1 | ! $Id$ |
---|
2 | ! |
---|
3 | SUBROUTINE readaerosol_interp(id_aero, itap, pdtphys, r_day, first, pplay, paprs, t_seri, mass_out, pi_mass_out) |
---|
4 | ! |
---|
5 | ! This routine will return the mass concentration at actual day(mass_out) and |
---|
6 | ! the pre-industrial values(pi_mass_out) for aerosol corresponding to "id_aero". |
---|
7 | ! The mass concentrations for all aerosols are saved in this routine but each |
---|
8 | ! call to this routine only treats the aerosol "id_aero". |
---|
9 | ! |
---|
10 | ! 1) Read in data for the whole year, only at first time step |
---|
11 | ! 2) Interpolate to the actual day, only at new day |
---|
12 | ! 3) Interpolate to the model vertical grid (target grid), only at new day |
---|
13 | ! 4) Test for negative mass values |
---|
14 | |
---|
15 | USE dimphy, ONLY : klev,klon |
---|
16 | USE mod_phys_lmdz_para, ONLY : mpi_rank |
---|
17 | USE readaerosol_mod |
---|
18 | USE aero_mod, ONLY : naero_spc, name_aero |
---|
19 | USE write_field_phy |
---|
20 | USE phys_cal_mod |
---|
21 | |
---|
22 | IMPLICIT NONE |
---|
23 | |
---|
24 | INCLUDE "YOMCST.h" |
---|
25 | INCLUDE "chem.h" |
---|
26 | INCLUDE "temps.h" |
---|
27 | INCLUDE "clesphys.h" |
---|
28 | INCLUDE "iniprint.h" |
---|
29 | INCLUDE "dimensions.h" |
---|
30 | INCLUDE "comvert.h" |
---|
31 | ! |
---|
32 | ! Input: |
---|
33 | !**************************************************************************************** |
---|
34 | INTEGER, INTENT(IN) :: id_aero! Identity number for the aerosol to treat |
---|
35 | INTEGER, INTENT(IN) :: itap ! Physic step count |
---|
36 | REAL, INTENT(IN) :: pdtphys! Physic day step |
---|
37 | REAL, INTENT(IN) :: r_day ! Day of integration |
---|
38 | LOGICAL, INTENT(IN) :: first ! First model timestep |
---|
39 | REAL, DIMENSION(klon,klev), INTENT(IN) :: pplay ! pression at model mid-layers |
---|
40 | REAL, DIMENSION(klon,klev+1),INTENT(IN):: paprs ! pression between model layers |
---|
41 | REAL, DIMENSION(klon,klev), INTENT(IN) :: t_seri ! air temperature |
---|
42 | ! |
---|
43 | ! Output: |
---|
44 | !**************************************************************************************** |
---|
45 | REAL, INTENT(OUT) :: mass_out(klon,klev) ! Mass of aerosol (monthly mean data,from file) [ug AIBCM/m3] |
---|
46 | REAL, INTENT(OUT) :: pi_mass_out(klon,klev) ! Mass of preindustrial aerosol (monthly mean data,from file) [ug AIBCM/m3] |
---|
47 | ! |
---|
48 | ! Local Variables: |
---|
49 | !**************************************************************************************** |
---|
50 | INTEGER :: i, k, ierr |
---|
51 | INTEGER :: iday, iyr, lmt_pas |
---|
52 | INTEGER :: im, day1, day2, im2 |
---|
53 | INTEGER :: pi_klev_src ! Only for testing purpose |
---|
54 | INTEGER, SAVE :: klev_src ! Number of vertical levles in source field |
---|
55 | !$OMP THREADPRIVATE(klev_src) |
---|
56 | |
---|
57 | REAL :: zrho ! Air density [kg/m3] |
---|
58 | REAL :: volm ! Volyme de melange [kg/kg] |
---|
59 | REAL, DIMENSION(klon) :: psurf_day, pi_psurf_day |
---|
60 | REAL, DIMENSION(klon) :: load_src, pi_load_src ! Mass load at source grid |
---|
61 | REAL, DIMENSION(klon) :: load_tgt, load_tgt_test |
---|
62 | REAL, DIMENSION(klon,klev) :: delp ! pressure difference in each model layer |
---|
63 | |
---|
64 | REAL, ALLOCATABLE, DIMENSION(:,:) :: pplay_src ! pression mid-layer at source levels |
---|
65 | REAL, ALLOCATABLE, DIMENSION(:,:) :: tmp1, tmp2 ! Temporary variables |
---|
66 | REAL, ALLOCATABLE, DIMENSION(:,:,:,:), SAVE :: var_year ! VAR in right dimension for the total year |
---|
67 | REAL, ALLOCATABLE, DIMENSION(:,:,:,:), SAVE :: pi_var_year ! pre-industrial VAR, -"- |
---|
68 | !$OMP THREADPRIVATE(var_year,pi_var_year) |
---|
69 | REAL, ALLOCATABLE, DIMENSION(:,:,:),SAVE :: var_day ! VAR interpolated to the actual day and model grid |
---|
70 | REAL, ALLOCATABLE, DIMENSION(:,:,:),SAVE :: pi_var_day ! pre-industrial VAR, -"- |
---|
71 | !$OMP THREADPRIVATE(var_day,pi_var_day) |
---|
72 | REAL, ALLOCATABLE, DIMENSION(:,:,:), SAVE :: psurf_year, pi_psurf_year ! surface pressure for the total year |
---|
73 | !$OMP THREADPRIVATE(psurf_year, pi_psurf_year) |
---|
74 | REAL, ALLOCATABLE, DIMENSION(:,:,:), SAVE :: load_year, pi_load_year ! load in the column for the total year |
---|
75 | !$OMP THREADPRIVATE(load_year, pi_load_year) |
---|
76 | |
---|
77 | REAL, DIMENSION(:,:,:), POINTER :: pt_tmp ! Pointer allocated in readaerosol |
---|
78 | REAL, POINTER, DIMENSION(:), SAVE :: pt_ap, pt_b ! Pointer for describing the vertical levels |
---|
79 | !$OMP THREADPRIVATE(pt_ap, pt_b) |
---|
80 | |
---|
81 | LOGICAL :: lnewday ! Indicates if first time step at a new day |
---|
82 | LOGICAL :: OLDNEWDAY |
---|
83 | LOGICAL,SAVE :: vert_interp ! Indicates if vertical interpolation will be done |
---|
84 | LOGICAL,SAVE :: debug=.FALSE.! Debugging in this subroutine |
---|
85 | !$OMP THREADPRIVATE(vert_interp, debug) |
---|
86 | |
---|
87 | |
---|
88 | !**************************************************************************************** |
---|
89 | ! Initialization |
---|
90 | ! |
---|
91 | !**************************************************************************************** |
---|
92 | |
---|
93 | ! Calculation to find if it is a new day |
---|
94 | |
---|
95 | IF(mpi_rank == 0)then |
---|
96 | PRINT*,'CONTROL PANEL REGARDING TIME STEPING' |
---|
97 | ENDIF |
---|
98 | |
---|
99 | ! Use phys_cal_mod |
---|
100 | !iday= day_cur |
---|
101 | !iyr = year_cur |
---|
102 | !im = mth_cur |
---|
103 | |
---|
104 | iday = INT(r_day) |
---|
105 | iyr = iday/360 |
---|
106 | iday = iday-iyr*360 ! day of the actual year |
---|
107 | iyr = iyr + annee_ref ! year of the run |
---|
108 | im = iday/30 +1 ! the actual month |
---|
109 | |
---|
110 | IF(MOD(itap-1,NINT(86400./pdtphys)) == 0)THEN |
---|
111 | lnewday=.TRUE. |
---|
112 | ENDIF |
---|
113 | |
---|
114 | IF(mpi_rank == 0)then |
---|
115 | ! 0.02 is about 0.5/24, namly less than half an hour |
---|
116 | OLDNEWDAY = (r_day-FLOAT(iday) < 0.02) |
---|
117 | ! Once per day, update aerosol fields |
---|
118 | lmt_pas = NINT(86400./pdtphys) |
---|
119 | PRINT*,'r_day-FLOAT(iday) =',r_day-FLOAT(iday) |
---|
120 | PRINT*,'itap =',itap |
---|
121 | PRINT*,'pdtphys =',pdtphys |
---|
122 | PRINT*,'lmt_pas =',lmt_pas |
---|
123 | PRINT*,'iday =',iday |
---|
124 | PRINT*,'r_day =',r_day |
---|
125 | PRINT*,'NINT(86400./pdtphys) =',NINT(86400./pdtphys) |
---|
126 | PRINT*,'MOD(0,1) =',MOD(0,1) |
---|
127 | PRINT*,'lnewday =',lnewday |
---|
128 | PRINT*,'OLDNEWDAY =',OLDNEWDAY |
---|
129 | ENDIF |
---|
130 | |
---|
131 | IF (.NOT. ALLOCATED(var_day)) THEN |
---|
132 | ALLOCATE( var_day(klon, klev, naero_spc), stat=ierr) |
---|
133 | IF (ierr /= 0) CALL abort_gcm('readaerosol_interp', 'pb in allocation 1',1) |
---|
134 | ALLOCATE( pi_var_day(klon, klev, naero_spc), stat=ierr) |
---|
135 | IF (ierr /= 0) CALL abort_gcm('readaerosol_interp', 'pb in allocation 2',1) |
---|
136 | |
---|
137 | ALLOCATE( psurf_year(klon, 12, naero_spc), pi_psurf_year(klon, 12, naero_spc), stat=ierr) |
---|
138 | IF (ierr /= 0) CALL abort_gcm('readaerosol_interp', 'pb in allocation 3',1) |
---|
139 | |
---|
140 | ALLOCATE( load_year(klon, 12, naero_spc), pi_load_year(klon, 12, naero_spc), stat=ierr) |
---|
141 | IF (ierr /= 0) CALL abort_gcm('readaerosol_interp', 'pb in allocation 4',1) |
---|
142 | |
---|
143 | lnewday=.TRUE. |
---|
144 | |
---|
145 | NULLIFY(pt_ap) |
---|
146 | NULLIFY(pt_b) |
---|
147 | END IF |
---|
148 | |
---|
149 | !**************************************************************************************** |
---|
150 | ! 1) Read in data : corresponding to the actual year and preindustrial data. |
---|
151 | ! Only for the first day of the year. |
---|
152 | ! |
---|
153 | !**************************************************************************************** |
---|
154 | IF ( (first .OR. iday==1.) .AND. lnewday ) THEN |
---|
155 | NULLIFY(pt_tmp) |
---|
156 | |
---|
157 | ! Reading values corresponding to the closest year taking into count the choice of aer_type. |
---|
158 | ! For aer_type=scenario interpolation between 2 data sets is done in readaerosol. |
---|
159 | CALL readaerosol(name_aero(id_aero), aer_type, iyr, klev_src, pt_ap, pt_b, pt_tmp, & |
---|
160 | psurf_year(:,:,id_aero), load_year(:,:,id_aero)) |
---|
161 | IF (.NOT. ALLOCATED(var_year)) THEN |
---|
162 | ALLOCATE(var_year(klon, klev_src, 12, naero_spc), stat=ierr) |
---|
163 | IF (ierr /= 0) CALL abort_gcm('readaerosol_interp', 'pb in allocation 5',1) |
---|
164 | END IF |
---|
165 | var_year(:,:,:,id_aero) = pt_tmp(:,:,:) |
---|
166 | |
---|
167 | ! Reading values corresponding to the preindustrial concentrations. |
---|
168 | CALL readaerosol(name_aero(id_aero), 'preind', iyr, pi_klev_src, pt_ap, pt_b, pt_tmp, & |
---|
169 | pi_psurf_year(:,:,id_aero), pi_load_year(:,:,id_aero)) |
---|
170 | |
---|
171 | ! klev_src must be the same in both files. |
---|
172 | ! Also supposing pt_ap and pt_b to be the same in the 2 files without testing. |
---|
173 | IF (pi_klev_src /= klev_src) THEN |
---|
174 | WRITE(lunout,*) 'Error! All forcing files for the same aerosol must have the same vertical dimension' |
---|
175 | WRITE(lunout,*) 'Aerosol : ', name_aero(id_aero) |
---|
176 | CALL abort_gcm('readaerosol_interp','Differnt vertical axes in aerosol forcing files',1) |
---|
177 | END IF |
---|
178 | |
---|
179 | IF (.NOT. ALLOCATED(pi_var_year)) THEN |
---|
180 | ALLOCATE(pi_var_year(klon, klev_src, 12, naero_spc), stat=ierr) |
---|
181 | IF (ierr /= 0) CALL abort_gcm('readaerosol_interp', 'pb in allocation 6',1) |
---|
182 | END IF |
---|
183 | pi_var_year(:,:,:,id_aero) = pt_tmp(:,:,:) |
---|
184 | |
---|
185 | IF (debug) THEN |
---|
186 | CALL writefield_phy('var_year_jan',var_year(:,:,1,id_aero),klev_src) |
---|
187 | CALL writefield_phy('var_year_dec',var_year(:,:,12,id_aero),klev_src) |
---|
188 | CALL writefield_phy('psurf_src',psurf_year(:,:,id_aero),1) |
---|
189 | CALL writefield_phy('pi_psurf_src',pi_psurf_year(:,:,id_aero),1) |
---|
190 | CALL writefield_phy('load_year_src',load_year(:,:,id_aero),1) |
---|
191 | CALL writefield_phy('pi_load_year_src',pi_load_year(:,:,id_aero),1) |
---|
192 | END IF |
---|
193 | |
---|
194 | ! Pointer no more useful, deallocate. |
---|
195 | DEALLOCATE(pt_tmp) |
---|
196 | |
---|
197 | ! Test if vertical interpolation will be needed. |
---|
198 | IF (psurf_year(1,1,id_aero)==not_valid .OR. pi_psurf_year(1,1,id_aero)==not_valid ) THEN |
---|
199 | ! Pressure=not_valid indicates old file format, see module readaerosol |
---|
200 | vert_interp = .FALSE. |
---|
201 | |
---|
202 | ! If old file format, both psurf_year and pi_psurf_year must be not_valid |
---|
203 | IF ( psurf_year(1,1,id_aero) /= pi_psurf_year(1,1,id_aero) ) THEN |
---|
204 | WRITE(lunout,*) 'Warning! All forcing files for the same aerosol must have the same structure' |
---|
205 | CALL abort_gcm('readaerosol_interp', 'The aerosol files have not the same format',1) |
---|
206 | END IF |
---|
207 | |
---|
208 | IF (klev /= klev_src) THEN |
---|
209 | WRITE(lunout,*) 'Old format of aerosol file do not allowed vertical interpolation' |
---|
210 | CALL abort_gcm('readaerosol_interp', 'Old aerosol file not possible',1) |
---|
211 | END IF |
---|
212 | |
---|
213 | ELSE |
---|
214 | vert_interp = .TRUE. |
---|
215 | END IF |
---|
216 | |
---|
217 | END IF ! IF ( (first .OR. iday==1.) .AND. lnewday ) THEN |
---|
218 | |
---|
219 | !**************************************************************************************** |
---|
220 | ! - 2) Interpolate to the actual day. |
---|
221 | ! - 3) Interpolate to the model vertical grid. |
---|
222 | ! |
---|
223 | !**************************************************************************************** |
---|
224 | |
---|
225 | IF (lnewday) THEN ! only if new day |
---|
226 | !**************************************************************************************** |
---|
227 | ! 2) Interpolate to the actual day |
---|
228 | ! |
---|
229 | !**************************************************************************************** |
---|
230 | ! Find which months and days to use for time interpolation |
---|
231 | IF (iday < im*30-15) THEN |
---|
232 | ! in the first half of the month use month before and actual month |
---|
233 | im2=im-1 |
---|
234 | day2 = im2*30-15 |
---|
235 | day1 = im2*30+15 |
---|
236 | IF (im2 <= 0) THEN |
---|
237 | ! the month is january, thus the month before december |
---|
238 | im2=12 |
---|
239 | END IF |
---|
240 | ELSE |
---|
241 | ! the second half of the month |
---|
242 | im2=im+1 |
---|
243 | IF (im2 > 12) THEN |
---|
244 | ! the month is december, the following thus january |
---|
245 | im2=1 |
---|
246 | ENDIF |
---|
247 | day2 = im*30-15 |
---|
248 | day1 = im*30+15 |
---|
249 | END IF |
---|
250 | |
---|
251 | ! Time interpolation, still on vertical source grid |
---|
252 | ALLOCATE(tmp1(klon,klev_src), tmp2(klon,klev_src),stat=ierr) |
---|
253 | IF (ierr /= 0) CALL abort_gcm('readaerosol_interp', 'pb in allocation 7',1) |
---|
254 | |
---|
255 | ALLOCATE(pplay_src(klon,klev_src), stat=ierr) |
---|
256 | IF (ierr /= 0) CALL abort_gcm('readaerosol_interp', 'pb in allocation 8',1) |
---|
257 | |
---|
258 | |
---|
259 | DO k=1,klev_src |
---|
260 | DO i=1,klon |
---|
261 | tmp1(i,k) = & |
---|
262 | var_year(i,k,im2,id_aero) - FLOAT(iday-day2)/FLOAT(day1-day2) * & |
---|
263 | (var_year(i,k,im2,id_aero) - var_year(i,k,im,id_aero)) |
---|
264 | |
---|
265 | tmp2(i,k) = & |
---|
266 | pi_var_year(i,k,im2,id_aero) - FLOAT(iday-day2)/FLOAT(day1-day2) * & |
---|
267 | (pi_var_year(i,k,im2,id_aero) - pi_var_year(i,k,im,id_aero)) |
---|
268 | END DO |
---|
269 | END DO |
---|
270 | |
---|
271 | ! Time interpolation for pressure at surface, still on vertical source grid |
---|
272 | DO i=1,klon |
---|
273 | psurf_day(i) = & |
---|
274 | psurf_year(i,im2,id_aero) - FLOAT(iday-day2)/FLOAT(day1-day2) * & |
---|
275 | (psurf_year(i,im2,id_aero) - psurf_year(i,im,id_aero)) |
---|
276 | |
---|
277 | pi_psurf_day(i) = & |
---|
278 | pi_psurf_year(i,im2,id_aero) - FLOAT(iday-day2)/FLOAT(day1-day2) * & |
---|
279 | (pi_psurf_year(i,im2,id_aero) - pi_psurf_year(i,im,id_aero)) |
---|
280 | END DO |
---|
281 | |
---|
282 | ! Time interpolation for the load, still on vertical source grid |
---|
283 | DO i=1,klon |
---|
284 | load_src(i) = & |
---|
285 | load_year(i,im2,id_aero) - FLOAT(iday-day2)/FLOAT(day1-day2) * & |
---|
286 | (load_year(i,im2,id_aero) - load_year(i,im,id_aero)) |
---|
287 | |
---|
288 | pi_load_src(i) = & |
---|
289 | pi_load_year(i,im2,id_aero) - FLOAT(iday-day2)/FLOAT(day1-day2) * & |
---|
290 | (pi_load_year(i,im2,id_aero) - pi_load_year(i,im,id_aero)) |
---|
291 | END DO |
---|
292 | |
---|
293 | !**************************************************************************************** |
---|
294 | ! 3) Interpolate to the model vertical grid (target grid) |
---|
295 | ! |
---|
296 | !**************************************************************************************** |
---|
297 | |
---|
298 | IF (vert_interp) THEN |
---|
299 | |
---|
300 | ! - Interpolate variable tmp1 (on source grid) to var_day (on target grid) |
---|
301 | !******************************************************************************** |
---|
302 | ! a) calculate pression at vertical levels for the source grid using the |
---|
303 | ! hybrid-sigma coordinates ap and b and the surface pressure, variables from file. |
---|
304 | DO k = 1, klev_src |
---|
305 | DO i = 1, klon |
---|
306 | pplay_src(i,k)= pt_ap(k) + pt_b(k)*psurf_day(i) |
---|
307 | END DO |
---|
308 | END DO |
---|
309 | |
---|
310 | IF (debug) THEN |
---|
311 | CALL writefield_phy('psurf_day_src',psurf_day(:),1) |
---|
312 | CALL writefield_phy('pplay_src',pplay_src(:,:),klev_src) |
---|
313 | CALL writefield_phy('pplay',pplay(:,:),klev) |
---|
314 | CALL writefield_phy('day_src',tmp1,klev_src) |
---|
315 | CALL writefield_phy('pi_day_src',tmp2,klev_src) |
---|
316 | END IF |
---|
317 | |
---|
318 | ! b) vertical interpolation on pressure leveles |
---|
319 | CALL pres2lev(tmp1(:,:), var_day(:,:,id_aero), klev_src, klev, pplay_src, pplay, & |
---|
320 | 1, klon, .FALSE.) |
---|
321 | |
---|
322 | IF (debug) CALL writefield_phy('day_tgt',var_day(:,:,id_aero),klev) |
---|
323 | |
---|
324 | ! c) adjust to conserve total aerosol mass load in the vertical pillar |
---|
325 | ! Calculate the load in the actual pillar and compare with the load |
---|
326 | ! read from aerosol file. |
---|
327 | |
---|
328 | ! Find the pressure difference in each model layer |
---|
329 | DO k = 1, klev |
---|
330 | DO i = 1, klon |
---|
331 | delp(i,k) = paprs(i,k) - paprs (i,k+1) |
---|
332 | END DO |
---|
333 | END DO |
---|
334 | |
---|
335 | ! Find the mass load in the actual pillar, on target grid |
---|
336 | load_tgt(:) = 0. |
---|
337 | DO k= 1, klev |
---|
338 | DO i = 1, klon |
---|
339 | zrho = pplay(i,k)/t_seri(i,k)/RD ! [kg/m3] |
---|
340 | volm = var_day(i,k,id_aero)*1.E-9/zrho ! [kg/kg] |
---|
341 | load_tgt(i) = load_tgt(i) + 1/RG * volm *delp(i,k) |
---|
342 | END DO |
---|
343 | END DO |
---|
344 | |
---|
345 | ! Adjust, uniform |
---|
346 | DO k = 1, klev |
---|
347 | DO i = 1, klon |
---|
348 | var_day(i,k,id_aero) = var_day(i,k,id_aero)*load_src(i)/load_tgt(i) |
---|
349 | END DO |
---|
350 | END DO |
---|
351 | |
---|
352 | IF (debug) THEN |
---|
353 | load_tgt_test(:) = 0. |
---|
354 | DO k= 1, klev |
---|
355 | DO i = 1, klon |
---|
356 | zrho = pplay(i,k)/t_seri(i,k)/RD ! [kg/m3] |
---|
357 | volm = var_day(i,k,id_aero)*1.E-9/zrho ! [kg/kg] |
---|
358 | load_tgt_test(i) = load_tgt_test(i) + 1/RG * volm*delp(i,k) |
---|
359 | END DO |
---|
360 | END DO |
---|
361 | |
---|
362 | CALL writefield_phy('day_tgt2',var_day(:,:,id_aero),klev) |
---|
363 | CALL writefield_phy('load_tgt',load_tgt(:),1) |
---|
364 | CALL writefield_phy('load_tgt_test',load_tgt_test(:),1) |
---|
365 | CALL writefield_phy('load_src',load_src(:),1) |
---|
366 | END IF |
---|
367 | |
---|
368 | ! - Interpolate variable tmp2 (source grid) to pi_var_day (target grid) |
---|
369 | !******************************************************************************** |
---|
370 | ! a) calculate pression at vertical levels at source grid |
---|
371 | DO k = 1, klev_src |
---|
372 | DO i = 1, klon |
---|
373 | pplay_src(i,k)= pt_ap(k) + pt_b(k)*pi_psurf_day(i) |
---|
374 | END DO |
---|
375 | END DO |
---|
376 | |
---|
377 | IF (debug) THEN |
---|
378 | CALL writefield_phy('pi_psurf_day_src',pi_psurf_day(:),1) |
---|
379 | CALL writefield_phy('pi_pplay_src',pplay_src(:,:),klev_src) |
---|
380 | END IF |
---|
381 | |
---|
382 | ! b) vertical interpolation on pressure leveles |
---|
383 | CALL pres2lev(tmp2(:,:), pi_var_day(:,:,id_aero), klev_src, klev, pplay_src, pplay, & |
---|
384 | 1, klon, .FALSE.) |
---|
385 | |
---|
386 | IF (debug) CALL writefield_phy('pi_day_tgt',pi_var_day(:,:,id_aero),klev) |
---|
387 | |
---|
388 | ! c) adjust to conserve total aerosol mass load in the vertical pillar |
---|
389 | ! Calculate the load in the actual pillar and compare with the load |
---|
390 | ! read from aerosol file. |
---|
391 | |
---|
392 | ! Find the load in the actual pillar, on target grid |
---|
393 | load_tgt(:) = 0. |
---|
394 | DO k = 1, klev |
---|
395 | DO i = 1, klon |
---|
396 | zrho = pplay(i,k)/t_seri(i,k)/RD ! [kg/m3] |
---|
397 | volm = pi_var_day(i,k,id_aero)*1.E-9/zrho ! [kg/kg] |
---|
398 | load_tgt(i) = load_tgt(i) + 1/RG * volm * delp(i,k) |
---|
399 | END DO |
---|
400 | END DO |
---|
401 | |
---|
402 | DO k = 1, klev |
---|
403 | DO i = 1, klon |
---|
404 | pi_var_day(i,k,id_aero) = pi_var_day(i,k,id_aero)*pi_load_src(i)/load_tgt(i) |
---|
405 | END DO |
---|
406 | END DO |
---|
407 | |
---|
408 | IF (debug) THEN |
---|
409 | load_tgt_test(:) = 0. |
---|
410 | DO k = 1, klev |
---|
411 | DO i = 1, klon |
---|
412 | zrho = pplay(i,k)/t_seri(i,k)/RD ! [kg/m3] |
---|
413 | volm = pi_var_day(i,k,id_aero)*1.E-9/zrho ! [kg/kg] |
---|
414 | load_tgt_test(i) = load_tgt_test(i) + 1/RG * volm * delp(i,k) |
---|
415 | END DO |
---|
416 | END DO |
---|
417 | CALL writefield_phy('pi_day_tgt2',pi_var_day(:,:,id_aero),klev) |
---|
418 | CALL writefield_phy('pi_load_tgt',load_tgt(:),1) |
---|
419 | CALL writefield_phy('pi_load_tgt_test',load_tgt_test(:),1) |
---|
420 | CALL writefield_phy('pi_load_src',pi_load_src(:),1) |
---|
421 | END IF |
---|
422 | |
---|
423 | |
---|
424 | ELSE ! No vertical interpolation done |
---|
425 | |
---|
426 | var_day(:,:,id_aero) = tmp1(:,:) |
---|
427 | pi_var_day(:,:,id_aero) = tmp2(:,:) |
---|
428 | |
---|
429 | END IF ! vert_interp |
---|
430 | |
---|
431 | |
---|
432 | ! Deallocation |
---|
433 | DEALLOCATE(tmp1, tmp2, pplay_src, stat=ierr) |
---|
434 | |
---|
435 | !**************************************************************************************** |
---|
436 | ! 4) Test for negative mass values |
---|
437 | ! |
---|
438 | !**************************************************************************************** |
---|
439 | IF (MINVAL(var_day(:,:,id_aero)) < 0.) THEN |
---|
440 | DO k=1,klev |
---|
441 | DO i=1,klon |
---|
442 | ! Test for var_day |
---|
443 | IF (var_day(i,k,id_aero) < 0.) THEN |
---|
444 | IF (iday-day2 < 0.) WRITE(lunout,*) 'iday-day2=',iday-day2 |
---|
445 | IF (var_year(i,k,im2,id_aero) - var_year(i,k,im,id_aero) < 0.) THEN |
---|
446 | WRITE(lunout,*) trim(name_aero(id_aero)),'(i,k,im2)-', & |
---|
447 | trim(name_aero(id_aero)),'(i,k,im)=', & |
---|
448 | var_year(i,k,im2,id_aero) - var_year(i,k,im,id_aero) |
---|
449 | END IF |
---|
450 | |
---|
451 | WRITE(lunout,*) 'stop for aerosol : ',name_aero(id_aero) |
---|
452 | CALL abort_gcm('readaerosol_interp','Error in interpolation 1',1) |
---|
453 | END IF |
---|
454 | END DO |
---|
455 | END DO |
---|
456 | END IF |
---|
457 | |
---|
458 | IF (MINVAL(pi_var_day(:,:,id_aero)) < 0. ) THEN |
---|
459 | DO k=1, klev |
---|
460 | DO i=1,klon |
---|
461 | ! Test for pi_var_day |
---|
462 | IF (pi_var_day(i,k,id_aero) < 0.) THEN |
---|
463 | IF (iday-day2 < 0.) WRITE(lunout,*) 'iday-day2=',iday-day2 |
---|
464 | IF (pi_var_year(i,k,im2,id_aero) - pi_var_year(i,k,im,id_aero) < 0.) THEN |
---|
465 | WRITE(lunout,*) trim(name_aero(id_aero)),'(i,k,im2)-', & |
---|
466 | trim(name_aero(id_aero)),'(i,k,im)=', & |
---|
467 | pi_var_year(i,k,im2,id_aero) - pi_var_year(i,k,im,id_aero) |
---|
468 | END IF |
---|
469 | |
---|
470 | WRITE(lunout,*) 'stop for aerosol : ',name_aero(id_aero) |
---|
471 | CALL abort_gcm('readaerosol_interp','Error in interpolation 2',1) |
---|
472 | END IF |
---|
473 | END DO |
---|
474 | END DO |
---|
475 | END IF |
---|
476 | |
---|
477 | END IF ! lnewday |
---|
478 | |
---|
479 | !**************************************************************************************** |
---|
480 | ! Copy output from saved variables |
---|
481 | ! |
---|
482 | !**************************************************************************************** |
---|
483 | |
---|
484 | mass_out(:,:) = var_day(:,:,id_aero) |
---|
485 | pi_mass_out(:,:) = pi_var_day(:,:,id_aero) |
---|
486 | |
---|
487 | END SUBROUTINE readaerosol_interp |
---|