1 | subroutine dsd(Q,Re,D,N,nsizes,dtype,rho_a,tc, & |
---|
2 | dmin,dmax,apm,bpm,rho_c,p1,p2,p3,fc,scaled) |
---|
3 | use array_lib |
---|
4 | use math_lib |
---|
5 | implicit none |
---|
6 | |
---|
7 | ! Purpose: |
---|
8 | ! Create a discrete drop size distribution |
---|
9 | ! Part of QuickBeam v1.03 by John Haynes |
---|
10 | ! http://reef.atmos.colostate.edu/haynes/radarsim |
---|
11 | ! |
---|
12 | ! Inputs: |
---|
13 | ! [Q] hydrometeor mixing ratio (g/kg) |
---|
14 | ! [Re] Optional Effective Radius (microns). 0 = use default. |
---|
15 | ! [D] discrete drop sizes (um) |
---|
16 | ! [nsizes] number of elements of [D] |
---|
17 | ! [dtype] distribution type |
---|
18 | ! [rho_a] ambient air density (kg m^-3) |
---|
19 | ! [tc] temperature (C) |
---|
20 | ! [dmin] minimum size cutoff (um) |
---|
21 | ! [dmax] maximum size cutoff (um) |
---|
22 | ! [rho_c] alternate constant density (kg m^-3) |
---|
23 | ! [p1],[p2],[p3] distribution parameters |
---|
24 | ! |
---|
25 | ! Input/Output: |
---|
26 | ! [fc] scaling factor for the distribution |
---|
27 | ! [scaled] has this hydrometeor type been scaled? |
---|
28 | ! [apm] a parameter for mass (kg m^[-bpm]) |
---|
29 | ! [bmp] b params for mass |
---|
30 | ! |
---|
31 | ! Outputs: |
---|
32 | ! [N] discrete concentrations (cm^-3 um^-1) |
---|
33 | ! or, for monodisperse, a constant (1/cm^3) |
---|
34 | ! |
---|
35 | ! Requires: |
---|
36 | ! function infind |
---|
37 | ! |
---|
38 | ! Created: |
---|
39 | ! 11/28/05 John Haynes (haynes@atmos.colostate.edu) |
---|
40 | ! Modified: |
---|
41 | ! 01/31/06 Port from IDL to Fortran 90 |
---|
42 | ! 07/07/06 Rewritten for variable DSD's |
---|
43 | ! 10/02/06 Rewritten using scaling factors (Roger Marchand and JMH) |
---|
44 | |
---|
45 | ! ----- INPUTS ----- |
---|
46 | |
---|
47 | integer*4, intent(in) :: nsizes |
---|
48 | integer, intent(in) :: dtype |
---|
49 | real*8, intent(in) :: Q,D(nsizes),rho_a,tc,dmin,dmax, & |
---|
50 | rho_c,p1,p2,p3 |
---|
51 | |
---|
52 | ! ----- INPUT/OUTPUT ----- |
---|
53 | |
---|
54 | real*8, intent(inout) :: fc(nsizes),apm,bpm,Re |
---|
55 | logical, intent(inout) :: scaled |
---|
56 | |
---|
57 | ! ----- OUTPUTS ----- |
---|
58 | |
---|
59 | real*8, intent(out) :: N(nsizes) |
---|
60 | |
---|
61 | ! ----- INTERNAL ----- |
---|
62 | |
---|
63 | real*8 :: & |
---|
64 | N0,D0,vu,np,dm,ld, & ! gamma, exponential variables |
---|
65 | dmin_mm,dmax_mm,ahp,bhp, & ! power law variables |
---|
66 | rg,log_sigma_g, & ! lognormal variables |
---|
67 | rho_e ! particle density (kg m^-3) |
---|
68 | |
---|
69 | real*8 :: tmp1, tmp2 |
---|
70 | real*8 :: pi,rc |
---|
71 | |
---|
72 | integer k,lidx,uidx |
---|
73 | |
---|
74 | pi = acos(-1.0) |
---|
75 | |
---|
76 | ! // if density is constant, store equivalent values for apm and bpm |
---|
77 | if ((rho_c > 0) .and. (apm < 0)) then |
---|
78 | apm = (pi/6)*rho_c |
---|
79 | bpm = 3. |
---|
80 | endif |
---|
81 | |
---|
82 | select case(dtype) |
---|
83 | |
---|
84 | ! ---------------------------------------------------------! |
---|
85 | ! // modified gamma ! |
---|
86 | ! ---------------------------------------------------------! |
---|
87 | ! :: N0 = total number concentration (m^-3) |
---|
88 | ! :: np = fixed number concentration (kg^-1) |
---|
89 | ! :: D0 = characteristic diameter (um) |
---|
90 | ! :: dm = mean diameter (um) |
---|
91 | ! :: vu = distribution width parameter |
---|
92 | |
---|
93 | case(1) |
---|
94 | if (abs(p1+1) < 1E-8) then |
---|
95 | |
---|
96 | ! // D0, vu are given |
---|
97 | vu = p3 |
---|
98 | |
---|
99 | if(Re.le.0) then |
---|
100 | dm = p2 |
---|
101 | D0 = gamma(vu)/gamma(vu+1)*dm |
---|
102 | else |
---|
103 | D0 = 2.0*Re*gamma(vu+2)/gamma(vu+3) |
---|
104 | endif |
---|
105 | |
---|
106 | if (scaled .eqv. .false.) then |
---|
107 | |
---|
108 | fc = ( & |
---|
109 | ((D*1E-6)**(vu-1)*exp(-1*D/D0)) / & |
---|
110 | (apm*((D0*1E-6)**(vu+bpm))*gamma(vu+bpm)) & |
---|
111 | ) * 1E-12 |
---|
112 | scaled = .true. |
---|
113 | |
---|
114 | endif |
---|
115 | |
---|
116 | N = fc*rho_a*(Q*1E-3) |
---|
117 | |
---|
118 | elseif (abs(p2+1) < 1E-8) then |
---|
119 | |
---|
120 | ! // N0, vu are given |
---|
121 | np = p1 |
---|
122 | vu = p3 |
---|
123 | tmp1 = (Q*1E-3)**(1./bpm) |
---|
124 | |
---|
125 | if (scaled .eqv. .false.) then |
---|
126 | |
---|
127 | fc = (D*1E-6 / (gamma(vu)/(apm*np*gamma(vu+bpm)))** & |
---|
128 | (1./bpm))**vu |
---|
129 | |
---|
130 | scaled = .true. |
---|
131 | |
---|
132 | endif |
---|
133 | |
---|
134 | N = ( & |
---|
135 | (rho_a*np*fc*(D*1E-6)**(-1.))/(gamma(vu)*tmp1**vu) * & |
---|
136 | exp(-1.*fc**(1./vu)/tmp1) & |
---|
137 | ) * 1E-12 |
---|
138 | |
---|
139 | else |
---|
140 | |
---|
141 | ! // vu isn't given |
---|
142 | print *, 'Error: Must specify a value for vu' |
---|
143 | stop |
---|
144 | |
---|
145 | endif |
---|
146 | |
---|
147 | ! ---------------------------------------------------------! |
---|
148 | ! // exponential ! |
---|
149 | ! ---------------------------------------------------------! |
---|
150 | ! :: N0 = intercept parameter (m^-4) |
---|
151 | ! :: ld = slope parameter (um) |
---|
152 | |
---|
153 | case(2) |
---|
154 | if (abs(p1+1) > 1E-8) then |
---|
155 | |
---|
156 | ! // N0 has been specified, determine ld |
---|
157 | N0 = p1 |
---|
158 | |
---|
159 | if(Re>0) then |
---|
160 | |
---|
161 | ! if Re is set and No is set than the distribution is fully defined. |
---|
162 | ! so we assume Re and No have already been chosen consistant with |
---|
163 | ! the water content, Q. |
---|
164 | |
---|
165 | ! print *,'using Re pass ...' |
---|
166 | |
---|
167 | ld = 1.5/Re ! units 1/um |
---|
168 | |
---|
169 | N = ( & |
---|
170 | N0*exp(-1*ld*D) & |
---|
171 | ) * 1E-12 |
---|
172 | |
---|
173 | else |
---|
174 | |
---|
175 | tmp1 = 1./(1.+bpm) |
---|
176 | |
---|
177 | if (scaled .eqv. .false.) then |
---|
178 | fc = ((apm*gamma(1.+bpm)*N0)**tmp1)*(D*1E-6) |
---|
179 | scaled = .true. |
---|
180 | |
---|
181 | endif |
---|
182 | |
---|
183 | N = ( & |
---|
184 | N0*exp(-1.*fc*(1./(rho_a*Q*1E-3))**tmp1) & |
---|
185 | ) * 1E-12 |
---|
186 | |
---|
187 | endif |
---|
188 | |
---|
189 | elseif (abs(p2+1) > 1E-8) then |
---|
190 | |
---|
191 | ! // ld has been specified, determine N0 |
---|
192 | ld = p2 |
---|
193 | |
---|
194 | if (scaled .eqv. .false.) then |
---|
195 | |
---|
196 | fc = (ld*1E6)**(1.+bpm)/(apm*gamma(1+bpm))* & |
---|
197 | exp(-1.*(ld*1E6)*(D*1E-6))*1E-12 |
---|
198 | scaled = .true. |
---|
199 | |
---|
200 | endif |
---|
201 | |
---|
202 | N = fc*rho_a*(Q*1E-3) |
---|
203 | |
---|
204 | else |
---|
205 | |
---|
206 | ! // ld will be determined from temperature, then N0 follows |
---|
207 | ld = 1220*10.**(-0.0245*tc)*1E-6 |
---|
208 | N0 = ((ld*1E6)**(1+bpm)*Q*1E-3*rho_a)/(apm*gamma(1+bpm)) |
---|
209 | |
---|
210 | N = ( & |
---|
211 | N0*exp(-1*ld*D) & |
---|
212 | ) * 1E-12 |
---|
213 | |
---|
214 | endif |
---|
215 | |
---|
216 | ! ---------------------------------------------------------! |
---|
217 | ! // power law ! |
---|
218 | ! ---------------------------------------------------------! |
---|
219 | ! :: ahp = Ar parameter (m^-4 mm^-bhp) |
---|
220 | ! :: bhp = br parameter |
---|
221 | ! :: dmin_mm = lower bound (mm) |
---|
222 | ! :: dmax_mm = upper bound (mm) |
---|
223 | |
---|
224 | case(3) |
---|
225 | |
---|
226 | ! :: br parameter |
---|
227 | if (abs(p1+2) < 1E-8) then |
---|
228 | ! :: if p1=-2, bhp is parameterized according to Ryan (2000), |
---|
229 | ! :: applicatable to cirrus clouds |
---|
230 | if (tc < -30) then |
---|
231 | bhp = -1.75+0.09*((tc+273)-243.16) |
---|
232 | elseif ((tc >= -30) .and. (tc < -9)) then |
---|
233 | bhp = -3.25-0.06*((tc+273)-265.66) |
---|
234 | else |
---|
235 | bhp = -2.15 |
---|
236 | endif |
---|
237 | elseif (abs(p1+3) < 1E-8) then |
---|
238 | ! :: if p1=-3, bhp is parameterized according to Ryan (2000), |
---|
239 | ! :: applicable to frontal clouds |
---|
240 | if (tc < -35) then |
---|
241 | bhp = -1.75+0.09*((tc+273)-243.16) |
---|
242 | elseif ((tc >= -35) .and. (tc < -17.5)) then |
---|
243 | bhp = -2.65+0.09*((tc+273)-255.66) |
---|
244 | elseif ((tc >= -17.5) .and. (tc < -9)) then |
---|
245 | bhp = -3.25-0.06*((tc+273)-265.66) |
---|
246 | else |
---|
247 | bhp = -2.15 |
---|
248 | endif |
---|
249 | else |
---|
250 | ! :: otherwise the specified value is used |
---|
251 | bhp = p1 |
---|
252 | endif |
---|
253 | |
---|
254 | ! :: Ar parameter |
---|
255 | dmin_mm = dmin*1E-3 |
---|
256 | dmax_mm = dmax*1E-3 |
---|
257 | |
---|
258 | ! :: commented lines are original method with constant density |
---|
259 | ! rc = 500. ! (kg/m^3) |
---|
260 | ! tmp1 = 6*rho_a*(bhp+4) |
---|
261 | ! tmp2 = pi*rc*(dmax_mm**(bhp+4))*(1-(dmin_mm/dmax_mm)**(bhp+4)) |
---|
262 | ! ahp = (Q*1E-3)*1E12*tmp1/tmp2 |
---|
263 | |
---|
264 | ! :: new method is more consistent with the rest of the distributions |
---|
265 | ! :: and allows density to vary with particle size |
---|
266 | tmp1 = rho_a*(Q*1E-3)*(bhp+bpm+1) |
---|
267 | tmp2 = apm*(dmax_mm**bhp*dmax**(bpm+1)-dmin_mm**bhp*dmin**(bpm+1)) |
---|
268 | ahp = tmp1/tmp2 * 1E24 |
---|
269 | ! ahp = tmp1/tmp2 |
---|
270 | |
---|
271 | lidx = infind(D,dmin) |
---|
272 | uidx = infind(D,dmax) |
---|
273 | do k=lidx,uidx |
---|
274 | |
---|
275 | N(k) = ( & |
---|
276 | ahp*(D(k)*1E-3)**bhp & |
---|
277 | ) * 1E-12 |
---|
278 | |
---|
279 | enddo |
---|
280 | |
---|
281 | ! print *,'test=',ahp,bhp,ahp/(rho_a*Q),D(100),N(100),bpm,dmin_mm,dmax_mm |
---|
282 | |
---|
283 | ! ---------------------------------------------------------! |
---|
284 | ! // monodisperse ! |
---|
285 | ! ---------------------------------------------------------! |
---|
286 | ! :: D0 = particle diameter (um) |
---|
287 | |
---|
288 | case(4) |
---|
289 | |
---|
290 | if (scaled .eqv. .false.) then |
---|
291 | |
---|
292 | D0 = p1 |
---|
293 | rho_e = (6/pi)*apm*(D0*1E-6)**(bpm-3) |
---|
294 | fc(1) = (6./(pi*D0**3*rho_e))*1E12 |
---|
295 | scaled = .true. |
---|
296 | |
---|
297 | endif |
---|
298 | |
---|
299 | N(1) = fc(1)*rho_a*(Q*1E-3) |
---|
300 | |
---|
301 | ! ---------------------------------------------------------! |
---|
302 | ! // lognormal ! |
---|
303 | ! ---------------------------------------------------------! |
---|
304 | ! :: N0 = total number concentration (m^-3) |
---|
305 | ! :: np = fixed number concentration (kg^-1) |
---|
306 | ! :: rg = mean radius (um) |
---|
307 | ! :: log_sigma_g = ln(geometric standard deviation) |
---|
308 | |
---|
309 | case(5) |
---|
310 | if (abs(p1+1) < 1E-8) then |
---|
311 | |
---|
312 | ! // rg, log_sigma_g are given |
---|
313 | log_sigma_g = p3 |
---|
314 | tmp2 = (bpm*log_sigma_g)**2. |
---|
315 | if(Re.le.0) then |
---|
316 | rg = p2 |
---|
317 | else |
---|
318 | rg =Re*exp(-2.5*(log_sigma_g**2)) |
---|
319 | endif |
---|
320 | |
---|
321 | if (scaled .eqv. .false.) then |
---|
322 | |
---|
323 | fc = 0.5 * ( & |
---|
324 | (1./((2.*rg*1E-6)**(bpm)*apm*(2.*pi)**(0.5) * & |
---|
325 | log_sigma_g*D*0.5*1E-6)) * & |
---|
326 | exp(-0.5*((log(0.5*D/rg)/log_sigma_g)**2.+tmp2)) & |
---|
327 | ) * 1E-12 |
---|
328 | scaled = .true. |
---|
329 | |
---|
330 | endif |
---|
331 | |
---|
332 | N = fc*rho_a*(Q*1E-3) |
---|
333 | |
---|
334 | elseif (abs(p2+1) < 1E-8) then |
---|
335 | |
---|
336 | ! // N0, log_sigma_g are given |
---|
337 | Np = p1 |
---|
338 | log_sigma_g = p3 |
---|
339 | N0 = np*rho_a |
---|
340 | tmp1 = (rho_a*(Q*1E-3))/(2.**bpm*apm*N0) |
---|
341 | tmp2 = exp(0.5*bpm**2.*(log_sigma_g))**2. |
---|
342 | rg = ((tmp1/tmp2)**(1/bpm))*1E6 |
---|
343 | |
---|
344 | N = 0.5*( & |
---|
345 | N0 / ((2.*pi)**(0.5)*log_sigma_g*D*0.5*1E-6) * & |
---|
346 | exp((-0.5*(log(0.5*D/rg)/log_sigma_g)**2.)) & |
---|
347 | ) * 1E-12 |
---|
348 | |
---|
349 | else |
---|
350 | |
---|
351 | ! // vu isn't given |
---|
352 | print *, 'Error: Must specify a value for sigma_g' |
---|
353 | stop |
---|
354 | |
---|
355 | endif |
---|
356 | |
---|
357 | end select |
---|
358 | |
---|
359 | end subroutine dsd |
---|