1 | subroutine radar_simulator(freq,k2,do_ray,use_gas_abs,use_mie_table,mt, & |
---|
2 | nhclass,hp,nprof,ngate,nsizes,D,hgt_matrix,hm_matrix,re_matrix,p_matrix,t_matrix, & |
---|
3 | rh_matrix,Ze_non,Ze_ray,h_atten_to_vol,g_atten_to_vol,dBZe, & |
---|
4 | g_to_vol_in,g_to_vol_out) |
---|
5 | |
---|
6 | ! rh_matrix,Ze_non,Ze_ray,kr_matrix,g_atten_to_vol,dBZe) |
---|
7 | |
---|
8 | use m_mrgrnk |
---|
9 | use array_lib |
---|
10 | use math_lib |
---|
11 | use optics_lib |
---|
12 | use radar_simulator_types |
---|
13 | implicit none |
---|
14 | |
---|
15 | ! Purpose: |
---|
16 | ! Simulates a vertical profile of radar reflectivity |
---|
17 | ! Part of QuickBeam v1.04 by John Haynes & Roger Marchand |
---|
18 | ! |
---|
19 | ! Inputs: |
---|
20 | ! [freq] radar frequency (GHz), can be anything unless |
---|
21 | ! use_mie_table=1, in which case one of 94,35,13.8,9.6,3 |
---|
22 | ! [k2] |K|^2, the dielectric constant, set to -1 to use the |
---|
23 | ! frequency dependent default |
---|
24 | ! [do_ray] 1=do Rayleigh calcs, 0=not |
---|
25 | ! [use_gas_abs] 1=do gaseous abs calcs, 0=not, |
---|
26 | ! 2=use same as first profile (undocumented) |
---|
27 | ! [use_mie_table] 1=use Mie tables, 0=not |
---|
28 | ! [mt] Mie look up table |
---|
29 | ! [nhclass] number of hydrometeor types |
---|
30 | ! [hp] structure that defines hydrometeor types |
---|
31 | ! [nprof] number of hydrometeor profiles |
---|
32 | ! [ngate] number of vertical layers |
---|
33 | ! [nsizes] number of discrete particles in [D] |
---|
34 | ! [D] array of discrete particles (um) |
---|
35 | ! |
---|
36 | ! (The following 5 arrays must be in order from closest to the radar |
---|
37 | ! to farthest...) |
---|
38 | ! [hgt_matrix] height of hydrometeors (km) |
---|
39 | ! [hm_matrix] table of hydrometeor mixing rations (g/kg) |
---|
40 | ! [re_matrix] OPTIONAL table of hydrometeor effective radii (microns) |
---|
41 | ! [p_matrix] pressure profile (hPa) |
---|
42 | ! [t_matrix] temperature profile (C) |
---|
43 | ! [rh_matrix] relative humidity profile (%) |
---|
44 | ! |
---|
45 | ! Outputs: |
---|
46 | ! [Ze_non] radar reflectivity without attenuation (dBZ) |
---|
47 | ! [Ze_ray] Rayleigh reflectivity (dBZ) |
---|
48 | ! [h_atten_to_vol] attenuation by hydromets, radar to vol (dB) |
---|
49 | ! [g_atten_to_vol] gaseous atteunation, radar to vol (dB) |
---|
50 | ! [dBZe] effective radar reflectivity factor (dBZ) |
---|
51 | ! |
---|
52 | ! Optional: |
---|
53 | ! [g_to_vol_in] integrated atten due to gases, r>v (dB). |
---|
54 | ! If present then is used as gaseous absorption, independently of the |
---|
55 | ! value in use_gas_abs |
---|
56 | ! [g_to_vol_out] integrated atten due to gases, r>v (dB). |
---|
57 | ! If present then gaseous absorption for each profile is returned here. |
---|
58 | ! |
---|
59 | ! Created: |
---|
60 | ! 11/28/2005 John Haynes (haynes@atmos.colostate.edu) |
---|
61 | ! Modified: |
---|
62 | ! 09/2006 placed into subroutine form, scaling factors (Roger Marchand,JMH) |
---|
63 | ! 08/2007 added equivalent volume spheres, Z and N scalling most distrubtion types (Roger Marchand) |
---|
64 | ! 01/2008 'Do while' to determine if hydrometeor(s) present in volume |
---|
65 | ! changed for vectorization purposes (A. Bodas-Salcedo) |
---|
66 | |
---|
67 | ! ----- INPUTS ----- |
---|
68 | type(mie), intent(in) :: mt |
---|
69 | type(class_param), intent(inout) :: hp |
---|
70 | real*8, intent(in) :: freq,k2 |
---|
71 | integer, intent(in) :: do_ray,use_gas_abs,use_mie_table, & |
---|
72 | nhclass,nprof,ngate,nsizes |
---|
73 | real*8, dimension(nsizes), intent(in) :: D |
---|
74 | real*8, dimension(nprof,ngate), intent(in) :: hgt_matrix, p_matrix, & |
---|
75 | t_matrix,rh_matrix |
---|
76 | real*8, dimension(nhclass,nprof,ngate), intent(in) :: hm_matrix |
---|
77 | real*8, dimension(nhclass,nprof,ngate), intent(inout) :: re_matrix |
---|
78 | |
---|
79 | ! ----- OUTPUTS ----- |
---|
80 | real*8, dimension(nprof,ngate), intent(out) :: Ze_non,Ze_ray, & |
---|
81 | g_atten_to_vol,dBZe,h_atten_to_vol |
---|
82 | |
---|
83 | ! ----- OPTIONAL ----- |
---|
84 | real*8, optional, dimension(ngate,nprof) :: & |
---|
85 | g_to_vol_in,g_to_vol_out ! integrated atten due to gases, r>v (dB). This allows to output and then input |
---|
86 | ! the same gaseous absorption in different calls. Optional to allow compatibility |
---|
87 | ! with original version. A. Bodas April 2008. |
---|
88 | |
---|
89 | ! real*8, dimension(nprof,ngate) :: kr_matrix |
---|
90 | |
---|
91 | ! ----- INTERNAL ----- |
---|
92 | integer :: & |
---|
93 | phase, & ! 0=liquid, 1=ice |
---|
94 | ns ! number of discrete drop sizes |
---|
95 | |
---|
96 | integer*4, dimension(ngate) :: & |
---|
97 | hydro ! 1=hydrometeor in vol, 0=none |
---|
98 | real*8 :: & |
---|
99 | rho_a, & ! air density (kg m^-3) |
---|
100 | gases ! function: 2-way gas atten (dB/km) |
---|
101 | |
---|
102 | real*8, dimension(:), allocatable :: & |
---|
103 | Di, Deq, & ! discrete drop sizes (um) |
---|
104 | Ni, Ntemp, & ! discrete concentrations (cm^-3 um^-1) |
---|
105 | rhoi ! discrete densities (kg m^-3) |
---|
106 | |
---|
107 | real*8, dimension(ngate) :: & |
---|
108 | z_vol, & ! effective reflectivity factor (mm^6/m^3) |
---|
109 | z_ray, & ! reflectivity factor, Rayleigh only (mm^6/m^3) |
---|
110 | kr_vol, & ! attenuation coefficient hydro (dB/km) |
---|
111 | g_vol, & ! attenuation coefficient gases (dB/km) |
---|
112 | a_to_vol, & ! integrated atten due to hydometeors, r>v (dB) |
---|
113 | g_to_vol ! integrated atten due to gases, r>v (dB) |
---|
114 | |
---|
115 | |
---|
116 | integer,parameter :: KR8 = selected_real_kind(15,300) |
---|
117 | real*8, parameter :: xx = -1.0_KR8 |
---|
118 | real*8, dimension(:), allocatable :: xxa |
---|
119 | real*8 :: kr, ze, zr, pi, scale_factor, tc, Re, ld, tmp1, ze2, kr2,apm,bpm |
---|
120 | integer*4 :: tp, i, j, k, pr, itt, iff |
---|
121 | |
---|
122 | real*8 bin_length,step,base,step_list(25),base_list(25) |
---|
123 | integer*4 iRe_type,n,max_bin |
---|
124 | |
---|
125 | logical :: g_to_vol_in_present, g_to_vol_out_present |
---|
126 | |
---|
127 | ! Logicals to avoid calling present within the loops |
---|
128 | g_to_vol_in_present = present(g_to_vol_in) |
---|
129 | g_to_vol_out_present = present(g_to_vol_out) |
---|
130 | |
---|
131 | ! set up Re bins for z_scalling |
---|
132 | bin_length=50; |
---|
133 | max_bin=25 |
---|
134 | |
---|
135 | step_list(1)=1 |
---|
136 | base_list(1)=75 |
---|
137 | do j=2,max_bin |
---|
138 | step_list(j)=3*(j-1); |
---|
139 | if(step_list(j)>bin_length) then |
---|
140 | step_list(j)=bin_length; |
---|
141 | endif |
---|
142 | base_list(j)=base_list(j-1)+floor(bin_length/step_list(j-1)); |
---|
143 | enddo |
---|
144 | |
---|
145 | |
---|
146 | pi = acos(-1.0) |
---|
147 | if (use_mie_table == 1) iff = infind(mt%freq,freq,sort=1) |
---|
148 | |
---|
149 | |
---|
150 | ! // loop over each profile (nprof) |
---|
151 | do pr=1,nprof |
---|
152 | |
---|
153 | ! ----- calculations for each volume ----- |
---|
154 | z_vol(:) = 0 |
---|
155 | z_ray(:) = 0 |
---|
156 | kr_vol(:) = 0 |
---|
157 | hydro(:) = 0 |
---|
158 | |
---|
159 | ! // loop over eacho range gate (ngate) |
---|
160 | do k=1,ngate |
---|
161 | |
---|
162 | ! :: determine if hydrometeor(s) present in volume |
---|
163 | hydro(k) = 0 |
---|
164 | do j=1,nhclass ! Do while changed for vectorization purposes (A. B-S) |
---|
165 | if ((hm_matrix(j,pr,k) > 1E-12) .and. (hp%dtype(j) > 0)) then |
---|
166 | hydro(k) = 1 |
---|
167 | exit |
---|
168 | endif |
---|
169 | enddo |
---|
170 | |
---|
171 | if (hydro(k) == 1) then |
---|
172 | ! :: if there is hydrometeor in the volume |
---|
173 | |
---|
174 | rho_a = (p_matrix(pr,k)*100.)/(287*(t_matrix(pr,k)+273.15)) |
---|
175 | |
---|
176 | ! :: loop over hydrometeor type |
---|
177 | do tp=1,nhclass |
---|
178 | |
---|
179 | if (hm_matrix(tp,pr,k) <= 1E-12) cycle |
---|
180 | |
---|
181 | phase = hp%phase(tp) |
---|
182 | if(phase==0) then |
---|
183 | itt = infind(mt_ttl,t_matrix(pr,k)) |
---|
184 | else |
---|
185 | itt = infind(mt_tti,t_matrix(pr,k)) |
---|
186 | endif |
---|
187 | |
---|
188 | ! calculate Re if we have an exponential distribution with fixed No ... precipitation type particle |
---|
189 | if( hp%dtype(tp)==2 .and. abs(hp%p2(tp)+1) < 1E-8) then |
---|
190 | |
---|
191 | apm=hp%apm(tp) |
---|
192 | bpm=hp%bpm(tp) |
---|
193 | |
---|
194 | if ((hp%rho(tp) > 0) .and. (apm < 0)) then |
---|
195 | apm = (pi/6)*hp%rho(tp) |
---|
196 | bpm = 3. |
---|
197 | endif |
---|
198 | |
---|
199 | tmp1 = 1./(1.+bpm) |
---|
200 | ld = ((apm*gamma(1.+bpm)*hp%p1(tp))/(rho_a*hm_matrix(tp,pr,k)*1E-3))**tmp1 |
---|
201 | |
---|
202 | Re = 1.5E6/ld |
---|
203 | |
---|
204 | re_matrix(tp,pr,k) = Re; |
---|
205 | |
---|
206 | endif |
---|
207 | |
---|
208 | if(re_matrix(tp,pr,k).eq.0) then |
---|
209 | |
---|
210 | iRe_type=1 |
---|
211 | Re=0 |
---|
212 | else |
---|
213 | iRe_type=1 |
---|
214 | Re=re_matrix(tp,pr,k) |
---|
215 | |
---|
216 | n=floor(Re/bin_length) |
---|
217 | if(n==0) then |
---|
218 | if(Re<25) then |
---|
219 | step=0.5 |
---|
220 | base=0 |
---|
221 | else |
---|
222 | step=1 |
---|
223 | base=25 |
---|
224 | endif |
---|
225 | else |
---|
226 | if(n>max_bin) then |
---|
227 | n=max_bin |
---|
228 | endif |
---|
229 | |
---|
230 | step=step_list(n) |
---|
231 | base=base_list(n) |
---|
232 | endif |
---|
233 | |
---|
234 | iRe_type=floor(Re/step) |
---|
235 | |
---|
236 | if(iRe_type.lt.1) then |
---|
237 | iRe_type=1 |
---|
238 | endif |
---|
239 | |
---|
240 | Re=step*(iRe_type+0.5) |
---|
241 | iRe_type=iRe_type+base-floor(n*bin_length/step) |
---|
242 | |
---|
243 | ! make sure iRe_type is within bounds |
---|
244 | if(iRe_type.ge.nRe_types) then |
---|
245 | |
---|
246 | ! print *, tp, re_matrix(tp,pr,k), Re, iRe_type |
---|
247 | |
---|
248 | ! no scaling allowed |
---|
249 | Re=re_matrix(tp,pr,k) |
---|
250 | |
---|
251 | iRe_type=nRe_types |
---|
252 | hp%z_flag(tp,itt,iRe_type)=.false. |
---|
253 | hp%scaled(tp,iRe_type)=.false. |
---|
254 | endif |
---|
255 | endif |
---|
256 | |
---|
257 | ! use Ze_scaled, Zr_scaled, and kr_scaled ... if know them |
---|
258 | ! if not we will calculate Ze, Zr, and Kr from the distribution parameters |
---|
259 | if( .not. hp%z_flag(tp,itt,iRe_type) ) then |
---|
260 | |
---|
261 | ! :: create a distribution of hydrometeors within volume |
---|
262 | select case(hp%dtype(tp)) |
---|
263 | case(4) |
---|
264 | ns = 1 |
---|
265 | allocate(Di(ns),Ni(ns),rhoi(ns),xxa(ns),Deq(ns)) |
---|
266 | if (use_mie_table == 1) allocate(mt_qext(ns),mt_qbsca(ns),Ntemp(ns)) |
---|
267 | Di = hp%p1(tp) |
---|
268 | Ni = 0. |
---|
269 | case default |
---|
270 | ns = nsizes |
---|
271 | allocate(Di(ns),Ni(ns),rhoi(ns),xxa(ns),Deq(ns)) |
---|
272 | if (use_mie_table == 1) allocate(mt_qext(ns),mt_qbsca(ns),Ntemp(ns)) |
---|
273 | Di = D |
---|
274 | Ni = 0. |
---|
275 | end select |
---|
276 | |
---|
277 | ! :: create a DSD (using scaling factor if applicable) |
---|
278 | ! hp%scaled(tp,iRe_type)=.false. ! turn off N scaling |
---|
279 | |
---|
280 | call dsd(hm_matrix(tp,pr,k),Re,Di,Ni,ns,hp%dtype(tp),rho_a, & |
---|
281 | t_matrix(pr,k),hp%dmin(tp),hp%dmax(tp),hp%apm(tp),hp%bpm(tp), & |
---|
282 | hp%rho(tp),hp%p1(tp),hp%p2(tp),hp%p3(tp),hp%fc(tp,1:ns,iRe_type), & |
---|
283 | hp%scaled(tp,iRe_type)) |
---|
284 | |
---|
285 | ! :: calculate particle density |
---|
286 | ! if ((hp%rho_eff(tp,1,iRe_type) < 0) .and. (phase == 1)) then |
---|
287 | if (phase == 1) then |
---|
288 | if (hp%rho(tp) < 0) then |
---|
289 | |
---|
290 | ! MG Mie approach - adjust density of sphere with D = D_characteristic to match particle density |
---|
291 | ! hp%rho_eff(tp,1:ns,iRe_type) = (6/pi)*hp%apm(tp)*(Di*1E-6)**(hp%bpm(tp)-3) !MG Mie approach |
---|
292 | |
---|
293 | ! as the particle size gets small it is possible that the mass to size relationship of |
---|
294 | ! (given by power law in hclass.data) can produce impossible results |
---|
295 | ! where the mass is larger than a solid sphere of ice. |
---|
296 | ! This loop ensures that no ice particle can have more mass/density larger than an ice sphere. |
---|
297 | ! do i=1,ns |
---|
298 | ! if(hp%rho_eff(tp,i,iRe_type) > 917 ) then |
---|
299 | ! hp%rho_eff(tp,i,iRe_type) = 917 |
---|
300 | !endif |
---|
301 | !enddo |
---|
302 | |
---|
303 | ! alternative is to use equivalent volume spheres. |
---|
304 | hp%rho_eff(tp,1:ns,iRe_type) = 917 ! solid ice == equivalent volume approach |
---|
305 | Deq = ( ( 6/pi*hp%apm(tp)/917 ) ** (1.0/3.0) ) * & |
---|
306 | ( (Di*1E-6) ** (hp%bpm(tp)/3.0) ) * 1E6 ! Di now really Deq in microns. |
---|
307 | |
---|
308 | else |
---|
309 | |
---|
310 | ! hp%rho_eff(tp,1:ns,iRe_type) = hp%rho(tp) !MG Mie approach |
---|
311 | |
---|
312 | ! Equivalent volume sphere (solid ice rho_ice=917 kg/m^3). |
---|
313 | hp%rho_eff(tp,1:ns,iRe_type) = 917 |
---|
314 | Deq=Di * ((hp%rho(tp)/917)**(1.0/3.0)) |
---|
315 | |
---|
316 | endif |
---|
317 | |
---|
318 | ! if using equivalent volume spheres |
---|
319 | if (use_mie_table == 1) then |
---|
320 | |
---|
321 | Ntemp=Ni |
---|
322 | |
---|
323 | ! Find N(Di) from N(Deq) which we know |
---|
324 | do i=1,ns |
---|
325 | j=infind(Deq,Di(i)) |
---|
326 | Ni(i)=Ntemp(j) |
---|
327 | enddo |
---|
328 | else |
---|
329 | ! just use Deq and D variable input to mie code |
---|
330 | Di=Deq; |
---|
331 | endif |
---|
332 | |
---|
333 | endif |
---|
334 | rhoi = hp%rho_eff(tp,1:ns,iRe_type) |
---|
335 | |
---|
336 | ! :: calculate effective reflectivity factor of volume |
---|
337 | if (use_mie_table == 1) then |
---|
338 | |
---|
339 | if ((hp%dtype(tp) == 4) .and. (hp%idd(tp) < 0)) then |
---|
340 | hp%idd(tp) = infind(mt%D,Di(1)) |
---|
341 | endif |
---|
342 | |
---|
343 | if (phase == 0) then |
---|
344 | |
---|
345 | ! itt = infind(mt_ttl,t_matrix(pr,k)) |
---|
346 | select case(hp%dtype(tp)) |
---|
347 | case(4) |
---|
348 | mt_qext(1) = mt%qext(hp%idd(tp),itt,1,iff) |
---|
349 | mt_qbsca(1) = mt%qbsca(hp%idd(tp),itt,1,iff) |
---|
350 | case default |
---|
351 | mt_qext = mt%qext(:,itt,1,iff) |
---|
352 | mt_qbsca = mt%qbsca(:,itt,1,iff) |
---|
353 | end select |
---|
354 | |
---|
355 | call zeff(freq,Di,Ni,ns,k2,mt_ttl(itt),0,do_ray, & |
---|
356 | ze,zr,kr,mt_qext,mt_qbsca,xx) |
---|
357 | |
---|
358 | else |
---|
359 | |
---|
360 | ! itt = infind(mt_tti,t_matrix(pr,k)) |
---|
361 | select case(hp%dtype(tp)) |
---|
362 | case(4) |
---|
363 | if (hp%ifc(tp,1,iRe_type) < 0) then |
---|
364 | hp%ifc(tp,1,iRe_type) = infind(mt%f,rhoi(1)/917.) |
---|
365 | endif |
---|
366 | mt_qext(1) = & |
---|
367 | mt%qext(hp%idd(tp),itt+cnt_liq,hp%ifc(tp,1,iRe_type),iff) |
---|
368 | mt_qbsca(1) = & |
---|
369 | mt%qbsca(hp%idd(tp),itt+cnt_liq,hp%ifc(tp,1,iRe_type),iff) |
---|
370 | case default |
---|
371 | do i=1,ns |
---|
372 | if (hp%ifc(tp,i,iRe_type) < 0) then |
---|
373 | hp%ifc(tp,i,iRe_type) = infind(mt%f,rhoi(i)/917.) |
---|
374 | endif |
---|
375 | mt_qext(i) = mt%qext(i,itt+cnt_liq,hp%ifc(tp,i,iRe_type),iff) |
---|
376 | mt_qbsca(i) = mt%qbsca(i,itt+cnt_liq,hp%ifc(tp,i,iRe_type),iff) |
---|
377 | enddo |
---|
378 | end select |
---|
379 | |
---|
380 | call zeff(freq,Di,Ni,ns,k2,mt_tti(itt),1,do_ray, & |
---|
381 | ze,zr,kr,mt_qext,mt_qbsca,xx) |
---|
382 | |
---|
383 | endif |
---|
384 | |
---|
385 | else |
---|
386 | |
---|
387 | xxa = -9.9 |
---|
388 | call zeff(freq,Di,Ni,ns,k2,t_matrix(pr,k),phase,do_ray, & |
---|
389 | ze,zr,kr,xxa,xxa,rhoi) |
---|
390 | |
---|
391 | |
---|
392 | endif ! end of use mie table |
---|
393 | |
---|
394 | ! xxa = -9.9 |
---|
395 | !call zeff(freq,Di,Ni,ns,k2,t_matrix(pr,k),phase,do_ray, & |
---|
396 | ! ze2,zr,kr2,xxa,xxa,rhoi) |
---|
397 | |
---|
398 | ! if(abs(ze2-ze)/ze2 > 0.1) then |
---|
399 | ! if(abs(kr2-kr)/kr2 > 0.1) then |
---|
400 | |
---|
401 | ! write(*,*) pr,k,tp,ze2,ze2-ze,abs(ze2-ze)/ze2,itt+cnt_liq,iff |
---|
402 | ! write(*,*) pr,k,tp,ze2,kr2,kr2-kr,abs(kr2-kr)/kr2 |
---|
403 | ! stop |
---|
404 | |
---|
405 | !endif |
---|
406 | |
---|
407 | deallocate(Di,Ni,rhoi,xxa,Deq) |
---|
408 | if (use_mie_table == 1) deallocate(mt_qext,mt_qbsca,Ntemp) |
---|
409 | |
---|
410 | else ! can use z scaling |
---|
411 | |
---|
412 | if( hp%dtype(tp)==2 .and. abs(hp%p2(tp)+1) < 1E-8 ) then |
---|
413 | |
---|
414 | ze = hp%Ze_scaled(tp,itt,iRe_type) |
---|
415 | zr = hp%Zr_scaled(tp,itt,iRe_type) |
---|
416 | kr = hp%kr_scaled(tp,itt,iRe_type) |
---|
417 | |
---|
418 | else |
---|
419 | scale_factor=rho_a*hm_matrix(tp,pr,k) |
---|
420 | |
---|
421 | zr = hp%Zr_scaled(tp,itt,iRe_type) * scale_factor |
---|
422 | ze = hp%Ze_scaled(tp,itt,iRe_type) * scale_factor |
---|
423 | kr = hp%kr_scaled(tp,itt,iRe_type) * scale_factor |
---|
424 | endif |
---|
425 | |
---|
426 | endif ! end z_scaling |
---|
427 | |
---|
428 | ! kr=0 |
---|
429 | |
---|
430 | kr_vol(k) = kr_vol(k) + kr |
---|
431 | z_vol(k) = z_vol(k) + ze |
---|
432 | z_ray(k) = z_ray(k) + zr |
---|
433 | |
---|
434 | ! construct Ze_scaled, Zr_scaled, and kr_scaled ... if we can |
---|
435 | if( .not. hp%z_flag(tp,itt,iRe_type) .and. 1.eq.1 ) then |
---|
436 | |
---|
437 | if( ( (hp%dtype(tp)==1 .or. hp%dtype(tp)==5 .or. hp%dtype(tp)==2) .and. abs(hp%p1(tp)+1) < 1E-8 ) .or. & |
---|
438 | ( hp%dtype(tp)==3 .or. hp%dtype(tp)==4 ) & |
---|
439 | ) then |
---|
440 | |
---|
441 | scale_factor=rho_a*hm_matrix(tp,pr,k) |
---|
442 | |
---|
443 | hp%Ze_scaled(tp,itt,iRe_type) = ze/ scale_factor |
---|
444 | hp%Zr_scaled(tp,itt,iRe_type) = zr/ scale_factor |
---|
445 | hp%kr_scaled(tp,itt,iRe_type) = kr/ scale_factor |
---|
446 | |
---|
447 | hp%z_flag(tp,itt,iRe_type)=.True. |
---|
448 | |
---|
449 | elseif( hp%dtype(tp)==2 .and. abs(hp%p2(tp)+1) < 1E-8 ) then |
---|
450 | |
---|
451 | hp%Ze_scaled(tp,itt,iRe_type) = ze |
---|
452 | hp%Zr_scaled(tp,itt,iRe_type) = zr |
---|
453 | hp%kr_scaled(tp,itt,iRe_type) = kr |
---|
454 | |
---|
455 | hp%z_flag(tp,itt,iRe_type)=.True. |
---|
456 | endif |
---|
457 | |
---|
458 | endif |
---|
459 | |
---|
460 | enddo ! end loop of tp (hydrometeor type) |
---|
461 | |
---|
462 | else |
---|
463 | ! :: volume is hydrometeor-free |
---|
464 | |
---|
465 | kr_vol(k) = 0 |
---|
466 | z_vol(k) = -999 |
---|
467 | z_ray(k) = -999 |
---|
468 | |
---|
469 | endif |
---|
470 | |
---|
471 | ! :: attenuation due to hydrometeors between radar and volume |
---|
472 | a_to_vol(k) = 2*path_integral(kr_vol,hgt_matrix(pr,:),1,k-1) |
---|
473 | |
---|
474 | ! :: attenuation due to gaseous absorption between radar and volume |
---|
475 | if (g_to_vol_in_present) then |
---|
476 | g_to_vol(k) = g_to_vol_in(k,pr) |
---|
477 | else |
---|
478 | if ( (use_gas_abs == 1) .or. ((use_gas_abs == 2) .and. (pr == 1)) ) then |
---|
479 | g_vol(k) = gases(p_matrix(pr,k),t_matrix(pr,k)+273.15, & |
---|
480 | rh_matrix(pr,k),freq) |
---|
481 | g_to_vol(k) = path_integral(g_vol,hgt_matrix(pr,:),1,k-1) |
---|
482 | elseif (use_gas_abs == 0) then |
---|
483 | g_to_vol(k) = 0 |
---|
484 | endif |
---|
485 | endif |
---|
486 | |
---|
487 | ! kr_matrix(pr,:)=kr_vol |
---|
488 | |
---|
489 | ! :: store results in matrix for return to calling program |
---|
490 | h_atten_to_vol(pr,k)=a_to_vol(k) |
---|
491 | g_atten_to_vol(pr,k)=g_to_vol(k) |
---|
492 | if ((do_ray == 1) .and. (z_ray(k) > 0)) then |
---|
493 | Ze_ray(pr,k) = 10*log10(z_ray(k)) |
---|
494 | else |
---|
495 | Ze_ray(pr,k) = -999 |
---|
496 | endif |
---|
497 | if (z_vol(k) > 0) then |
---|
498 | dBZe(pr,k) = 10*log10(z_vol(k))-a_to_vol(k)-g_to_vol(k) |
---|
499 | Ze_non(pr,k) = 10*log10(z_vol(k)) |
---|
500 | else |
---|
501 | dBZe(pr,k) = -999 |
---|
502 | Ze_non(pr,k) = -999 |
---|
503 | endif |
---|
504 | |
---|
505 | enddo ! end loop of k (range gate) |
---|
506 | ! Output array with gaseous absorption |
---|
507 | if (g_to_vol_out_present) g_to_vol_out(:,pr) = g_to_vol |
---|
508 | enddo ! end loop over pr (profile) |
---|
509 | |
---|
510 | end subroutine radar_simulator |
---|
511 | |
---|