1 | MODULE filtreg_mod |
---|
2 | |
---|
3 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: matriceun,matriceus,matricevn |
---|
4 | REAL, DIMENSION(:,:,:), ALLOCATABLE :: matricevs,matrinvn,matrinvs |
---|
5 | |
---|
6 | CONTAINS |
---|
7 | |
---|
8 | SUBROUTINE inifilr |
---|
9 | ! |
---|
10 | ! ... H. Upadhyaya, O.Sharma ... |
---|
11 | ! |
---|
12 | IMPLICIT NONE |
---|
13 | ! |
---|
14 | ! version 3 ..... |
---|
15 | |
---|
16 | ! Correction le 28/10/97 P. Le Van . |
---|
17 | ! ------------------------------------------------------------------- |
---|
18 | #include "dimensions.h" |
---|
19 | #include "paramet.h" |
---|
20 | ! ------------------------------------------------------------------- |
---|
21 | #include "comgeom.h" |
---|
22 | #include "coefils.h" |
---|
23 | #include "logic.h" |
---|
24 | #include "serre.h" |
---|
25 | |
---|
26 | REAL dlonu(iim),dlatu(jjm) |
---|
27 | REAL rlamda( iim ), eignvl( iim ) |
---|
28 | ! |
---|
29 | |
---|
30 | REAL lamdamax,pi,cof |
---|
31 | INTEGER i,j,modemax,imx,k,kf,ii |
---|
32 | REAL dymin,dxmin,colat0 |
---|
33 | REAL eignft(iim,iim), coff |
---|
34 | |
---|
35 | LOGICAL, SAVE :: first_call_inifilr = .TRUE. |
---|
36 | |
---|
37 | #ifdef CRAY |
---|
38 | INTEGER ISMIN |
---|
39 | EXTERNAL ISMIN |
---|
40 | INTEGER iymin |
---|
41 | INTEGER ixmineq |
---|
42 | #endif |
---|
43 | EXTERNAL inifgn |
---|
44 | ! |
---|
45 | ! ------------------------------------------------------------ |
---|
46 | ! This routine computes the eigenfunctions of the laplacien |
---|
47 | ! on the stretched grid, and the filtering coefficients |
---|
48 | ! |
---|
49 | ! We designate: |
---|
50 | ! eignfn eigenfunctions of the discrete laplacien |
---|
51 | ! eigenvl eigenvalues |
---|
52 | ! jfiltn indexof the last scalar line filtered in NH |
---|
53 | ! jfilts index of the first line filtered in SH |
---|
54 | ! modfrst index of the mode from WHERE modes are filtered |
---|
55 | ! modemax maximum number of modes ( im ) |
---|
56 | ! coefil filtering coefficients ( lamda_max*COS(rlat)/lamda ) |
---|
57 | ! sdd SQRT( dx ) |
---|
58 | ! |
---|
59 | ! the modes are filtered from modfrst to modemax |
---|
60 | ! |
---|
61 | !----------------------------------------------------------- |
---|
62 | ! |
---|
63 | |
---|
64 | pi = 2. * ASIN( 1. ) |
---|
65 | |
---|
66 | DO i = 1,iim |
---|
67 | dlonu(i) = xprimu( i ) |
---|
68 | ENDDO |
---|
69 | ! |
---|
70 | CALL inifgn(eignvl) |
---|
71 | ! |
---|
72 | PRINT *,' EIGNVL ' |
---|
73 | PRINT 250,eignvl |
---|
74 | 250 FORMAT( 1x,5e13.6) |
---|
75 | ! |
---|
76 | ! compute eigenvalues and eigenfunctions |
---|
77 | ! |
---|
78 | ! |
---|
79 | !................................................................. |
---|
80 | ! |
---|
81 | ! compute the filtering coefficients for scalar lines and |
---|
82 | ! meridional wind v-lines |
---|
83 | ! |
---|
84 | ! we filter all those latitude lines WHERE coefil < 1 |
---|
85 | ! NO FILTERING AT POLES |
---|
86 | ! |
---|
87 | ! colat0 is to be used when alpha (stretching coefficient) |
---|
88 | ! is set equal to zero for the regular grid CASE |
---|
89 | ! |
---|
90 | ! ....... Calcul de colat0 ......... |
---|
91 | ! ..... colat0 = minimum de ( 0.5, min dy/ min dx ) ... |
---|
92 | ! |
---|
93 | ! |
---|
94 | DO j = 1,jjm |
---|
95 | dlatu( j ) = rlatu( j ) - rlatu( j+1 ) |
---|
96 | ENDDO |
---|
97 | ! |
---|
98 | #ifdef CRAY |
---|
99 | iymin = ISMIN( jjm, dlatu, 1 ) |
---|
100 | ixmineq = ISMIN( iim, dlonu, 1 ) |
---|
101 | dymin = dlatu( iymin ) |
---|
102 | dxmin = dlonu( ixmineq ) |
---|
103 | #else |
---|
104 | dxmin = dlonu(1) |
---|
105 | DO i = 2, iim |
---|
106 | dxmin = MIN( dxmin,dlonu(i) ) |
---|
107 | ENDDO |
---|
108 | dymin = dlatu(1) |
---|
109 | DO j = 2, jjm |
---|
110 | dymin = MIN( dymin,dlatu(j) ) |
---|
111 | ENDDO |
---|
112 | #endif |
---|
113 | ! |
---|
114 | ! |
---|
115 | colat0 = MIN( 0.5, dymin/dxmin ) |
---|
116 | ! |
---|
117 | IF( .NOT.fxyhypb.AND.ysinus ) THEN |
---|
118 | colat0 = 0.6 |
---|
119 | ! ...... a revoir pour ysinus ! ....... |
---|
120 | alphax = 0. |
---|
121 | ENDIF |
---|
122 | ! |
---|
123 | PRINT 50, colat0,alphax |
---|
124 | 50 FORMAT(/15x,' Inifilr colat0 alphax ',2e16.7) |
---|
125 | ! |
---|
126 | IF(alphax.EQ.1. ) THEN |
---|
127 | PRINT *,' Inifilr alphax doit etre < a 1. Corriger ' |
---|
128 | STOP |
---|
129 | ENDIF |
---|
130 | ! |
---|
131 | lamdamax = iim / ( pi * colat0 * ( 1. - alphax ) ) |
---|
132 | |
---|
133 | ! ... Correction le 28/10/97 ( P.Le Van ) .. |
---|
134 | ! |
---|
135 | DO i = 2,iim |
---|
136 | rlamda( i ) = lamdamax/ SQRT( ABS( eignvl(i) ) ) |
---|
137 | ENDDO |
---|
138 | ! |
---|
139 | |
---|
140 | DO j = 1,jjm |
---|
141 | DO i = 1,iim |
---|
142 | coefilu( i,j ) = 0.0 |
---|
143 | coefilv( i,j ) = 0.0 |
---|
144 | coefilu2( i,j ) = 0.0 |
---|
145 | coefilv2( i,j ) = 0.0 |
---|
146 | ENDDO |
---|
147 | ENDDO |
---|
148 | |
---|
149 | ! |
---|
150 | ! ... Determination de jfiltnu,jfiltnv,jfiltsu,jfiltsv .... |
---|
151 | ! ......................................................... |
---|
152 | ! |
---|
153 | modemax = iim |
---|
154 | |
---|
155 | !!!! imx = modemax - 4 * (modemax/iim) |
---|
156 | |
---|
157 | imx = iim |
---|
158 | ! |
---|
159 | PRINT *,' TRUNCATION AT ',imx |
---|
160 | ! |
---|
161 | DO j = 2, jjm/2+1 |
---|
162 | cof = COS( rlatu(j) )/ colat0 |
---|
163 | IF ( cof .LT. 1. ) THEN |
---|
164 | IF( rlamda(imx) * COS(rlatu(j) ).LT.1. ) jfiltnu= j |
---|
165 | ENDIF |
---|
166 | |
---|
167 | cof = COS( rlatu(jjp1-j+1) )/ colat0 |
---|
168 | IF ( cof .LT. 1. ) THEN |
---|
169 | IF( rlamda(imx) * COS(rlatu(jjp1-j+1) ).LT.1. ) & |
---|
170 | jfiltsu= jjp1-j+1 |
---|
171 | ENDIF |
---|
172 | ENDDO |
---|
173 | ! |
---|
174 | DO j = 1, jjm/2 |
---|
175 | cof = COS( rlatv(j) )/ colat0 |
---|
176 | IF ( cof .LT. 1. ) THEN |
---|
177 | IF( rlamda(imx) * COS(rlatv(j) ).LT.1. ) jfiltnv= j |
---|
178 | ENDIF |
---|
179 | |
---|
180 | cof = COS( rlatv(jjm-j+1) )/ colat0 |
---|
181 | IF ( cof .LT. 1. ) THEN |
---|
182 | IF( rlamda(imx) * COS(rlatv(jjm-j+1) ).LT.1. ) & |
---|
183 | jfiltsv= jjm-j+1 |
---|
184 | ENDIF |
---|
185 | ENDDO |
---|
186 | ! |
---|
187 | |
---|
188 | IF ( jfiltnu.LE.0 ) jfiltnu=1 |
---|
189 | IF( jfiltnu.GT. jjm/2 +1 ) THEN |
---|
190 | PRINT *,' jfiltnu en dehors des valeurs acceptables ' ,jfiltnu |
---|
191 | STOP |
---|
192 | ENDIF |
---|
193 | |
---|
194 | IF( jfiltsu.LE.0) jfiltsu=1 |
---|
195 | IF( jfiltsu.GT. jjm +1 ) THEN |
---|
196 | PRINT *,' jfiltsu en dehors des valeurs acceptables ' ,jfiltsu |
---|
197 | STOP |
---|
198 | ENDIF |
---|
199 | |
---|
200 | IF( jfiltnv.LE.0) jfiltnv=1 |
---|
201 | IF( jfiltnv.GT. jjm/2 ) THEN |
---|
202 | PRINT *,' jfiltnv en dehors des valeurs acceptables ' ,jfiltnv |
---|
203 | STOP |
---|
204 | ENDIF |
---|
205 | |
---|
206 | IF( jfiltsv.LE.0) jfiltsv=1 |
---|
207 | IF( jfiltsv.GT. jjm ) THEN |
---|
208 | PRINT *,' jfiltsv en dehors des valeurs acceptables ' ,jfiltsv |
---|
209 | STOP |
---|
210 | ENDIF |
---|
211 | |
---|
212 | PRINT *,' jfiltnv jfiltsv jfiltnu jfiltsu ' , & |
---|
213 | jfiltnv,jfiltsv,jfiltnu,jfiltsu |
---|
214 | |
---|
215 | IF(first_call_inifilr) THEN |
---|
216 | ALLOCATE(matriceun(iim,iim,jfiltnu)) |
---|
217 | ALLOCATE(matriceus(iim,iim,jfiltsu)) |
---|
218 | ALLOCATE(matricevn(iim,iim,jfiltnv)) |
---|
219 | ALLOCATE(matricevs(iim,iim,jfiltsv)) |
---|
220 | ALLOCATE( matrinvn(iim,iim,jfiltnu)) |
---|
221 | ALLOCATE( matrinvs(iim,iim,jfiltsu)) |
---|
222 | first_call_inifilr = .FALSE. |
---|
223 | ENDIF |
---|
224 | |
---|
225 | ! |
---|
226 | ! ... Determination de coefilu,coefilv,n=modfrstu,modfrstv .... |
---|
227 | !................................................................ |
---|
228 | ! |
---|
229 | ! |
---|
230 | DO j = 1,jjm |
---|
231 | modfrstu( j ) = iim |
---|
232 | modfrstv( j ) = iim |
---|
233 | ENDDO |
---|
234 | ! |
---|
235 | DO j = 2,jfiltnu |
---|
236 | DO k = 2,modemax |
---|
237 | cof = rlamda(k) * COS( rlatu(j) ) |
---|
238 | IF ( cof .LT. 1. ) GOTO 82 |
---|
239 | ENDDO |
---|
240 | GOTO 84 |
---|
241 | 82 modfrstu( j ) = k |
---|
242 | ! |
---|
243 | kf = modfrstu( j ) |
---|
244 | DO k = kf , modemax |
---|
245 | cof = rlamda(k) * COS( rlatu(j) ) |
---|
246 | coefilu(k,j) = cof - 1. |
---|
247 | coefilu2(k,j) = cof*cof - 1. |
---|
248 | ENDDO |
---|
249 | 84 CONTINUE |
---|
250 | ENDDO |
---|
251 | ! |
---|
252 | ! |
---|
253 | DO j = 1,jfiltnv |
---|
254 | ! |
---|
255 | DO k = 2,modemax |
---|
256 | cof = rlamda(k) * COS( rlatv(j) ) |
---|
257 | IF ( cof .LT. 1. ) GOTO 87 |
---|
258 | ENDDO |
---|
259 | GOTO 89 |
---|
260 | 87 modfrstv( j ) = k |
---|
261 | ! |
---|
262 | kf = modfrstv( j ) |
---|
263 | DO k = kf , modemax |
---|
264 | cof = rlamda(k) * COS( rlatv(j) ) |
---|
265 | coefilv(k,j) = cof - 1. |
---|
266 | coefilv2(k,j) = cof*cof - 1. |
---|
267 | ENDDO |
---|
268 | 89 CONTINUE |
---|
269 | ENDDO |
---|
270 | ! |
---|
271 | DO j = jfiltsu,jjm |
---|
272 | DO k = 2,modemax |
---|
273 | cof = rlamda(k) * COS( rlatu(j) ) |
---|
274 | IF ( cof .LT. 1. ) GOTO 92 |
---|
275 | ENDDO |
---|
276 | GOTO 94 |
---|
277 | 92 modfrstu( j ) = k |
---|
278 | ! |
---|
279 | kf = modfrstu( j ) |
---|
280 | DO k = kf , modemax |
---|
281 | cof = rlamda(k) * COS( rlatu(j) ) |
---|
282 | coefilu(k,j) = cof - 1. |
---|
283 | coefilu2(k,j) = cof*cof - 1. |
---|
284 | ENDDO |
---|
285 | 94 CONTINUE |
---|
286 | ENDDO |
---|
287 | ! |
---|
288 | DO j = jfiltsv,jjm |
---|
289 | DO k = 2,modemax |
---|
290 | cof = rlamda(k) * COS( rlatv(j) ) |
---|
291 | IF ( cof .LT. 1. ) GOTO 97 |
---|
292 | ENDDO |
---|
293 | GOTO 99 |
---|
294 | 97 modfrstv( j ) = k |
---|
295 | ! |
---|
296 | kf = modfrstv( j ) |
---|
297 | DO k = kf , modemax |
---|
298 | cof = rlamda(k) * COS( rlatv(j) ) |
---|
299 | coefilv(k,j) = cof - 1. |
---|
300 | coefilv2(k,j) = cof*cof - 1. |
---|
301 | ENDDO |
---|
302 | 99 CONTINUE |
---|
303 | ENDDO |
---|
304 | ! |
---|
305 | |
---|
306 | IF(jfiltnv.GE.jjm/2 .OR. jfiltnu.GE.jjm/2)THEN |
---|
307 | |
---|
308 | IF(jfiltnv.EQ.jfiltsv)jfiltsv=1+jfiltnv |
---|
309 | IF(jfiltnu.EQ.jfiltsu)jfiltsu=1+jfiltnu |
---|
310 | |
---|
311 | PRINT *,'jfiltnv jfiltsv jfiltnu jfiltsu' , & |
---|
312 | jfiltnv,jfiltsv,jfiltnu,jfiltsu |
---|
313 | ENDIF |
---|
314 | |
---|
315 | PRINT *,' Modes premiers v ' |
---|
316 | PRINT 334,modfrstv |
---|
317 | PRINT *,' Modes premiers u ' |
---|
318 | PRINT 334,modfrstu |
---|
319 | |
---|
320 | ! |
---|
321 | ! ................................................................... |
---|
322 | ! |
---|
323 | ! ... Calcul de la matrice filtre 'matriceu' pour les champs situes |
---|
324 | ! sur la grille scalaire ........ |
---|
325 | ! ................................................................... |
---|
326 | ! |
---|
327 | DO j = 2, jfiltnu |
---|
328 | |
---|
329 | DO i=1,iim |
---|
330 | coff = coefilu(i,j) |
---|
331 | IF( i.LT.modfrstu(j) ) coff = 0. |
---|
332 | DO k=1,iim |
---|
333 | eignft(i,k) = eignfnv(k,i) * coff |
---|
334 | ENDDO |
---|
335 | ENDDO |
---|
336 | #ifdef CRAY |
---|
337 | CALL MXM( eignfnv,iim,eignft,iim,matriceun(1,1,j),iim ) |
---|
338 | #else |
---|
339 | #ifdef BLAS |
---|
340 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
341 | eignfnv, iim, eignft, iim, 0.0, matriceun(1,1,j), iim) |
---|
342 | #else |
---|
343 | DO k = 1, iim |
---|
344 | DO i = 1, iim |
---|
345 | matriceun(i,k,j) = 0.0 |
---|
346 | DO ii = 1, iim |
---|
347 | matriceun(i,k,j) = matriceun(i,k,j) & |
---|
348 | + eignfnv(i,ii)*eignft(ii,k) |
---|
349 | ENDDO |
---|
350 | ENDDO |
---|
351 | ENDDO |
---|
352 | #endif |
---|
353 | #endif |
---|
354 | |
---|
355 | ENDDO |
---|
356 | |
---|
357 | DO j = jfiltsu, jjm |
---|
358 | |
---|
359 | DO i=1,iim |
---|
360 | coff = coefilu(i,j) |
---|
361 | IF( i.LT.modfrstu(j) ) coff = 0. |
---|
362 | DO k=1,iim |
---|
363 | eignft(i,k) = eignfnv(k,i) * coff |
---|
364 | ENDDO |
---|
365 | ENDDO |
---|
366 | #ifdef CRAY |
---|
367 | CALL MXM(eignfnv,iim,eignft,iim,matriceus(1,1,j-jfiltsu+1),iim) |
---|
368 | #else |
---|
369 | #ifdef BLAS |
---|
370 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
371 | eignfnv, iim, eignft, iim, 0.0, & |
---|
372 | matriceus(1,1,j-jfiltsu+1), iim) |
---|
373 | #else |
---|
374 | DO k = 1, iim |
---|
375 | DO i = 1, iim |
---|
376 | matriceus(i,k,j-jfiltsu+1) = 0.0 |
---|
377 | DO ii = 1, iim |
---|
378 | matriceus(i,k,j-jfiltsu+1) = matriceus(i,k,j-jfiltsu+1) & |
---|
379 | + eignfnv(i,ii)*eignft(ii,k) |
---|
380 | ENDDO |
---|
381 | ENDDO |
---|
382 | ENDDO |
---|
383 | #endif |
---|
384 | #endif |
---|
385 | |
---|
386 | ENDDO |
---|
387 | |
---|
388 | ! ................................................................... |
---|
389 | ! |
---|
390 | ! ... Calcul de la matrice filtre 'matricev' pour les champs situes |
---|
391 | ! sur la grille de V ou de Z ........ |
---|
392 | ! ................................................................... |
---|
393 | ! |
---|
394 | DO j = 1, jfiltnv |
---|
395 | |
---|
396 | DO i = 1, iim |
---|
397 | coff = coefilv(i,j) |
---|
398 | IF( i.LT.modfrstv(j) ) coff = 0. |
---|
399 | DO k = 1, iim |
---|
400 | eignft(i,k) = eignfnu(k,i) * coff |
---|
401 | ENDDO |
---|
402 | ENDDO |
---|
403 | #ifdef CRAY |
---|
404 | CALL MXM( eignfnu,iim,eignft,iim,matricevn(1,1,j),iim ) |
---|
405 | #else |
---|
406 | #ifdef BLAS |
---|
407 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
408 | eignfnu, iim, eignft, iim, 0.0, matricevn(1,1,j), iim) |
---|
409 | #else |
---|
410 | DO k = 1, iim |
---|
411 | DO i = 1, iim |
---|
412 | matricevn(i,k,j) = 0.0 |
---|
413 | DO ii = 1, iim |
---|
414 | matricevn(i,k,j) = matricevn(i,k,j) & |
---|
415 | + eignfnu(i,ii)*eignft(ii,k) |
---|
416 | ENDDO |
---|
417 | ENDDO |
---|
418 | ENDDO |
---|
419 | #endif |
---|
420 | #endif |
---|
421 | |
---|
422 | ENDDO |
---|
423 | |
---|
424 | DO j = jfiltsv, jjm |
---|
425 | |
---|
426 | DO i = 1, iim |
---|
427 | coff = coefilv(i,j) |
---|
428 | IF( i.LT.modfrstv(j) ) coff = 0. |
---|
429 | DO k = 1, iim |
---|
430 | eignft(i,k) = eignfnu(k,i) * coff |
---|
431 | ENDDO |
---|
432 | ENDDO |
---|
433 | #ifdef CRAY |
---|
434 | CALL MXM(eignfnu,iim,eignft,iim,matricevs(1,1,j-jfiltsv+1),iim) |
---|
435 | #else |
---|
436 | #ifdef BLAS |
---|
437 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
438 | eignfnu, iim, eignft, iim, 0.0, & |
---|
439 | matricevs(1,1,j-jfiltsv+1), iim) |
---|
440 | #else |
---|
441 | DO k = 1, iim |
---|
442 | DO i = 1, iim |
---|
443 | matricevs(i,k,j-jfiltsv+1) = 0.0 |
---|
444 | DO ii = 1, iim |
---|
445 | matricevs(i,k,j-jfiltsv+1) = matricevs(i,k,j-jfiltsv+1) & |
---|
446 | + eignfnu(i,ii)*eignft(ii,k) |
---|
447 | ENDDO |
---|
448 | ENDDO |
---|
449 | ENDDO |
---|
450 | #endif |
---|
451 | #endif |
---|
452 | |
---|
453 | ENDDO |
---|
454 | |
---|
455 | ! ................................................................... |
---|
456 | ! |
---|
457 | ! ... Calcul de la matrice filtre 'matrinv' pour les champs situes |
---|
458 | ! sur la grille scalaire , pour le filtre inverse ........ |
---|
459 | ! ................................................................... |
---|
460 | ! |
---|
461 | DO j = 2, jfiltnu |
---|
462 | |
---|
463 | DO i = 1,iim |
---|
464 | coff = coefilu(i,j)/ ( 1. + coefilu(i,j) ) |
---|
465 | IF( i.LT.modfrstu(j) ) coff = 0. |
---|
466 | DO k=1,iim |
---|
467 | eignft(i,k) = eignfnv(k,i) * coff |
---|
468 | ENDDO |
---|
469 | ENDDO |
---|
470 | #ifdef CRAY |
---|
471 | CALL MXM( eignfnv,iim,eignft,iim,matrinvn(1,1,j),iim ) |
---|
472 | #else |
---|
473 | #ifdef BLAS |
---|
474 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
475 | eignfnv, iim, eignft, iim, 0.0, matrinvn(1,1,j), iim) |
---|
476 | #else |
---|
477 | DO k = 1, iim |
---|
478 | DO i = 1, iim |
---|
479 | matrinvn(i,k,j) = 0.0 |
---|
480 | DO ii = 1, iim |
---|
481 | matrinvn(i,k,j) = matrinvn(i,k,j) & |
---|
482 | + eignfnv(i,ii)*eignft(ii,k) |
---|
483 | ENDDO |
---|
484 | ENDDO |
---|
485 | ENDDO |
---|
486 | #endif |
---|
487 | #endif |
---|
488 | |
---|
489 | ENDDO |
---|
490 | |
---|
491 | DO j = jfiltsu, jjm |
---|
492 | |
---|
493 | DO i = 1,iim |
---|
494 | coff = coefilu(i,j) / ( 1. + coefilu(i,j) ) |
---|
495 | IF( i.LT.modfrstu(j) ) coff = 0. |
---|
496 | DO k=1,iim |
---|
497 | eignft(i,k) = eignfnv(k,i) * coff |
---|
498 | ENDDO |
---|
499 | ENDDO |
---|
500 | #ifdef CRAY |
---|
501 | CALL MXM(eignfnv,iim,eignft,iim,matrinvs(1,1,j-jfiltsu+1),iim) |
---|
502 | #else |
---|
503 | #ifdef BLAS |
---|
504 | CALL SGEMM ('N', 'N', iim, iim, iim, 1.0, & |
---|
505 | eignfnv, iim, eignft, iim, 0.0, matrinvs(1,1,j-jfiltsu+1), iim) |
---|
506 | #else |
---|
507 | DO k = 1, iim |
---|
508 | DO i = 1, iim |
---|
509 | matrinvs(i,k,j-jfiltsu+1) = 0.0 |
---|
510 | DO ii = 1, iim |
---|
511 | matrinvs(i,k,j-jfiltsu+1) = matrinvs(i,k,j-jfiltsu+1) & |
---|
512 | + eignfnv(i,ii)*eignft(ii,k) |
---|
513 | ENDDO |
---|
514 | ENDDO |
---|
515 | ENDDO |
---|
516 | #endif |
---|
517 | #endif |
---|
518 | |
---|
519 | ENDDO |
---|
520 | |
---|
521 | ! ................................................................... |
---|
522 | |
---|
523 | ! |
---|
524 | 334 FORMAT(1x,24i3) |
---|
525 | 755 FORMAT(1x,6f10.3,i3) |
---|
526 | |
---|
527 | RETURN |
---|
528 | END SUBROUTINE inifilr |
---|
529 | |
---|
530 | END MODULE filtreg_mod |
---|