1 | ! $Id$ |
---|
2 | module regr1_step_av_m |
---|
3 | |
---|
4 | ! Author: Lionel GUEZ |
---|
5 | |
---|
6 | implicit none |
---|
7 | |
---|
8 | interface regr1_step_av |
---|
9 | |
---|
10 | ! Each procedure regrids a step function by averaging it. |
---|
11 | ! The regridding operation is done on the first dimension of the |
---|
12 | ! input array. |
---|
13 | ! Source grid contains edges of steps. |
---|
14 | ! Target grid contains positions of cell edges. |
---|
15 | ! The target grid should be included in the source grid: no |
---|
16 | ! extrapolation is allowed. |
---|
17 | ! The difference between the procedures is the rank of the first argument. |
---|
18 | |
---|
19 | module procedure regr11_step_av, regr12_step_av, regr13_step_av |
---|
20 | end interface |
---|
21 | |
---|
22 | private |
---|
23 | public regr1_step_av |
---|
24 | |
---|
25 | contains |
---|
26 | |
---|
27 | function regr11_step_av(vs, xs, xt) result(vt) |
---|
28 | |
---|
29 | ! "vs" has rank 1. |
---|
30 | |
---|
31 | use assert_eq_m, only: assert_eq |
---|
32 | use assert_m, only: assert |
---|
33 | use interpolation, only: locate |
---|
34 | |
---|
35 | real, intent(in):: vs(:) ! values of steps on the source grid |
---|
36 | ! (Step "is" is between "xs(is)" and "xs(is + 1)".) |
---|
37 | |
---|
38 | real, intent(in):: xs(:) |
---|
39 | ! (edges of of steps on the source grid, in strictly increasing order) |
---|
40 | |
---|
41 | real, intent(in):: xt(:) |
---|
42 | ! (edges of cells of the target grid, in strictly increasing order) |
---|
43 | |
---|
44 | real vt(size(xt) - 1) ! average values on the target grid |
---|
45 | ! (Cell "it" is between "xt(it)" and "xt(it + 1)".) |
---|
46 | |
---|
47 | ! Variables local to the procedure: |
---|
48 | integer is, it, ns, nt |
---|
49 | real left_edge |
---|
50 | |
---|
51 | !--------------------------------------------- |
---|
52 | |
---|
53 | ns = assert_eq(size(vs), size(xs) - 1, "regr11_step_av ns") |
---|
54 | nt = size(xt) - 1 |
---|
55 | ! Quick check on sort order: |
---|
56 | call assert(xs(1) < xs(2), "regr11_step_av xs bad order") |
---|
57 | call assert(xt(1) < xt(2), "regr11_step_av xt bad order") |
---|
58 | |
---|
59 | call assert(xs(1) <= xt(1) .and. xt(nt + 1) <= xs(ns + 1), & |
---|
60 | "regr11_step_av extrapolation") |
---|
61 | |
---|
62 | is = locate(xs, xt(1)) ! 1 <= is <= ns, because we forbid extrapolation |
---|
63 | do it = 1, nt |
---|
64 | ! 1 <= is <= ns |
---|
65 | ! xs(is) <= xt(it) < xs(is + 1) |
---|
66 | ! Compute "vt(it)": |
---|
67 | left_edge = xt(it) |
---|
68 | vt(it) = 0. |
---|
69 | do while (xs(is + 1) < xt(it + 1)) |
---|
70 | ! 1 <= is <= ns - 1 |
---|
71 | vt(it) = vt(it) + (xs(is + 1) - left_edge) * vs(is) |
---|
72 | is = is + 1 |
---|
73 | left_edge = xs(is) |
---|
74 | end do |
---|
75 | ! 1 <= is <= ns |
---|
76 | vt(it) = (vt(it) + (xt(it + 1) - left_edge) * vs(is)) & |
---|
77 | / (xt(it + 1) - xt(it)) |
---|
78 | if (xs(is + 1) == xt(it + 1)) is = is + 1 |
---|
79 | ! 1 <= is <= ns .or. it == nt |
---|
80 | end do |
---|
81 | |
---|
82 | end function regr11_step_av |
---|
83 | |
---|
84 | !******************************************** |
---|
85 | |
---|
86 | function regr12_step_av(vs, xs, xt) result(vt) |
---|
87 | |
---|
88 | ! "vs" has rank 2. |
---|
89 | |
---|
90 | use assert_eq_m, only: assert_eq |
---|
91 | use assert_m, only: assert |
---|
92 | use interpolation, only: locate |
---|
93 | |
---|
94 | real, intent(in):: vs(:, :) ! values of steps on the source grid |
---|
95 | ! (Step "is" is between "xs(is)" and "xs(is + 1)".) |
---|
96 | |
---|
97 | real, intent(in):: xs(:) |
---|
98 | ! (edges of steps on the source grid, in strictly increasing order) |
---|
99 | |
---|
100 | real, intent(in):: xt(:) |
---|
101 | ! (edges of cells of the target grid, in strictly increasing order) |
---|
102 | |
---|
103 | real vt(size(xt) - 1, size(vs, 2)) ! average values on the target grid |
---|
104 | ! (Cell "it" is between "xt(it)" and "xt(it + 1)".) |
---|
105 | |
---|
106 | ! Variables local to the procedure: |
---|
107 | integer is, it, ns, nt |
---|
108 | real left_edge |
---|
109 | |
---|
110 | !--------------------------------------------- |
---|
111 | |
---|
112 | ns = assert_eq(size(vs, 1), size(xs) - 1, "regr12_step_av ns") |
---|
113 | nt = size(xt) - 1 |
---|
114 | |
---|
115 | ! Quick check on sort order: |
---|
116 | call assert(xs(1) < xs(2), "regr12_step_av xs bad order") |
---|
117 | call assert(xt(1) < xt(2), "regr12_step_av xt bad order") |
---|
118 | |
---|
119 | call assert(xs(1) <= xt(1) .and. xt(nt + 1) <= xs(ns + 1), & |
---|
120 | "regr12_step_av extrapolation") |
---|
121 | |
---|
122 | is = locate(xs, xt(1)) ! 1 <= is <= ns, because we forbid extrapolation |
---|
123 | do it = 1, nt |
---|
124 | ! 1 <= is <= ns |
---|
125 | ! xs(is) <= xt(it) < xs(is + 1) |
---|
126 | ! Compute "vt(it, :)": |
---|
127 | left_edge = xt(it) |
---|
128 | vt(it, :) = 0. |
---|
129 | do while (xs(is + 1) < xt(it + 1)) |
---|
130 | ! 1 <= is <= ns - 1 |
---|
131 | vt(it, :) = vt(it, :) + (xs(is + 1) - left_edge) * vs(is, :) |
---|
132 | is = is + 1 |
---|
133 | left_edge = xs(is) |
---|
134 | end do |
---|
135 | ! 1 <= is <= ns |
---|
136 | vt(it, :) = (vt(it, :) + (xt(it + 1) - left_edge) * vs(is, :)) & |
---|
137 | / (xt(it + 1) - xt(it)) |
---|
138 | if (xs(is + 1) == xt(it + 1)) is = is + 1 |
---|
139 | ! 1 <= is <= ns .or. it == nt |
---|
140 | end do |
---|
141 | |
---|
142 | end function regr12_step_av |
---|
143 | |
---|
144 | !******************************************** |
---|
145 | |
---|
146 | function regr13_step_av(vs, xs, xt) result(vt) |
---|
147 | |
---|
148 | ! "vs" has rank 3. |
---|
149 | |
---|
150 | use assert_eq_m, only: assert_eq |
---|
151 | use assert_m, only: assert |
---|
152 | use interpolation, only: locate |
---|
153 | |
---|
154 | real, intent(in):: vs(:, :, :) ! values of steps on the source grid |
---|
155 | ! (Step "is" is between "xs(is)" and "xs(is + 1)".) |
---|
156 | |
---|
157 | real, intent(in):: xs(:) |
---|
158 | ! (edges of steps on the source grid, in strictly increasing order) |
---|
159 | |
---|
160 | real, intent(in):: xt(:) |
---|
161 | ! (edges of cells of the target grid, in strictly increasing order) |
---|
162 | |
---|
163 | real vt(size(xt) - 1, size(vs, 2), size(vs, 3)) |
---|
164 | ! (average values on the target grid) |
---|
165 | ! (Cell "it" is between "xt(it)" and "xt(it + 1)".) |
---|
166 | |
---|
167 | ! Variables local to the procedure: |
---|
168 | integer is, it, ns, nt |
---|
169 | real left_edge |
---|
170 | |
---|
171 | !--------------------------------------------- |
---|
172 | |
---|
173 | ns = assert_eq(size(vs, 1), size(xs) - 1, "regr13_step_av ns") |
---|
174 | nt = size(xt) - 1 |
---|
175 | |
---|
176 | ! Quick check on sort order: |
---|
177 | call assert(xs(1) < xs(2), "regr13_step_av xs bad order") |
---|
178 | call assert(xt(1) < xt(2), "regr13_step_av xt bad order") |
---|
179 | |
---|
180 | call assert(xs(1) <= xt(1) .and. xt(nt + 1) <= xs(ns + 1), & |
---|
181 | "regr13_step_av extrapolation") |
---|
182 | |
---|
183 | is = locate(xs, xt(1)) ! 1 <= is <= ns, because we forbid extrapolation |
---|
184 | do it = 1, nt |
---|
185 | ! 1 <= is <= ns |
---|
186 | ! xs(is) <= xt(it) < xs(is + 1) |
---|
187 | ! Compute "vt(it, :, :)": |
---|
188 | left_edge = xt(it) |
---|
189 | vt(it, :, :) = 0. |
---|
190 | do while (xs(is + 1) < xt(it + 1)) |
---|
191 | ! 1 <= is <= ns - 1 |
---|
192 | vt(it, :, :) = vt(it, :, :) + (xs(is + 1) - left_edge) * vs(is, :, :) |
---|
193 | is = is + 1 |
---|
194 | left_edge = xs(is) |
---|
195 | end do |
---|
196 | ! 1 <= is <= ns |
---|
197 | vt(it, :, :) = (vt(it, :, :) & |
---|
198 | + (xt(it + 1) - left_edge) * vs(is, :, :)) / (xt(it + 1) - xt(it)) |
---|
199 | if (xs(is + 1) == xt(it + 1)) is = is + 1 |
---|
200 | ! 1 <= is <= ns .or. it == nt |
---|
201 | end do |
---|
202 | |
---|
203 | end function regr13_step_av |
---|
204 | |
---|
205 | end module regr1_step_av_m |
---|