1 | SUBROUTINE drag_noro_strato (nlon,nlev,dtime,paprs,pplay, |
---|
2 | e pmea,pstd, psig, pgam, pthe,ppic,pval, |
---|
3 | e kgwd,kdx,ktest, |
---|
4 | e t, u, v, |
---|
5 | s pulow, pvlow, pustr, pvstr, |
---|
6 | s d_t, d_u, d_v) |
---|
7 | c |
---|
8 | USE dimphy |
---|
9 | IMPLICIT none |
---|
10 | c====================================================================== |
---|
11 | c Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
12 | c Object: Mountain drag interface. Made necessary because: |
---|
13 | C 1. in the LMD-GCM Layers are from bottom to top, |
---|
14 | C contrary to most European GCM. |
---|
15 | c 2. the altitude above ground of each model layers |
---|
16 | c needs to be known (variable zgeom) |
---|
17 | c====================================================================== |
---|
18 | c Explicit Arguments: |
---|
19 | c ================== |
---|
20 | c nlon----input-I-Total number of horizontal points that get into physics |
---|
21 | c nlev----input-I-Number of vertical levels |
---|
22 | c dtime---input-R-Time-step (s) |
---|
23 | c paprs---input-R-Pressure in semi layers (Pa) |
---|
24 | c pplay---input-R-Pressure model-layers (Pa) |
---|
25 | c t-------input-R-temperature (K) |
---|
26 | c u-------input-R-Horizontal wind (m/s) |
---|
27 | c v-------input-R-Meridional wind (m/s) |
---|
28 | c pmea----input-R-Mean Orography (m) |
---|
29 | C pstd----input-R-SSO standard deviation (m) |
---|
30 | c psig----input-R-SSO slope |
---|
31 | c pgam----input-R-SSO Anisotropy |
---|
32 | c pthe----input-R-SSO Angle |
---|
33 | c ppic----input-R-SSO Peacks elevation (m) |
---|
34 | c pval----input-R-SSO Valleys elevation (m) |
---|
35 | c |
---|
36 | c kgwd- -input-I: Total nb of points where the orography schemes are active |
---|
37 | c ktest--input-I: Flags to indicate active points |
---|
38 | c kdx----input-I: Locate the physical location of an active point. |
---|
39 | |
---|
40 | c pulow, pvlow -output-R: Low-level wind |
---|
41 | c pustr, pvstr -output-R: Surface stress due to SSO drag (Pa) |
---|
42 | c |
---|
43 | c d_t-----output-R: T increment |
---|
44 | c d_u-----output-R: U increment |
---|
45 | c d_v-----output-R: V increment |
---|
46 | c |
---|
47 | c Implicit Arguments: |
---|
48 | c =================== |
---|
49 | c |
---|
50 | c iim--common-I: Number of longitude intervals |
---|
51 | c jjm--common-I: Number of latitude intervals |
---|
52 | c klon-common-I: Number of points seen by the physics |
---|
53 | c (iim+1)*(jjm+1) for instance |
---|
54 | c klev-common-I: Number of vertical layers |
---|
55 | c====================================================================== |
---|
56 | c Local Variables: |
---|
57 | c ================ |
---|
58 | c |
---|
59 | c zgeom-----R: Altitude of layer above ground |
---|
60 | c pt, pu, pv --R: t u v from top to bottom |
---|
61 | c pdtdt, pdudt, pdvdt --R: t u v tendencies (from top to bottom) |
---|
62 | c papmf: pressure at model layer (from top to bottom) |
---|
63 | c papmh: pressure at model 1/2 layer (from top to bottom) |
---|
64 | c |
---|
65 | c====================================================================== |
---|
66 | cym#include "dimensions.h" |
---|
67 | cym#include "dimphy.h" |
---|
68 | #include "YOMCST.h" |
---|
69 | #include "YOEGWD.h" |
---|
70 | c |
---|
71 | c ARGUMENTS |
---|
72 | c |
---|
73 | INTEGER nlon,nlev |
---|
74 | REAL dtime |
---|
75 | REAL paprs(nlon,nlev+1) |
---|
76 | REAL pplay(nlon,nlev) |
---|
77 | REAL pmea(nlon),pstd(nlon),psig(nlon),pgam(nlon),pthe(nlon) |
---|
78 | REAL ppic(nlon),pval(nlon) |
---|
79 | REAL pulow(nlon),pvlow(nlon),pustr(nlon),pvstr(nlon) |
---|
80 | REAL t(nlon,nlev), u(nlon,nlev), v(nlon,nlev) |
---|
81 | REAL d_t(nlon,nlev), d_u(nlon,nlev), d_v(nlon,nlev) |
---|
82 | c |
---|
83 | INTEGER i, k, kgwd, kdx(nlon), ktest(nlon) |
---|
84 | c |
---|
85 | c LOCAL VARIABLES: |
---|
86 | c |
---|
87 | REAL zgeom(klon,klev) |
---|
88 | REAL pdtdt(klon,klev), pdudt(klon,klev), pdvdt(klon,klev) |
---|
89 | REAL pt(klon,klev), pu(klon,klev), pv(klon,klev) |
---|
90 | REAL papmf(klon,klev),papmh(klon,klev+1) |
---|
91 | c |
---|
92 | c INITIALIZE OUTPUT VARIABLES |
---|
93 | c |
---|
94 | DO i = 1,klon |
---|
95 | pulow(i) = 0.0 |
---|
96 | pvlow(i) = 0.0 |
---|
97 | pustr(i) = 0.0 |
---|
98 | pvstr(i) = 0.0 |
---|
99 | ENDDO |
---|
100 | DO k = 1, klev |
---|
101 | DO i = 1, klon |
---|
102 | d_t(i,k) = 0.0 |
---|
103 | d_u(i,k) = 0.0 |
---|
104 | d_v(i,k) = 0.0 |
---|
105 | pdudt(i,k)=0.0 |
---|
106 | pdvdt(i,k)=0.0 |
---|
107 | pdtdt(i,k)=0.0 |
---|
108 | ENDDO |
---|
109 | ENDDO |
---|
110 | c |
---|
111 | c PREPARE INPUT VARIABLES FOR ORODRAG (i.e., ORDERED FROM TOP TO BOTTOM) |
---|
112 | C CALCULATE LAYERS HEIGHT ABOVE GROUND) |
---|
113 | c |
---|
114 | DO k = 1, klev |
---|
115 | DO i = 1, klon |
---|
116 | pt(i,k) = t(i,klev-k+1) |
---|
117 | pu(i,k) = u(i,klev-k+1) |
---|
118 | pv(i,k) = v(i,klev-k+1) |
---|
119 | papmf(i,k) = pplay(i,klev-k+1) |
---|
120 | ENDDO |
---|
121 | ENDDO |
---|
122 | DO k = 1, klev+1 |
---|
123 | DO i = 1, klon |
---|
124 | papmh(i,k) = paprs(i,klev-k+2) |
---|
125 | ENDDO |
---|
126 | ENDDO |
---|
127 | DO i = 1, klon |
---|
128 | zgeom(i,klev) = RD * pt(i,klev) |
---|
129 | . * LOG(papmh(i,klev+1)/papmf(i,klev)) |
---|
130 | ENDDO |
---|
131 | DO k = klev-1, 1, -1 |
---|
132 | DO i = 1, klon |
---|
133 | zgeom(i,k) = zgeom(i,k+1) + RD * (pt(i,k)+pt(i,k+1))/2.0 |
---|
134 | . * LOG(papmf(i,k+1)/papmf(i,k)) |
---|
135 | ENDDO |
---|
136 | ENDDO |
---|
137 | c |
---|
138 | c CALL SSO DRAG ROUTINES |
---|
139 | c |
---|
140 | CALL orodrag_strato(klon,klev,kgwd,kdx,ktest, |
---|
141 | . dtime, |
---|
142 | . papmh, papmf, zgeom, |
---|
143 | . pt, pu, pv, |
---|
144 | . pmea, pstd, psig, pgam, pthe, ppic,pval, |
---|
145 | . pulow,pvlow, |
---|
146 | . pdudt,pdvdt,pdtdt) |
---|
147 | C |
---|
148 | C COMPUTE INCREMENTS AND STRESS FROM TENDENCIES |
---|
149 | |
---|
150 | DO k = 1, klev |
---|
151 | DO i = 1, klon |
---|
152 | d_u(i,klev+1-k) = dtime*pdudt(i,k) |
---|
153 | d_v(i,klev+1-k) = dtime*pdvdt(i,k) |
---|
154 | d_t(i,klev+1-k) = dtime*pdtdt(i,k) |
---|
155 | pustr(i) = pustr(i) |
---|
156 | . +pdudt(i,k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
157 | pvstr(i) = pvstr(i) |
---|
158 | . +pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
159 | ENDDO |
---|
160 | ENDDO |
---|
161 | c |
---|
162 | RETURN |
---|
163 | END |
---|
164 | |
---|
165 | SUBROUTINE orodrag_strato( nlon,nlev |
---|
166 | i , kgwd, kdx, ktest |
---|
167 | r , ptsphy |
---|
168 | r , paphm1,papm1,pgeom1,ptm1,pum1,pvm1 |
---|
169 | r , pmea, pstd, psig, pgam, pthe, ppic, pval |
---|
170 | c outputs |
---|
171 | r , pulow,pvlow |
---|
172 | r , pvom,pvol,pte ) |
---|
173 | |
---|
174 | USE dimphy |
---|
175 | IMPLICIT NONE |
---|
176 | c |
---|
177 | c |
---|
178 | c**** *orodrag* - does the SSO drag parametrization. |
---|
179 | c |
---|
180 | c purpose. |
---|
181 | c -------- |
---|
182 | c |
---|
183 | c this routine computes the physical tendencies of the |
---|
184 | c prognostic variables u,v and t due to vertical transports by |
---|
185 | c subgridscale orographically excited gravity waves, and to |
---|
186 | c low level blocked flow drag. |
---|
187 | c |
---|
188 | c** interface. |
---|
189 | c ---------- |
---|
190 | c called from *drag_noro*. |
---|
191 | c |
---|
192 | c the routine takes its input from the long-term storage: |
---|
193 | c u,v,t and p at t-1. |
---|
194 | c |
---|
195 | c explicit arguments : |
---|
196 | c -------------------- |
---|
197 | c ==== inputs === |
---|
198 | c nlon----input-I-Total number of horizontal points that get into physics |
---|
199 | c nlev----input-I-Number of vertical levels |
---|
200 | c |
---|
201 | c kgwd- -input-I: Total nb of points where the orography schemes are active |
---|
202 | c ktest--input-I: Flags to indicate active points |
---|
203 | c kdx----input-I: Locate the physical location of an active point. |
---|
204 | c ptsphy--input-R-Time-step (s) |
---|
205 | c paphm1--input-R: pressure at model 1/2 layer |
---|
206 | c papm1---input-R: pressure at model layer |
---|
207 | c pgeom1--input-R: Altitude of layer above ground |
---|
208 | c ptm1, pum1, pvm1--R-: t, u and v |
---|
209 | c pmea----input-R-Mean Orography (m) |
---|
210 | C pstd----input-R-SSO standard deviation (m) |
---|
211 | c psig----input-R-SSO slope |
---|
212 | c pgam----input-R-SSO Anisotropy |
---|
213 | c pthe----input-R-SSO Angle |
---|
214 | c ppic----input-R-SSO Peacks elevation (m) |
---|
215 | c pval----input-R-SSO Valleys elevation (m) |
---|
216 | |
---|
217 | integer nlon,nlev,kgwd |
---|
218 | real ptsphy |
---|
219 | |
---|
220 | c ==== outputs === |
---|
221 | c pulow, pvlow -output-R: Low-level wind |
---|
222 | c |
---|
223 | c pte -----output-R: T tendency |
---|
224 | c pvom-----output-R: U tendency |
---|
225 | c pvol-----output-R: V tendency |
---|
226 | c |
---|
227 | c |
---|
228 | c Implicit Arguments: |
---|
229 | c =================== |
---|
230 | c |
---|
231 | c klon-common-I: Number of points seen by the physics |
---|
232 | c klev-common-I: Number of vertical layers |
---|
233 | c |
---|
234 | c method. |
---|
235 | c ------- |
---|
236 | c |
---|
237 | c externals. |
---|
238 | c ---------- |
---|
239 | integer ismin, ismax |
---|
240 | external ismin, ismax |
---|
241 | c |
---|
242 | c reference. |
---|
243 | c ---------- |
---|
244 | c |
---|
245 | c author. |
---|
246 | c ------- |
---|
247 | c m.miller + b.ritter e.c.m.w.f. 15/06/86. |
---|
248 | c |
---|
249 | c f.lott + m. miller e.c.m.w.f. 22/11/94 |
---|
250 | c----------------------------------------------------------------------- |
---|
251 | c |
---|
252 | c |
---|
253 | cym#include "dimensions.h" |
---|
254 | cym#include "dimphy.h" |
---|
255 | #include "YOMCST.h" |
---|
256 | #include "YOEGWD.h" |
---|
257 | c----------------------------------------------------------------------- |
---|
258 | c |
---|
259 | c* 0.1 arguments |
---|
260 | c --------- |
---|
261 | c |
---|
262 | c |
---|
263 | real pte(nlon,nlev), |
---|
264 | * pvol(nlon,nlev), |
---|
265 | * pvom(nlon,nlev), |
---|
266 | * pulow(nlon), |
---|
267 | * pvlow(nlon) |
---|
268 | real pum1(nlon,nlev), |
---|
269 | * pvm1(nlon,nlev), |
---|
270 | * ptm1(nlon,nlev), |
---|
271 | * pmea(nlon),pstd(nlon),psig(nlon), |
---|
272 | * pgam(nlon),pthe(nlon),ppic(nlon),pval(nlon), |
---|
273 | * pgeom1(nlon,nlev), |
---|
274 | * papm1(nlon,nlev), |
---|
275 | * paphm1(nlon,nlev+1) |
---|
276 | c |
---|
277 | integer kdx(nlon),ktest(nlon) |
---|
278 | c----------------------------------------------------------------------- |
---|
279 | c |
---|
280 | c* 0.2 local arrays |
---|
281 | c ------------ |
---|
282 | integer isect(klon), |
---|
283 | * icrit(klon), |
---|
284 | * ikcrith(klon), |
---|
285 | * ikenvh(klon), |
---|
286 | * iknu(klon), |
---|
287 | * iknu2(klon), |
---|
288 | * ikcrit(klon), |
---|
289 | * ikhlim(klon) |
---|
290 | c |
---|
291 | real ztau(klon,klev+1), |
---|
292 | * zstab(klon,klev+1), |
---|
293 | * zvph(klon,klev+1), |
---|
294 | * zrho(klon,klev+1), |
---|
295 | * zri(klon,klev+1), |
---|
296 | * zpsi(klon,klev+1), |
---|
297 | * zzdep(klon,klev) |
---|
298 | real zdudt(klon), |
---|
299 | * zdvdt(klon), |
---|
300 | * zdtdt(klon), |
---|
301 | * zdedt(klon), |
---|
302 | * zvidis(klon), |
---|
303 | * ztfr(klon), |
---|
304 | * znu(klon), |
---|
305 | * zd1(klon), |
---|
306 | * zd2(klon), |
---|
307 | * zdmod(klon) |
---|
308 | |
---|
309 | |
---|
310 | c local quantities: |
---|
311 | |
---|
312 | integer jl,jk,ji |
---|
313 | real ztmst,zdelp,ztemp,zforc,ztend,rover |
---|
314 | real zb,zc,zconb,zabsv,zzd1,ratio,zbet,zust,zvst,zdis |
---|
315 | |
---|
316 | c |
---|
317 | c------------------------------------------------------------------ |
---|
318 | c |
---|
319 | c* 1. initialization |
---|
320 | c -------------- |
---|
321 | c |
---|
322 | c print *,' in orodrag' |
---|
323 | 100 continue |
---|
324 | c |
---|
325 | c ------------------------------------------------------------------ |
---|
326 | c |
---|
327 | c* 1.1 computational constants |
---|
328 | c ----------------------- |
---|
329 | c |
---|
330 | 110 continue |
---|
331 | c |
---|
332 | c ztmst=twodt |
---|
333 | c if(nstep.eq.nstart) ztmst=0.5*twodt |
---|
334 | ztmst=ptsphy |
---|
335 | c ------------------------------------------------------------------ |
---|
336 | c |
---|
337 | 120 continue |
---|
338 | c |
---|
339 | c ------------------------------------------------------------------ |
---|
340 | c |
---|
341 | c* 1.3 check whether row contains point for printing |
---|
342 | c --------------------------------------------- |
---|
343 | c |
---|
344 | 130 continue |
---|
345 | c |
---|
346 | c ------------------------------------------------------------------ |
---|
347 | c |
---|
348 | c* 2. precompute basic state variables. |
---|
349 | c* ---------- ----- ----- ---------- |
---|
350 | c* define low level wind, project winds in plane of |
---|
351 | c* low level wind, determine sector in which to take |
---|
352 | c* the variance and set indicator for critical levels. |
---|
353 | c |
---|
354 | |
---|
355 | 200 continue |
---|
356 | c |
---|
357 | c |
---|
358 | c |
---|
359 | call orosetup_strato |
---|
360 | * ( nlon, nlev , ktest |
---|
361 | * , ikcrit, ikcrith, icrit, isect, ikhlim, ikenvh,iknu,iknu2 |
---|
362 | * , paphm1, papm1 , pum1 , pvm1 , ptm1 , pgeom1, pstd |
---|
363 | * , zrho , zri , zstab , ztau , zvph , zpsi, zzdep |
---|
364 | * , pulow, pvlow |
---|
365 | * , pthe,pgam,pmea,ppic,pval,znu ,zd1, zd2, zdmod ) |
---|
366 | |
---|
367 | |
---|
368 | c |
---|
369 | c |
---|
370 | c |
---|
371 | c*********************************************************** |
---|
372 | c |
---|
373 | c |
---|
374 | c* 3. compute low level stresses using subcritical and |
---|
375 | c* supercritical forms.computes anisotropy coefficient |
---|
376 | c* as measure of orographic twodimensionality. |
---|
377 | c |
---|
378 | 300 continue |
---|
379 | c |
---|
380 | call gwstress_strato |
---|
381 | * ( nlon , nlev |
---|
382 | * , ikcrit, isect, ikhlim, ktest, ikcrith, icrit, ikenvh, iknu |
---|
383 | * , zrho , zstab, zvph , pstd, psig, pmea, ppic, pval |
---|
384 | * , ztfr , ztau |
---|
385 | * , pgeom1,pgam,zd1,zd2,zdmod,znu) |
---|
386 | |
---|
387 | c |
---|
388 | c |
---|
389 | c* 4. compute stress profile including |
---|
390 | c trapped waves, wave breaking, |
---|
391 | c linear decay in stratosphere. |
---|
392 | c |
---|
393 | 400 continue |
---|
394 | c |
---|
395 | c |
---|
396 | |
---|
397 | call gwprofil_strato |
---|
398 | * ( nlon , nlev |
---|
399 | * , kgwd , kdx , ktest |
---|
400 | * , ikcrit, ikcrith, icrit , ikenvh, iknu |
---|
401 | * ,iknu2 , paphm1, zrho , zstab , ztfr , zvph |
---|
402 | * , zri , ztau |
---|
403 | |
---|
404 | * , zdmod , znu , psig , pgam , pstd , ppic , pval) |
---|
405 | |
---|
406 | c |
---|
407 | c* 5. Compute tendencies from waves stress profile. |
---|
408 | c Compute low level blocked flow drag. |
---|
409 | c* -------------------------------------------- |
---|
410 | c |
---|
411 | 500 continue |
---|
412 | |
---|
413 | |
---|
414 | c |
---|
415 | c explicit solution at all levels for the gravity wave |
---|
416 | c implicit solution for the blocked levels |
---|
417 | |
---|
418 | do 510 jl=kidia,kfdia |
---|
419 | zvidis(jl)=0.0 |
---|
420 | zdudt(jl)=0.0 |
---|
421 | zdvdt(jl)=0.0 |
---|
422 | zdtdt(jl)=0.0 |
---|
423 | 510 continue |
---|
424 | c |
---|
425 | |
---|
426 | do 524 jk=1,klev |
---|
427 | c |
---|
428 | |
---|
429 | C WAVE STRESS |
---|
430 | C------------- |
---|
431 | c |
---|
432 | c |
---|
433 | do 523 ji=kidia,kfdia |
---|
434 | |
---|
435 | if(ktest(ji).eq.1) then |
---|
436 | |
---|
437 | zdelp=paphm1(ji,jk+1)-paphm1(ji,jk) |
---|
438 | ztemp=-rg*(ztau(ji,jk+1)-ztau(ji,jk))/(zvph(ji,klev+1)*zdelp) |
---|
439 | |
---|
440 | zdudt(ji)=(pulow(ji)*zd1(ji)-pvlow(ji)*zd2(ji))*ztemp/zdmod(ji) |
---|
441 | zdvdt(ji)=(pvlow(ji)*zd1(ji)+pulow(ji)*zd2(ji))*ztemp/zdmod(ji) |
---|
442 | c |
---|
443 | c Control Overshoots |
---|
444 | c |
---|
445 | |
---|
446 | if(jk.ge.nstra)then |
---|
447 | rover=0.10 |
---|
448 | if(abs(zdudt(ji)).gt.rover*abs(pum1(ji,jk))/ztmst) |
---|
449 | C zdudt(ji)=rover*abs(pum1(ji,jk))/ztmst* |
---|
450 | C zdudt(ji)/(abs(zdudt(ji))+1.E-10) |
---|
451 | if(abs(zdvdt(ji)).gt.rover*abs(pvm1(ji,jk))/ztmst) |
---|
452 | C zdvdt(ji)=rover*abs(pvm1(ji,jk))/ztmst* |
---|
453 | C zdvdt(ji)/(abs(zdvdt(ji))+1.E-10) |
---|
454 | endif |
---|
455 | |
---|
456 | rover=0.25 |
---|
457 | zforc=sqrt(zdudt(ji)**2+zdvdt(ji)**2) |
---|
458 | ztend=sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/ztmst |
---|
459 | |
---|
460 | if(zforc.ge.rover*ztend)then |
---|
461 | zdudt(ji)=rover*ztend/zforc*zdudt(ji) |
---|
462 | zdvdt(ji)=rover*ztend/zforc*zdvdt(ji) |
---|
463 | endif |
---|
464 | c |
---|
465 | c BLOCKED FLOW DRAG: |
---|
466 | C ----------------- |
---|
467 | c |
---|
468 | if(jk.gt.ikenvh(ji)) then |
---|
469 | zb=1.0-0.18*pgam(ji)-0.04*pgam(ji)**2 |
---|
470 | zc=0.48*pgam(ji)+0.3*pgam(ji)**2 |
---|
471 | zconb=2.*ztmst*gkwake*psig(ji)/(4.*pstd(ji)) |
---|
472 | zabsv=sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/2. |
---|
473 | zzd1=zb*cos(zpsi(ji,jk))**2+zc*sin(zpsi(ji,jk))**2 |
---|
474 | ratio=(cos(zpsi(ji,jk))**2+pgam(ji)*sin(zpsi(ji,jk))**2)/ |
---|
475 | * (pgam(ji)*cos(zpsi(ji,jk))**2+sin(zpsi(ji,jk))**2) |
---|
476 | zbet=max(0.,2.-1./ratio)*zconb*zzdep(ji,jk)*zzd1*zabsv |
---|
477 | c |
---|
478 | c OPPOSED TO THE WIND |
---|
479 | c |
---|
480 | zdudt(ji)=-pum1(ji,jk)/ztmst |
---|
481 | zdvdt(ji)=-pvm1(ji,jk)/ztmst |
---|
482 | c |
---|
483 | c PERPENDICULAR TO THE SSO MAIN AXIS: |
---|
484 | C |
---|
485 | cmod zdudt(ji)=-(pum1(ji,jk)*cos(pthe(ji)*rpi/180.) |
---|
486 | cmod * +pvm1(ji,jk)*sin(pthe(ji)*rpi/180.)) |
---|
487 | cmod * *cos(pthe(ji)*rpi/180.)/ztmst |
---|
488 | cmod zdvdt(ji)=-(pum1(ji,jk)*cos(pthe(ji)*rpi/180.) |
---|
489 | cmod * +pvm1(ji,jk)*sin(pthe(ji)*rpi/180.)) |
---|
490 | cmod * *sin(pthe(ji)*rpi/180.)/ztmst |
---|
491 | C |
---|
492 | zdudt(ji)=zdudt(ji)*(zbet/(1.+zbet)) |
---|
493 | zdvdt(ji)=zdvdt(ji)*(zbet/(1.+zbet)) |
---|
494 | end if |
---|
495 | pvom(ji,jk)=zdudt(ji) |
---|
496 | pvol(ji,jk)=zdvdt(ji) |
---|
497 | zust=pum1(ji,jk)+ztmst*zdudt(ji) |
---|
498 | zvst=pvm1(ji,jk)+ztmst*zdvdt(ji) |
---|
499 | zdis=0.5*(pum1(ji,jk)**2+pvm1(ji,jk)**2-zust**2-zvst**2) |
---|
500 | zdedt(ji)=zdis/ztmst |
---|
501 | zvidis(ji)=zvidis(ji)+zdis*zdelp |
---|
502 | zdtdt(ji)=zdedt(ji)/rcpd |
---|
503 | c |
---|
504 | c NO TENDENCIES ON TEMPERATURE ..... |
---|
505 | c |
---|
506 | c Instead of, pte(ji,jk)=zdtdt(ji), due to mechanical dissipation |
---|
507 | c |
---|
508 | pte(ji,jk)=0.0 |
---|
509 | |
---|
510 | endif |
---|
511 | |
---|
512 | 523 continue |
---|
513 | 524 continue |
---|
514 | c |
---|
515 | c |
---|
516 | 501 continue |
---|
517 | |
---|
518 | return |
---|
519 | end |
---|
520 | SUBROUTINE orosetup_strato |
---|
521 | * ( nlon , nlev , ktest |
---|
522 | * , kkcrit, kkcrith, kcrit, ksect , kkhlim |
---|
523 | * , kkenvh, kknu , kknu2 |
---|
524 | * , paphm1, papm1 , pum1 , pvm1 , ptm1 , pgeom1, pstd |
---|
525 | * , prho , pri , pstab , ptau , pvph ,ppsi, pzdep |
---|
526 | * , pulow , pvlow |
---|
527 | * , ptheta, pgam, pmea, ppic, pval |
---|
528 | * , pnu , pd1 , pd2 ,pdmod ) |
---|
529 | C |
---|
530 | c**** *gwsetup* |
---|
531 | c |
---|
532 | c purpose. |
---|
533 | c -------- |
---|
534 | c SET-UP THE ESSENTIAL PARAMETERS OF THE SSO DRAG SCHEME: |
---|
535 | C DEPTH OF LOW WBLOCKED LAYER, LOW-LEVEL FLOW, BACKGROUND |
---|
536 | C STRATIFICATION..... |
---|
537 | c |
---|
538 | c** interface. |
---|
539 | c ---------- |
---|
540 | c from *orodrag* |
---|
541 | c |
---|
542 | c explicit arguments : |
---|
543 | c -------------------- |
---|
544 | c ==== inputs === |
---|
545 | c |
---|
546 | c nlon----input-I-Total number of horizontal points that get into physics |
---|
547 | c nlev----input-I-Number of vertical levels |
---|
548 | c ktest--input-I: Flags to indicate active points |
---|
549 | c |
---|
550 | c ptsphy--input-R-Time-step (s) |
---|
551 | c paphm1--input-R: pressure at model 1/2 layer |
---|
552 | c papm1---input-R: pressure at model layer |
---|
553 | c pgeom1--input-R: Altitude of layer above ground |
---|
554 | c ptm1, pum1, pvm1--R-: t, u and v |
---|
555 | c pmea----input-R-Mean Orography (m) |
---|
556 | C pstd----input-R-SSO standard deviation (m) |
---|
557 | c psig----input-R-SSO slope |
---|
558 | c pgam----input-R-SSO Anisotropy |
---|
559 | c pthe----input-R-SSO Angle |
---|
560 | c ppic----input-R-SSO Peacks elevation (m) |
---|
561 | c pval----input-R-SSO Valleys elevation (m) |
---|
562 | |
---|
563 | c ==== outputs === |
---|
564 | c pulow, pvlow -output-R: Low-level wind |
---|
565 | c kkcrit----I-: Security value for top of low level flow |
---|
566 | c kcrit-----I-: Critical level |
---|
567 | c ksect-----I-: Not used |
---|
568 | c kkhlim----I-: Not used |
---|
569 | c kkenvh----I-: Top of blocked flow layer |
---|
570 | c kknu------I-: Layer that sees mountain peacks |
---|
571 | c kknu2-----I-: Layer that sees mountain peacks above mountain mean |
---|
572 | c kknub-----I-: Layer that sees mountain mean above valleys |
---|
573 | c prho------R-: Density at 1/2 layers |
---|
574 | c pri-------R-: Background Richardson Number, Wind shear measured along GW stress |
---|
575 | c pstab-----R-: Brunt-Vaisala freq. at 1/2 layers |
---|
576 | c pvph------R-: Wind in plan of GW stress, Half levels. |
---|
577 | c ppsi------R-: Angle between low level wind and SS0 main axis. |
---|
578 | c pd1-------R-| Compared the ratio of the stress |
---|
579 | c pd2-------R-| that is along the wind to that Normal to it. |
---|
580 | c pdi define the plane of low level stress |
---|
581 | c compared to the low level wind. |
---|
582 | c see p. 108 Lott & Miller (1997). |
---|
583 | c pdmod-----R-: Norme of pdi |
---|
584 | |
---|
585 | c === local arrays === |
---|
586 | c |
---|
587 | c zvpf------R-: Wind projected in the plan of the low-level stress. |
---|
588 | |
---|
589 | c ==== outputs === |
---|
590 | c |
---|
591 | c implicit arguments : none |
---|
592 | c -------------------- |
---|
593 | c |
---|
594 | c method. |
---|
595 | c ------- |
---|
596 | c |
---|
597 | c |
---|
598 | c externals. |
---|
599 | c ---------- |
---|
600 | c |
---|
601 | c |
---|
602 | c reference. |
---|
603 | c ---------- |
---|
604 | c |
---|
605 | c see ecmwf research department documentation of the "i.f.s." |
---|
606 | c |
---|
607 | c author. |
---|
608 | c ------- |
---|
609 | c |
---|
610 | c modifications. |
---|
611 | c -------------- |
---|
612 | c f.lott for the new-gwdrag scheme november 1993 |
---|
613 | c |
---|
614 | c----------------------------------------------------------------------- |
---|
615 | USE dimphy |
---|
616 | implicit none |
---|
617 | c |
---|
618 | |
---|
619 | cym#include "dimensions.h" |
---|
620 | cym#include "dimphy.h" |
---|
621 | #include "YOMCST.h" |
---|
622 | #include "YOEGWD.h" |
---|
623 | |
---|
624 | c----------------------------------------------------------------------- |
---|
625 | c |
---|
626 | c* 0.1 arguments |
---|
627 | c --------- |
---|
628 | c |
---|
629 | integer nlon,nlev |
---|
630 | integer kkcrit(nlon),kkcrith(nlon),kcrit(nlon),ksect(nlon), |
---|
631 | * kkhlim(nlon),ktest(nlon),kkenvh(nlon) |
---|
632 | |
---|
633 | c |
---|
634 | real paphm1(nlon,klev+1),papm1(nlon,klev),pum1(nlon,klev), |
---|
635 | * pvm1(nlon,klev),ptm1(nlon,klev),pgeom1(nlon,klev), |
---|
636 | * prho(nlon,klev+1),pri(nlon,klev+1),pstab(nlon,klev+1), |
---|
637 | * ptau(nlon,klev+1),pvph(nlon,klev+1),ppsi(nlon,klev+1), |
---|
638 | * pzdep(nlon,klev) |
---|
639 | real pulow(nlon),pvlow(nlon),ptheta(nlon),pgam(nlon),pnu(nlon), |
---|
640 | * pd1(nlon),pd2(nlon),pdmod(nlon) |
---|
641 | real pstd(nlon),pmea(nlon),ppic(nlon),pval(nlon) |
---|
642 | c |
---|
643 | c----------------------------------------------------------------------- |
---|
644 | c |
---|
645 | c* 0.2 local arrays |
---|
646 | c ------------ |
---|
647 | c |
---|
648 | c |
---|
649 | integer ilevh ,jl,jk |
---|
650 | real zcons1,zcons2,zhgeo,zu,zphi |
---|
651 | real zvt1,zvt2,zdwind,zwind,zdelp |
---|
652 | real zstabm,zstabp,zrhom,zrhop |
---|
653 | logical lo |
---|
654 | logical ll1(klon,klev+1) |
---|
655 | integer kknu(klon),kknu2(klon),kknub(klon),kknul(klon), |
---|
656 | * kentp(klon),ncount(klon) |
---|
657 | c |
---|
658 | real zhcrit(klon,klev),zvpf(klon,klev), |
---|
659 | * zdp(klon,klev) |
---|
660 | real znorm(klon),zb(klon),zc(klon), |
---|
661 | * zulow(klon),zvlow(klon),znup(klon),znum(klon) |
---|
662 | c |
---|
663 | c ------------------------------------------------------------------ |
---|
664 | c |
---|
665 | c* 1. initialization |
---|
666 | c -------------- |
---|
667 | c |
---|
668 | c PRINT *,' in orosetup' |
---|
669 | 100 continue |
---|
670 | c |
---|
671 | c ------------------------------------------------------------------ |
---|
672 | c |
---|
673 | c* 1.1 computational constants |
---|
674 | c ----------------------- |
---|
675 | c |
---|
676 | 110 continue |
---|
677 | c |
---|
678 | ilevh =klev/3 |
---|
679 | c |
---|
680 | zcons1=1./rd |
---|
681 | zcons2=rg**2/rcpd |
---|
682 | c |
---|
683 | c |
---|
684 | c ------------------------------------------------------------------ |
---|
685 | c |
---|
686 | c* 2. |
---|
687 | c -------------- |
---|
688 | c |
---|
689 | 200 continue |
---|
690 | c |
---|
691 | c ------------------------------------------------------------------ |
---|
692 | c |
---|
693 | c* 2.1 define low level wind, project winds in plane of |
---|
694 | c* low level wind, determine sector in which to take |
---|
695 | c* the variance and set indicator for critical levels. |
---|
696 | c |
---|
697 | c |
---|
698 | c |
---|
699 | do 2001 jl=kidia,kfdia |
---|
700 | kknu(jl) =klev |
---|
701 | kknu2(jl) =klev |
---|
702 | kknub(jl) =klev |
---|
703 | kknul(jl) =klev |
---|
704 | pgam(jl) =max(pgam(jl),gtsec) |
---|
705 | ll1(jl,klev+1)=.false. |
---|
706 | 2001 continue |
---|
707 | c |
---|
708 | c Ajouter une initialisation (L. Li, le 23fev99): |
---|
709 | c |
---|
710 | do jk=klev,ilevh,-1 |
---|
711 | do jl=kidia,kfdia |
---|
712 | ll1(jl,jk)= .false. |
---|
713 | ENDDO |
---|
714 | ENDDO |
---|
715 | c |
---|
716 | c* define top of low level flow |
---|
717 | c ---------------------------- |
---|
718 | do 2002 jk=klev,ilevh,-1 |
---|
719 | do 2003 jl=kidia,kfdia |
---|
720 | if(ktest(jl).eq.1) then |
---|
721 | lo=(paphm1(jl,jk)/paphm1(jl,klev+1)).ge.gsigcr |
---|
722 | if(lo) then |
---|
723 | kkcrit(jl)=jk |
---|
724 | endif |
---|
725 | zhcrit(jl,jk)=ppic(jl)-pval(jl) |
---|
726 | zhgeo=pgeom1(jl,jk)/rg |
---|
727 | ll1(jl,jk)=(zhgeo.gt.zhcrit(jl,jk)) |
---|
728 | if(ll1(jl,jk).neqv.ll1(jl,jk+1)) then |
---|
729 | kknu(jl)=jk |
---|
730 | endif |
---|
731 | if(.not.ll1(jl,ilevh))kknu(jl)=ilevh |
---|
732 | endif |
---|
733 | 2003 continue |
---|
734 | 2002 continue |
---|
735 | do 2004 jk=klev,ilevh,-1 |
---|
736 | do 2005 jl=kidia,kfdia |
---|
737 | if(ktest(jl).eq.1) then |
---|
738 | zhcrit(jl,jk)=ppic(jl)-pmea(jl) |
---|
739 | zhgeo=pgeom1(jl,jk)/rg |
---|
740 | ll1(jl,jk)=(zhgeo.gt.zhcrit(jl,jk)) |
---|
741 | if(ll1(jl,jk).neqv.ll1(jl,jk+1)) then |
---|
742 | kknu2(jl)=jk |
---|
743 | endif |
---|
744 | if(.not.ll1(jl,ilevh))kknu2(jl)=ilevh |
---|
745 | endif |
---|
746 | 2005 continue |
---|
747 | 2004 continue |
---|
748 | do 2006 jk=klev,ilevh,-1 |
---|
749 | do 2007 jl=kidia,kfdia |
---|
750 | if(ktest(jl).eq.1) then |
---|
751 | zhcrit(jl,jk)=amin1(ppic(jl)-pmea(jl),pmea(jl)-pval(jl)) |
---|
752 | zhgeo=pgeom1(jl,jk)/rg |
---|
753 | ll1(jl,jk)=(zhgeo.gt.zhcrit(jl,jk)) |
---|
754 | if(ll1(jl,jk).neqv.ll1(jl,jk+1)) then |
---|
755 | kknub(jl)=jk |
---|
756 | endif |
---|
757 | if(.not.ll1(jl,ilevh))kknub(jl)=ilevh |
---|
758 | endif |
---|
759 | 2007 continue |
---|
760 | 2006 continue |
---|
761 | c |
---|
762 | do 2010 jl=kidia,kfdia |
---|
763 | if(ktest(jl).eq.1) then |
---|
764 | kknu(jl)=min(kknu(jl),nktopg) |
---|
765 | kknu2(jl)=min(kknu2(jl),nktopg) |
---|
766 | kknub(jl)=min(kknub(jl),nktopg) |
---|
767 | kknul(jl)=klev |
---|
768 | endif |
---|
769 | 2010 continue |
---|
770 | c |
---|
771 | 210 continue |
---|
772 | c |
---|
773 | cc* initialize various arrays |
---|
774 | c |
---|
775 | do 2107 jl=kidia,kfdia |
---|
776 | prho(jl,klev+1) =0.0 |
---|
777 | cym correction en attendant mieux |
---|
778 | prho(jl,1) =0.0 |
---|
779 | pstab(jl,klev+1) =0.0 |
---|
780 | pstab(jl,1) =0.0 |
---|
781 | pri(jl,klev+1) =9999.0 |
---|
782 | ppsi(jl,klev+1) =0.0 |
---|
783 | pri(jl,1) =0.0 |
---|
784 | pvph(jl,1) =0.0 |
---|
785 | pvph(jl,klev+1) =0.0 |
---|
786 | cym correction en attendant mieux |
---|
787 | cym pvph(jl,klev) =0.0 |
---|
788 | pulow(jl) =0.0 |
---|
789 | pvlow(jl) =0.0 |
---|
790 | zulow(jl) =0.0 |
---|
791 | zvlow(jl) =0.0 |
---|
792 | kkcrith(jl) =klev |
---|
793 | kkenvh(jl) =klev |
---|
794 | kentp(jl) =klev |
---|
795 | kcrit(jl) =1 |
---|
796 | ncount(jl) =0 |
---|
797 | ll1(jl,klev+1) =.false. |
---|
798 | 2107 continue |
---|
799 | c |
---|
800 | c* define flow density and stratification (rho and N2) |
---|
801 | c at semi layers. |
---|
802 | c ------------------------------------------------------- |
---|
803 | c |
---|
804 | do 223 jk=klev,2,-1 |
---|
805 | do 222 jl=kidia,kfdia |
---|
806 | if(ktest(jl).eq.1) then |
---|
807 | zdp(jl,jk)=papm1(jl,jk)-papm1(jl,jk-1) |
---|
808 | prho(jl,jk)=2.*paphm1(jl,jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
809 | pstab(jl,jk)=2.*zcons2/(ptm1(jl,jk)+ptm1(jl,jk-1))* |
---|
810 | * (1.-rcpd*prho(jl,jk)*(ptm1(jl,jk)-ptm1(jl,jk-1))/zdp(jl,jk)) |
---|
811 | pstab(jl,jk)=max(pstab(jl,jk),gssec) |
---|
812 | endif |
---|
813 | 222 continue |
---|
814 | 223 continue |
---|
815 | c |
---|
816 | c******************************************************************** |
---|
817 | c |
---|
818 | c* define Low level flow (between ground and peacks-valleys) |
---|
819 | c --------------------------------------------------------- |
---|
820 | do 2115 jk=klev,ilevh,-1 |
---|
821 | do 2116 jl=kidia,kfdia |
---|
822 | if(ktest(jl).eq.1) then |
---|
823 | if(jk.ge.kknu2(jl).and.jk.le.kknul(jl)) then |
---|
824 | pulow(jl)=pulow(jl)+pum1(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
825 | pvlow(jl)=pvlow(jl)+pvm1(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
826 | pstab(jl,klev+1)=pstab(jl,klev+1) |
---|
827 | c +pstab(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
828 | prho(jl,klev+1)=prho(jl,klev+1) |
---|
829 | c +prho(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
830 | end if |
---|
831 | endif |
---|
832 | 2116 continue |
---|
833 | 2115 continue |
---|
834 | do 2110 jl=kidia,kfdia |
---|
835 | if(ktest(jl).eq.1) then |
---|
836 | pulow(jl)=pulow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknu2(jl))) |
---|
837 | pvlow(jl)=pvlow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknu2(jl))) |
---|
838 | znorm(jl)=max(sqrt(pulow(jl)**2+pvlow(jl)**2),gvsec) |
---|
839 | pvph(jl,klev+1)=znorm(jl) |
---|
840 | pstab(jl,klev+1)=pstab(jl,klev+1) |
---|
841 | c /(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknu2(jl))) |
---|
842 | prho(jl,klev+1)=prho(jl,klev+1) |
---|
843 | c /(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknu2(jl))) |
---|
844 | endif |
---|
845 | 2110 continue |
---|
846 | |
---|
847 | c |
---|
848 | c******* setup orography orientation relative to the low level |
---|
849 | C wind and define parameters of the Anisotropic wave stress. |
---|
850 | c |
---|
851 | do 2112 jl=kidia,kfdia |
---|
852 | if(ktest(jl).eq.1) then |
---|
853 | lo=(pulow(jl).lt.gvsec).and.(pulow(jl).ge.-gvsec) |
---|
854 | if(lo) then |
---|
855 | zu=pulow(jl)+2.*gvsec |
---|
856 | else |
---|
857 | zu=pulow(jl) |
---|
858 | endif |
---|
859 | zphi=atan(pvlow(jl)/zu) |
---|
860 | ppsi(jl,klev+1)=ptheta(jl)*rpi/180.-zphi |
---|
861 | zb(jl)=1.-0.18*pgam(jl)-0.04*pgam(jl)**2 |
---|
862 | zc(jl)=0.48*pgam(jl)+0.3*pgam(jl)**2 |
---|
863 | pd1(jl)=zb(jl)-(zb(jl)-zc(jl))*(sin(ppsi(jl,klev+1))**2) |
---|
864 | pd2(jl)=(zb(jl)-zc(jl))*sin(ppsi(jl,klev+1)) |
---|
865 | * *cos(ppsi(jl,klev+1)) |
---|
866 | pdmod(jl)=sqrt(pd1(jl)**2+pd2(jl)**2) |
---|
867 | endif |
---|
868 | 2112 continue |
---|
869 | c |
---|
870 | c ************ projet flow in plane of lowlevel stress ************* |
---|
871 | C ************ Find critical levels... ************* |
---|
872 | c |
---|
873 | do 213 jk=1,klev |
---|
874 | do 212 jl=kidia,kfdia |
---|
875 | if(ktest(jl).eq.1) then |
---|
876 | zvt1 =pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk) |
---|
877 | zvt2 =-pvlow(jl)*pum1(jl,jk)+pulow(jl)*pvm1(jl,jk) |
---|
878 | zvpf(jl,jk)=(zvt1*pd1(jl)+zvt2*pd2(jl))/(znorm(jl)*pdmod(jl)) |
---|
879 | endif |
---|
880 | ptau(jl,jk) =0.0 |
---|
881 | pzdep(jl,jk) =0.0 |
---|
882 | ppsi(jl,jk) =0.0 |
---|
883 | ll1(jl,jk) =.false. |
---|
884 | 212 continue |
---|
885 | 213 continue |
---|
886 | do 215 jk=2,klev |
---|
887 | do 214 jl=kidia,kfdia |
---|
888 | if(ktest(jl).eq.1) then |
---|
889 | zdp(jl,jk)=papm1(jl,jk)-papm1(jl,jk-1) |
---|
890 | pvph(jl,jk)=((paphm1(jl,jk)-papm1(jl,jk-1))*zvpf(jl,jk)+ |
---|
891 | * (papm1(jl,jk)-paphm1(jl,jk))*zvpf(jl,jk-1)) |
---|
892 | * /zdp(jl,jk) |
---|
893 | if(pvph(jl,jk).lt.gvsec) then |
---|
894 | pvph(jl,jk)=gvsec |
---|
895 | kcrit(jl)=jk |
---|
896 | endif |
---|
897 | endif |
---|
898 | 214 continue |
---|
899 | 215 continue |
---|
900 | c |
---|
901 | c* 2.3 mean flow richardson number. |
---|
902 | c |
---|
903 | 230 continue |
---|
904 | c |
---|
905 | do 232 jk=2,klev |
---|
906 | do 231 jl=kidia,kfdia |
---|
907 | if(ktest(jl).eq.1) then |
---|
908 | zdwind=max(abs(zvpf(jl,jk)-zvpf(jl,jk-1)),gvsec) |
---|
909 | pri(jl,jk)=pstab(jl,jk)*(zdp(jl,jk) |
---|
910 | * /(rg*prho(jl,jk)*zdwind))**2 |
---|
911 | pri(jl,jk)=max(pri(jl,jk),grcrit) |
---|
912 | endif |
---|
913 | 231 continue |
---|
914 | 232 continue |
---|
915 | |
---|
916 | c |
---|
917 | c |
---|
918 | c* define top of 'envelope' layer |
---|
919 | c ---------------------------- |
---|
920 | |
---|
921 | do 233 jl=kidia,kfdia |
---|
922 | pnu (jl)=0.0 |
---|
923 | znum(jl)=0.0 |
---|
924 | 233 continue |
---|
925 | |
---|
926 | do 234 jk=2,klev-1 |
---|
927 | do 234 jl=kidia,kfdia |
---|
928 | |
---|
929 | if(ktest(jl).eq.1) then |
---|
930 | |
---|
931 | if (jk.ge.kknu2(jl)) then |
---|
932 | |
---|
933 | znum(jl)=pnu(jl) |
---|
934 | zwind=(pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ |
---|
935 | * max(sqrt(pulow(jl)**2+pvlow(jl)**2),gvsec) |
---|
936 | zwind=max(sqrt(zwind**2),gvsec) |
---|
937 | zdelp=paphm1(jl,jk+1)-paphm1(jl,jk) |
---|
938 | zstabm=sqrt(max(pstab(jl,jk ),gssec)) |
---|
939 | zstabp=sqrt(max(pstab(jl,jk+1),gssec)) |
---|
940 | zrhom=prho(jl,jk ) |
---|
941 | zrhop=prho(jl,jk+1) |
---|
942 | pnu(jl) = pnu(jl) + (zdelp/rg)* |
---|
943 | * ((zstabp/zrhop+zstabm/zrhom)/2.)/zwind |
---|
944 | if((znum(jl).le.gfrcrit).and.(pnu(jl).gt.gfrcrit) |
---|
945 | * .and.(kkenvh(jl).eq.klev)) |
---|
946 | * kkenvh(jl)=jk |
---|
947 | |
---|
948 | endif |
---|
949 | |
---|
950 | endif |
---|
951 | |
---|
952 | 234 continue |
---|
953 | |
---|
954 | c calculation of a dynamical mixing height for when the waves |
---|
955 | C BREAK AT LOW LEVEL: The drag will be repartited over |
---|
956 | C a depths that depends on waves vertical wavelength, |
---|
957 | C not just between two adjacent model layers. |
---|
958 | c of gravity waves: |
---|
959 | |
---|
960 | do 235 jl=kidia,kfdia |
---|
961 | znup(jl)=0.0 |
---|
962 | znum(jl)=0.0 |
---|
963 | 235 continue |
---|
964 | |
---|
965 | do 236 jk=klev-1,2,-1 |
---|
966 | do 236 jl=kidia,kfdia |
---|
967 | |
---|
968 | if(ktest(jl).eq.1) then |
---|
969 | |
---|
970 | znum(jl)=znup(jl) |
---|
971 | zwind=(pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ |
---|
972 | * max(sqrt(pulow(jl)**2+pvlow(jl)**2),gvsec) |
---|
973 | zwind=max(sqrt(zwind**2),gvsec) |
---|
974 | zdelp=paphm1(jl,jk+1)-paphm1(jl,jk) |
---|
975 | zstabm=sqrt(max(pstab(jl,jk ),gssec)) |
---|
976 | zstabp=sqrt(max(pstab(jl,jk+1),gssec)) |
---|
977 | zrhom=prho(jl,jk ) |
---|
978 | zrhop=prho(jl,jk+1) |
---|
979 | znup(jl) = znup(jl) + (zdelp/rg)* |
---|
980 | * ((zstabp/zrhop+zstabm/zrhom)/2.)/zwind |
---|
981 | if((znum(jl).le.rpi/4.).and.(znup(jl).gt.rpi/4.) |
---|
982 | * .and.(kkcrith(jl).eq.klev)) |
---|
983 | * kkcrith(jl)=jk |
---|
984 | |
---|
985 | endif |
---|
986 | |
---|
987 | 236 continue |
---|
988 | |
---|
989 | do 237 jl=kidia,kfdia |
---|
990 | if(ktest(jl).eq.1) then |
---|
991 | kkcrith(jl)=max0(kkcrith(jl),ilevh*2) |
---|
992 | kkcrith(jl)=max0(kkcrith(jl),kknu(jl)) |
---|
993 | if(kcrit(jl).ge.kkcrith(jl))kcrit(jl)=1 |
---|
994 | endif |
---|
995 | 237 continue |
---|
996 | c |
---|
997 | c directional info for flow blocking ************************* |
---|
998 | c |
---|
999 | do 251 jk=1,klev |
---|
1000 | do 252 jl=kidia,kfdia |
---|
1001 | if(ktest(jl).eq.1) then |
---|
1002 | lo=(pum1(jl,jk).lt.gvsec).and.(pum1(jl,jk).ge.-gvsec) |
---|
1003 | if(lo) then |
---|
1004 | zu=pum1(jl,jk)+2.*gvsec |
---|
1005 | else |
---|
1006 | zu=pum1(jl,jk) |
---|
1007 | endif |
---|
1008 | zphi=atan(pvm1(jl,jk)/zu) |
---|
1009 | ppsi(jl,jk)=ptheta(jl)*rpi/180.-zphi |
---|
1010 | endif |
---|
1011 | 252 continue |
---|
1012 | 251 continue |
---|
1013 | |
---|
1014 | c forms the vertical 'leakiness' ************************** |
---|
1015 | |
---|
1016 | do 254 jk=ilevh,klev |
---|
1017 | do 253 jl=kidia,kfdia |
---|
1018 | if(ktest(jl).eq.1) then |
---|
1019 | pzdep(jl,jk)=0 |
---|
1020 | if(jk.ge.kkenvh(jl).and.kkenvh(jl).ne.klev) then |
---|
1021 | pzdep(jl,jk)=(pgeom1(jl,kkenvh(jl) )-pgeom1(jl, jk))/ |
---|
1022 | * (pgeom1(jl,kkenvh(jl) )-pgeom1(jl,klev)) |
---|
1023 | end if |
---|
1024 | endif |
---|
1025 | 253 continue |
---|
1026 | 254 continue |
---|
1027 | |
---|
1028 | return |
---|
1029 | end |
---|
1030 | SUBROUTINE gwstress_strato |
---|
1031 | * ( nlon , nlev |
---|
1032 | * , kkcrit, ksect, kkhlim, ktest, kkcrith, kcrit, kkenvh |
---|
1033 | * , kknu |
---|
1034 | * , prho , pstab , pvph , pstd, psig |
---|
1035 | * , pmea , ppic , pval , ptfr , ptau |
---|
1036 | * , pgeom1 , pgamma , pd1 , pd2 , pdmod , pnu ) |
---|
1037 | c |
---|
1038 | c**** *gwstress* |
---|
1039 | c |
---|
1040 | c purpose. |
---|
1041 | c -------- |
---|
1042 | c Compute the surface stress due to Gravity Waves, according |
---|
1043 | c to the Phillips (1979) theory of 3-D flow above |
---|
1044 | c anisotropic elliptic ridges. |
---|
1045 | |
---|
1046 | C The stress is reduced two account for cut-off flow over |
---|
1047 | C hill. The flow only see that part of the ridge located |
---|
1048 | c above the blocked layer (see zeff). |
---|
1049 | c |
---|
1050 | c** interface. |
---|
1051 | c ---------- |
---|
1052 | c call *gwstress* from *gwdrag* |
---|
1053 | c |
---|
1054 | c explicit arguments : |
---|
1055 | c -------------------- |
---|
1056 | c ==== inputs === |
---|
1057 | c ==== outputs === |
---|
1058 | c |
---|
1059 | c implicit arguments : none |
---|
1060 | c -------------------- |
---|
1061 | c |
---|
1062 | c method. |
---|
1063 | c ------- |
---|
1064 | c |
---|
1065 | c |
---|
1066 | c externals. |
---|
1067 | c ---------- |
---|
1068 | c |
---|
1069 | c |
---|
1070 | c reference. |
---|
1071 | c ---------- |
---|
1072 | c |
---|
1073 | c LOTT and MILLER (1997) & LOTT (1999) |
---|
1074 | c |
---|
1075 | c author. |
---|
1076 | c ------- |
---|
1077 | c |
---|
1078 | c modifications. |
---|
1079 | c -------------- |
---|
1080 | c f. lott put the new gwd on ifs 22/11/93 |
---|
1081 | c |
---|
1082 | c----------------------------------------------------------------------- |
---|
1083 | USE dimphy |
---|
1084 | implicit none |
---|
1085 | |
---|
1086 | cym#include "dimensions.h" |
---|
1087 | cym#include "dimphy.h" |
---|
1088 | #include "YOMCST.h" |
---|
1089 | #include "YOEGWD.h" |
---|
1090 | |
---|
1091 | c----------------------------------------------------------------------- |
---|
1092 | c |
---|
1093 | c* 0.1 arguments |
---|
1094 | c --------- |
---|
1095 | c |
---|
1096 | integer nlon,nlev |
---|
1097 | integer kkcrit(nlon),kkcrith(nlon),kcrit(nlon),ksect(nlon), |
---|
1098 | * kkhlim(nlon),ktest(nlon),kkenvh(nlon),kknu(nlon) |
---|
1099 | c |
---|
1100 | real prho(nlon,nlev+1),pstab(nlon,nlev+1),ptau(nlon,nlev+1), |
---|
1101 | * pvph(nlon,nlev+1),ptfr(nlon), |
---|
1102 | * pgeom1(nlon,nlev),pstd(nlon) |
---|
1103 | c |
---|
1104 | real pd1(nlon),pd2(nlon),pnu(nlon),psig(nlon),pgamma(nlon) |
---|
1105 | real pmea(nlon),ppic(nlon),pval(nlon) |
---|
1106 | real pdmod(nlon) |
---|
1107 | c |
---|
1108 | c----------------------------------------------------------------------- |
---|
1109 | c |
---|
1110 | c* 0.2 local arrays |
---|
1111 | c ------------ |
---|
1112 | c zeff--real: effective height seen by the flow when there is blocking |
---|
1113 | |
---|
1114 | integer jl |
---|
1115 | real zeff |
---|
1116 | c |
---|
1117 | c----------------------------------------------------------------------- |
---|
1118 | c |
---|
1119 | c* 0.3 functions |
---|
1120 | c --------- |
---|
1121 | c ------------------------------------------------------------------ |
---|
1122 | c |
---|
1123 | c* 1. initialization |
---|
1124 | c -------------- |
---|
1125 | c |
---|
1126 | c PRINT *,' in gwstress' |
---|
1127 | 100 continue |
---|
1128 | c |
---|
1129 | c* 3.1 gravity wave stress. |
---|
1130 | c |
---|
1131 | 300 continue |
---|
1132 | c |
---|
1133 | c |
---|
1134 | do 301 jl=kidia,kfdia |
---|
1135 | if(ktest(jl).eq.1) then |
---|
1136 | |
---|
1137 | c effective mountain height above the blocked flow |
---|
1138 | |
---|
1139 | zeff=ppic(jl)-pval(jl) |
---|
1140 | if(kkenvh(jl).lt.klev)then |
---|
1141 | zeff=amin1(GFRCRIT*pvph(jl,klev+1)/sqrt(pstab(jl,klev+1)) |
---|
1142 | c ,zeff) |
---|
1143 | endif |
---|
1144 | |
---|
1145 | |
---|
1146 | ptau(jl,klev+1)=gkdrag*prho(jl,klev+1) |
---|
1147 | * *psig(jl)*pdmod(jl)/4./pstd(jl) |
---|
1148 | * *pvph(jl,klev+1)*sqrt(pstab(jl,klev+1)) |
---|
1149 | * *zeff**2 |
---|
1150 | |
---|
1151 | |
---|
1152 | c too small value of stress or low level flow include critical level |
---|
1153 | c or low level flow: gravity wave stress nul. |
---|
1154 | |
---|
1155 | c lo=(ptau(jl,klev+1).lt.gtsec).or.(kcrit(jl).ge.kknu(jl)) |
---|
1156 | c * .or.(pvph(jl,klev+1).lt.gvcrit) |
---|
1157 | c if(lo) ptau(jl,klev+1)=0.0 |
---|
1158 | |
---|
1159 | c print *,jl,ptau(jl,klev+1) |
---|
1160 | |
---|
1161 | else |
---|
1162 | |
---|
1163 | ptau(jl,klev+1)=0.0 |
---|
1164 | |
---|
1165 | endif |
---|
1166 | |
---|
1167 | 301 continue |
---|
1168 | |
---|
1169 | c write(21)(ptau(jl,klev+1),jl=kidia,kfdia) |
---|
1170 | |
---|
1171 | return |
---|
1172 | end |
---|
1173 | |
---|
1174 | subroutine gwprofil_strato |
---|
1175 | * ( nlon, nlev |
---|
1176 | * , kgwd ,kdx , ktest |
---|
1177 | * , kkcrit, kkcrith, kcrit , kkenvh, kknu,kknu2 |
---|
1178 | * , paphm1, prho , pstab , ptfr , pvph , pri , ptau |
---|
1179 | * , pdmod , pnu , psig ,pgamma, pstd, ppic,pval) |
---|
1180 | |
---|
1181 | C**** *gwprofil* |
---|
1182 | C |
---|
1183 | C purpose. |
---|
1184 | C -------- |
---|
1185 | C |
---|
1186 | C** interface. |
---|
1187 | C ---------- |
---|
1188 | C from *gwdrag* |
---|
1189 | C |
---|
1190 | C explicit arguments : |
---|
1191 | C -------------------- |
---|
1192 | C ==== inputs === |
---|
1193 | C |
---|
1194 | C ==== outputs === |
---|
1195 | C |
---|
1196 | C implicit arguments : none |
---|
1197 | C -------------------- |
---|
1198 | C |
---|
1199 | C method: |
---|
1200 | C ------- |
---|
1201 | C the stress profile for gravity waves is computed as follows: |
---|
1202 | C it decreases linearly with heights from the ground |
---|
1203 | C to the low-level indicated by kkcrith, |
---|
1204 | C to simulates lee waves or |
---|
1205 | C low-level gravity wave breaking. |
---|
1206 | C above it is constant, except when the waves encounter a critical |
---|
1207 | C level (kcrit) or when they break. |
---|
1208 | C The stress is also uniformly distributed above the level |
---|
1209 | C nstra. |
---|
1210 | C |
---|
1211 | USE dimphy |
---|
1212 | IMPLICIT NONE |
---|
1213 | |
---|
1214 | cym#include "dimensions.h" |
---|
1215 | cym#include "dimphy.h" |
---|
1216 | #include "YOMCST.h" |
---|
1217 | #include "YOEGWD.h" |
---|
1218 | |
---|
1219 | C----------------------------------------------------------------------- |
---|
1220 | C |
---|
1221 | C* 0.1 ARGUMENTS |
---|
1222 | C --------- |
---|
1223 | C |
---|
1224 | integer nlon,nlev,kgwd |
---|
1225 | integer kkcrit(nlon),kkcrith(nlon),kcrit(nlon) |
---|
1226 | * ,kdx(nlon),ktest(nlon) |
---|
1227 | * ,kkenvh(nlon),kknu(nlon),kknu2(nlon) |
---|
1228 | C |
---|
1229 | real paphm1(nlon,nlev+1), pstab(nlon,nlev+1), |
---|
1230 | * prho (nlon,nlev+1), pvph (nlon,nlev+1), |
---|
1231 | * pri (nlon,nlev+1), ptfr (nlon), ptau(nlon,nlev+1) |
---|
1232 | |
---|
1233 | real pdmod (nlon) , pnu (nlon) , psig(nlon), |
---|
1234 | * pgamma(nlon) , pstd(nlon) , ppic(nlon), pval(nlon) |
---|
1235 | |
---|
1236 | C----------------------------------------------------------------------- |
---|
1237 | C |
---|
1238 | C* 0.2 local arrays |
---|
1239 | C ------------ |
---|
1240 | C |
---|
1241 | integer jl,jk |
---|
1242 | real zsqr,zalfa,zriw,zdel,zb,zalpha,zdz2n,zdelp,zdelpt |
---|
1243 | |
---|
1244 | real zdz2 (klon,klev) , znorm(klon) , zoro(klon) |
---|
1245 | real ztau (klon,klev+1) |
---|
1246 | C |
---|
1247 | C----------------------------------------------------------------------- |
---|
1248 | C |
---|
1249 | C* 1. INITIALIZATION |
---|
1250 | C -------------- |
---|
1251 | C |
---|
1252 | C print *,' entree gwprofil' |
---|
1253 | 100 CONTINUE |
---|
1254 | C |
---|
1255 | C |
---|
1256 | C* COMPUTATIONAL CONSTANTS. |
---|
1257 | C ------------- ---------- |
---|
1258 | C |
---|
1259 | do 400 jl=kidia,kfdia |
---|
1260 | if(ktest(jl).eq.1)then |
---|
1261 | zoro(jl)=psig(jl)*pdmod(jl)/4./pstd(jl) |
---|
1262 | ztau(jl,klev+1)=ptau(jl,klev+1) |
---|
1263 | c print *,jl,ptau(jl,klev+1) |
---|
1264 | ztau(jl,kkcrith(jl))=grahilo*ptau(jl,klev+1) |
---|
1265 | endif |
---|
1266 | 400 continue |
---|
1267 | |
---|
1268 | C |
---|
1269 | do 430 jk=klev+1,1,-1 |
---|
1270 | C |
---|
1271 | C |
---|
1272 | C* 4.1 constant shear stress until top of the |
---|
1273 | C low-level breaking/trapped layer |
---|
1274 | 410 CONTINUE |
---|
1275 | C |
---|
1276 | do 411 jl=kidia,kfdia |
---|
1277 | if(ktest(jl).eq.1)then |
---|
1278 | if(jk.gt.kkcrith(jl)) then |
---|
1279 | zdelp=paphm1(jl,jk)-paphm1(jl,klev+1) |
---|
1280 | zdelpt=paphm1(jl,kkcrith(jl))-paphm1(jl,klev+1) |
---|
1281 | ptau(jl,jk)=ztau(jl,klev+1)+zdelp/zdelpt* |
---|
1282 | c (ztau(jl,kkcrith(jl))-ztau(jl,klev+1)) |
---|
1283 | else |
---|
1284 | ptau(jl,jk)=ztau(jl,kkcrith(jl)) |
---|
1285 | endif |
---|
1286 | endif |
---|
1287 | 411 continue |
---|
1288 | C |
---|
1289 | C* 4.15 constant shear stress until the top of the |
---|
1290 | C low level flow layer. |
---|
1291 | 415 continue |
---|
1292 | C |
---|
1293 | C |
---|
1294 | C* 4.2 wave displacement at next level. |
---|
1295 | C |
---|
1296 | 420 continue |
---|
1297 | C |
---|
1298 | 430 continue |
---|
1299 | |
---|
1300 | C |
---|
1301 | C* 4.4 wave richardson number, new wave displacement |
---|
1302 | C* and stress: breaking evaluation and critical |
---|
1303 | C level |
---|
1304 | C |
---|
1305 | |
---|
1306 | do 440 jk=klev,1,-1 |
---|
1307 | |
---|
1308 | do 441 jl=kidia,kfdia |
---|
1309 | if(ktest(jl).eq.1)then |
---|
1310 | znorm(jl)=prho(jl,jk)*sqrt(pstab(jl,jk))*pvph(jl,jk) |
---|
1311 | zdz2(jl,jk)=ptau(jl,jk)/amax1(znorm(jl),gssec)/zoro(jl) |
---|
1312 | endif |
---|
1313 | 441 continue |
---|
1314 | |
---|
1315 | do 442 jl=kidia,kfdia |
---|
1316 | if(ktest(jl).eq.1)then |
---|
1317 | if(jk.lt.kkcrith(jl)) then |
---|
1318 | if((ptau(jl,jk+1).lt.gtsec).or.(jk.le.kcrit(jl))) then |
---|
1319 | ptau(jl,jk)=0.0 |
---|
1320 | else |
---|
1321 | zsqr=sqrt(pri(jl,jk)) |
---|
1322 | zalfa=sqrt(pstab(jl,jk)*zdz2(jl,jk))/pvph(jl,jk) |
---|
1323 | zriw=pri(jl,jk)*(1.-zalfa)/(1+zalfa*zsqr)**2 |
---|
1324 | if(zriw.lt.grcrit) then |
---|
1325 | C print *,' breaking!!!',ptau(jl,jk) |
---|
1326 | zdel=4./zsqr/grcrit+1./grcrit**2+4./grcrit |
---|
1327 | zb=1./grcrit+2./zsqr |
---|
1328 | zalpha=0.5*(-zb+sqrt(zdel)) |
---|
1329 | zdz2n=(pvph(jl,jk)*zalpha)**2/pstab(jl,jk) |
---|
1330 | ptau(jl,jk)=znorm(jl)*zdz2n*zoro(jl) |
---|
1331 | endif |
---|
1332 | |
---|
1333 | ptau(jl,jk)=amin1(ptau(jl,jk),ptau(jl,jk+1)) |
---|
1334 | |
---|
1335 | endif |
---|
1336 | endif |
---|
1337 | endif |
---|
1338 | 442 continue |
---|
1339 | 440 continue |
---|
1340 | |
---|
1341 | C REORGANISATION OF THE STRESS PROFILE AT LOW LEVEL |
---|
1342 | |
---|
1343 | do 530 jl=kidia,kfdia |
---|
1344 | if(ktest(jl).eq.1)then |
---|
1345 | ztau(jl,kkcrith(jl)-1)=ptau(jl,kkcrith(jl)-1) |
---|
1346 | ztau(jl,nstra)=ptau(jl,nstra) |
---|
1347 | endif |
---|
1348 | 530 continue |
---|
1349 | |
---|
1350 | do 531 jk=1,klev |
---|
1351 | |
---|
1352 | do 532 jl=kidia,kfdia |
---|
1353 | if(ktest(jl).eq.1)then |
---|
1354 | |
---|
1355 | if(jk.gt.kkcrith(jl)-1)then |
---|
1356 | |
---|
1357 | zdelp=paphm1(jl,jk)-paphm1(jl,klev+1 ) |
---|
1358 | zdelpt=paphm1(jl,kkcrith(jl)-1)-paphm1(jl,klev+1 ) |
---|
1359 | ptau(jl,jk)=ztau(jl,klev+1 ) + |
---|
1360 | . (ztau(jl,kkcrith(jl)-1)-ztau(jl,klev+1 ) )* |
---|
1361 | . zdelp/zdelpt |
---|
1362 | |
---|
1363 | endif |
---|
1364 | endif |
---|
1365 | |
---|
1366 | 532 continue |
---|
1367 | |
---|
1368 | C REORGANISATION AT THE MODEL TOP.... |
---|
1369 | |
---|
1370 | do 533 jl=kidia,kfdia |
---|
1371 | if(ktest(jl).eq.1)then |
---|
1372 | |
---|
1373 | if(jk.lt.nstra)then |
---|
1374 | |
---|
1375 | zdelp =paphm1(jl,nstra) |
---|
1376 | zdelpt=paphm1(jl,jk) |
---|
1377 | ptau(jl,jk)=ztau(jl,nstra)*zdelpt/zdelp |
---|
1378 | c ptau(jl,jk)=ztau(jl,nstra) |
---|
1379 | |
---|
1380 | endif |
---|
1381 | |
---|
1382 | endif |
---|
1383 | |
---|
1384 | 533 continue |
---|
1385 | |
---|
1386 | |
---|
1387 | 531 continue |
---|
1388 | |
---|
1389 | |
---|
1390 | 123 format(i4,1x,20(f6.3,1x)) |
---|
1391 | |
---|
1392 | |
---|
1393 | return |
---|
1394 | end |
---|
1395 | subroutine lift_noro_strato (nlon,nlev,dtime,paprs,pplay, |
---|
1396 | i plat,pmea,pstd, psig, pgam, pthe, ppic,pval, |
---|
1397 | i kgwd,kdx,ktest, |
---|
1398 | i t, u, v, |
---|
1399 | o pulow, pvlow, pustr, pvstr, |
---|
1400 | o d_t, d_u, d_v) |
---|
1401 | c |
---|
1402 | USE dimphy |
---|
1403 | implicit none |
---|
1404 | c====================================================================== |
---|
1405 | c Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
1406 | c Object: Mountain lift interface (enhanced vortex stretching). |
---|
1407 | c Made necessary because: |
---|
1408 | C 1. in the LMD-GCM Layers are from bottom to top, |
---|
1409 | C contrary to most European GCM. |
---|
1410 | c 2. the altitude above ground of each model layers |
---|
1411 | c needs to be known (variable zgeom) |
---|
1412 | c====================================================================== |
---|
1413 | c Explicit Arguments: |
---|
1414 | c ================== |
---|
1415 | c nlon----input-I-Total number of horizontal points that get into physics |
---|
1416 | c nlev----input-I-Number of vertical levels |
---|
1417 | c dtime---input-R-Time-step (s) |
---|
1418 | c paprs---input-R-Pressure in semi layers (Pa) |
---|
1419 | c pplay---input-R-Pressure model-layers (Pa) |
---|
1420 | c t-------input-R-temperature (K) |
---|
1421 | c u-------input-R-Horizontal wind (m/s) |
---|
1422 | c v-------input-R-Meridional wind (m/s) |
---|
1423 | c pmea----input-R-Mean Orography (m) |
---|
1424 | C pstd----input-R-SSO standard deviation (m) |
---|
1425 | c psig----input-R-SSO slope |
---|
1426 | c pgam----input-R-SSO Anisotropy |
---|
1427 | c pthe----input-R-SSO Angle |
---|
1428 | c ppic----input-R-SSO Peacks elevation (m) |
---|
1429 | c pval----input-R-SSO Valleys elevation (m) |
---|
1430 | c |
---|
1431 | c kgwd- -input-I: Total nb of points where the orography schemes are active |
---|
1432 | c ktest--input-I: Flags to indicate active points |
---|
1433 | c kdx----input-I: Locate the physical location of an active point. |
---|
1434 | |
---|
1435 | c pulow, pvlow -output-R: Low-level wind |
---|
1436 | c pustr, pvstr -output-R: Surface stress due to SSO drag (Pa) |
---|
1437 | c |
---|
1438 | c d_t-----output-R: T increment |
---|
1439 | c d_u-----output-R: U increment |
---|
1440 | c d_v-----output-R: V increment |
---|
1441 | c |
---|
1442 | c Implicit Arguments: |
---|
1443 | c =================== |
---|
1444 | c |
---|
1445 | c iim--common-I: Number of longitude intervals |
---|
1446 | c jjm--common-I: Number of latitude intervals |
---|
1447 | c klon-common-I: Number of points seen by the physics |
---|
1448 | c (iim+1)*(jjm+1) for instance |
---|
1449 | c klev-common-I: Number of vertical layers |
---|
1450 | c====================================================================== |
---|
1451 | c Local Variables: |
---|
1452 | c ================ |
---|
1453 | c |
---|
1454 | c zgeom-----R: Altitude of layer above ground |
---|
1455 | c pt, pu, pv --R: t u v from top to bottom |
---|
1456 | c pdtdt, pdudt, pdvdt --R: t u v tendencies (from top to bottom) |
---|
1457 | c papmf: pressure at model layer (from top to bottom) |
---|
1458 | c papmh: pressure at model 1/2 layer (from top to bottom) |
---|
1459 | c |
---|
1460 | c====================================================================== |
---|
1461 | |
---|
1462 | cym#include "dimensions.h" |
---|
1463 | cym#include "dimphy.h" |
---|
1464 | #include "YOMCST.h" |
---|
1465 | #include "YOEGWD.h" |
---|
1466 | c |
---|
1467 | c ARGUMENTS |
---|
1468 | c |
---|
1469 | INTEGER nlon,nlev |
---|
1470 | REAL dtime |
---|
1471 | REAL paprs(klon,klev+1) |
---|
1472 | REAL pplay(klon,klev) |
---|
1473 | REAL plat(nlon),pmea(nlon) |
---|
1474 | REAL pstd(nlon),psig(nlon),pgam(nlon),pthe(nlon) |
---|
1475 | REAL ppic(nlon),pval(nlon) |
---|
1476 | REAL pulow(nlon),pvlow(nlon),pustr(nlon),pvstr(nlon) |
---|
1477 | REAL t(nlon,nlev), u(nlon,nlev), v(nlon,nlev) |
---|
1478 | REAL d_t(nlon,nlev), d_u(nlon,nlev), d_v(nlon,nlev) |
---|
1479 | c |
---|
1480 | INTEGER i, k, kgwd, kdx(nlon), ktest(nlon) |
---|
1481 | c |
---|
1482 | c Variables locales: |
---|
1483 | c |
---|
1484 | REAL zgeom(klon,klev) |
---|
1485 | REAL pdtdt(klon,klev), pdudt(klon,klev), pdvdt(klon,klev) |
---|
1486 | REAL pt(klon,klev), pu(klon,klev), pv(klon,klev) |
---|
1487 | REAL papmf(klon,klev),papmh(klon,klev+1) |
---|
1488 | c |
---|
1489 | c initialiser les variables de sortie (pour securite) |
---|
1490 | c |
---|
1491 | |
---|
1492 | c print *,'in lift_noro' |
---|
1493 | DO i = 1,klon |
---|
1494 | pulow(i) = 0.0 |
---|
1495 | pvlow(i) = 0.0 |
---|
1496 | pustr(i) = 0.0 |
---|
1497 | pvstr(i) = 0.0 |
---|
1498 | ENDDO |
---|
1499 | DO k = 1, klev |
---|
1500 | DO i = 1, klon |
---|
1501 | d_t(i,k) = 0.0 |
---|
1502 | d_u(i,k) = 0.0 |
---|
1503 | d_v(i,k) = 0.0 |
---|
1504 | pdudt(i,k)=0.0 |
---|
1505 | pdvdt(i,k)=0.0 |
---|
1506 | pdtdt(i,k)=0.0 |
---|
1507 | ENDDO |
---|
1508 | ENDDO |
---|
1509 | c |
---|
1510 | c preparer les variables d'entree (attention: l'ordre des niveaux |
---|
1511 | c verticaux augmente du haut vers le bas) |
---|
1512 | c |
---|
1513 | DO k = 1, klev |
---|
1514 | DO i = 1, klon |
---|
1515 | pt(i,k) = t(i,klev-k+1) |
---|
1516 | pu(i,k) = u(i,klev-k+1) |
---|
1517 | pv(i,k) = v(i,klev-k+1) |
---|
1518 | papmf(i,k) = pplay(i,klev-k+1) |
---|
1519 | ENDDO |
---|
1520 | ENDDO |
---|
1521 | DO k = 1, klev+1 |
---|
1522 | DO i = 1, klon |
---|
1523 | papmh(i,k) = paprs(i,klev-k+2) |
---|
1524 | ENDDO |
---|
1525 | ENDDO |
---|
1526 | DO i = 1, klon |
---|
1527 | zgeom(i,klev) = RD * pt(i,klev) |
---|
1528 | . * LOG(papmh(i,klev+1)/papmf(i,klev)) |
---|
1529 | ENDDO |
---|
1530 | DO k = klev-1, 1, -1 |
---|
1531 | DO i = 1, klon |
---|
1532 | zgeom(i,k) = zgeom(i,k+1) + RD * (pt(i,k)+pt(i,k+1))/2.0 |
---|
1533 | . * LOG(papmf(i,k+1)/papmf(i,k)) |
---|
1534 | ENDDO |
---|
1535 | ENDDO |
---|
1536 | c |
---|
1537 | c appeler la routine principale |
---|
1538 | c |
---|
1539 | |
---|
1540 | CALL OROLIFT_strato(klon,klev,kgwd,kdx,ktest, |
---|
1541 | . dtime, |
---|
1542 | . papmh, papmf, zgeom, |
---|
1543 | . pt, pu, pv, |
---|
1544 | . plat,pmea, pstd, psig, pgam, pthe, ppic,pval, |
---|
1545 | . pulow,pvlow, |
---|
1546 | . pdudt,pdvdt,pdtdt) |
---|
1547 | C |
---|
1548 | DO k = 1, klev |
---|
1549 | DO i = 1, klon |
---|
1550 | d_u(i,klev+1-k) = dtime*pdudt(i,k) |
---|
1551 | d_v(i,klev+1-k) = dtime*pdvdt(i,k) |
---|
1552 | d_t(i,klev+1-k) = dtime*pdtdt(i,k) |
---|
1553 | pustr(i) = pustr(i) |
---|
1554 | . +pdudt(i,k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
1555 | pvstr(i) = pvstr(i) |
---|
1556 | . +pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k))/rg |
---|
1557 | ENDDO |
---|
1558 | ENDDO |
---|
1559 | |
---|
1560 | c print *,' out lift_noro' |
---|
1561 | c |
---|
1562 | RETURN |
---|
1563 | END |
---|
1564 | subroutine orolift_strato( nlon,nlev |
---|
1565 | I , kgwd, kdx, ktest |
---|
1566 | R , ptsphy |
---|
1567 | R , paphm1,papm1,pgeom1,ptm1,pum1,pvm1 |
---|
1568 | R , plat |
---|
1569 | R , pmea, pstd, psig, pgam, pthe,ppic,pval |
---|
1570 | C OUTPUTS |
---|
1571 | R , pulow,pvlow |
---|
1572 | R , pvom,pvol,pte ) |
---|
1573 | |
---|
1574 | C |
---|
1575 | C**** *OROLIFT: SIMULATE THE GEOSTROPHIC LIFT. |
---|
1576 | C |
---|
1577 | C PURPOSE. |
---|
1578 | C -------- |
---|
1579 | C this routine computes the physical tendencies of the |
---|
1580 | C prognostic variables u,v when enhanced vortex stretching |
---|
1581 | C is needed. |
---|
1582 | C |
---|
1583 | C** INTERFACE. |
---|
1584 | C ---------- |
---|
1585 | C CALLED FROM *lift_noro |
---|
1586 | c explicit arguments : |
---|
1587 | c -------------------- |
---|
1588 | c ==== inputs === |
---|
1589 | c nlon----input-I-Total number of horizontal points that get into physics |
---|
1590 | c nlev----input-I-Number of vertical levels |
---|
1591 | c |
---|
1592 | c kgwd- -input-I: Total nb of points where the orography schemes are active |
---|
1593 | c ktest--input-I: Flags to indicate active points |
---|
1594 | c kdx----input-I: Locate the physical location of an active point. |
---|
1595 | c ptsphy--input-R-Time-step (s) |
---|
1596 | c paphm1--input-R: pressure at model 1/2 layer |
---|
1597 | c papm1---input-R: pressure at model layer |
---|
1598 | c pgeom1--input-R: Altitude of layer above ground |
---|
1599 | c ptm1, pum1, pvm1--R-: t, u and v |
---|
1600 | c pmea----input-R-Mean Orography (m) |
---|
1601 | C pstd----input-R-SSO standard deviation (m) |
---|
1602 | c psig----input-R-SSO slope |
---|
1603 | c pgam----input-R-SSO Anisotropy |
---|
1604 | c pthe----input-R-SSO Angle |
---|
1605 | c ppic----input-R-SSO Peacks elevation (m) |
---|
1606 | c pval----input-R-SSO Valleys elevation (m) |
---|
1607 | c plat----input-R-Latitude (degree) |
---|
1608 | c |
---|
1609 | c ==== outputs === |
---|
1610 | c pulow, pvlow -output-R: Low-level wind |
---|
1611 | c |
---|
1612 | c pte -----output-R: T tendency |
---|
1613 | c pvom-----output-R: U tendency |
---|
1614 | c pvol-----output-R: V tendency |
---|
1615 | c |
---|
1616 | c |
---|
1617 | c Implicit Arguments: |
---|
1618 | c =================== |
---|
1619 | c |
---|
1620 | c klon-common-I: Number of points seen by the physics |
---|
1621 | c klev-common-I: Number of vertical layers |
---|
1622 | c |
---|
1623 | |
---|
1624 | C ---------- |
---|
1625 | C |
---|
1626 | C AUTHOR. |
---|
1627 | C ------- |
---|
1628 | C F.LOTT LMD 22/11/95 |
---|
1629 | C |
---|
1630 | USE dimphy |
---|
1631 | implicit none |
---|
1632 | C |
---|
1633 | C |
---|
1634 | cym#include "dimensions.h" |
---|
1635 | cym#include "dimphy.h" |
---|
1636 | #include "YOMCST.h" |
---|
1637 | #include "YOEGWD.h" |
---|
1638 | C----------------------------------------------------------------------- |
---|
1639 | C |
---|
1640 | C* 0.1 ARGUMENTS |
---|
1641 | C --------- |
---|
1642 | C |
---|
1643 | C |
---|
1644 | integer nlon,nlev,kgwd |
---|
1645 | real ptsphy |
---|
1646 | real pte(nlon,nlev), |
---|
1647 | * pvol(nlon,nlev), |
---|
1648 | * pvom(nlon,nlev), |
---|
1649 | * pulow(nlon), |
---|
1650 | * pvlow(nlon) |
---|
1651 | real pum1(nlon,nlev), |
---|
1652 | * pvm1(nlon,nlev), |
---|
1653 | * ptm1(nlon,nlev), |
---|
1654 | * plat(nlon),pmea(nlon), |
---|
1655 | * pstd(nlon),psig(nlon),pgam(nlon), |
---|
1656 | * pthe(nlon),ppic(nlon),pval(nlon), |
---|
1657 | * pgeom1(nlon,nlev), |
---|
1658 | * papm1(nlon,nlev), |
---|
1659 | * paphm1(nlon,nlev+1) |
---|
1660 | C |
---|
1661 | INTEGER KDX(NLON),KTEST(NLON) |
---|
1662 | C----------------------------------------------------------------------- |
---|
1663 | C |
---|
1664 | C* 0.2 local arrays |
---|
1665 | |
---|
1666 | integer jl,ilevh,jk |
---|
1667 | real zhgeo,zdelp,zslow,zsqua,zscav,zbet |
---|
1668 | C ------------ |
---|
1669 | integer iknub(klon), |
---|
1670 | * iknul(klon) |
---|
1671 | logical ll1(klon,klev+1) |
---|
1672 | C |
---|
1673 | real ztau(klon,klev+1), |
---|
1674 | * ztav(klon,klev+1), |
---|
1675 | * zrho(klon,klev+1) |
---|
1676 | real zdudt(klon), |
---|
1677 | * zdvdt(klon) |
---|
1678 | real zhcrit(klon,klev) |
---|
1679 | |
---|
1680 | logical lifthigh |
---|
1681 | real zcons1,ztmst |
---|
1682 | |
---|
1683 | C----------------------------------------------------------------------- |
---|
1684 | C |
---|
1685 | C* 1.1 initialisations |
---|
1686 | C --------------- |
---|
1687 | |
---|
1688 | lifthigh=.false. |
---|
1689 | |
---|
1690 | if(nlon.ne.klon.or.nlev.ne.klev)stop |
---|
1691 | zcons1=1./rd |
---|
1692 | ztmst=ptsphy |
---|
1693 | C |
---|
1694 | do 1001 jl=kidia,kfdia |
---|
1695 | zrho(jl,klev+1) =0.0 |
---|
1696 | pulow(jl) =0.0 |
---|
1697 | pvlow(jl) =0.0 |
---|
1698 | iknub(JL) =klev |
---|
1699 | iknul(JL) =klev |
---|
1700 | ilevh=klev/3 |
---|
1701 | ll1(jl,klev+1)=.false. |
---|
1702 | do 1000 jk=1,klev |
---|
1703 | pvom(jl,jk)=0.0 |
---|
1704 | pvol(jl,jk)=0.0 |
---|
1705 | pte (jl,jk)=0.0 |
---|
1706 | 1000 continue |
---|
1707 | 1001 continue |
---|
1708 | |
---|
1709 | C |
---|
1710 | C* 2.1 DEFINE LOW LEVEL WIND, PROJECT WINDS IN PLANE OF |
---|
1711 | C* LOW LEVEL WIND, DETERMINE SECTOR IN WHICH TO TAKE |
---|
1712 | C* THE VARIANCE AND SET INDICATOR FOR CRITICAL LEVELS. |
---|
1713 | C |
---|
1714 | C |
---|
1715 | C |
---|
1716 | do 2006 jk=klev,1,-1 |
---|
1717 | do 2007 jl=kidia,kfdia |
---|
1718 | if(ktest(jl).eq.1) then |
---|
1719 | zhcrit(jl,jk)=amax1(ppic(jl)-pval(jl),100.) |
---|
1720 | zhgeo=pgeom1(jl,jk)/rg |
---|
1721 | ll1(jl,jk)=(zhgeo.gt.zhcrit(jl,jk)) |
---|
1722 | if(ll1(jl,jk).neqv.ll1(jl,jk+1)) then |
---|
1723 | iknub(jl)=jk |
---|
1724 | endif |
---|
1725 | endif |
---|
1726 | 2007 continue |
---|
1727 | 2006 continue |
---|
1728 | C |
---|
1729 | |
---|
1730 | do 2010 jl=kidia,kfdia |
---|
1731 | if(ktest(jl).eq.1) then |
---|
1732 | iknub(jl)=max(iknub(jl),klev/2) |
---|
1733 | iknul(jl)=max(iknul(jl),2*klev/3) |
---|
1734 | if(iknub(jl).gt.nktopg) iknub(jl)=nktopg |
---|
1735 | if(iknub(jl).eq.nktopg) iknul(jl)=klev |
---|
1736 | if(iknub(jl).eq.iknul(jl)) iknub(jl)=iknul(jl)-1 |
---|
1737 | endif |
---|
1738 | 2010 continue |
---|
1739 | |
---|
1740 | do 223 jk=klev,2,-1 |
---|
1741 | do 222 jl=kidia,kfdia |
---|
1742 | zrho(jl,jk)=2.*paphm1(jl,jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
1743 | 222 continue |
---|
1744 | 223 continue |
---|
1745 | c print *,' dans orolift: 223' |
---|
1746 | |
---|
1747 | C******************************************************************** |
---|
1748 | C |
---|
1749 | c* define low level flow |
---|
1750 | C ------------------- |
---|
1751 | do 2115 jk=klev,1,-1 |
---|
1752 | do 2116 jl=kidia,kfdia |
---|
1753 | if(ktest(jl).eq.1) THEN |
---|
1754 | if(jk.ge.iknub(jl).and.jk.le.iknul(jl)) then |
---|
1755 | pulow(JL)=pulow(JL)+pum1(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
1756 | pvlow(JL)=pvlow(JL)+pvm1(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
1757 | zrho(JL,klev+1)=zrho(JL,klev+1) |
---|
1758 | * +zrho(JL,JK)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
1759 | endif |
---|
1760 | endif |
---|
1761 | 2116 continue |
---|
1762 | 2115 continue |
---|
1763 | do 2110 jl=kidia,kfdia |
---|
1764 | if(ktest(jl).eq.1) then |
---|
1765 | pulow(JL)=pulow(JL)/(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
---|
1766 | pvlow(JL)=pvlow(JL)/(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
---|
1767 | zrho(JL,klev+1)=zrho(Jl,klev+1) |
---|
1768 | * /(paphm1(jl,iknul(jl)+1)-paphm1(jl,iknub(jl))) |
---|
1769 | endif |
---|
1770 | 2110 continue |
---|
1771 | |
---|
1772 | |
---|
1773 | 200 continue |
---|
1774 | |
---|
1775 | C*********************************************************** |
---|
1776 | C |
---|
1777 | C* 3. COMPUTE MOUNTAIN LIFT |
---|
1778 | C |
---|
1779 | 300 continue |
---|
1780 | C |
---|
1781 | do 301 jl=kidia,kfdia |
---|
1782 | if(ktest(jl).eq.1) then |
---|
1783 | ztau(jl,klev+1)= - gklift*zrho(jl,klev+1)*2.*romega* |
---|
1784 | c * (2*pstd(jl)+pmea(jl))* |
---|
1785 | * 2*pstd(jl)* |
---|
1786 | * sin(rpi/180.*plat(jl))*pvlow(jl) |
---|
1787 | ztav(jl,klev+1)= gklift*zrho(jl,klev+1)*2.*romega* |
---|
1788 | c * (2*pstd(jl)+pmea(jl))* |
---|
1789 | * 2*pstd(jl)* |
---|
1790 | * sin(rpi/180.*plat(jl))*pulow(jl) |
---|
1791 | else |
---|
1792 | ztau(jl,klev+1)=0.0 |
---|
1793 | ztav(jl,klev+1)=0.0 |
---|
1794 | endif |
---|
1795 | 301 continue |
---|
1796 | |
---|
1797 | C |
---|
1798 | C* 4. COMPUTE LIFT PROFILE |
---|
1799 | C* -------------------- |
---|
1800 | C |
---|
1801 | |
---|
1802 | 400 continue |
---|
1803 | |
---|
1804 | do 401 jk=1,klev |
---|
1805 | do 401 jl=kidia,kfdia |
---|
1806 | if(ktest(jl).eq.1) then |
---|
1807 | ztau(jl,jk)=ztau(jl,klev+1)*paphm1(jl,jk)/paphm1(jl,klev+1) |
---|
1808 | ztav(jl,jk)=ztav(jl,klev+1)*paphm1(jl,jk)/paphm1(jl,klev+1) |
---|
1809 | else |
---|
1810 | ztau(jl,jk)=0.0 |
---|
1811 | ztav(jl,jk)=0.0 |
---|
1812 | endif |
---|
1813 | 401 continue |
---|
1814 | C |
---|
1815 | C |
---|
1816 | C* 5. COMPUTE TENDENCIES. |
---|
1817 | C* ------------------- |
---|
1818 | if(lifthigh)then |
---|
1819 | C |
---|
1820 | 500 continue |
---|
1821 | C |
---|
1822 | C EXPLICIT SOLUTION AT ALL LEVELS |
---|
1823 | C |
---|
1824 | do 524 jk=1,klev |
---|
1825 | do 523 jl=kidia,kfdia |
---|
1826 | if(ktest(jl).eq.1) then |
---|
1827 | zdelp=paphm1(jl,jk+1)-paphm1(jl,jk) |
---|
1828 | zdudt(jl)=-rg*(ztau(jl,jk+1)-ztau(jl,jk))/zdelp |
---|
1829 | zdvdt(jl)=-rg*(ztav(jl,jk+1)-ztav(jl,jk))/zdelp |
---|
1830 | endif |
---|
1831 | 523 continue |
---|
1832 | 524 continue |
---|
1833 | C |
---|
1834 | C PROJECT PERPENDICULARLY TO U NOT TO DESTROY ENERGY |
---|
1835 | C |
---|
1836 | do 530 jk=1,klev |
---|
1837 | do 530 jl=kidia,kfdia |
---|
1838 | if(ktest(jl).eq.1) then |
---|
1839 | |
---|
1840 | zslow=sqrt(pulow(jl)**2+pvlow(jl)**2) |
---|
1841 | zsqua=amax1(sqrt(pum1(jl,jk)**2+pvm1(jl,jk)**2),gvsec) |
---|
1842 | zscav=-zdudt(jl)*pvm1(jl,jk)+zdvdt(jl)*pum1(jl,jk) |
---|
1843 | if(zsqua.gt.gvsec)then |
---|
1844 | pvom(jl,jk)=-zscav*pvm1(jl,jk)/zsqua**2 |
---|
1845 | pvol(jl,jk)= zscav*pum1(jl,jk)/zsqua**2 |
---|
1846 | else |
---|
1847 | pvom(jl,jk)=0.0 |
---|
1848 | pvol(jl,jk)=0.0 |
---|
1849 | endif |
---|
1850 | zsqua=sqrt(pum1(jl,jk)**2+pum1(jl,jk)**2) |
---|
1851 | if(zsqua.lt.zslow)then |
---|
1852 | pvom(jl,jk)=zsqua/zslow*pvom(jl,jk) |
---|
1853 | pvol(jl,jk)=zsqua/zslow*pvol(jl,jk) |
---|
1854 | endif |
---|
1855 | |
---|
1856 | endif |
---|
1857 | 530 continue |
---|
1858 | C |
---|
1859 | C 6. LOW LEVEL LIFT, SEMI IMPLICIT: |
---|
1860 | C ---------------------------------- |
---|
1861 | |
---|
1862 | else |
---|
1863 | |
---|
1864 | do 601 jl=kidia,kfdia |
---|
1865 | if(ktest(jl).eq.1) then |
---|
1866 | do jk=klev,iknub(jl),-1 |
---|
1867 | zbet=gklift*2.*romega*sin(rpi/180.*plat(jl))*ztmst* |
---|
1868 | * (pgeom1(jl,iknub(jl)-1)-pgeom1(jl, jk))/ |
---|
1869 | * (pgeom1(jl,iknub(jl)-1)-pgeom1(jl,klev)) |
---|
1870 | zdudt(jl)=-pum1(jl,jk)/ztmst/(1+zbet**2) |
---|
1871 | zdvdt(jl)=-pvm1(jl,jk)/ztmst/(1+zbet**2) |
---|
1872 | pvom(jl,jk)= zbet**2*zdudt(jl) - zbet *zdvdt(jl) |
---|
1873 | pvol(jl,jk)= zbet *zdudt(jl) + zbet**2*zdvdt(jl) |
---|
1874 | enddo |
---|
1875 | endif |
---|
1876 | 601 continue |
---|
1877 | |
---|
1878 | endif |
---|
1879 | |
---|
1880 | c print *,' out orolift' |
---|
1881 | |
---|
1882 | return |
---|
1883 | end |
---|
1884 | SUBROUTINE SUGWD_strato(NLON,NLEV,paprs,pplay) |
---|
1885 | C |
---|
1886 | C |
---|
1887 | C**** *SUGWD* INITIALIZE COMMON YOEGWD CONTROLLING GRAVITY WAVE DRAG |
---|
1888 | C |
---|
1889 | C PURPOSE. |
---|
1890 | C -------- |
---|
1891 | C INITIALIZE YOEGWD, THE COMMON THAT CONTROLS THE |
---|
1892 | C GRAVITY WAVE DRAG PARAMETRIZATION. |
---|
1893 | C VERY IMPORTANT: |
---|
1894 | C ______________ |
---|
1895 | C THIS ROUTINE SET_UP THE "TUNABLE PARAMETERS" OF THE |
---|
1896 | C VARIOUS SSO SCHEMES |
---|
1897 | C |
---|
1898 | C** INTERFACE. |
---|
1899 | C ---------- |
---|
1900 | C CALL *SUGWD* FROM *SUPHEC* |
---|
1901 | C ----- ------ |
---|
1902 | C |
---|
1903 | C EXPLICIT ARGUMENTS : |
---|
1904 | C -------------------- |
---|
1905 | C PAPRS,PPLAY : Pressure at semi and full model levels |
---|
1906 | C NLEV : number of model levels |
---|
1907 | c NLON : number of points treated in the physics |
---|
1908 | C |
---|
1909 | C IMPLICIT ARGUMENTS : |
---|
1910 | C -------------------- |
---|
1911 | C COMMON YOEGWD |
---|
1912 | C-GFRCRIT-R: Critical Non-dimensional mountain Height |
---|
1913 | C (HNC in (1), LOTT 1999) |
---|
1914 | C-GKWAKE--R: Bluff-body drag coefficient for low level wake |
---|
1915 | C (Cd in (2), LOTT 1999) |
---|
1916 | C-GRCRIT--R: Critical Richardson Number |
---|
1917 | C (Ric, End of first column p791 of LOTT 1999) |
---|
1918 | C-GKDRAG--R: Gravity wave drag coefficient |
---|
1919 | C (G in (3), LOTT 1999) |
---|
1920 | C-GKLIFT--R: Mountain Lift coefficient |
---|
1921 | C (Cl in (4), LOTT 1999) |
---|
1922 | C-GHMAX---R: Not used |
---|
1923 | C-GRAHILO-R: Set-up the trapped waves fraction |
---|
1924 | C (Beta , End of first column, LOTT 1999) |
---|
1925 | C |
---|
1926 | C-GSIGCR--R: Security value for blocked flow depth |
---|
1927 | C-NKTOPG--I: Security value for blocked flow level |
---|
1928 | C-nstra----I: An estimate to qualify the upper levels of |
---|
1929 | C the model where one wants to impose strees |
---|
1930 | C profiles |
---|
1931 | C-GSSECC--R: Security min value for low-level B-V frequency |
---|
1932 | C-GTSEC---R: Security min value for anisotropy and GW stress. |
---|
1933 | C-GVSEC---R: Security min value for ulow |
---|
1934 | C |
---|
1935 | C |
---|
1936 | C METHOD. |
---|
1937 | C ------- |
---|
1938 | C SEE DOCUMENTATION |
---|
1939 | C |
---|
1940 | C EXTERNALS. |
---|
1941 | C ---------- |
---|
1942 | C NONE |
---|
1943 | C |
---|
1944 | C REFERENCE. |
---|
1945 | C ---------- |
---|
1946 | C Lott, 1999: Alleviation of stationary biases in a GCM through... |
---|
1947 | C Monthly Weather Review, 127, pp 788-801. |
---|
1948 | C |
---|
1949 | C AUTHOR. |
---|
1950 | C ------- |
---|
1951 | C FRANCOIS LOTT *LMD* |
---|
1952 | C |
---|
1953 | C MODIFICATIONS. |
---|
1954 | C -------------- |
---|
1955 | C ORIGINAL : 90-01-01 (MARTIN MILLER, ECMWF) |
---|
1956 | C LAST: 99-07-09 (FRANCOIS LOTT,LMD) |
---|
1957 | C ------------------------------------------------------------------ |
---|
1958 | USE dimphy |
---|
1959 | USE mod_phys_lmdz_para |
---|
1960 | USE mod_grid_phy_lmdz |
---|
1961 | IMPLICIT NONE |
---|
1962 | C |
---|
1963 | C ----------------------------------------------------------------- |
---|
1964 | #include "YOEGWD.h" |
---|
1965 | C ---------------------------------------------------------------- |
---|
1966 | C |
---|
1967 | C ARGUMENTS |
---|
1968 | integer nlon,nlev |
---|
1969 | REAL paprs(nlon,nlev+1) |
---|
1970 | REAL pplay(nlon,nlev) |
---|
1971 | C |
---|
1972 | INTEGER JK |
---|
1973 | REAL ZPR,ZTOP,ZSIGT,ZPM1R |
---|
1974 | REAL :: pplay_glo(klon_glo,nlev) |
---|
1975 | REAL :: paprs_glo(klon_glo,nlev+1) |
---|
1976 | |
---|
1977 | C |
---|
1978 | C* 1. SET THE VALUES OF THE PARAMETERS |
---|
1979 | C -------------------------------- |
---|
1980 | C |
---|
1981 | 100 CONTINUE |
---|
1982 | C |
---|
1983 | PRINT *,' DANS SUGWD NLEV=',NLEV |
---|
1984 | GHMAX=10000. |
---|
1985 | C |
---|
1986 | ZPR=100000. |
---|
1987 | ZTOP=0.001 |
---|
1988 | ZSIGT=0.94 |
---|
1989 | cold ZPR=80000. |
---|
1990 | cold ZSIGT=0.85 |
---|
1991 | C |
---|
1992 | CALL gather(pplay,pplay_glo) |
---|
1993 | CALL bcast(pplay_glo) |
---|
1994 | CALL gather(paprs,paprs_glo) |
---|
1995 | CALL bcast(paprs_glo) |
---|
1996 | |
---|
1997 | DO 110 JK=1,NLEV |
---|
1998 | ZPM1R=pplay_glo(klon_glo/2,jk)/paprs_glo(klon_glo/2,1) |
---|
1999 | IF(ZPM1R.GE.ZSIGT)THEN |
---|
2000 | nktopg=JK |
---|
2001 | ENDIF |
---|
2002 | ZPM1R=pplay_glo(klon_glo/2,jk)/paprs_glo(klon_glo/2,1) |
---|
2003 | IF(ZPM1R.GE.ZTOP)THEN |
---|
2004 | nstra=JK |
---|
2005 | ENDIF |
---|
2006 | 110 CONTINUE |
---|
2007 | c |
---|
2008 | c inversion car dans orodrag on compte les niveaux a l'envers |
---|
2009 | nktopg=nlev-nktopg+1 |
---|
2010 | nstra=nlev-nstra |
---|
2011 | print *,' DANS SUGWD nktopg=', nktopg |
---|
2012 | print *,' DANS SUGWD nstra=', nstra |
---|
2013 | C |
---|
2014 | GSIGCR=0.80 |
---|
2015 | C |
---|
2016 | GKDRAG=0.1875 |
---|
2017 | GRAHILO=0.1 |
---|
2018 | GRCRIT=1.00 |
---|
2019 | GFRCRIT=1.00 |
---|
2020 | GKWAKE=0.50 |
---|
2021 | C |
---|
2022 | GKLIFT=0.25 |
---|
2023 | GVCRIT =0.1 |
---|
2024 | |
---|
2025 | WRITE(UNIT=6,FMT='('' *** SSO essential constants ***'')') |
---|
2026 | WRITE(UNIT=6,FMT='('' *** SPECIFIED IN SUGWD ***'')') |
---|
2027 | WRITE(UNIT=6,FMT='('' Gravity wave ct '',E13.7,'' '')')GKDRAG |
---|
2028 | WRITE(UNIT=6,FMT='('' Trapped/total wave dag '',E13.7,'' '')') |
---|
2029 | S GRAHILO |
---|
2030 | WRITE(UNIT=6,FMT='('' Critical Richardson = '',E13.7,'' '')') |
---|
2031 | S GRCRIT |
---|
2032 | WRITE(UNIT=6,FMT='('' Critical Froude'',e13.7)') GFRCRIT |
---|
2033 | WRITE(UNIT=6,FMT='('' Low level Wake bluff cte'',e13.7)') GKWAKE |
---|
2034 | WRITE(UNIT=6,FMT='('' Low level lift cte'',e13.7)') GKLIFT |
---|
2035 | |
---|
2036 | C |
---|
2037 | C |
---|
2038 | C ---------------------------------------------------------------- |
---|
2039 | C |
---|
2040 | C* 2. SET VALUES OF SECURITY PARAMETERS |
---|
2041 | C --------------------------------- |
---|
2042 | C |
---|
2043 | 200 CONTINUE |
---|
2044 | C |
---|
2045 | GVSEC=0.10 |
---|
2046 | GSSEC=0.0001 |
---|
2047 | C |
---|
2048 | GTSEC=0.00001 |
---|
2049 | C |
---|
2050 | RETURN |
---|
2051 | END |
---|
2052 | |
---|