i,1)=fv(i,1)+g*work(i)*(mp(i,2)*(vp(i,2)-v(i,1)) |
---|
| 1441 | & +am(i)*(v(i,2)-v(i,1))) |
---|
| 1442 | 1240 continue |
---|
| 1443 | do 1260 j=2,nl |
---|
| 1444 | do 1250 i=1,ncum |
---|
| 1445 | if(j.le.inb(i))then |
---|
| 1446 | fq(i,1)=fq(i,1) |
---|
| 1447 | & +g*work(i)*ment(i,j,1)*(qent(i,j,1)-q(i,1)) |
---|
| 1448 | fu(i,1)=fu(i,1) |
---|
| 1449 | & +g*work(i)*ment(i,j,1)*(uent(i,j,1)-u(i,1)) |
---|
| 1450 | fv(i,1)=fv(i,1) |
---|
| 1451 | & +g*work(i)*ment(i,j,1)*(vent(i,j,1)-v(i,1)) |
---|
| 1452 | endif |
---|
| 1453 | 1250 continue |
---|
| 1454 | 1260 continue |
---|
| 1455 | c |
---|
| 1456 | c *** Calculate tendencies of potential temperature and mixing ratio *** |
---|
| 1457 | c *** at levels above the lowest level *** |
---|
| 1458 | c |
---|
| 1459 | c *** First find the net saturated updraft and downdraft mass fluxes *** |
---|
| 1460 | c *** through each level *** |
---|
| 1461 | c |
---|
| 1462 | do 1500 i=2,nl+1 |
---|
| 1463 | c |
---|
| 1464 | num1=0 |
---|
| 1465 | do 1265 ij=1,ncum |
---|
| 1466 | if(i.le.inb(ij))num1=num1+1 |
---|
| 1467 | 1265 continue |
---|
| 1468 | if(num1.le.0)go to 1500 |
---|
| 1469 | c |
---|
| 1470 | call zilch(amp1,ncum) |
---|
| 1471 | call zilch(ad,ncum) |
---|
| 1472 | c |
---|
| 1473 | do 1280 k=i+1,nl+1 |
---|
| 1474 | do 1270 ij=1,ncum |
---|
| 1475 | if((i.ge.nk(ij)).and.(i.le.inb(ij)) |
---|
| 1476 | & .and.(k.le.(inb(ij)+1)))then |
---|
| 1477 | amp1(ij)=amp1(ij)+m(ij,k) |
---|
| 1478 | endif |
---|
| 1479 | 1270 continue |
---|
| 1480 | 1280 continue |
---|
| 1481 | c |
---|
| 1482 | do 1310 k=1,i |
---|
| 1483 | do 1300 j=i+1,nl+1 |
---|
| 1484 | do 1290 ij=1,ncum |
---|
| 1485 | if((j.le.(inb(ij)+1)).and.(i.le.inb(ij)))then |
---|
| 1486 | amp1(ij)=amp1(ij)+ment(ij,k,j) |
---|
| 1487 | endif |
---|
| 1488 | 1290 continue |
---|
| 1489 | 1300 continue |
---|
| 1490 | 1310 continue |
---|
| 1491 | do 1340 k=1,i-1 |
---|
| 1492 | do 1330 j=i,nl+1 |
---|
| 1493 | do 1320 ij=1,ncum |
---|
| 1494 | if((i.le.inb(ij)).and.(j.le.inb(ij)))then |
---|
| 1495 | ad(ij)=ad(ij)+ment(ij,j,k) |
---|
| 1496 | endif |
---|
| 1497 | 1320 continue |
---|
| 1498 | 1330 continue |
---|
| 1499 | 1340 continue |
---|
| 1500 | c |
---|
| 1501 | do 1350 ij=1,ncum |
---|
| 1502 | if(i.le.inb(ij))then |
---|
| 1503 | dpinv=0.01/(ph(ij,i)-ph(ij,i+1)) |
---|
| 1504 | cpinv=1.0/cpn(ij,i) |
---|
| 1505 | c |
---|
| 1506 | ft(ij,i)=ft(ij,i) |
---|
| 1507 | & +g*dpinv*(amp1(ij)*(t(ij,i+1)-t(ij,i) |
---|
| 1508 | & +(gz(ij,i+1)-gz(ij,i))*cpinv) |
---|
| 1509 | & -ad(ij)*(t(ij,i)-t(ij,i-1)+(gz(ij,i)-gz(ij,i-1))*cpinv)) |
---|
| 1510 | & -sigd*lvcp(ij,i)*evap(ij,i) |
---|
| 1511 | ft(ij,i)=ft(ij,i)+g*dpinv*ment(ij,i,i)*(hp(ij,i)-h(ij,i)+ |
---|
| 1512 | & t(ij,i)*(cpv-cpd)*(q(ij,i)-qent(ij,i,i)))*cpinv |
---|
| 1513 | ft(ij,i)=ft(ij,i)+sigd*wt(ij,i+1)*(cl-cpd)*water(ij,i+1)* |
---|
| 1514 | & (t(ij,i+1)-t(ij,i))*dpinv*cpinv |
---|
| 1515 | fq(ij,i)=fq(ij,i)+g*dpinv*(amp1(ij)*(q(ij,i+1)-q(ij,i))- |
---|
| 1516 | & ad(ij)*(q(ij,i)-q(ij,i-1))) |
---|
| 1517 | fu(ij,i)=fu(ij,i)+g*dpinv*(amp1(ij)*(u(ij,i+1)-u(ij,i))- |
---|
| 1518 | & ad(ij)*(u(ij,i)-u(ij,i-1))) |
---|
| 1519 | fv(ij,i)=fv(ij,i)+g*dpinv*(amp1(ij)*(v(ij,i+1)-v(ij,i))- |
---|
| 1520 | & ad(ij)*(v(ij,i)-v(ij,i-1))) |
---|
| 1521 | endif |
---|
| 1522 | 1350 continue |
---|
| 1523 | do 1370 k=1,i-1 |
---|
| 1524 | do 1360 ij=1,ncum |
---|
| 1525 | if(i.le.inb(ij))then |
---|
| 1526 | awat=elij(ij,k,i)-(1.-ep(ij,i))*clw(ij,i) |
---|
| 1527 | awat=max(awat,0.0) |
---|
| 1528 | fq(ij,i)=fq(ij,i) |
---|
| 1529 | & +g*dpinv*ment(ij,k,i)*(qent(ij,k,i)-awat-q(ij,i)) |
---|
| 1530 | fu(ij,i)=fu(ij,i) |
---|
| 1531 | & +g*dpinv*ment(ij,k,i)*(uent(ij,k,i)-u(ij,i)) |
---|
| 1532 | fv(ij,i)=fv(ij,i) |
---|
| 1533 | & +g*dpinv*ment(ij,k,i)*(vent(ij,k,i)-v(ij,i)) |
---|
| 1534 | c (saturated updrafts resulting from mixing) ! cld |
---|
| 1535 | qcond(ij,i)=qcond(ij,i)+(elij(ij,k,i)-awat) ! cld |
---|
| 1536 | nqcond(ij,i)=nqcond(ij,i)+1. ! cld |
---|
| 1537 | endif |
---|
| 1538 | 1360 continue |
---|
| 1539 | 1370 continue |
---|
| 1540 | do 1390 k=i,nl+1 |
---|
| 1541 | do 1380 ij=1,ncum |
---|
| 1542 | if((i.le.inb(ij)).and.(k.le.inb(ij)))then |
---|
| 1543 | fq(ij,i)=fq(ij,i) |
---|
| 1544 | & +g*dpinv*ment(ij,k,i)*(qent(ij,k,i)-q(ij,i)) |
---|
| 1545 | fu(ij,i)=fu(ij,i) |
---|
| 1546 | & +g*dpinv*ment(ij,k,i)*(uent(ij,k,i)-u(ij,i)) |
---|
| 1547 | fv(ij,i)=fv(ij,i) |
---|
| 1548 | & +g*dpinv*ment(ij,k,i)*(vent(ij,k,i)-v(ij,i)) |
---|
| 1549 | endif |
---|
| 1550 | 1380 continue |
---|
| 1551 | 1390 continue |
---|
| 1552 | do 1400 ij=1,ncum |
---|
| 1553 | if(i.le.inb(ij))then |
---|
| 1554 | fq(ij,i)=fq(ij,i) |
---|
| 1555 | & +sigd*evap(ij,i)+g*(mp(ij,i+1)* |
---|
| 1556 | & (qp(ij,i+1)-q(ij,i)) |
---|
| 1557 | & -mp(ij,i)*(qp(ij,i)-q(ij,i-1)))*dpinv |
---|
| 1558 | fu(ij,i)=fu(ij,i) |
---|
| 1559 | & +g*(mp(ij,i+1)*(up(ij,i+1)-u(ij,i))-mp(ij,i)* |
---|
| 1560 | & (up(ij,i)-u(ij,i-1)))*dpinv |
---|
| 1561 | fv(ij,i)=fv(ij,i) |
---|
| 1562 | & +g*(mp(ij,i+1)*(vp(ij,i+1)-v(ij,i))-mp(ij,i)* |
---|
| 1563 | & (vp(ij,i)-v(ij,i-1)))*dpinv |
---|
| 1564 | C (saturated downdrafts resulting from mixing) ! cld |
---|
| 1565 | do k=i+1,inb(ij) ! cld |
---|
| 1566 | qcond(ij,i)=qcond(ij,i)+elij(ij,k,i) ! cld |
---|
| 1567 | nqcond(ij,i)=nqcond(ij,i)+1. ! cld |
---|
| 1568 | enddo ! cld |
---|
| 1569 | C (particular case: no detraining level is found) ! cld |
---|
| 1570 | if (nent(ij,i).eq.0) then ! cld |
---|
| 1571 | qcond(ij,i)=qcond(ij,i)+(1.-ep(ij,i))*clw(ij,i) ! cld |
---|
| 1572 | nqcond(ij,i)=nqcond(ij,i)+1. ! cld |
---|
| 1573 | endif ! cld |
---|
| 1574 | if (nqcond(ij,i).ne.0.) then ! cld |
---|
| 1575 | qcond(ij,i)=qcond(ij,i)/nqcond(ij,i) ! cld |
---|
| 1576 | endif ! cld |
---|
| 1577 | endif |
---|
| 1578 | 1400 continue |
---|
| 1579 | 1500 continue |
---|
| 1580 | c |
---|
| 1581 | c *** Adjust tendencies at top of convection layer to reflect *** |
---|
| 1582 | c *** actual position of the level zero cape *** |
---|
| 1583 | c |
---|
| 1584 | do 503 ij=1,ncum |
---|
| 1585 | fqold=fq(ij,inb(ij)) |
---|
| 1586 | fq(ij,inb(ij))=fq(ij,inb(ij))*(1.-frac(ij)) |
---|
| 1587 | fq(ij,inb(ij)-1)=fq(ij,inb(ij)-1) |
---|
| 1588 | & +frac(ij)*fqold*((ph(ij,inb(ij))-ph(ij,inb(ij)+1))/ |
---|
| 1589 | 1 (ph(ij,inb(ij)-1)-ph(ij,inb(ij))))*lv(ij,inb(ij)) |
---|
| 1590 | & /lv(ij,inb(ij)-1) |
---|
| 1591 | ftold=ft(ij,inb(ij)) |
---|
| 1592 | ft(ij,inb(ij))=ft(ij,inb(ij))*(1.-frac(ij)) |
---|
| 1593 | ft(ij,inb(ij)-1)=ft(ij,inb(ij)-1) |
---|
| 1594 | & +frac(ij)*ftold*((ph(ij,inb(ij))-ph(ij,inb(ij)+1))/ |
---|
| 1595 | 1 (ph(ij,inb(ij)-1)-ph(ij,inb(ij))))*cpn(ij,inb(ij)) |
---|
| 1596 | & /cpn(ij,inb(ij)-1) |
---|
| 1597 | fuold=fu(ij,inb(ij)) |
---|
| 1598 | fu(ij,inb(ij))=fu(ij,inb(ij))*(1.-frac(ij)) |
---|
| 1599 | fu(ij,inb(ij)-1)=fu(ij,inb(ij)-1) |
---|
| 1600 | & +frac(ij)*fuold*((ph(ij,inb(ij))-ph(ij,inb(ij)+1))/ |
---|
| 1601 | 1 (ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) |
---|
| 1602 | fvold=fv(ij,inb(ij)) |
---|
| 1603 | fv(ij,inb(ij))=fv(ij,inb(ij))*(1.-frac(ij)) |
---|
| 1604 | fv(ij,inb(ij)-1)=fv(ij,inb(ij)-1) |
---|
| 1605 | & +frac(ij)*fvold*((ph(ij,inb(ij))-ph(ij,inb(ij)+1))/ |
---|
| 1606 | 1 (ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) |
---|
| 1607 | 503 continue |
---|
| 1608 | c |
---|
| 1609 | c *** Very slightly adjust tendencies to force exact *** |
---|
| 1610 | c *** enthalpy, momentum and tracer conservation *** |
---|
| 1611 | c |
---|
| 1612 | do 682 ij=1,ncum |
---|
| 1613 | ents(ij)=0.0 |
---|
| 1614 | uav(ij)=0.0 |
---|
| 1615 | vav(ij)=0.0 |
---|
| 1616 | do 681 i=1,inb(ij) |
---|
| 1617 | ents(ij)=ents(ij) |
---|
| 1618 | & +(cpn(ij,i)*ft(ij,i)+lv(ij,i)*fq(ij,i))*(ph(ij,i)-ph(ij,i+1)) |
---|
| 1619 | uav(ij)=uav(ij)+fu(ij,i)*(ph(ij,i)-ph(ij,i+1)) |
---|
| 1620 | vav(ij)=vav(ij)+fv(ij,i)*(ph(ij,i)-ph(ij,i+1)) |
---|
| 1621 | 681 continue |
---|
| 1622 | 682 continue |
---|
| 1623 | do 683 ij=1,ncum |
---|
| 1624 | ents(ij)=ents(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
| 1625 | uav(ij)=uav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
| 1626 | vav(ij)=vav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
| 1627 | 683 continue |
---|
| 1628 | do 642 ij=1,ncum |
---|
| 1629 | do 641 i=1,inb(ij) |
---|
| 1630 | ft(ij,i)=ft(ij,i)-ents(ij)/cpn(ij,i) |
---|
| 1631 | fu(ij,i)=(1.-cu)*(fu(ij,i)-uav(ij)) |
---|
| 1632 | fv(ij,i)=(1.-cu)*(fv(ij,i)-vav(ij)) |
---|
| 1633 | 641 continue |
---|
| 1634 | 642 continue |
---|
| 1635 | c |
---|
| 1636 | do 1810 k=1,nl+1 |
---|
| 1637 | do 1800 i=1,ncum |
---|
| 1638 | if((q(i,k)+delt*fq(i,k)).lt.0.0)iflag(i)=10 |
---|
| 1639 | 1800 continue |
---|
| 1640 | 1810 continue |
---|
| 1641 | c |
---|
| 1642 | c |
---|
| 1643 | do 1900 i=1,ncum |
---|
| 1644 | if(iflag(i).gt.2)then |
---|
| 1645 | precip(i)=0.0 |
---|
| 1646 | cbmf(i)=0.0 |
---|
| 1647 | endif |
---|
| 1648 | 1900 continue |
---|
| 1649 | do 1920 k=1,nl |
---|
| 1650 | do 1910 i=1,ncum |
---|
| 1651 | if(iflag(i).gt.2)then |
---|
| 1652 | ft(i,k)=0.0 |
---|
| 1653 | fq(i,k)=0.0 |
---|
| 1654 | fu(i,k)=0.0 |
---|
| 1655 | fv(i,k)=0.0 |
---|
| 1656 | qcondc(i,k)=0.0 ! cld |
---|
| 1657 | endif |
---|
| 1658 | 1910 continue |
---|
| 1659 | 1920 continue |
---|
| 1660 | |
---|
| 1661 | do k=1,nl+1 |
---|
| 1662 | do i=1,ncum |
---|
| 1663 | Ma(i,k) = 0. |
---|
| 1664 | enddo |
---|
| 1665 | enddo |
---|
| 1666 | do k=nl,1,-1 |
---|
| 1667 | do i=1,ncum |
---|
| 1668 | Ma(i,k) = Ma(i,k+1)+m(i,k) |
---|
| 1669 | enddo |
---|
| 1670 | enddo |
---|
| 1671 | |
---|
| 1672 | c |
---|
| 1673 | c *** diagnose the in-cloud mixing ratio *** ! cld |
---|
| 1674 | c *** of condensed water *** ! cld |
---|
| 1675 | c ! cld |
---|
| 1676 | DO ij=1,ncum ! cld |
---|
| 1677 | do i=1,nd ! cld |
---|
| 1678 | mac(ij,i)=0.0 ! cld |
---|
| 1679 | wa(ij,i)=0.0 ! cld |
---|
| 1680 | siga(ij,i)=0.0 ! cld |
---|
| 1681 | enddo ! cld |
---|
| 1682 | do i=nk(ij),inb(ij) ! cld |
---|
| 1683 | do k=i+1,inb(ij)+1 ! cld |
---|
| 1684 | mac(ij,i)=mac(ij,i)+m(ij,k) ! cld |
---|
| 1685 | enddo ! cld |
---|
| 1686 | enddo ! cld |
---|
| 1687 | do i=icb(ij),inb(ij)-1 ! cld |
---|
| 1688 | ax(ij,i)=0. ! cld |
---|
| 1689 | do j=icb(ij),i ! cld |
---|
| 1690 | ax(ij,i)=ax(ij,i)+rrd*(tvp(ij,j)-tv(ij,j)) ! cld |
---|
| 1691 | : *(ph(ij,j)-ph(ij,j+1))/p(ij,j) ! cld |
---|
| 1692 | enddo ! cld |
---|
| 1693 | if (ax(ij,i).gt.0.0) then ! cld |
---|
| 1694 | wa(ij,i)=sqrt(2.*ax(ij,i)) ! cld |
---|
| 1695 | endif ! cld |
---|
| 1696 | enddo ! cld |
---|
| 1697 | do i=1,nl ! cld |
---|
| 1698 | if (wa(ij,i).gt.0.0) ! cld |
---|
| 1699 | : siga(ij,i)=mac(ij,i)/wa(ij,i) ! cld |
---|
| 1700 | : *rrd*tvp(ij,i)/p(ij,i)/100./delta ! cld |
---|
| 1701 | siga(ij,i) = min(siga(ij,i),1.0) ! cld |
---|
| 1702 | qcondc(ij,i)=siga(ij,i)*clw(ij,i)*(1.-ep(ij,i)) ! cld |
---|
| 1703 | : + (1.-siga(ij,i))*qcond(ij,i) ! cld |
---|
| 1704 | enddo ! cld |
---|
| 1705 | ENDDO ! cld |
---|
| 1706 | |
---|
| 1707 | return |
---|
| 1708 | end |
---|
| 1709 | |
---|
| 1710 | SUBROUTINE cv_uncompress(nloc,len,ncum,nd,idcum |
---|
| 1711 | : ,iflag |
---|
| 1712 | : ,precip,cbmf |
---|
| 1713 | : ,ft,fq,fu,fv |
---|
| 1714 | : ,Ma,qcondc |
---|
| 1715 | : ,iflag1 |
---|
| 1716 | : ,precip1,cbmf1 |
---|
| 1717 | : ,ft1,fq1,fu1,fv1 |
---|
| 1718 | : ,Ma1,qcondc1 |
---|
| 1719 | : ) |
---|
| 1720 | implicit none |
---|
| 1721 | |
---|
| 1722 | #include "cvparam.h" |
---|
| 1723 | |
---|
| 1724 | c inputs: |
---|
| 1725 | integer len, ncum, nd, nloc |
---|
| 1726 | integer idcum(nloc) |
---|
| 1727 | integer iflag(nloc) |
---|
| 1728 | real precip(nloc), cbmf(nloc) |
---|
| 1729 | real ft(nloc,nd), fq(nloc,nd), fu(nloc,nd), fv(nloc,nd) |
---|
| 1730 | real Ma(nloc,nd) |
---|
| 1731 | real qcondc(nloc,nd) !cld |
---|
| 1732 | |
---|
| 1733 | c outputs: |
---|
| 1734 | integer iflag1(len) |
---|
| 1735 | real precip1(len), cbmf1(len) |
---|
| 1736 | real ft1(len,nd), fq1(len,nd), fu1(len,nd), fv1(len,nd) |
---|
| 1737 | real Ma1(len,nd) |
---|
| 1738 | real qcondc1(len,nd) !cld |
---|
| 1739 | |
---|
| 1740 | c local variables: |
---|
| 1741 | integer i,k |
---|
| 1742 | |
---|
| 1743 | do 2000 i=1,ncum |
---|
| 1744 | precip1(idcum(i))=precip(i) |
---|
| 1745 | cbmf1(idcum(i))=cbmf(i) |
---|
| 1746 | iflag1(idcum(i))=iflag(i) |
---|
| 1747 | 2000 continue |
---|
| 1748 | |
---|
| 1749 | do 2020 k=1,nl |
---|
| 1750 | do 2010 i=1,ncum |
---|
| 1751 | ft1(idcum(i),k)=ft(i,k) |
---|
| 1752 | fq1(idcum(i),k)=fq(i,k) |
---|
| 1753 | fu1(idcum(i),k)=fu(i,k) |
---|
| 1754 | fv1(idcum(i),k)=fv(i,k) |
---|
| 1755 | Ma1(idcum(i),k)=Ma(i,k) |
---|
| 1756 | qcondc1(idcum(i),k)=qcondc(i,k) |
---|
| 1757 | 2010 continue |
---|
| 1758 | 2020 continue |
---|
| 1759 | |
---|
| 1760 | return |
---|
| 1761 | end |
---|
| 1762 | |
---|