[524] | 1 | ! $Header$ |
---|
[1188] | 2 | module ozonecm_m |
---|
[641] | 3 | |
---|
[1188] | 4 | IMPLICIT NONE |
---|
[524] | 5 | |
---|
[1188] | 6 | contains |
---|
| 7 | |
---|
| 8 | SUBROUTINE ozonecm(rjour,rlat,paprs,o3) |
---|
| 9 | |
---|
| 10 | ! The ozone climatology is based on an analytic formula which fits the |
---|
| 11 | ! Krueger and Mintzner (1976) profile, as well as the variations with |
---|
| 12 | ! altitude and latitude of the maximum ozone concentrations and the total |
---|
| 13 | ! column ozone concentration of Keating and Young (1986). The analytic |
---|
| 14 | ! formula have been established by J.-F. Royer (CRNM, Meteo France), who |
---|
| 15 | ! also provided us the code. |
---|
| 16 | |
---|
| 17 | ! A. J. Krueger and R. A. Minzner, A Mid-Latitude Ozone Model for the |
---|
| 18 | ! 1976 U.S. Standard Atmosphere, J. Geophys. Res., 81, 4477, (1976). |
---|
| 19 | |
---|
| 20 | ! Keating, G. M. and D. F. Young, 1985: Interim reference models for the |
---|
| 21 | ! middle atmosphere, Handbook for MAP, vol. 16, 205-229. |
---|
| 22 | |
---|
| 23 | USE dimphy, only: klon, klev |
---|
| 24 | |
---|
| 25 | REAL, INTENT (IN) :: rjour |
---|
| 26 | REAL, INTENT (IN) :: rlat(klon), paprs(klon,klev+1) |
---|
| 27 | REAL o3(klon,klev) |
---|
| 28 | ! "o3(j, k)" is the column-density of ozone in cell "(j, k)", that is |
---|
| 29 | ! between interface "k" and interface "k + 1", in kDU. |
---|
| 30 | |
---|
| 31 | ! Variables local to the procedure: |
---|
| 32 | |
---|
| 33 | REAL tozon ! equivalent pressure of ozone above interface "k", in Pa |
---|
| 34 | real pi, pl |
---|
| 35 | INTEGER i, k |
---|
| 36 | |
---|
| 37 | REAL field(klon,klev+1) |
---|
| 38 | ! "field(:, k)" is the column-density of ozone between interface |
---|
| 39 | ! "k" and the top of the atmosphere (interface "llm + 1"), in kDU. |
---|
| 40 | |
---|
| 41 | real, PARAMETER:: ps=101325. |
---|
| 42 | REAL, parameter:: an = 360., zo3q3 = 4E-8 |
---|
| 43 | REAL, parameter:: dobson_unit = 2.1415E-5 ! in kg m-2 |
---|
| 44 | REAL gms, zslat, zsint, zcost, z, ppm, qpm, a |
---|
| 45 | REAL asec, bsec, aprim, zo3a3 |
---|
| 46 | |
---|
| 47 | !---------------------------------------------------------- |
---|
| 48 | |
---|
| 49 | pi = 4. * atan(1.) |
---|
| 50 | DO k = 1, klev |
---|
| 51 | DO i = 1, klon |
---|
| 52 | zslat = sin(pi / 180. * rlat(i)) |
---|
| 53 | zsint = sin(2.*pi*(rjour+15.)/an) |
---|
| 54 | zcost = cos(2.*pi*(rjour+15.)/an) |
---|
| 55 | z = 0.0531 + zsint * (-0.001595+0.009443*zslat) & |
---|
| 56 | + zcost * (-0.001344-0.00346*zslat) & |
---|
| 57 | + zslat**2 * (.056222 + zslat**2 & |
---|
| 58 | * (-.037609+.012248*zsint+.00521*zcost+.008890*zslat)) |
---|
| 59 | zo3a3 = zo3q3/ps/2. |
---|
| 60 | z = z - zo3q3*ps |
---|
| 61 | gms = z |
---|
| 62 | ppm = 800. - (500.*zslat+150.*zcost)*zslat |
---|
| 63 | qpm = 1.74E-5 - (7.5E-6*zslat+1.7E-6*zcost)*zslat |
---|
| 64 | bsec = 2650. + 5000.*zslat**2 |
---|
| 65 | a = 4.0*(bsec)**(3./2.)*(ppm)**(3./2.)*(1.0+(bsec/ps)**(3./2.)) |
---|
| 66 | a = a/(bsec**(3./2.)+ppm**(3./2.))**2 |
---|
| 67 | aprim = (2.666666*qpm*ppm-a*gms)/(1.0-a) |
---|
| 68 | aprim = amax1(0., aprim) |
---|
| 69 | asec = (gms-aprim)*(1.0+(bsec/ps)**(3./2.)) |
---|
| 70 | asec = amax1(0.0, asec) |
---|
| 71 | aprim = gms - asec/(1.+(bsec/ps)**(3./2.)) |
---|
| 72 | pl = paprs(i, k) |
---|
| 73 | tozon = aprim / (1. + 3. * (ppm / pl)**2) & |
---|
| 74 | + asec / (1. + (bsec / pl)**(3./2.)) + zo3a3 * pl * pl |
---|
| 75 | ! Convert from Pa to kDU: |
---|
| 76 | field(i, k) = tozon / 9.81 / dobson_unit / 1e3 |
---|
| 77 | END DO |
---|
| 78 | END DO |
---|
| 79 | |
---|
| 80 | field(:,klev+1) = 0. |
---|
| 81 | forall (k = 1: klev) o3(:,k) = field(:,k) - field(:,k+1) |
---|
| 82 | |
---|
| 83 | END SUBROUTINE ozonecm |
---|
| 84 | |
---|
| 85 | end module ozonecm_m |
---|