[524] | 1 | ! |
---|
| 2 | ! $Header$ |
---|
| 3 | ! |
---|
| 4 | c |
---|
| 5 | c |
---|
| 6 | SUBROUTINE clmain(dtime,itap,date0,pctsrf,pctsrf_new, |
---|
| 7 | . t,q,u,v, |
---|
| 8 | . jour, rmu0, co2_ppm, |
---|
| 9 | . ok_veget, ocean, npas, nexca, ts, |
---|
| 10 | . soil_model,cdmmax, cdhmax, |
---|
| 11 | . ksta, ksta_ter, ok_kzmin, ftsoil,qsol, |
---|
| 12 | . paprs,pplay,radsol,snow,qsurf,evap,albe,alblw, |
---|
| 13 | . fluxlat, |
---|
| 14 | . rain_f, snow_f, solsw, sollw, sollwdown, fder, |
---|
| 15 | . rlon, rlat, cufi, cvfi, rugos, |
---|
| 16 | . debut, lafin, agesno,rugoro, |
---|
| 17 | . d_t,d_q,d_u,d_v,d_ts, |
---|
| 18 | . flux_t,flux_q,flux_u,flux_v,cdragh,cdragm, |
---|
| 19 | . dflux_t,dflux_q, |
---|
| 20 | cIM cf JLD . zcoefh,zu1,zv1, t2m, q2m, u10m, v10m) |
---|
| 21 | . zcoefh,zu1,zv1, t2m, q2m, u10m, v10m, |
---|
[705] | 22 | . fqcalving,fqfonte,ffonte, run_off_lic_0) |
---|
[524] | 23 | cAA . itr, tr, flux_surf, d_tr) |
---|
| 24 | cAA REM: |
---|
| 25 | cAA----- |
---|
| 26 | cAA Tout ce qui a trait au traceurs est dans phytrac maintenant |
---|
| 27 | cAA pour l'instant le calcul de la couche limite pour les traceurs |
---|
| 28 | cAA se fait avec cltrac et ne tient pas compte de la differentiation |
---|
| 29 | cAA des sous-fraction de sol. |
---|
| 30 | cAA REM bis : |
---|
| 31 | cAA---------- |
---|
| 32 | cAA Pour pouvoir extraire les coefficient d'echanges et le vent |
---|
| 33 | cAA dans la premiere couche, 3 champs supplementaires ont ete crees |
---|
| 34 | cAA zcoefh,zu1 et zv1. Pour l'instant nous avons moyenne les valeurs |
---|
| 35 | cAA de ces trois champs sur les 4 subsurfaces du modele. Dans l'avenir |
---|
| 36 | cAA si les informations des subsurfaces doivent etre prises en compte |
---|
| 37 | cAA il faudra sortir ces memes champs en leur ajoutant une dimension, |
---|
| 38 | cAA c'est a dire nbsrf (nbre de subsurface). |
---|
| 39 | USE ioipsl |
---|
| 40 | USE interface_surf |
---|
| 41 | IMPLICIT none |
---|
| 42 | c====================================================================== |
---|
| 43 | c Auteur(s) Z.X. Li (LMD/CNRS) date: 19930818 |
---|
| 44 | c Objet: interface de "couche limite" (diffusion verticale) |
---|
| 45 | c Arguments: |
---|
| 46 | c dtime----input-R- interval du temps (secondes) |
---|
| 47 | c itap-----input-I- numero du pas de temps |
---|
| 48 | c date0----input-R- jour initial |
---|
| 49 | c t--------input-R- temperature (K) |
---|
| 50 | c q--------input-R- vapeur d'eau (kg/kg) |
---|
| 51 | c u--------input-R- vitesse u |
---|
| 52 | c v--------input-R- vitesse v |
---|
| 53 | c ts-------input-R- temperature du sol (en Kelvin) |
---|
| 54 | c paprs----input-R- pression a intercouche (Pa) |
---|
| 55 | c pplay----input-R- pression au milieu de couche (Pa) |
---|
| 56 | c radsol---input-R- flux radiatif net (positif vers le sol) en W/m**2 |
---|
| 57 | c rlat-----input-R- latitude en degree |
---|
| 58 | c rugos----input-R- longeur de rugosite (en m) |
---|
| 59 | c cufi-----input-R- resolution des mailles en x (m) |
---|
| 60 | c cvfi-----input-R- resolution des mailles en y (m) |
---|
| 61 | c |
---|
| 62 | c d_t------output-R- le changement pour "t" |
---|
| 63 | c d_q------output-R- le changement pour "q" |
---|
| 64 | c d_u------output-R- le changement pour "u" |
---|
| 65 | c d_v------output-R- le changement pour "v" |
---|
| 66 | c d_ts-----output-R- le changement pour "ts" |
---|
| 67 | c flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2) |
---|
| 68 | c (orientation positive vers le bas) |
---|
| 69 | c flux_q---output-R- flux de vapeur d'eau (kg/m**2/s) |
---|
| 70 | c flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal |
---|
| 71 | c flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal |
---|
| 72 | c dflux_t derive du flux sensible |
---|
| 73 | c dflux_q derive du flux latent |
---|
| 74 | c ffonte----Flux thermique utilise pour fondre la neige |
---|
[705] | 75 | c fqfonte -- quantite d'eau due a la fonte de la calotte |
---|
[524] | 76 | c fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la |
---|
| 77 | c hauteur de neige, en kg/m2/s |
---|
| 78 | cAA on rajoute en output yu1 et yv1 qui sont les vents dans |
---|
| 79 | cAA la premiere couche |
---|
| 80 | cAA ces 4 variables sont maintenant traites dans phytrac |
---|
| 81 | c itr--------input-I- nombre de traceurs |
---|
| 82 | c tr---------input-R- q. de traceurs |
---|
| 83 | c flux_surf--input-R- flux de traceurs a la surface |
---|
| 84 | c d_tr-------output-R tendance de traceurs |
---|
| 85 | c====================================================================== |
---|
| 86 | #include "dimensions.h" |
---|
| 87 | #include "dimphy.h" |
---|
| 88 | #include "indicesol.h" |
---|
| 89 | c$$$ PB ajout pour soil |
---|
| 90 | #include "dimsoil.h" |
---|
| 91 | #include "iniprint.h" |
---|
| 92 | c |
---|
| 93 | REAL dtime |
---|
| 94 | real date0 |
---|
| 95 | integer itap |
---|
| 96 | REAL t(klon,klev), q(klon,klev) |
---|
| 97 | REAL u(klon,klev), v(klon,klev) |
---|
| 98 | REAL paprs(klon,klev+1), pplay(klon,klev), radsol(klon) |
---|
| 99 | REAL rlon(klon), rlat(klon), cufi(klon), cvfi(klon) |
---|
| 100 | REAL d_t(klon, klev), d_q(klon, klev) |
---|
| 101 | REAL d_u(klon, klev), d_v(klon, klev) |
---|
| 102 | REAL flux_t(klon,klev, nbsrf), flux_q(klon,klev, nbsrf) |
---|
| 103 | REAL dflux_t(klon), dflux_q(klon) |
---|
| 104 | cIM cf JLD |
---|
[705] | 105 | REAL y_fqcalving(klon), y_fqfonte(klon), y_ffonte(klon) |
---|
| 106 | REAL fqcalving(klon,nbsrf), fqfonte(klon,nbsrf), ffonte(klon,nbsrf) |
---|
[524] | 107 | REAL run_off_lic_0(klon), y_run_off_lic_0(klon) |
---|
| 108 | |
---|
| 109 | REAL flux_u(klon,klev, nbsrf), flux_v(klon,klev, nbsrf) |
---|
| 110 | REAL rugmer(klon), agesno(klon,nbsrf),rugoro(klon) |
---|
| 111 | REAL cdragh(klon), cdragm(klon) |
---|
| 112 | integer jour ! jour de l'annee en cours |
---|
| 113 | real rmu0(klon) ! cosinus de l'angle solaire zenithal |
---|
| 114 | REAL co2_ppm ! taux CO2 atmosphere |
---|
| 115 | LOGICAL debut, lafin, ok_veget |
---|
| 116 | character*6 ocean |
---|
| 117 | integer npas, nexca |
---|
| 118 | cAA INTEGER itr |
---|
| 119 | cAA REAL tr(klon,klev,nbtr) |
---|
| 120 | cAA REAL d_tr(klon,klev,nbtr) |
---|
| 121 | cAA REAL flux_surf(klon,nbtr) |
---|
| 122 | c |
---|
| 123 | REAL pctsrf(klon,nbsrf) |
---|
| 124 | REAL ts(klon,nbsrf) |
---|
| 125 | REAL d_ts(klon,nbsrf) |
---|
| 126 | REAL snow(klon,nbsrf) |
---|
| 127 | REAL qsurf(klon,nbsrf) |
---|
| 128 | REAL evap(klon,nbsrf) |
---|
| 129 | REAL albe(klon,nbsrf) |
---|
| 130 | REAL alblw(klon,nbsrf) |
---|
| 131 | c$$$ PB |
---|
| 132 | REAL fluxlat(klon,nbsrf) |
---|
| 133 | C |
---|
| 134 | real rain_f(klon), snow_f(klon) |
---|
| 135 | REAL fder(klon) |
---|
| 136 | cIM cf. JLD REAL sollw(klon), solsw(klon), sollwdown(klon) |
---|
| 137 | REAL sollw(klon,nbsrf), solsw(klon,nbsrf), sollwdown(klon) |
---|
| 138 | REAL rugos(klon,nbsrf) |
---|
| 139 | C la nouvelle repartition des surfaces sortie de l'interface |
---|
| 140 | REAL pctsrf_new(klon,nbsrf) |
---|
| 141 | cAA |
---|
| 142 | REAL zcoefh(klon,klev) |
---|
| 143 | REAL zu1(klon) |
---|
| 144 | REAL zv1(klon) |
---|
| 145 | cAA |
---|
| 146 | c$$$ PB ajout pour soil |
---|
| 147 | LOGICAL soil_model |
---|
| 148 | cIM ajout seuils cdrm, cdrh |
---|
| 149 | REAL cdmmax, cdhmax |
---|
| 150 | cIM: 261103 |
---|
| 151 | REAL ksta, ksta_ter |
---|
| 152 | LOGICAL ok_kzmin |
---|
| 153 | cIM: 261103 |
---|
| 154 | REAL ftsoil(klon,nsoilmx,nbsrf) |
---|
| 155 | REAL ytsoil(klon,nsoilmx) |
---|
| 156 | REAL qsol(klon) |
---|
| 157 | c====================================================================== |
---|
| 158 | EXTERNAL clqh, clvent, coefkz, calbeta, cltrac |
---|
| 159 | c====================================================================== |
---|
| 160 | REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon) |
---|
| 161 | REAL yalb(klon) |
---|
| 162 | REAL yalblw(klon) |
---|
| 163 | REAL yu1(klon), yv1(klon) |
---|
| 164 | real ysnow(klon), yqsurf(klon), yagesno(klon), yqsol(klon) |
---|
| 165 | real yrain_f(klon), ysnow_f(klon) |
---|
| 166 | real ysollw(klon), ysolsw(klon), ysollwdown(klon) |
---|
| 167 | real yfder(klon), ytaux(klon), ytauy(klon) |
---|
| 168 | REAL yrugm(klon), yrads(klon),yrugoro(klon) |
---|
| 169 | c$$$ PB |
---|
| 170 | REAL yfluxlat(klon) |
---|
| 171 | C |
---|
| 172 | REAL y_d_ts(klon) |
---|
| 173 | REAL y_d_t(klon, klev), y_d_q(klon, klev) |
---|
| 174 | REAL y_d_u(klon, klev), y_d_v(klon, klev) |
---|
| 175 | REAL y_flux_t(klon,klev), y_flux_q(klon,klev) |
---|
| 176 | REAL y_flux_u(klon,klev), y_flux_v(klon,klev) |
---|
| 177 | REAL y_dflux_t(klon), y_dflux_q(klon) |
---|
| 178 | REAL ycoefh(klon,klev), ycoefm(klon,klev) |
---|
| 179 | REAL yu(klon,klev), yv(klon,klev) |
---|
| 180 | REAL yt(klon,klev), yq(klon,klev) |
---|
| 181 | REAL ypaprs(klon,klev+1), ypplay(klon,klev), ydelp(klon,klev) |
---|
| 182 | cAA REAL ytr(klon,klev,nbtr) |
---|
| 183 | cAA REAL y_d_tr(klon,klev,nbtr) |
---|
| 184 | cAA REAL yflxsrf(klon,nbtr) |
---|
| 185 | c |
---|
| 186 | LOGICAL contreg |
---|
| 187 | PARAMETER (contreg=.TRUE.) |
---|
| 188 | c |
---|
| 189 | LOGICAL ok_nonloc |
---|
| 190 | PARAMETER (ok_nonloc=.FALSE.) |
---|
| 191 | REAL ycoefm0(klon,klev), ycoefh0(klon,klev) |
---|
| 192 | c |
---|
| 193 | #include "YOMCST.h" |
---|
| 194 | #include "YOETHF.h" |
---|
| 195 | #include "FCTTRE.h" |
---|
| 196 | REAL u1lay(klon), v1lay(klon) |
---|
| 197 | REAL delp(klon,klev) |
---|
| 198 | INTEGER i, k, nsrf |
---|
| 199 | cAA INTEGER it |
---|
| 200 | INTEGER ni(klon), knon, j |
---|
| 201 | c Introduction d'une variable "pourcentage potentiel" pour tenir compte |
---|
| 202 | c des eventuelles apparitions et/ou disparitions de la glace de mer |
---|
| 203 | REAL pctsrf_pot(klon,nbsrf) |
---|
| 204 | |
---|
| 205 | c====================================================================== |
---|
| 206 | REAL zx_alf1, zx_alf2 !valeur ambiante par extrapola. |
---|
| 207 | c====================================================================== |
---|
| 208 | c |
---|
| 209 | c maf pour sorties IOISPL en cas de debugagage |
---|
| 210 | c |
---|
| 211 | CHARACTER*80 cldebug |
---|
| 212 | SAVE cldebug |
---|
| 213 | CHARACTER*8 cl_surf(nbsrf) |
---|
| 214 | SAVE cl_surf |
---|
| 215 | INTEGER nhoridbg, nidbg |
---|
| 216 | SAVE nhoridbg, nidbg |
---|
| 217 | INTEGER ndexbg(iim*(jjm+1)) |
---|
| 218 | REAL zx_lon(iim,jjm+1), zx_lat(iim,jjm+1), zjulian |
---|
| 219 | REAL tabindx(klon) |
---|
| 220 | REAL debugtab(iim,jjm+1) |
---|
| 221 | LOGICAL first_appel |
---|
| 222 | SAVE first_appel |
---|
| 223 | DATA first_appel/.false./ |
---|
| 224 | LOGICAL debugindex |
---|
| 225 | SAVE debugindex |
---|
| 226 | DATA debugindex/.false./ |
---|
| 227 | integer idayref |
---|
| 228 | #include "temps.h" |
---|
| 229 | REAL t2m(klon,nbsrf), q2m(klon,nbsrf) |
---|
| 230 | REAL u10m(klon,nbsrf), v10m(klon,nbsrf) |
---|
| 231 | c |
---|
| 232 | REAL yt2m(klon), yq2m(klon), yu10m(klon) |
---|
[589] | 233 | c -- LOOP |
---|
| 234 | REAL yu10mx(klon) |
---|
| 235 | REAL yu10my(klon) |
---|
| 236 | REAL ywindsp(klon) |
---|
| 237 | c -- LOOP |
---|
[524] | 238 | c |
---|
| 239 | REAL uzon(klon), vmer(klon) |
---|
| 240 | REAL tair1(klon), qair1(klon), tairsol(klon) |
---|
| 241 | REAL psfce(klon), patm(klon) |
---|
| 242 | c |
---|
| 243 | REAL qairsol(klon), zgeo1(klon) |
---|
| 244 | REAL rugo1(klon) |
---|
| 245 | c |
---|
| 246 | LOGICAL zxli ! utiliser un jeu de fonctions simples |
---|
| 247 | PARAMETER (zxli=.FALSE.) |
---|
| 248 | c |
---|
| 249 | REAL zt, zqs, zdelta, zcor |
---|
| 250 | REAL t_coup |
---|
| 251 | PARAMETER(t_coup=273.15) |
---|
| 252 | C |
---|
| 253 | character (len = 20) :: modname = 'clmain' |
---|
| 254 | LOGICAL check |
---|
| 255 | PARAMETER (check=.false.) |
---|
| 256 | C |
---|
| 257 | if (check) THEN |
---|
| 258 | write(*,*) modname,' klon=',klon |
---|
| 259 | call flush(6) |
---|
| 260 | endif |
---|
| 261 | IF (first_appel) THEN |
---|
| 262 | first_appel=.false. |
---|
| 263 | ! |
---|
| 264 | ! initialisation sorties netcdf |
---|
| 265 | ! |
---|
| 266 | idayref = day_ini |
---|
| 267 | CALL ymds2ju(annee_ref, 1, idayref, 0.0, zjulian) |
---|
| 268 | CALL gr_fi_ecrit(1,klon,iim,jjm+1,rlon,zx_lon) |
---|
| 269 | DO i = 1, iim |
---|
| 270 | zx_lon(i,1) = rlon(i+1) |
---|
| 271 | zx_lon(i,jjm+1) = rlon(i+1) |
---|
| 272 | ENDDO |
---|
| 273 | CALL gr_fi_ecrit(1,klon,iim,jjm+1,rlat,zx_lat) |
---|
| 274 | cldebug='sous_index' |
---|
| 275 | CALL histbeg(cldebug, iim,zx_lon(:,1),jjm+1,zx_lat(1,:), |
---|
| 276 | $ 1,iim,1,jjm |
---|
| 277 | $ +1, itau_phy,zjulian,dtime,nhoridbg,nidbg) |
---|
| 278 | ! no vertical axis |
---|
| 279 | cl_surf(1)='ter' |
---|
| 280 | cl_surf(2)='lic' |
---|
| 281 | cl_surf(3)='oce' |
---|
| 282 | cl_surf(4)='sic' |
---|
| 283 | DO nsrf=1,nbsrf |
---|
| 284 | CALL histdef(nidbg, cl_surf(nsrf),cl_surf(nsrf), "-",iim, |
---|
| 285 | $ jjm+1,nhoridbg, 1, 1, 1, -99, 32, "inst", dtime,dtime) |
---|
| 286 | END DO |
---|
| 287 | CALL histend(nidbg) |
---|
| 288 | CALL histsync(nidbg) |
---|
| 289 | ENDIF |
---|
| 290 | |
---|
| 291 | DO k = 1, klev ! epaisseur de couche |
---|
| 292 | DO i = 1, klon |
---|
| 293 | delp(i,k) = paprs(i,k)-paprs(i,k+1) |
---|
| 294 | ENDDO |
---|
| 295 | ENDDO |
---|
| 296 | DO i = 1, klon ! vent de la premiere couche |
---|
| 297 | ccc zx_alf1 = (paprs(i,1)-pplay(i,2))/(pplay(i,1)-pplay(i,2)) |
---|
| 298 | zx_alf1 = 1.0 |
---|
| 299 | zx_alf2 = 1.0 - zx_alf1 |
---|
| 300 | u1lay(i) = u(i,1)*zx_alf1 + u(i,2)*zx_alf2 |
---|
| 301 | v1lay(i) = v(i,1)*zx_alf1 + v(i,2)*zx_alf2 |
---|
| 302 | ENDDO |
---|
| 303 | c |
---|
| 304 | c initialisation: |
---|
| 305 | c |
---|
| 306 | DO i = 1, klon |
---|
| 307 | rugmer(i) = 0.0 |
---|
| 308 | cdragh(i) = 0.0 |
---|
| 309 | cdragm(i) = 0.0 |
---|
| 310 | dflux_t(i) = 0.0 |
---|
| 311 | dflux_q(i) = 0.0 |
---|
| 312 | zu1(i) = 0.0 |
---|
| 313 | zv1(i) = 0.0 |
---|
| 314 | ENDDO |
---|
| 315 | ypct = 0.0 |
---|
| 316 | yts = 0.0 |
---|
| 317 | ysnow = 0.0 |
---|
| 318 | yqsurf = 0.0 |
---|
| 319 | yalb = 0.0 |
---|
| 320 | yalblw = 0.0 |
---|
| 321 | yrain_f = 0.0 |
---|
| 322 | ysnow_f = 0.0 |
---|
| 323 | yfder = 0.0 |
---|
| 324 | ytaux = 0.0 |
---|
| 325 | ytauy = 0.0 |
---|
| 326 | ysolsw = 0.0 |
---|
| 327 | ysollw = 0.0 |
---|
| 328 | ysollwdown = 0.0 |
---|
| 329 | yrugos = 0.0 |
---|
| 330 | yu1 = 0.0 |
---|
| 331 | yv1 = 0.0 |
---|
| 332 | yrads = 0.0 |
---|
| 333 | ypaprs = 0.0 |
---|
| 334 | ypplay = 0.0 |
---|
| 335 | ydelp = 0.0 |
---|
| 336 | yu = 0.0 |
---|
| 337 | yv = 0.0 |
---|
| 338 | yt = 0.0 |
---|
| 339 | yq = 0.0 |
---|
| 340 | pctsrf_new = 0.0 |
---|
| 341 | y_flux_u = 0.0 |
---|
| 342 | y_flux_v = 0.0 |
---|
| 343 | C$$ PB |
---|
| 344 | y_dflux_t = 0.0 |
---|
| 345 | y_dflux_q = 0.0 |
---|
| 346 | ytsoil = 999999. |
---|
| 347 | yrugoro = 0. |
---|
[589] | 348 | c -- LOOP |
---|
| 349 | yu10mx = 0.0 |
---|
| 350 | yu10my = 0.0 |
---|
| 351 | ywindsp = 0.0 |
---|
| 352 | c -- LOOP |
---|
[524] | 353 | DO nsrf = 1, nbsrf |
---|
| 354 | DO i = 1, klon |
---|
| 355 | d_ts(i,nsrf) = 0.0 |
---|
| 356 | ENDDO |
---|
| 357 | END DO |
---|
| 358 | C§§§ PB |
---|
| 359 | yfluxlat=0. |
---|
| 360 | flux_t = 0. |
---|
| 361 | flux_q = 0. |
---|
| 362 | flux_u = 0. |
---|
| 363 | flux_v = 0. |
---|
| 364 | DO k = 1, klev |
---|
| 365 | DO i = 1, klon |
---|
| 366 | d_t(i,k) = 0.0 |
---|
| 367 | d_q(i,k) = 0.0 |
---|
| 368 | c$$$ flux_t(i,k) = 0.0 |
---|
| 369 | c$$$ flux_q(i,k) = 0.0 |
---|
| 370 | d_u(i,k) = 0.0 |
---|
| 371 | d_v(i,k) = 0.0 |
---|
| 372 | c$$$ flux_u(i,k) = 0.0 |
---|
| 373 | c$$$ flux_v(i,k) = 0.0 |
---|
| 374 | zcoefh(i,k) = 0.0 |
---|
| 375 | ENDDO |
---|
| 376 | ENDDO |
---|
| 377 | cAA IF (itr.GE.1) THEN |
---|
| 378 | cAA DO it = 1, itr |
---|
| 379 | cAA DO k = 1, klev |
---|
| 380 | cAA DO i = 1, klon |
---|
| 381 | cAA d_tr(i,k,it) = 0.0 |
---|
| 382 | cAA ENDDO |
---|
| 383 | cAA ENDDO |
---|
| 384 | cAA ENDDO |
---|
| 385 | cAA ENDIF |
---|
| 386 | |
---|
| 387 | c |
---|
| 388 | c Boucler sur toutes les sous-fractions du sol: |
---|
| 389 | c |
---|
| 390 | C Initialisation des "pourcentages potentiels". On considere ici qu'on |
---|
| 391 | C peut avoir potentiellementdela glace sur tout le domaine oceanique |
---|
| 392 | C (a affiner) |
---|
| 393 | |
---|
| 394 | pctsrf_pot = pctsrf |
---|
| 395 | pctsrf_pot(:,is_oce) = 1. - zmasq(:) |
---|
| 396 | pctsrf_pot(:,is_sic) = 1. - zmasq(:) |
---|
| 397 | |
---|
| 398 | DO 99999 nsrf = 1, nbsrf |
---|
| 399 | |
---|
| 400 | c chercher les indices: |
---|
| 401 | DO j = 1, klon |
---|
| 402 | ni(j) = 0 |
---|
| 403 | ENDDO |
---|
| 404 | knon = 0 |
---|
| 405 | DO i = 1, klon |
---|
| 406 | |
---|
| 407 | C pour determiner le domaine a traiter on utilise les surfaces "potentielles" |
---|
| 408 | C |
---|
| 409 | IF (pctsrf_pot(i,nsrf).GT.epsfra) THEN |
---|
| 410 | knon = knon + 1 |
---|
| 411 | ni(knon) = i |
---|
| 412 | ENDIF |
---|
| 413 | ENDDO |
---|
| 414 | c |
---|
| 415 | if (check) THEN |
---|
| 416 | write(*,*)'CLMAIN, nsrf, knon =',nsrf, knon |
---|
| 417 | call flush(6) |
---|
| 418 | endif |
---|
| 419 | c |
---|
| 420 | c variables pour avoir une sortie IOIPSL des INDEX |
---|
| 421 | c |
---|
| 422 | IF (debugindex) THEN |
---|
| 423 | tabindx(:)=0. |
---|
| 424 | c tabindx(1:knon)=(/FLOAT(i),i=1:knon/) |
---|
| 425 | DO i=1,knon |
---|
| 426 | tabindx(1:knon)=FLOAT(i) |
---|
| 427 | END DO |
---|
| 428 | debugtab(:,:)=0. |
---|
| 429 | ndexbg(:)=0 |
---|
| 430 | CALL gath2cpl(tabindx,debugtab,klon,knon,iim,jjm,ni) |
---|
| 431 | CALL histwrite(nidbg,cl_surf(nsrf),itap,debugtab,iim*(jjm+1) |
---|
| 432 | $ ,ndexbg) |
---|
| 433 | ENDIF |
---|
| 434 | IF (knon.EQ.0) GOTO 99999 |
---|
| 435 | DO j = 1, knon |
---|
| 436 | i = ni(j) |
---|
| 437 | ypct(j) = pctsrf(i,nsrf) |
---|
| 438 | yts(j) = ts(i,nsrf) |
---|
| 439 | ysnow(j) = snow(i,nsrf) |
---|
| 440 | yqsurf(j) = qsurf(i,nsrf) |
---|
| 441 | yalb(j) = albe(i,nsrf) |
---|
| 442 | yalblw(j) = alblw(i,nsrf) |
---|
| 443 | yrain_f(j) = rain_f(i) |
---|
| 444 | ysnow_f(j) = snow_f(i) |
---|
| 445 | yagesno(j) = agesno(i,nsrf) |
---|
| 446 | yfder(j) = fder(i) |
---|
| 447 | ytaux(j) = flux_u(i,1,nsrf) |
---|
| 448 | ytauy(j) = flux_v(i,1,nsrf) |
---|
| 449 | ysolsw(j) = solsw(i,nsrf) |
---|
| 450 | ysollw(j) = sollw(i,nsrf) |
---|
| 451 | ysollwdown(j) = sollwdown(i) |
---|
| 452 | yrugos(j) = rugos(i,nsrf) |
---|
| 453 | yrugoro(j) = rugoro(i) |
---|
| 454 | yu1(j) = u1lay(i) |
---|
| 455 | yv1(j) = v1lay(i) |
---|
| 456 | yrads(j) = ysolsw(j)+ ysollw(j) |
---|
| 457 | ypaprs(j,klev+1) = paprs(i,klev+1) |
---|
| 458 | y_run_off_lic_0(j) = run_off_lic_0(i) |
---|
[589] | 459 | c -- LOOP |
---|
| 460 | yu10mx(j) = u10m(i,nsrf) |
---|
| 461 | yu10my(j) = v10m(i,nsrf) |
---|
| 462 | ywindsp(j) = SQRT(yu10mx(j)*yu10mx(j) + yu10my(j)*yu10my(j) ) |
---|
| 463 | c -- LOOP |
---|
[524] | 464 | END DO |
---|
| 465 | C |
---|
| 466 | C IF bucket model for continent, copy soil water content |
---|
| 467 | IF ( nsrf .eq. is_ter .and. .not. ok_veget ) THEN |
---|
| 468 | DO j = 1, knon |
---|
| 469 | i = ni(j) |
---|
| 470 | yqsol(j) = qsol(i) |
---|
| 471 | END DO |
---|
| 472 | ELSE |
---|
| 473 | yqsol(:)=0. |
---|
| 474 | ENDIF |
---|
| 475 | c$$$ PB ajour pour soil |
---|
| 476 | DO k = 1, nsoilmx |
---|
| 477 | DO j = 1, knon |
---|
| 478 | i = ni(j) |
---|
| 479 | ytsoil(j,k) = ftsoil(i,k,nsrf) |
---|
| 480 | END DO |
---|
| 481 | END DO |
---|
| 482 | DO k = 1, klev |
---|
| 483 | DO j = 1, knon |
---|
| 484 | i = ni(j) |
---|
| 485 | ypaprs(j,k) = paprs(i,k) |
---|
| 486 | ypplay(j,k) = pplay(i,k) |
---|
| 487 | ydelp(j,k) = delp(i,k) |
---|
| 488 | yu(j,k) = u(i,k) |
---|
| 489 | yv(j,k) = v(i,k) |
---|
| 490 | yt(j,k) = t(i,k) |
---|
| 491 | yq(j,k) = q(i,k) |
---|
| 492 | ENDDO |
---|
| 493 | ENDDO |
---|
| 494 | c |
---|
| 495 | c |
---|
| 496 | c calculer Cdrag et les coefficients d'echange |
---|
| 497 | CALL coefkz(nsrf, knon, ypaprs, ypplay, |
---|
| 498 | cIM 261103 |
---|
| 499 | . ksta, ksta_ter, |
---|
| 500 | cIM 261103 |
---|
| 501 | . yts, yrugos, yu, yv, yt, yq, |
---|
| 502 | . yqsurf, |
---|
| 503 | . ycoefm, ycoefh) |
---|
| 504 | CALL coefkz2(nsrf, knon, ypaprs, ypplay,yt, |
---|
| 505 | . ycoefm0, ycoefh0) |
---|
| 506 | DO k = 1, klev |
---|
| 507 | DO i = 1, knon |
---|
| 508 | ycoefm(i,k) = MAX(ycoefm(i,k),ycoefm0(i,k)) |
---|
| 509 | ycoefh(i,k) = MAX(ycoefh(i,k),ycoefh0(i,k)) |
---|
| 510 | ENDDO |
---|
| 511 | ENDDO |
---|
| 512 | c |
---|
| 513 | cIM cf JLD : on seuille ycoefm et ycoefh |
---|
| 514 | if (nsrf.eq.is_oce) then |
---|
| 515 | do j=1,knon |
---|
| 516 | c ycoefm(j,1)=min(ycoefm(j,1),1.1E-3) |
---|
| 517 | ycoefm(j,1)=min(ycoefm(j,1),cdmmax) |
---|
| 518 | c ycoefh(j,1)=min(ycoefh(j,1),1.1E-3) |
---|
| 519 | ycoefh(j,1)=min(ycoefh(j,1),cdhmax) |
---|
| 520 | enddo |
---|
| 521 | endif |
---|
| 522 | |
---|
| 523 | c |
---|
| 524 | cIM: 261103 |
---|
| 525 | if (ok_kzmin) THEN |
---|
| 526 | cIM cf FH: 201103 BEG |
---|
| 527 | c Calcul d'une diffusion minimale pour les conditions tres stables. |
---|
| 528 | call coefkzmin(knon,ypaprs,ypplay,yu,yv,yt,yq,ycoefm |
---|
| 529 | . ,ycoefm0,ycoefh0) |
---|
| 530 | c call dump2d(iim,jjm-1,ycoefm(2:klon-1,2), 'KZ ') |
---|
| 531 | c call dump2d(iim,jjm-1,ycoefm0(2:klon-1,2),'KZMIN ') |
---|
| 532 | |
---|
| 533 | if ( 1.eq.1 ) then |
---|
| 534 | DO k = 1, klev |
---|
| 535 | DO i = 1, knon |
---|
| 536 | ycoefm(i,k) = MAX(ycoefm(i,k),ycoefm0(i,k)) |
---|
| 537 | ycoefh(i,k) = MAX(ycoefh(i,k),ycoefh0(i,k)) |
---|
| 538 | ENDDO |
---|
| 539 | ENDDO |
---|
| 540 | endif |
---|
| 541 | cIM cf FH: 201103 END |
---|
| 542 | endif !ok_kzmin |
---|
| 543 | cIM: 261103 |
---|
| 544 | |
---|
| 545 | c |
---|
| 546 | c calculer la diffusion des vitesses "u" et "v" |
---|
| 547 | CALL clvent(knon,dtime,yu1,yv1,ycoefm,yt,yu,ypaprs,ypplay,ydelp, |
---|
| 548 | s y_d_u,y_flux_u) |
---|
| 549 | CALL clvent(knon,dtime,yu1,yv1,ycoefm,yt,yv,ypaprs,ypplay,ydelp, |
---|
| 550 | s y_d_v,y_flux_v) |
---|
| 551 | |
---|
| 552 | c pour le couplage |
---|
| 553 | ytaux = y_flux_u(:,1) |
---|
| 554 | ytauy = y_flux_v(:,1) |
---|
| 555 | |
---|
| 556 | c FH modif sur le cdrag temperature |
---|
| 557 | c$$$PB : déplace dans clcdrag |
---|
| 558 | c$$$ do i=1,knon |
---|
| 559 | c$$$ ycoefh(i,1)=ycoefm(i,1)*0.8 |
---|
| 560 | c$$$ enddo |
---|
| 561 | |
---|
| 562 | c calculer la diffusion de "q" et de "h" |
---|
| 563 | CALL clqh(dtime, itap, date0,jour, debut,lafin, |
---|
| 564 | e rlon, rlat, cufi, cvfi, |
---|
| 565 | e knon, nsrf, ni, pctsrf, |
---|
| 566 | e soil_model, ytsoil,yqsol, |
---|
| 567 | e ok_veget, ocean, npas, nexca, |
---|
| 568 | e rmu0, co2_ppm, yrugos, yrugoro, |
---|
| 569 | e yu1, yv1, ycoefh, |
---|
| 570 | e yt,yq,yts,ypaprs,ypplay, |
---|
| 571 | e ydelp,yrads,yalb, yalblw, ysnow, yqsurf, |
---|
[589] | 572 | e yrain_f, ysnow_f, yfder, ytaux, ytauy, |
---|
| 573 | c -- LOOP |
---|
| 574 | e ywindsp, |
---|
| 575 | c -- LOOP |
---|
[524] | 576 | c$$$ e ysollw, ysolsw, |
---|
| 577 | e ysollw, ysollwdown, ysolsw,yfluxlat, |
---|
| 578 | s pctsrf_new, yagesno, |
---|
| 579 | s y_d_t, y_d_q, y_d_ts, yz0_new, |
---|
| 580 | cIM cf JLD s y_flux_t, y_flux_q, y_dflux_t, y_dflux_q) |
---|
| 581 | s y_flux_t, y_flux_q, y_dflux_t, y_dflux_q, |
---|
[705] | 582 | s y_fqcalving,y_fqfonte,y_ffonte,y_run_off_lic_0) |
---|
[524] | 583 | c |
---|
| 584 | c calculer la longueur de rugosite sur ocean |
---|
| 585 | yrugm=0. |
---|
| 586 | IF (nsrf.EQ.is_oce) THEN |
---|
| 587 | DO j = 1, knon |
---|
| 588 | yrugm(j) = 0.018*ycoefm(j,1) * (yu1(j)**2+yv1(j)**2)/RG |
---|
| 589 | $ + 0.11*14e-6 / sqrt(ycoefm(j,1) * (yu1(j)**2+yv1(j)**2)) |
---|
| 590 | yrugm(j) = MAX(1.5e-05,yrugm(j)) |
---|
| 591 | ENDDO |
---|
| 592 | ENDIF |
---|
| 593 | DO j = 1, knon |
---|
| 594 | y_dflux_t(j) = y_dflux_t(j) * ypct(j) |
---|
| 595 | y_dflux_q(j) = y_dflux_q(j) * ypct(j) |
---|
| 596 | yu1(j) = yu1(j) * ypct(j) |
---|
| 597 | yv1(j) = yv1(j) * ypct(j) |
---|
| 598 | ENDDO |
---|
| 599 | c |
---|
| 600 | DO k = 1, klev |
---|
| 601 | DO j = 1, knon |
---|
| 602 | i = ni(j) |
---|
| 603 | ycoefh(j,k) = ycoefh(j,k) * ypct(j) |
---|
| 604 | ycoefm(j,k) = ycoefm(j,k) * ypct(j) |
---|
| 605 | y_d_t(j,k) = y_d_t(j,k) * ypct(j) |
---|
| 606 | y_d_q(j,k) = y_d_q(j,k) * ypct(j) |
---|
| 607 | C§§§ PB |
---|
| 608 | flux_t(i,k,nsrf) = y_flux_t(j,k) |
---|
| 609 | flux_q(i,k,nsrf) = y_flux_q(j,k) |
---|
| 610 | flux_u(i,k,nsrf) = y_flux_u(j,k) |
---|
| 611 | flux_v(i,k,nsrf) = y_flux_v(j,k) |
---|
| 612 | c$$$ PB y_flux_t(j,k) = y_flux_t(j,k) * ypct(j) |
---|
| 613 | c$$$ PB y_flux_q(j,k) = y_flux_q(j,k) * ypct(j) |
---|
| 614 | y_d_u(j,k) = y_d_u(j,k) * ypct(j) |
---|
| 615 | y_d_v(j,k) = y_d_v(j,k) * ypct(j) |
---|
| 616 | c$$$ PB y_flux_u(j,k) = y_flux_u(j,k) * ypct(j) |
---|
| 617 | c$$$ PB y_flux_v(j,k) = y_flux_v(j,k) * ypct(j) |
---|
| 618 | ENDDO |
---|
| 619 | ENDDO |
---|
| 620 | |
---|
| 621 | |
---|
| 622 | evap(:,nsrf) = - flux_q(:,1,nsrf) |
---|
| 623 | c |
---|
| 624 | albe(:, nsrf) = 0. |
---|
| 625 | alblw(:, nsrf) = 0. |
---|
| 626 | snow(:, nsrf) = 0. |
---|
| 627 | qsurf(:, nsrf) = 0. |
---|
| 628 | rugos(:, nsrf) = 0. |
---|
| 629 | fluxlat(:,nsrf) = 0. |
---|
| 630 | DO j = 1, knon |
---|
| 631 | i = ni(j) |
---|
| 632 | d_ts(i,nsrf) = y_d_ts(j) |
---|
| 633 | albe(i,nsrf) = yalb(j) |
---|
| 634 | alblw(i,nsrf) = yalblw(j) |
---|
| 635 | snow(i,nsrf) = ysnow(j) |
---|
| 636 | qsurf(i,nsrf) = yqsurf(j) |
---|
| 637 | rugos(i,nsrf) = yz0_new(j) |
---|
| 638 | fluxlat(i,nsrf) = yfluxlat(j) |
---|
| 639 | c$$$ pb rugmer(i) = yrugm(j) |
---|
| 640 | IF (nsrf .EQ. is_oce) then |
---|
| 641 | rugmer(i) = yrugm(j) |
---|
| 642 | rugos(i,nsrf) = yrugm(j) |
---|
| 643 | endif |
---|
| 644 | cIM cf JLD ?? |
---|
| 645 | fqcalving(i,nsrf) = y_fqcalving(j) |
---|
[705] | 646 | fqfonte(i,nsrf) = y_fqfonte(j) |
---|
[524] | 647 | ffonte(i,nsrf) = y_ffonte(j) |
---|
| 648 | cdragh(i) = cdragh(i) + ycoefh(j,1) |
---|
| 649 | cdragm(i) = cdragm(i) + ycoefm(j,1) |
---|
| 650 | dflux_t(i) = dflux_t(i) + y_dflux_t(j) |
---|
| 651 | dflux_q(i) = dflux_q(i) + y_dflux_q(j) |
---|
| 652 | zu1(i) = zu1(i) + yu1(j) |
---|
| 653 | zv1(i) = zv1(i) + yv1(j) |
---|
| 654 | END DO |
---|
| 655 | IF ( nsrf .eq. is_ter ) THEN |
---|
| 656 | DO j = 1, knon |
---|
| 657 | i = ni(j) |
---|
| 658 | qsol(i) = yqsol(j) |
---|
| 659 | END DO |
---|
| 660 | END IF |
---|
| 661 | IF ( nsrf .eq. is_lic ) THEN |
---|
| 662 | DO j = 1, knon |
---|
| 663 | i = ni(j) |
---|
| 664 | run_off_lic_0(i) = y_run_off_lic_0(j) |
---|
| 665 | END DO |
---|
| 666 | END IF |
---|
| 667 | c$$$ PB ajout pour soil |
---|
| 668 | ftsoil(:,:,nsrf) = 0. |
---|
| 669 | DO k = 1, nsoilmx |
---|
| 670 | DO j = 1, knon |
---|
| 671 | i = ni(j) |
---|
| 672 | ftsoil(i, k, nsrf) = ytsoil(j,k) |
---|
| 673 | END DO |
---|
| 674 | END DO |
---|
| 675 | c |
---|
| 676 | #ifdef CRAY |
---|
| 677 | DO k = 1, klev |
---|
| 678 | DO j = 1, knon |
---|
| 679 | i = ni(j) |
---|
| 680 | #else |
---|
| 681 | DO j = 1, knon |
---|
| 682 | i = ni(j) |
---|
| 683 | DO k = 1, klev |
---|
| 684 | #endif |
---|
| 685 | d_t(i,k) = d_t(i,k) + y_d_t(j,k) |
---|
| 686 | d_q(i,k) = d_q(i,k) + y_d_q(j,k) |
---|
| 687 | c$$$ PB flux_t(i,k) = flux_t(i,k) + y_flux_t(j,k) |
---|
| 688 | c$$$ flux_q(i,k) = flux_q(i,k) + y_flux_q(j,k) |
---|
| 689 | d_u(i,k) = d_u(i,k) + y_d_u(j,k) |
---|
| 690 | d_v(i,k) = d_v(i,k) + y_d_v(j,k) |
---|
| 691 | c$$$ PB flux_u(i,k) = flux_u(i,k) + y_flux_u(j,k) |
---|
| 692 | c$$$ flux_v(i,k) = flux_v(i,k) + y_flux_v(j,k) |
---|
| 693 | zcoefh(i,k) = zcoefh(i,k) + ycoefh(j,k) |
---|
| 694 | ENDDO |
---|
| 695 | ENDDO |
---|
| 696 | c |
---|
| 697 | c |
---|
| 698 | #undef T2m |
---|
| 699 | #define T2m |
---|
| 700 | #ifdef T2m |
---|
| 701 | ccc diagnostic t,q a 2m et u, v a 10m |
---|
| 702 | c |
---|
| 703 | DO j=1, knon |
---|
| 704 | i = ni(j) |
---|
| 705 | uzon(j) = yu(j,1) + y_d_u(j,1) |
---|
| 706 | vmer(j) = yv(j,1) + y_d_v(j,1) |
---|
| 707 | tair1(j) = yt(j,1) + y_d_t(j,1) |
---|
| 708 | qair1(j) = yq(j,1) + y_d_q(j,1) |
---|
| 709 | zgeo1(j) = RD * tair1(j) / (0.5*(ypaprs(j,1)+ypplay(j,1))) |
---|
| 710 | & * (ypaprs(j,1)-ypplay(j,1)) |
---|
| 711 | tairsol(j) = yts(j) + y_d_ts(j) |
---|
| 712 | rugo1(j) = yrugos(j) |
---|
| 713 | IF(nsrf.EQ.is_oce) THEN |
---|
| 714 | rugo1(j) = rugos(i,nsrf) |
---|
| 715 | ENDIF |
---|
| 716 | psfce(j)=ypaprs(j,1) |
---|
| 717 | patm(j)=ypplay(j,1) |
---|
| 718 | c |
---|
| 719 | qairsol(j) = yqsurf(j) |
---|
| 720 | c$$$ IF (nsrf.EQ.1) THEN |
---|
| 721 | c$$$ qairsol(j) = yqsurf(j) |
---|
| 722 | c$$$ ELSE IF(nsrf.GT.1) THEN |
---|
| 723 | c$$$ zt = ts(i,nsrf) |
---|
| 724 | c$$$ IF (thermcep) THEN |
---|
| 725 | c$$$ zdelta = MAX(0.,SIGN(1.,RTT-zt)) |
---|
| 726 | c$$$ zqs = R2ES * FOEEW(zt,zdelta) / ypplay(j,1) |
---|
| 727 | c$$$ zqs = MIN(0.5,zqs) |
---|
| 728 | c$$$ zcor = 1./(1.-RETV*zqs) |
---|
| 729 | c$$$ zqs = zqs*zcor |
---|
| 730 | c$$$ ELSE |
---|
| 731 | c$$$ IF (zt .LT. t_coup) THEN |
---|
| 732 | c$$$ zqs = qsats(zt) / ypplay(j,1) |
---|
| 733 | c$$$ ELSE |
---|
| 734 | c$$$ zqs = qsatl(zt) / ypplay(j,1) |
---|
| 735 | c$$$ ENDIF |
---|
| 736 | c$$$ ENDIF |
---|
| 737 | c$$$ qairsol(j) = zqs |
---|
| 738 | c$$$ ENDIF |
---|
| 739 | ENDDO |
---|
| 740 | c |
---|
| 741 | if (check) THEN |
---|
| 742 | WRITE(*,*)' avant stdlevvar. nsrf=',nsrf |
---|
| 743 | IF(nsrf.EQ.3) THEN |
---|
| 744 | j=1465 |
---|
| 745 | WRITE(*,*)' INstO',klon,knon,nsrf,zxli,uzon(j),vmer(j), |
---|
| 746 | & tair1(j),qair1(j),zgeo1(j),tairsol(j),qairsol(j),rugo1(j), |
---|
| 747 | & psfce(j),patm(j) |
---|
| 748 | ENDIF |
---|
| 749 | WRITE(*,*)' qairsol (min, max)' |
---|
| 750 | $ , minval(qairsol(1:knon)), maxval(qairsol(1:knon)) |
---|
| 751 | call flush(6) |
---|
| 752 | ENDIF |
---|
| 753 | c |
---|
| 754 | CALL stdlevvar(klon, knon, nsrf, zxli, |
---|
| 755 | & uzon, vmer, tair1, qair1, zgeo1, |
---|
| 756 | & tairsol, qairsol, rugo1, psfce, patm, |
---|
| 757 | & yt2m, yq2m, yu10m) |
---|
| 758 | |
---|
| 759 | c |
---|
| 760 | if (check) THEN |
---|
| 761 | IF(nsrf.EQ.3) THEN |
---|
| 762 | j=1465 |
---|
| 763 | WRITE(*,*)' OUstd',klon,knon,nsrf,zxli,uzon(j),vmer(j), |
---|
| 764 | & tair1(j),qair1(j),zgeo1(j),tairsol(j),qairsol(j),rugo1(j), |
---|
| 765 | & psfce(j),patm(j) |
---|
| 766 | WRITE(*,*)' tqu',yt2m(j),yq2m(j),yu10m(j) |
---|
| 767 | call flush(6) |
---|
| 768 | ENDIF |
---|
| 769 | ENDIF |
---|
| 770 | c |
---|
| 771 | DO j=1, knon |
---|
| 772 | i = ni(j) |
---|
| 773 | t2m(i,nsrf)=yt2m(j) |
---|
| 774 | |
---|
| 775 | if (check) THEN |
---|
| 776 | IF(nsrf.EQ.3 .and. j.EQ.1465) THEN |
---|
| 777 | WRITE(*,*) 't2m APRES stdlev',j,i,tair1(j),t2m(i,nsrf), |
---|
| 778 | $ tairsol(j),rlon(i),rlat(i) |
---|
| 779 | call flush(6) |
---|
| 780 | ENDIF |
---|
| 781 | ENDIF |
---|
| 782 | c |
---|
| 783 | q2m(i,nsrf)=yq2m(j) |
---|
| 784 | c |
---|
| 785 | c u10m, v10m : composantes du vent a 10m sans spirale de Ekman |
---|
| 786 | u10m(i,nsrf)=(yu10m(j) * uzon(j))/sqrt(uzon(j)**2+vmer(j)**2) |
---|
| 787 | v10m(i,nsrf)=(yu10m(j) * vmer(j))/sqrt(uzon(j)**2+vmer(j)**2) |
---|
| 788 | c |
---|
| 789 | ENDDO |
---|
| 790 | #else |
---|
| 791 | DO j=1, knon |
---|
| 792 | i = ni(j) |
---|
| 793 | t2m(i,nsrf)=0. |
---|
| 794 | q2m(i,nsrf)=0. |
---|
| 795 | u10m(i,nsrf)=0. |
---|
| 796 | v10m(i,nsrf)=0. |
---|
| 797 | ENDDO |
---|
| 798 | #endif |
---|
| 799 | 99999 CONTINUE |
---|
| 800 | c |
---|
| 801 | C |
---|
| 802 | C On utilise les nouvelles surfaces |
---|
| 803 | C A rajouter: conservation de l'albedo |
---|
| 804 | C |
---|
| 805 | rugos(:,is_oce) = rugmer |
---|
| 806 | pctsrf = pctsrf_new |
---|
| 807 | |
---|
| 808 | RETURN |
---|
| 809 | END |
---|
| 810 | SUBROUTINE clqh(dtime,itime, date0,jour,debut,lafin, |
---|
| 811 | e rlon, rlat, cufi, cvfi, |
---|
| 812 | e knon, nisurf, knindex, pctsrf, |
---|
| 813 | $ soil_model,tsoil,qsol, |
---|
| 814 | e ok_veget, ocean, npas, nexca, |
---|
| 815 | e rmu0, co2_ppm, rugos, rugoro, |
---|
| 816 | e u1lay,v1lay,coef, |
---|
| 817 | e t,q,ts,paprs,pplay, |
---|
| 818 | e delp,radsol,albedo,alblw,snow,qsurf, |
---|
| 819 | e precip_rain, precip_snow, fder, taux, tauy, |
---|
[589] | 820 | c -- LOOP |
---|
| 821 | e ywindsp, |
---|
| 822 | c -- LOOP |
---|
[524] | 823 | $ sollw, sollwdown, swnet,fluxlat, |
---|
| 824 | s pctsrf_new, agesno, |
---|
| 825 | s d_t, d_q, d_ts, z0_new, |
---|
| 826 | cIM cf JLD s flux_t, flux_q,dflux_s,dflux_l) |
---|
| 827 | s flux_t, flux_q,dflux_s,dflux_l, |
---|
[705] | 828 | s fqcalving,fqfonte,ffonte,run_off_lic_0) |
---|
[524] | 829 | |
---|
| 830 | USE interface_surf |
---|
| 831 | |
---|
| 832 | IMPLICIT none |
---|
| 833 | c====================================================================== |
---|
| 834 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 |
---|
| 835 | c Objet: diffusion verticale de "q" et de "h" |
---|
| 836 | c====================================================================== |
---|
| 837 | #include "dimensions.h" |
---|
| 838 | #include "dimphy.h" |
---|
| 839 | #include "YOMCST.h" |
---|
| 840 | #include "YOETHF.h" |
---|
| 841 | #include "FCTTRE.h" |
---|
| 842 | #include "indicesol.h" |
---|
| 843 | #include "dimsoil.h" |
---|
| 844 | |
---|
| 845 | c Arguments: |
---|
| 846 | INTEGER knon |
---|
| 847 | REAL dtime ! intervalle du temps (s) |
---|
| 848 | real date0 |
---|
| 849 | REAL u1lay(klon) ! vitesse u de la 1ere couche (m/s) |
---|
| 850 | REAL v1lay(klon) ! vitesse v de la 1ere couche (m/s) |
---|
| 851 | REAL coef(klon,klev) ! le coefficient d'echange (m**2/s) |
---|
| 852 | c multiplie par le cisaillement du |
---|
| 853 | c vent (dV/dz); la premiere valeur |
---|
| 854 | c indique la valeur de Cdrag (sans unite) |
---|
| 855 | REAL t(klon,klev) ! temperature (K) |
---|
| 856 | REAL q(klon,klev) ! humidite specifique (kg/kg) |
---|
| 857 | REAL ts(klon) ! temperature du sol (K) |
---|
| 858 | REAL evap(klon) ! evaporation au sol |
---|
| 859 | REAL paprs(klon,klev+1) ! pression a inter-couche (Pa) |
---|
| 860 | REAL pplay(klon,klev) ! pression au milieu de couche (Pa) |
---|
| 861 | REAL delp(klon,klev) ! epaisseur de couche en pression (Pa) |
---|
| 862 | REAL radsol(klon) ! ray. net au sol (Solaire+IR) W/m2 |
---|
| 863 | REAL albedo(klon) ! albedo de la surface |
---|
| 864 | REAL alblw(klon) |
---|
| 865 | REAL snow(klon) ! hauteur de neige |
---|
| 866 | REAL qsurf(klon) ! humidite de l'air au dessus de la surface |
---|
| 867 | real precip_rain(klon), precip_snow(klon) |
---|
| 868 | REAL agesno(klon) |
---|
| 869 | REAL rugoro(klon) |
---|
| 870 | REAL run_off_lic_0(klon)! runof glacier au pas de temps precedent |
---|
| 871 | integer jour ! jour de l'annee en cours |
---|
| 872 | real rmu0(klon) ! cosinus de l'angle solaire zenithal |
---|
| 873 | real rugos(klon) ! rugosite |
---|
| 874 | integer knindex(klon) |
---|
| 875 | real pctsrf(klon,nbsrf) |
---|
| 876 | real rlon(klon), rlat(klon), cufi(klon), cvfi(klon) |
---|
| 877 | logical ok_veget |
---|
| 878 | REAL co2_ppm ! taux CO2 atmosphere |
---|
| 879 | character*6 ocean |
---|
| 880 | integer npas, nexca |
---|
[589] | 881 | c -- LOOP |
---|
| 882 | REAL yu10mx(klon) |
---|
| 883 | REAL yu10my(klon) |
---|
| 884 | REAL ywindsp(klon) |
---|
| 885 | c -- LOOP |
---|
[524] | 886 | |
---|
[589] | 887 | |
---|
[524] | 888 | c |
---|
| 889 | REAL d_t(klon,klev) ! incrementation de "t" |
---|
| 890 | REAL d_q(klon,klev) ! incrementation de "q" |
---|
| 891 | REAL d_ts(klon) ! incrementation de "ts" |
---|
| 892 | REAL flux_t(klon,klev) ! (diagnostic) flux de la chaleur |
---|
| 893 | c sensible, flux de Cp*T, positif vers |
---|
| 894 | c le bas: j/(m**2 s) c.a.d.: W/m2 |
---|
| 895 | REAL flux_q(klon,klev) ! flux de la vapeur d'eau:kg/(m**2 s) |
---|
| 896 | REAL dflux_s(klon) ! derivee du flux sensible dF/dTs |
---|
| 897 | REAL dflux_l(klon) ! derivee du flux latent dF/dTs |
---|
| 898 | cIM cf JLD |
---|
| 899 | c Flux thermique utiliser pour fondre la neige |
---|
| 900 | REAL ffonte(klon) |
---|
| 901 | c Flux d'eau "perdue" par la surface et nécessaire pour que limiter la |
---|
| 902 | c hauteur de neige, en kg/m2/s |
---|
| 903 | REAL fqcalving(klon) |
---|
[705] | 904 | c Quantite d'eau de fonte de la calotte kg/mé/s |
---|
| 905 | REAL fqfonte(klon) |
---|
[524] | 906 | c====================================================================== |
---|
| 907 | REAL t_grnd ! temperature de rappel pour glace de mer |
---|
| 908 | PARAMETER (t_grnd=271.35) |
---|
| 909 | REAL t_coup |
---|
| 910 | PARAMETER(t_coup=273.15) |
---|
| 911 | c====================================================================== |
---|
| 912 | INTEGER i, k |
---|
| 913 | REAL zx_cq(klon,klev) |
---|
| 914 | REAL zx_dq(klon,klev) |
---|
| 915 | REAL zx_ch(klon,klev) |
---|
| 916 | REAL zx_dh(klon,klev) |
---|
| 917 | REAL zx_buf1(klon) |
---|
| 918 | REAL zx_buf2(klon) |
---|
| 919 | REAL zx_coef(klon,klev) |
---|
| 920 | REAL local_h(klon,klev) ! enthalpie potentielle |
---|
| 921 | REAL local_q(klon,klev) |
---|
| 922 | REAL local_ts(klon) |
---|
| 923 | REAL psref(klon) ! pression de reference pour temperature potent. |
---|
| 924 | REAL zx_pkh(klon,klev), zx_pkf(klon,klev) |
---|
| 925 | c====================================================================== |
---|
| 926 | c contre-gradient pour la vapeur d'eau: (kg/kg)/metre |
---|
| 927 | REAL gamq(klon,2:klev) |
---|
| 928 | c contre-gradient pour la chaleur sensible: Kelvin/metre |
---|
| 929 | REAL gamt(klon,2:klev) |
---|
| 930 | REAL z_gamaq(klon,2:klev), z_gamah(klon,2:klev) |
---|
| 931 | REAL zdelz |
---|
| 932 | c====================================================================== |
---|
| 933 | logical contreg |
---|
| 934 | parameter (contreg=.true.) |
---|
| 935 | c====================================================================== |
---|
| 936 | c Rajout pour l'interface |
---|
| 937 | integer itime |
---|
| 938 | integer nisurf |
---|
| 939 | logical debut, lafin |
---|
| 940 | real zlev1(klon) |
---|
| 941 | real fder(klon), taux(klon), tauy(klon) |
---|
| 942 | real temp_air(klon), spechum(klon) |
---|
| 943 | real epot_air(klon), ccanopy(klon) |
---|
| 944 | real tq_cdrag(klon), petAcoef(klon), peqAcoef(klon) |
---|
| 945 | real petBcoef(klon), peqBcoef(klon) |
---|
| 946 | real sollw(klon), sollwdown(klon), swnet(klon), swdown(klon) |
---|
| 947 | real p1lay(klon) |
---|
| 948 | c$$$C PB ajout pour soil |
---|
| 949 | LOGICAL soil_model |
---|
| 950 | REAL tsoil(klon, nsoilmx) |
---|
| 951 | REAL qsol(klon) |
---|
| 952 | |
---|
| 953 | ! Parametres de sortie |
---|
| 954 | real fluxsens(klon), fluxlat(klon) |
---|
| 955 | real tsol_rad(klon), tsurf_new(klon), alb_new(klon) |
---|
| 956 | real emis_new(klon), z0_new(klon) |
---|
| 957 | real pctsrf_new(klon,nbsrf) |
---|
| 958 | c JLD |
---|
| 959 | real zzpk |
---|
| 960 | C |
---|
| 961 | character (len = 20) :: modname = 'Debut clqh' |
---|
| 962 | LOGICAL check |
---|
| 963 | PARAMETER (check=.false.) |
---|
| 964 | C |
---|
| 965 | if (check) THEN |
---|
| 966 | write(*,*) modname,' nisurf=',nisurf |
---|
| 967 | call flush(6) |
---|
| 968 | endif |
---|
| 969 | c |
---|
| 970 | if (check) THEN |
---|
| 971 | WRITE(*,*)' qsurf (min, max)' |
---|
| 972 | $ , minval(qsurf(1:knon)), maxval(qsurf(1:knon)) |
---|
| 973 | call flush(6) |
---|
| 974 | ENDIF |
---|
| 975 | C |
---|
| 976 | if (.not. contreg) then |
---|
| 977 | do k = 2, klev |
---|
| 978 | do i = 1, knon |
---|
| 979 | gamq(i,k) = 0.0 |
---|
| 980 | gamt(i,k) = 0.0 |
---|
| 981 | enddo |
---|
| 982 | enddo |
---|
| 983 | else |
---|
| 984 | do k = 3, klev |
---|
| 985 | do i = 1, knon |
---|
| 986 | gamq(i,k)= 0.0 |
---|
| 987 | gamt(i,k)= -1.0e-03 |
---|
| 988 | enddo |
---|
| 989 | enddo |
---|
| 990 | do i = 1, knon |
---|
| 991 | gamq(i,2) = 0.0 |
---|
| 992 | gamt(i,2) = -2.5e-03 |
---|
| 993 | enddo |
---|
| 994 | endif |
---|
| 995 | |
---|
| 996 | DO i = 1, knon |
---|
| 997 | psref(i) = paprs(i,1) !pression de reference est celle au sol |
---|
| 998 | local_ts(i) = ts(i) |
---|
| 999 | ENDDO |
---|
| 1000 | DO k = 1, klev |
---|
| 1001 | DO i = 1, knon |
---|
| 1002 | zx_pkh(i,k) = (psref(i)/paprs(i,k))**RKAPPA |
---|
| 1003 | zx_pkf(i,k) = (psref(i)/pplay(i,k))**RKAPPA |
---|
| 1004 | local_h(i,k) = RCPD * t(i,k) * zx_pkf(i,k) |
---|
| 1005 | local_q(i,k) = q(i,k) |
---|
| 1006 | ENDDO |
---|
| 1007 | ENDDO |
---|
| 1008 | c |
---|
| 1009 | c Convertir les coefficients en variables convenables au calcul: |
---|
| 1010 | c |
---|
| 1011 | c |
---|
| 1012 | DO k = 2, klev |
---|
| 1013 | DO i = 1, knon |
---|
| 1014 | zx_coef(i,k) = coef(i,k)*RG/(pplay(i,k-1)-pplay(i,k)) |
---|
| 1015 | . *(paprs(i,k)*2/(t(i,k)+t(i,k-1))/RD)**2 |
---|
| 1016 | zx_coef(i,k) = zx_coef(i,k) * dtime*RG |
---|
| 1017 | ENDDO |
---|
| 1018 | ENDDO |
---|
| 1019 | c |
---|
| 1020 | c Preparer les flux lies aux contre-gardients |
---|
| 1021 | c |
---|
| 1022 | DO k = 2, klev |
---|
| 1023 | DO i = 1, knon |
---|
| 1024 | zdelz = RD * (t(i,k-1)+t(i,k))/2.0 / RG /paprs(i,k) |
---|
| 1025 | . *(pplay(i,k-1)-pplay(i,k)) |
---|
| 1026 | z_gamaq(i,k) = gamq(i,k) * zdelz |
---|
| 1027 | z_gamah(i,k) = gamt(i,k) * zdelz *RCPD * zx_pkh(i,k) |
---|
| 1028 | ENDDO |
---|
| 1029 | ENDDO |
---|
| 1030 | DO i = 1, knon |
---|
| 1031 | zx_buf1(i) = zx_coef(i,klev) + delp(i,klev) |
---|
| 1032 | zx_cq(i,klev) = (local_q(i,klev)*delp(i,klev) |
---|
| 1033 | . -zx_coef(i,klev)*z_gamaq(i,klev))/zx_buf1(i) |
---|
| 1034 | zx_dq(i,klev) = zx_coef(i,klev) / zx_buf1(i) |
---|
| 1035 | c |
---|
| 1036 | zzpk=(pplay(i,klev)/psref(i))**RKAPPA |
---|
| 1037 | zx_buf2(i) = zzpk*delp(i,klev) + zx_coef(i,klev) |
---|
| 1038 | zx_ch(i,klev) = (local_h(i,klev)*zzpk*delp(i,klev) |
---|
| 1039 | . -zx_coef(i,klev)*z_gamah(i,klev))/zx_buf2(i) |
---|
| 1040 | zx_dh(i,klev) = zx_coef(i,klev) / zx_buf2(i) |
---|
| 1041 | ENDDO |
---|
| 1042 | DO k = klev-1, 2 , -1 |
---|
| 1043 | DO i = 1, knon |
---|
| 1044 | zx_buf1(i) = delp(i,k)+zx_coef(i,k) |
---|
| 1045 | . +zx_coef(i,k+1)*(1.-zx_dq(i,k+1)) |
---|
| 1046 | zx_cq(i,k) = (local_q(i,k)*delp(i,k) |
---|
| 1047 | . +zx_coef(i,k+1)*zx_cq(i,k+1) |
---|
| 1048 | . +zx_coef(i,k+1)*z_gamaq(i,k+1) |
---|
| 1049 | . -zx_coef(i,k)*z_gamaq(i,k))/zx_buf1(i) |
---|
| 1050 | zx_dq(i,k) = zx_coef(i,k) / zx_buf1(i) |
---|
| 1051 | c |
---|
| 1052 | zzpk=(pplay(i,k)/psref(i))**RKAPPA |
---|
| 1053 | zx_buf2(i) = zzpk*delp(i,k)+zx_coef(i,k) |
---|
| 1054 | . +zx_coef(i,k+1)*(1.-zx_dh(i,k+1)) |
---|
| 1055 | zx_ch(i,k) = (local_h(i,k)*zzpk*delp(i,k) |
---|
| 1056 | . +zx_coef(i,k+1)*zx_ch(i,k+1) |
---|
| 1057 | . +zx_coef(i,k+1)*z_gamah(i,k+1) |
---|
| 1058 | . -zx_coef(i,k)*z_gamah(i,k))/zx_buf2(i) |
---|
| 1059 | zx_dh(i,k) = zx_coef(i,k) / zx_buf2(i) |
---|
| 1060 | ENDDO |
---|
| 1061 | ENDDO |
---|
| 1062 | C |
---|
| 1063 | C nouvelle formulation JL Dufresne |
---|
| 1064 | C |
---|
| 1065 | C q1 = zx_cq(i,1) + zx_dq(i,1) * Flux_Q(i,1) * dt |
---|
| 1066 | C h1 = zx_ch(i,1) + zx_dh(i,1) * Flux_H(i,1) * dt |
---|
| 1067 | C |
---|
| 1068 | DO i = 1, knon |
---|
| 1069 | zx_buf1(i) = delp(i,1) + zx_coef(i,2)*(1.-zx_dq(i,2)) |
---|
| 1070 | zx_cq(i,1) = (local_q(i,1)*delp(i,1) |
---|
| 1071 | . +zx_coef(i,2)*(z_gamaq(i,2)+zx_cq(i,2))) |
---|
| 1072 | . /zx_buf1(i) |
---|
| 1073 | zx_dq(i,1) = -1. * RG / zx_buf1(i) |
---|
| 1074 | c |
---|
| 1075 | zzpk=(pplay(i,1)/psref(i))**RKAPPA |
---|
| 1076 | zx_buf2(i) = zzpk*delp(i,1) + zx_coef(i,2)*(1.-zx_dh(i,2)) |
---|
| 1077 | zx_ch(i,1) = (local_h(i,1)*zzpk*delp(i,1) |
---|
| 1078 | . +zx_coef(i,2)*(z_gamah(i,2)+zx_ch(i,2))) |
---|
| 1079 | . /zx_buf2(i) |
---|
| 1080 | zx_dh(i,1) = -1. * RG / zx_buf2(i) |
---|
| 1081 | ENDDO |
---|
| 1082 | |
---|
| 1083 | C Appel a interfsurf (appel generique) routine d'interface avec la surface |
---|
| 1084 | |
---|
| 1085 | c initialisation |
---|
| 1086 | petAcoef =0. |
---|
| 1087 | peqAcoef = 0. |
---|
| 1088 | petBcoef =0. |
---|
| 1089 | peqBcoef = 0. |
---|
| 1090 | p1lay =0. |
---|
| 1091 | |
---|
| 1092 | c do i = 1, knon |
---|
| 1093 | petAcoef(1:knon) = zx_ch(1:knon,1) |
---|
| 1094 | peqAcoef(1:knon) = zx_cq(1:knon,1) |
---|
| 1095 | petBcoef(1:knon) = zx_dh(1:knon,1) |
---|
| 1096 | peqBcoef(1:knon) = zx_dq(1:knon,1) |
---|
| 1097 | tq_cdrag(1:knon) =coef(1:knon,1) |
---|
| 1098 | temp_air(1:knon) =t(1:knon,1) |
---|
| 1099 | epot_air(1:knon) =local_h(1:knon,1) |
---|
| 1100 | spechum(1:knon)=q(1:knon,1) |
---|
| 1101 | p1lay(1:knon) = pplay(1:knon,1) |
---|
| 1102 | zlev1(1:knon) = delp(1:knon,1) |
---|
| 1103 | c swnet = swdown * (1. - albedo) |
---|
| 1104 | swdown(1:knon) = swnet(1:knon) |
---|
| 1105 | c enddo |
---|
| 1106 | ccanopy = co2_ppm |
---|
| 1107 | |
---|
| 1108 | CALL interfsurf(itime, dtime, date0, jour, rmu0, |
---|
| 1109 | e klon, iim, jjm, nisurf, knon, knindex, pctsrf, |
---|
| 1110 | e rlon, rlat, cufi, cvfi, |
---|
| 1111 | e debut, lafin, ok_veget, soil_model, nsoilmx,tsoil, qsol, |
---|
| 1112 | e zlev1, u1lay, v1lay, temp_air, spechum, epot_air, ccanopy, |
---|
| 1113 | e tq_cdrag, petAcoef, peqAcoef, petBcoef, peqBcoef, |
---|
| 1114 | e precip_rain, precip_snow, sollw, sollwdown, swnet, swdown, |
---|
[589] | 1115 | e fder, taux, tauy, |
---|
| 1116 | c -- LOOP |
---|
| 1117 | e ywindsp, |
---|
| 1118 | c -- LOOP |
---|
| 1119 | e rugos, rugoro, |
---|
[524] | 1120 | e albedo, snow, qsurf, |
---|
| 1121 | e ts, p1lay, psref, radsol, |
---|
| 1122 | e ocean, npas, nexca, zmasq, |
---|
| 1123 | s evap, fluxsens, fluxlat, dflux_l, dflux_s, |
---|
| 1124 | s tsol_rad, tsurf_new, alb_new, alblw, emis_new, z0_new, |
---|
| 1125 | cIM cf JLD s pctsrf_new, agesno) |
---|
[705] | 1126 | s pctsrf_new, agesno,fqcalving,fqfonte,ffonte, run_off_lic_0) |
---|
[524] | 1127 | |
---|
| 1128 | |
---|
| 1129 | do i = 1, knon |
---|
| 1130 | flux_t(i,1) = fluxsens(i) |
---|
| 1131 | flux_q(i,1) = - evap(i) |
---|
| 1132 | d_ts(i) = tsurf_new(i) - ts(i) |
---|
| 1133 | albedo(i) = alb_new(i) |
---|
| 1134 | enddo |
---|
| 1135 | |
---|
| 1136 | c==== une fois on a zx_h_ts, on peut faire l'iteration ======== |
---|
| 1137 | DO i = 1, knon |
---|
| 1138 | local_h(i,1) = zx_ch(i,1) + zx_dh(i,1)*flux_t(i,1)*dtime |
---|
| 1139 | local_q(i,1) = zx_cq(i,1) + zx_dq(i,1)*flux_q(i,1)*dtime |
---|
| 1140 | ENDDO |
---|
| 1141 | DO k = 2, klev |
---|
| 1142 | DO i = 1, knon |
---|
| 1143 | local_q(i,k) = zx_cq(i,k) + zx_dq(i,k)*local_q(i,k-1) |
---|
| 1144 | local_h(i,k) = zx_ch(i,k) + zx_dh(i,k)*local_h(i,k-1) |
---|
| 1145 | ENDDO |
---|
| 1146 | ENDDO |
---|
| 1147 | c====================================================================== |
---|
| 1148 | c== flux_q est le flux de vapeur d'eau: kg/(m**2 s) positive vers bas |
---|
| 1149 | c== flux_t est le flux de cpt (energie sensible): j/(m**2 s) |
---|
| 1150 | DO k = 2, klev |
---|
| 1151 | DO i = 1, knon |
---|
| 1152 | flux_q(i,k) = (zx_coef(i,k)/RG/dtime) |
---|
| 1153 | . * (local_q(i,k)-local_q(i,k-1)+z_gamaq(i,k)) |
---|
| 1154 | flux_t(i,k) = (zx_coef(i,k)/RG/dtime) |
---|
| 1155 | . * (local_h(i,k)-local_h(i,k-1)+z_gamah(i,k)) |
---|
| 1156 | . / zx_pkh(i,k) |
---|
| 1157 | ENDDO |
---|
| 1158 | ENDDO |
---|
| 1159 | c====================================================================== |
---|
| 1160 | C Calcul tendances |
---|
| 1161 | DO k = 1, klev |
---|
| 1162 | DO i = 1, knon |
---|
| 1163 | d_t(i,k) = local_h(i,k)/zx_pkf(i,k)/RCPD - t(i,k) |
---|
| 1164 | d_q(i,k) = local_q(i,k) - q(i,k) |
---|
| 1165 | ENDDO |
---|
| 1166 | ENDDO |
---|
| 1167 | c |
---|
| 1168 | |
---|
| 1169 | RETURN |
---|
| 1170 | END |
---|
| 1171 | SUBROUTINE clvent(knon,dtime, u1lay,v1lay,coef,t,ven, |
---|
| 1172 | e paprs,pplay,delp, |
---|
| 1173 | s d_ven,flux_v) |
---|
| 1174 | IMPLICIT none |
---|
| 1175 | c====================================================================== |
---|
| 1176 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 |
---|
| 1177 | c Objet: diffusion vertical de la vitesse "ven" |
---|
| 1178 | c====================================================================== |
---|
| 1179 | c Arguments: |
---|
| 1180 | c dtime----input-R- intervalle du temps (en second) |
---|
| 1181 | c u1lay----input-R- vent u de la premiere couche (m/s) |
---|
| 1182 | c v1lay----input-R- vent v de la premiere couche (m/s) |
---|
| 1183 | c coef-----input-R- le coefficient d'echange (m**2/s) multiplie par |
---|
| 1184 | c le cisaillement du vent (dV/dz); la premiere |
---|
| 1185 | c valeur indique la valeur de Cdrag (sans unite) |
---|
| 1186 | c t--------input-R- temperature (K) |
---|
| 1187 | c ven------input-R- vitesse horizontale (m/s) |
---|
| 1188 | c paprs----input-R- pression a inter-couche (Pa) |
---|
| 1189 | c pplay----input-R- pression au milieu de couche (Pa) |
---|
| 1190 | c delp-----input-R- epaisseur de couche (Pa) |
---|
| 1191 | c |
---|
| 1192 | c |
---|
| 1193 | c d_ven----output-R- le changement de "ven" |
---|
| 1194 | c flux_v---output-R- (diagnostic) flux du vent: (kg m/s)/(m**2 s) |
---|
| 1195 | c====================================================================== |
---|
| 1196 | #include "dimensions.h" |
---|
| 1197 | #include "dimphy.h" |
---|
| 1198 | INTEGER knon |
---|
| 1199 | REAL dtime |
---|
| 1200 | REAL u1lay(klon), v1lay(klon) |
---|
| 1201 | REAL coef(klon,klev) |
---|
| 1202 | REAL t(klon,klev), ven(klon,klev) |
---|
| 1203 | REAL paprs(klon,klev+1), pplay(klon,klev), delp(klon,klev) |
---|
| 1204 | REAL d_ven(klon,klev) |
---|
| 1205 | REAL flux_v(klon,klev) |
---|
| 1206 | c====================================================================== |
---|
| 1207 | #include "YOMCST.h" |
---|
| 1208 | c====================================================================== |
---|
| 1209 | INTEGER i, k |
---|
| 1210 | REAL zx_cv(klon,2:klev) |
---|
| 1211 | REAL zx_dv(klon,2:klev) |
---|
| 1212 | REAL zx_buf(klon) |
---|
| 1213 | REAL zx_coef(klon,klev) |
---|
| 1214 | REAL local_ven(klon,klev) |
---|
| 1215 | REAL zx_alf1(klon), zx_alf2(klon) |
---|
| 1216 | c====================================================================== |
---|
| 1217 | DO k = 1, klev |
---|
| 1218 | DO i = 1, knon |
---|
| 1219 | local_ven(i,k) = ven(i,k) |
---|
| 1220 | ENDDO |
---|
| 1221 | ENDDO |
---|
| 1222 | c====================================================================== |
---|
| 1223 | DO i = 1, knon |
---|
| 1224 | ccc zx_alf1(i) = (paprs(i,1)-pplay(i,2))/(pplay(i,1)-pplay(i,2)) |
---|
| 1225 | zx_alf1(i) = 1.0 |
---|
| 1226 | zx_alf2(i) = 1.0 - zx_alf1(i) |
---|
| 1227 | zx_coef(i,1) = coef(i,1) |
---|
| 1228 | . * (1.0+SQRT(u1lay(i)**2+v1lay(i)**2)) |
---|
| 1229 | . * pplay(i,1)/(RD*t(i,1)) |
---|
| 1230 | zx_coef(i,1) = zx_coef(i,1) * dtime*RG |
---|
| 1231 | ENDDO |
---|
| 1232 | c====================================================================== |
---|
| 1233 | DO k = 2, klev |
---|
| 1234 | DO i = 1, knon |
---|
| 1235 | zx_coef(i,k) = coef(i,k)*RG/(pplay(i,k-1)-pplay(i,k)) |
---|
| 1236 | . *(paprs(i,k)*2/(t(i,k)+t(i,k-1))/RD)**2 |
---|
| 1237 | zx_coef(i,k) = zx_coef(i,k) * dtime*RG |
---|
| 1238 | ENDDO |
---|
| 1239 | ENDDO |
---|
| 1240 | c====================================================================== |
---|
| 1241 | DO i = 1, knon |
---|
| 1242 | zx_buf(i) = delp(i,1) + zx_coef(i,1)*zx_alf1(i)+zx_coef(i,2) |
---|
| 1243 | zx_cv(i,2) = local_ven(i,1)*delp(i,1) / zx_buf(i) |
---|
| 1244 | zx_dv(i,2) = (zx_coef(i,2)-zx_alf2(i)*zx_coef(i,1)) |
---|
| 1245 | . /zx_buf(i) |
---|
| 1246 | ENDDO |
---|
| 1247 | DO k = 3, klev |
---|
| 1248 | DO i = 1, knon |
---|
| 1249 | zx_buf(i) = delp(i,k-1) + zx_coef(i,k) |
---|
| 1250 | . + zx_coef(i,k-1)*(1.-zx_dv(i,k-1)) |
---|
| 1251 | zx_cv(i,k) = (local_ven(i,k-1)*delp(i,k-1) |
---|
| 1252 | . +zx_coef(i,k-1)*zx_cv(i,k-1) )/zx_buf(i) |
---|
| 1253 | zx_dv(i,k) = zx_coef(i,k)/zx_buf(i) |
---|
| 1254 | ENDDO |
---|
| 1255 | ENDDO |
---|
| 1256 | DO i = 1, knon |
---|
| 1257 | local_ven(i,klev) = ( local_ven(i,klev)*delp(i,klev) |
---|
| 1258 | . +zx_coef(i,klev)*zx_cv(i,klev) ) |
---|
| 1259 | . / ( delp(i,klev) + zx_coef(i,klev) |
---|
| 1260 | . -zx_coef(i,klev)*zx_dv(i,klev) ) |
---|
| 1261 | ENDDO |
---|
| 1262 | DO k = klev-1, 1, -1 |
---|
| 1263 | DO i = 1, knon |
---|
| 1264 | local_ven(i,k) = zx_cv(i,k+1) + zx_dv(i,k+1)*local_ven(i,k+1) |
---|
| 1265 | ENDDO |
---|
| 1266 | ENDDO |
---|
| 1267 | c====================================================================== |
---|
| 1268 | c== flux_v est le flux de moment angulaire (positif vers bas) |
---|
| 1269 | c== dont l'unite est: (kg m/s)/(m**2 s) |
---|
| 1270 | DO i = 1, knon |
---|
| 1271 | flux_v(i,1) = zx_coef(i,1)/(RG*dtime) |
---|
| 1272 | . *(local_ven(i,1)*zx_alf1(i) |
---|
| 1273 | . +local_ven(i,2)*zx_alf2(i)) |
---|
| 1274 | ENDDO |
---|
| 1275 | DO k = 2, klev |
---|
| 1276 | DO i = 1, knon |
---|
| 1277 | flux_v(i,k) = zx_coef(i,k)/(RG*dtime) |
---|
| 1278 | . * (local_ven(i,k)-local_ven(i,k-1)) |
---|
| 1279 | ENDDO |
---|
| 1280 | ENDDO |
---|
| 1281 | c |
---|
| 1282 | DO k = 1, klev |
---|
| 1283 | DO i = 1, knon |
---|
| 1284 | d_ven(i,k) = local_ven(i,k) - ven(i,k) |
---|
| 1285 | ENDDO |
---|
| 1286 | ENDDO |
---|
| 1287 | c |
---|
| 1288 | RETURN |
---|
| 1289 | END |
---|
| 1290 | SUBROUTINE coefkz(nsrf, knon, paprs, pplay, |
---|
| 1291 | cIM 261103 |
---|
| 1292 | . ksta, ksta_ter, |
---|
| 1293 | cIM 261103 |
---|
| 1294 | . ts, rugos, |
---|
| 1295 | . u,v,t,q, |
---|
| 1296 | . qsurf, |
---|
| 1297 | . pcfm, pcfh) |
---|
| 1298 | IMPLICIT none |
---|
| 1299 | c====================================================================== |
---|
| 1300 | c Auteur(s) F. Hourdin, M. Forichon, Z.X. Li (LMD/CNRS) date: 19930922 |
---|
| 1301 | c (une version strictement identique a l'ancien modele) |
---|
| 1302 | c Objet: calculer le coefficient du frottement du sol (Cdrag) et les |
---|
| 1303 | c coefficients d'echange turbulent dans l'atmosphere. |
---|
| 1304 | c Arguments: |
---|
| 1305 | c nsrf-----input-I- indicateur de la nature du sol |
---|
| 1306 | c knon-----input-I- nombre de points a traiter |
---|
| 1307 | c paprs----input-R- pression a chaque intercouche (en Pa) |
---|
| 1308 | c pplay----input-R- pression au milieu de chaque couche (en Pa) |
---|
| 1309 | c ts-------input-R- temperature du sol (en Kelvin) |
---|
| 1310 | c rugos----input-R- longeur de rugosite (en m) |
---|
| 1311 | c u--------input-R- vitesse u |
---|
| 1312 | c v--------input-R- vitesse v |
---|
| 1313 | c t--------input-R- temperature (K) |
---|
| 1314 | c q--------input-R- vapeur d'eau (kg/kg) |
---|
| 1315 | c |
---|
| 1316 | c itop-----output-I- numero de couche du sommet de la couche limite |
---|
| 1317 | c pcfm-----output-R- coefficients a calculer (vitesse) |
---|
| 1318 | c pcfh-----output-R- coefficients a calculer (chaleur et humidite) |
---|
| 1319 | c====================================================================== |
---|
| 1320 | #include "dimensions.h" |
---|
| 1321 | #include "dimphy.h" |
---|
| 1322 | #include "YOMCST.h" |
---|
| 1323 | #include "indicesol.h" |
---|
| 1324 | c |
---|
| 1325 | c Arguments: |
---|
| 1326 | c |
---|
| 1327 | INTEGER knon, nsrf |
---|
| 1328 | REAL ts(klon) |
---|
| 1329 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
| 1330 | REAL u(klon,klev), v(klon,klev), t(klon,klev), q(klon,klev) |
---|
| 1331 | REAL rugos(klon) |
---|
| 1332 | c |
---|
| 1333 | REAL pcfm(klon,klev), pcfh(klon,klev) |
---|
| 1334 | INTEGER itop(klon) |
---|
| 1335 | c |
---|
| 1336 | c Quelques constantes et options: |
---|
| 1337 | c |
---|
| 1338 | REAL cepdu2, ckap, cb, cc, cd, clam |
---|
| 1339 | PARAMETER (cepdu2 =(0.1)**2) |
---|
| 1340 | PARAMETER (CKAP=0.4) |
---|
| 1341 | PARAMETER (cb=5.0) |
---|
| 1342 | PARAMETER (cc=5.0) |
---|
| 1343 | PARAMETER (cd=5.0) |
---|
| 1344 | PARAMETER (clam=160.0) |
---|
| 1345 | REAL ratqs ! largeur de distribution de vapeur d'eau |
---|
| 1346 | PARAMETER (ratqs=0.05) |
---|
| 1347 | LOGICAL richum ! utilise le nombre de Richardson humide |
---|
| 1348 | PARAMETER (richum=.TRUE.) |
---|
| 1349 | REAL ric ! nombre de Richardson critique |
---|
| 1350 | PARAMETER(ric=0.4) |
---|
| 1351 | REAL prandtl |
---|
| 1352 | PARAMETER (prandtl=0.4) |
---|
| 1353 | REAL kstable ! diffusion minimale (situation stable) |
---|
| 1354 | ! GKtest |
---|
| 1355 | ! PARAMETER (kstable=1.0e-10) |
---|
| 1356 | REAL ksta, ksta_ter |
---|
| 1357 | cIM: 261103 REAL kstable_ter, kstable_sinon |
---|
| 1358 | cIM: 211003 cf GK PARAMETER (kstable_ter = 1.0e-6) |
---|
| 1359 | cIM: 261103 PARAMETER (kstable_ter = 1.0e-8) |
---|
| 1360 | cIM: 261103 PARAMETER (kstable_ter = 1.0e-10) |
---|
| 1361 | cIM: 261103 PARAMETER (kstable_sinon = 1.0e-10) |
---|
| 1362 | ! fin GKtest |
---|
| 1363 | REAL mixlen ! constante controlant longueur de melange |
---|
| 1364 | PARAMETER (mixlen=35.0) |
---|
| 1365 | INTEGER isommet ! le sommet de la couche limite |
---|
| 1366 | PARAMETER (isommet=klev) |
---|
| 1367 | LOGICAL tvirtu ! calculer Ri d'une maniere plus performante |
---|
| 1368 | PARAMETER (tvirtu=.TRUE.) |
---|
| 1369 | LOGICAL opt_ec ! formule du Centre Europeen dans l'atmosphere |
---|
| 1370 | PARAMETER (opt_ec=.FALSE.) |
---|
| 1371 | LOGICAL contreg ! utiliser le contre-gradient dans Ri |
---|
| 1372 | PARAMETER (contreg=.TRUE.) |
---|
| 1373 | c |
---|
| 1374 | c Variables locales: |
---|
| 1375 | c |
---|
| 1376 | INTEGER i, k |
---|
| 1377 | REAL zgeop(klon,klev) |
---|
| 1378 | REAL zmgeom(klon) |
---|
| 1379 | REAL zri(klon) |
---|
| 1380 | REAL zl2(klon) |
---|
| 1381 | |
---|
| 1382 | REAL u1(klon), v1(klon), t1(klon), q1(klon), z1(klon) |
---|
| 1383 | REAL pcfm1(klon), pcfh1(klon) |
---|
| 1384 | c |
---|
| 1385 | REAL zdphi, zdu2, ztvd, ztvu, zcdn |
---|
| 1386 | REAL zscf |
---|
| 1387 | REAL zt, zq, zdelta, zcvm5, zcor, zqs, zfr, zdqs |
---|
| 1388 | REAL z2geomf, zalh2, zalm2, zscfh, zscfm |
---|
| 1389 | REAL t_coup |
---|
| 1390 | PARAMETER (t_coup=273.15) |
---|
| 1391 | cIM |
---|
| 1392 | LOGICAL check |
---|
| 1393 | PARAMETER (check=.false.) |
---|
| 1394 | c |
---|
| 1395 | c contre-gradient pour la chaleur sensible: Kelvin/metre |
---|
| 1396 | REAL gamt(2:klev) |
---|
| 1397 | real qsurf(klon) |
---|
| 1398 | c |
---|
| 1399 | LOGICAL appel1er |
---|
| 1400 | SAVE appel1er |
---|
| 1401 | c |
---|
| 1402 | c Fonctions thermodynamiques et fonctions d'instabilite |
---|
| 1403 | REAL fsta, fins, x |
---|
| 1404 | LOGICAL zxli ! utiliser un jeu de fonctions simples |
---|
| 1405 | PARAMETER (zxli=.FALSE.) |
---|
| 1406 | c |
---|
| 1407 | #include "YOETHF.h" |
---|
| 1408 | #include "FCTTRE.h" |
---|
| 1409 | fsta(x) = 1.0 / (1.0+10.0*x*(1+8.0*x)) |
---|
| 1410 | fins(x) = SQRT(1.0-18.0*x) |
---|
| 1411 | c |
---|
| 1412 | DATA appel1er /.TRUE./ |
---|
| 1413 | c |
---|
| 1414 | IF (appel1er) THEN |
---|
| 1415 | PRINT*, 'coefkz, opt_ec:', opt_ec |
---|
| 1416 | PRINT*, 'coefkz, richum:', richum |
---|
| 1417 | IF (richum) PRINT*, 'coefkz, ratqs:', ratqs |
---|
| 1418 | PRINT*, 'coefkz, isommet:', isommet |
---|
| 1419 | PRINT*, 'coefkz, tvirtu:', tvirtu |
---|
| 1420 | appel1er = .FALSE. |
---|
| 1421 | ENDIF |
---|
| 1422 | c |
---|
| 1423 | c Initialiser les sorties |
---|
| 1424 | c |
---|
| 1425 | DO k = 1, klev |
---|
| 1426 | DO i = 1, knon |
---|
| 1427 | pcfm(i,k) = 0.0 |
---|
| 1428 | pcfh(i,k) = 0.0 |
---|
| 1429 | ENDDO |
---|
| 1430 | ENDDO |
---|
| 1431 | DO i = 1, knon |
---|
| 1432 | itop(i) = 0 |
---|
| 1433 | ENDDO |
---|
| 1434 | |
---|
| 1435 | c$$$ IF(nsrf.NE.1) THEN |
---|
| 1436 | c$$$ do i = 1, knon |
---|
| 1437 | c$$$ qsurf(i) = qsatl(ts(i))/paprs(i,1) |
---|
| 1438 | c$$$ enddo |
---|
| 1439 | c$$$ ENDIF |
---|
| 1440 | |
---|
| 1441 | c |
---|
| 1442 | c Prescrire la valeur de contre-gradient |
---|
| 1443 | c |
---|
| 1444 | IF (.NOT.contreg) THEN |
---|
| 1445 | DO k = 2, klev |
---|
| 1446 | gamt(k) = 0.0 |
---|
| 1447 | ENDDO |
---|
| 1448 | ELSE |
---|
| 1449 | DO k = 3, klev |
---|
| 1450 | gamt(k) = -1.0E-03 |
---|
| 1451 | ENDDO |
---|
| 1452 | gamt(2) = -2.5E-03 |
---|
| 1453 | ENDIF |
---|
| 1454 | cIM cf JLD/ GKtest |
---|
| 1455 | IF ( nsrf .NE. is_oce ) THEN |
---|
| 1456 | cIM 261103 kstable = kstable_ter |
---|
| 1457 | kstable = ksta_ter |
---|
| 1458 | ELSE |
---|
| 1459 | cIM 261103 kstable = kstable_sinon |
---|
| 1460 | kstable = ksta |
---|
| 1461 | ENDIF |
---|
| 1462 | cIM cf JLD/ GKtest fin |
---|
| 1463 | c |
---|
| 1464 | c Calculer les geopotentiels de chaque couche |
---|
| 1465 | c |
---|
| 1466 | DO i = 1, knon |
---|
| 1467 | zgeop(i,1) = RD * t(i,1) / (0.5*(paprs(i,1)+pplay(i,1))) |
---|
| 1468 | . * (paprs(i,1)-pplay(i,1)) |
---|
| 1469 | ENDDO |
---|
| 1470 | DO k = 2, klev |
---|
| 1471 | DO i = 1, knon |
---|
| 1472 | zgeop(i,k) = zgeop(i,k-1) |
---|
| 1473 | . + RD * 0.5*(t(i,k-1)+t(i,k)) / paprs(i,k) |
---|
| 1474 | . * (pplay(i,k-1)-pplay(i,k)) |
---|
| 1475 | ENDDO |
---|
| 1476 | ENDDO |
---|
| 1477 | c |
---|
| 1478 | c Calculer le frottement au sol (Cdrag) |
---|
| 1479 | c |
---|
| 1480 | DO i = 1, knon |
---|
| 1481 | u1(i) = u(i,1) |
---|
| 1482 | v1(i) = v(i,1) |
---|
| 1483 | t1(i) = t(i,1) |
---|
| 1484 | q1(i) = q(i,1) |
---|
| 1485 | z1(i) = zgeop(i,1) |
---|
| 1486 | ENDDO |
---|
| 1487 | c |
---|
| 1488 | CALL clcdrag(klon, knon, nsrf, zxli, |
---|
| 1489 | $ u1, v1, t1, q1, z1, |
---|
| 1490 | $ ts, qsurf, rugos, |
---|
| 1491 | $ pcfm1, pcfh1) |
---|
| 1492 | cIM $ ts, qsurf, rugos, |
---|
| 1493 | C |
---|
| 1494 | DO i = 1, knon |
---|
| 1495 | pcfm(i,1)=pcfm1(i) |
---|
| 1496 | pcfh(i,1)=pcfh1(i) |
---|
| 1497 | ENDDO |
---|
| 1498 | c |
---|
| 1499 | c Calculer les coefficients turbulents dans l'atmosphere |
---|
| 1500 | c |
---|
| 1501 | DO i = 1, knon |
---|
| 1502 | itop(i) = isommet |
---|
| 1503 | ENDDO |
---|
| 1504 | |
---|
| 1505 | IF (check) THEN |
---|
| 1506 | PRINT*,' isommet=',isommet,' knon=',knon |
---|
| 1507 | ENDIF |
---|
| 1508 | |
---|
| 1509 | DO k = 2, isommet |
---|
| 1510 | DO i = 1, knon |
---|
| 1511 | zdu2=MAX(cepdu2,(u(i,k)-u(i,k-1))**2 |
---|
| 1512 | . +(v(i,k)-v(i,k-1))**2) |
---|
| 1513 | zmgeom(i)=zgeop(i,k)-zgeop(i,k-1) |
---|
| 1514 | zdphi =zmgeom(i) / 2.0 |
---|
| 1515 | zt = (t(i,k)+t(i,k-1)) * 0.5 |
---|
| 1516 | zq = (q(i,k)+q(i,k-1)) * 0.5 |
---|
| 1517 | c |
---|
| 1518 | c calculer Qs et dQs/dT: |
---|
| 1519 | c |
---|
| 1520 | IF (thermcep) THEN |
---|
| 1521 | zdelta = MAX(0.,SIGN(1.,RTT-zt)) |
---|
| 1522 | zcvm5 = R5LES*RLVTT/RCPD/(1.0+RVTMP2*zq)*(1.-zdelta) |
---|
| 1523 | . + R5IES*RLSTT/RCPD/(1.0+RVTMP2*zq)*zdelta |
---|
| 1524 | zqs = R2ES * FOEEW(zt,zdelta) / pplay(i,k) |
---|
| 1525 | zqs = MIN(0.5,zqs) |
---|
| 1526 | zcor = 1./(1.-RETV*zqs) |
---|
| 1527 | zqs = zqs*zcor |
---|
| 1528 | zdqs = FOEDE(zt,zdelta,zcvm5,zqs,zcor) |
---|
| 1529 | ELSE |
---|
| 1530 | IF (zt .LT. t_coup) THEN |
---|
| 1531 | zqs = qsats(zt) / pplay(i,k) |
---|
| 1532 | zdqs = dqsats(zt,zqs) |
---|
| 1533 | ELSE |
---|
| 1534 | zqs = qsatl(zt) / pplay(i,k) |
---|
| 1535 | zdqs = dqsatl(zt,zqs) |
---|
| 1536 | ENDIF |
---|
| 1537 | ENDIF |
---|
| 1538 | c |
---|
| 1539 | c calculer la fraction nuageuse (processus humide): |
---|
| 1540 | c |
---|
| 1541 | zfr = (zq+ratqs*zq-zqs) / (2.0*ratqs*zq) |
---|
| 1542 | zfr = MAX(0.0,MIN(1.0,zfr)) |
---|
| 1543 | IF (.NOT.richum) zfr = 0.0 |
---|
| 1544 | c |
---|
| 1545 | c calculer le nombre de Richardson: |
---|
| 1546 | c |
---|
| 1547 | IF (tvirtu) THEN |
---|
| 1548 | ztvd =( t(i,k) |
---|
| 1549 | . + zdphi/RCPD/(1.+RVTMP2*zq) |
---|
| 1550 | . *( (1.-zfr) + zfr*(1.+RLVTT*zqs/RD/zt)/(1.+zdqs) ) |
---|
| 1551 | . )*(1.+RETV*q(i,k)) |
---|
| 1552 | ztvu =( t(i,k-1) |
---|
| 1553 | . - zdphi/RCPD/(1.+RVTMP2*zq) |
---|
| 1554 | . *( (1.-zfr) + zfr*(1.+RLVTT*zqs/RD/zt)/(1.+zdqs) ) |
---|
| 1555 | . )*(1.+RETV*q(i,k-1)) |
---|
| 1556 | zri(i) =zmgeom(i)*(ztvd-ztvu)/(zdu2*0.5*(ztvd+ztvu)) |
---|
| 1557 | zri(i) = zri(i) |
---|
| 1558 | . + zmgeom(i)*zmgeom(i)/RG*gamt(k) |
---|
| 1559 | . *(paprs(i,k)/101325.0)**RKAPPA |
---|
| 1560 | . /(zdu2*0.5*(ztvd+ztvu)) |
---|
| 1561 | c |
---|
| 1562 | ELSE ! calcul de Ridchardson compatible LMD5 |
---|
| 1563 | c |
---|
| 1564 | zri(i) =(RCPD*(t(i,k)-t(i,k-1)) |
---|
| 1565 | . -RD*0.5*(t(i,k)+t(i,k-1))/paprs(i,k) |
---|
| 1566 | . *(pplay(i,k)-pplay(i,k-1)) |
---|
| 1567 | . )*zmgeom(i)/(zdu2*0.5*RCPD*(t(i,k-1)+t(i,k))) |
---|
| 1568 | zri(i) = zri(i) + |
---|
| 1569 | . zmgeom(i)*zmgeom(i)*gamt(k)/RG |
---|
| 1570 | cSB . /(paprs(i,k)/101325.0)**RKAPPA |
---|
| 1571 | . *(paprs(i,k)/101325.0)**RKAPPA |
---|
| 1572 | . /(zdu2*0.5*(t(i,k-1)+t(i,k))) |
---|
| 1573 | ENDIF |
---|
| 1574 | c |
---|
| 1575 | c finalement, les coefficients d'echange sont obtenus: |
---|
| 1576 | c |
---|
| 1577 | zcdn=SQRT(zdu2) / zmgeom(i) * RG |
---|
| 1578 | c |
---|
| 1579 | IF (opt_ec) THEN |
---|
| 1580 | z2geomf=zgeop(i,k-1)+zgeop(i,k) |
---|
| 1581 | zalm2=(0.5*ckap/RG*z2geomf |
---|
| 1582 | . /(1.+0.5*ckap/rg/clam*z2geomf))**2 |
---|
| 1583 | zalh2=(0.5*ckap/rg*z2geomf |
---|
| 1584 | . /(1.+0.5*ckap/RG/(clam*SQRT(1.5*cd))*z2geomf))**2 |
---|
| 1585 | IF (zri(i).LT.0.0) THEN ! situation instable |
---|
| 1586 | zscf = ((zgeop(i,k)/zgeop(i,k-1))**(1./3.)-1.)**3 |
---|
| 1587 | . / (zmgeom(i)/RG)**3 / (zgeop(i,k-1)/RG) |
---|
| 1588 | zscf = SQRT(-zri(i)*zscf) |
---|
| 1589 | zscfm = 1.0 / (1.0+3.0*cb*cc*zalm2*zscf) |
---|
| 1590 | zscfh = 1.0 / (1.0+3.0*cb*cc*zalh2*zscf) |
---|
| 1591 | pcfm(i,k)=zcdn*zalm2*(1.-2.0*cb*zri(i)*zscfm) |
---|
| 1592 | pcfh(i,k)=zcdn*zalh2*(1.-3.0*cb*zri(i)*zscfh) |
---|
| 1593 | ELSE ! situation stable |
---|
| 1594 | zscf=SQRT(1.+cd*zri(i)) |
---|
| 1595 | pcfm(i,k)=zcdn*zalm2/(1.+2.0*cb*zri(i)/zscf) |
---|
| 1596 | pcfh(i,k)=zcdn*zalh2/(1.+3.0*cb*zri(i)*zscf) |
---|
| 1597 | ENDIF |
---|
| 1598 | ELSE |
---|
| 1599 | zl2(i)=(mixlen*MAX(0.0,(paprs(i,k)-paprs(i,itop(i)+1)) |
---|
| 1600 | . /(paprs(i,2)-paprs(i,itop(i)+1)) ))**2 |
---|
| 1601 | pcfm(i,k)=sqrt(max(zcdn*zcdn*(ric-zri(i))/ric, kstable)) |
---|
| 1602 | pcfm(i,k)= zl2(i)* pcfm(i,k) |
---|
| 1603 | pcfh(i,k) = pcfm(i,k) /prandtl ! h et m different |
---|
| 1604 | ENDIF |
---|
| 1605 | ENDDO |
---|
| 1606 | ENDDO |
---|
| 1607 | c |
---|
| 1608 | c Au-dela du sommet, pas de diffusion turbulente: |
---|
| 1609 | c |
---|
| 1610 | DO i = 1, knon |
---|
| 1611 | IF (itop(i)+1 .LE. klev) THEN |
---|
| 1612 | DO k = itop(i)+1, klev |
---|
| 1613 | pcfh(i,k) = 0.0 |
---|
| 1614 | pcfm(i,k) = 0.0 |
---|
| 1615 | ENDDO |
---|
| 1616 | ENDIF |
---|
| 1617 | ENDDO |
---|
| 1618 | c |
---|
| 1619 | RETURN |
---|
| 1620 | END |
---|
| 1621 | |
---|
| 1622 | SUBROUTINE coefkz2(nsrf, knon, paprs, pplay,t, |
---|
| 1623 | . pcfm, pcfh) |
---|
| 1624 | IMPLICIT none |
---|
| 1625 | c====================================================================== |
---|
| 1626 | c J'introduit un peu de diffusion sauf dans les endroits |
---|
| 1627 | c ou une forte inversion est presente |
---|
| 1628 | c On peut dire qu'il represente la convection peu profonde |
---|
| 1629 | c |
---|
| 1630 | c Arguments: |
---|
| 1631 | c nsrf-----input-I- indicateur de la nature du sol |
---|
| 1632 | c knon-----input-I- nombre de points a traiter |
---|
| 1633 | c paprs----input-R- pression a chaque intercouche (en Pa) |
---|
| 1634 | c pplay----input-R- pression au milieu de chaque couche (en Pa) |
---|
| 1635 | c t--------input-R- temperature (K) |
---|
| 1636 | c |
---|
| 1637 | c pcfm-----output-R- coefficients a calculer (vitesse) |
---|
| 1638 | c pcfh-----output-R- coefficients a calculer (chaleur et humidite) |
---|
| 1639 | c====================================================================== |
---|
| 1640 | #include "dimensions.h" |
---|
| 1641 | #include "dimphy.h" |
---|
| 1642 | #include "YOMCST.h" |
---|
| 1643 | #include "indicesol.h" |
---|
| 1644 | c |
---|
| 1645 | c Arguments: |
---|
| 1646 | c |
---|
| 1647 | INTEGER knon, nsrf |
---|
| 1648 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
| 1649 | REAL t(klon,klev) |
---|
| 1650 | c |
---|
| 1651 | REAL pcfm(klon,klev), pcfh(klon,klev) |
---|
| 1652 | c |
---|
| 1653 | c Quelques constantes et options: |
---|
| 1654 | c |
---|
| 1655 | REAL prandtl |
---|
| 1656 | PARAMETER (prandtl=0.4) |
---|
| 1657 | REAL kstable |
---|
| 1658 | PARAMETER (kstable=0.002) |
---|
| 1659 | ccc PARAMETER (kstable=0.001) |
---|
| 1660 | REAL mixlen ! constante controlant longueur de melange |
---|
| 1661 | PARAMETER (mixlen=35.0) |
---|
| 1662 | REAL seuil ! au-dela l'inversion est consideree trop faible |
---|
| 1663 | PARAMETER (seuil=-0.02) |
---|
| 1664 | ccc PARAMETER (seuil=-0.04) |
---|
| 1665 | ccc PARAMETER (seuil=-0.06) |
---|
| 1666 | ccc PARAMETER (seuil=-0.09) |
---|
| 1667 | c |
---|
| 1668 | c Variables locales: |
---|
| 1669 | c |
---|
| 1670 | INTEGER i, k, invb(knon) |
---|
| 1671 | REAL zl2(knon) |
---|
| 1672 | REAL zdthmin(knon), zdthdp |
---|
| 1673 | c |
---|
| 1674 | c Initialiser les sorties |
---|
| 1675 | c |
---|
| 1676 | DO k = 1, klev |
---|
| 1677 | DO i = 1, knon |
---|
| 1678 | pcfm(i,k) = 0.0 |
---|
| 1679 | pcfh(i,k) = 0.0 |
---|
| 1680 | ENDDO |
---|
| 1681 | ENDDO |
---|
| 1682 | c |
---|
| 1683 | c Chercher la zone d'inversion forte |
---|
| 1684 | c |
---|
| 1685 | DO i = 1, knon |
---|
| 1686 | invb(i) = klev |
---|
| 1687 | zdthmin(i)=0.0 |
---|
| 1688 | ENDDO |
---|
| 1689 | DO k = 2, klev/2-1 |
---|
| 1690 | DO i = 1, knon |
---|
| 1691 | zdthdp = (t(i,k)-t(i,k+1))/(pplay(i,k)-pplay(i,k+1)) |
---|
| 1692 | . - RD * 0.5*(t(i,k)+t(i,k+1))/RCPD/paprs(i,k+1) |
---|
| 1693 | zdthdp = zdthdp * 100.0 |
---|
| 1694 | IF (pplay(i,k).GT.0.8*paprs(i,1) .AND. |
---|
| 1695 | . zdthdp.LT.zdthmin(i) ) THEN |
---|
| 1696 | zdthmin(i) = zdthdp |
---|
| 1697 | invb(i) = k |
---|
| 1698 | ENDIF |
---|
| 1699 | ENDDO |
---|
| 1700 | ENDDO |
---|
| 1701 | c |
---|
| 1702 | c Introduire une diffusion: |
---|
| 1703 | c |
---|
| 1704 | DO k = 2, klev |
---|
| 1705 | DO i = 1, knon |
---|
| 1706 | cIM cf FH/GK IF ( (nsrf.NE.is_oce) .OR. ! si ce n'est pas sur l'ocean |
---|
| 1707 | cIM cf FH/GK . (invb(i).EQ.klev) .OR. ! s'il n'y a pas d'inversion |
---|
| 1708 | !IM cf JLD/ GKtest TERkz2 |
---|
| 1709 | ! IF ( (nsrf.EQ.is_ter) .OR. ! si on est sur la terre |
---|
| 1710 | ! fin GKtest |
---|
| 1711 | IF ( (nsrf.EQ.is_oce) .AND. ! si on est sur ocean et si |
---|
| 1712 | . ( (invb(i).EQ.klev) .OR. ! s'il n'y a pas d'inversion |
---|
| 1713 | . (zdthmin(i).GT.seuil) ) )THEN ! si l'inversion est trop faible |
---|
| 1714 | zl2(i)=(mixlen*MAX(0.0,(paprs(i,k)-paprs(i,klev+1)) |
---|
| 1715 | . /(paprs(i,2)-paprs(i,klev+1)) ))**2 |
---|
| 1716 | pcfm(i,k)= zl2(i)* kstable |
---|
| 1717 | pcfh(i,k) = pcfm(i,k) /prandtl ! h et m different |
---|
| 1718 | ENDIF |
---|
| 1719 | ENDDO |
---|
| 1720 | ENDDO |
---|
| 1721 | c |
---|
| 1722 | RETURN |
---|
| 1723 | END |
---|
| 1724 | SUBROUTINE calbeta(dtime,indice,knon,snow,qsol, |
---|
| 1725 | . vbeta,vcal,vdif) |
---|
| 1726 | IMPLICIT none |
---|
| 1727 | c====================================================================== |
---|
| 1728 | c Auteur(s): Z.X. Li (LMD/CNRS) (adaptation du GCM du LMD) |
---|
| 1729 | c date: 19940414 |
---|
| 1730 | c====================================================================== |
---|
| 1731 | c |
---|
| 1732 | c Calculer quelques parametres pour appliquer la couche limite |
---|
| 1733 | c ------------------------------------------------------------ |
---|
| 1734 | #include "dimensions.h" |
---|
| 1735 | #include "dimphy.h" |
---|
| 1736 | #include "YOMCST.h" |
---|
| 1737 | #include "indicesol.h" |
---|
| 1738 | REAL tau_gl ! temps de relaxation pour la glace de mer |
---|
| 1739 | ccc PARAMETER (tau_gl=86400.0*30.0) |
---|
| 1740 | PARAMETER (tau_gl=86400.0*5.0) |
---|
| 1741 | REAL mx_eau_sol |
---|
| 1742 | PARAMETER (mx_eau_sol=150.0) |
---|
| 1743 | c |
---|
| 1744 | REAL calsol, calsno, calice ! epaisseur du sol: 0.15 m |
---|
| 1745 | PARAMETER (calsol=1.0/(2.5578E+06*0.15)) |
---|
| 1746 | PARAMETER (calsno=1.0/(2.3867E+06*0.15)) |
---|
| 1747 | PARAMETER (calice=1.0/(5.1444E+06*0.15)) |
---|
| 1748 | C |
---|
| 1749 | INTEGER i |
---|
| 1750 | c |
---|
| 1751 | REAL dtime |
---|
| 1752 | REAL snow(klon), qsol(klon) |
---|
| 1753 | INTEGER indice, knon |
---|
| 1754 | C |
---|
| 1755 | REAL vbeta(klon) |
---|
| 1756 | REAL vcal(klon) |
---|
| 1757 | REAL vdif(klon) |
---|
| 1758 | C |
---|
| 1759 | |
---|
| 1760 | IF (indice.EQ.is_oce) THEN |
---|
| 1761 | DO i = 1, knon |
---|
| 1762 | vcal(i) = 0.0 |
---|
| 1763 | vbeta(i) = 1.0 |
---|
| 1764 | vdif(i) = 0.0 |
---|
| 1765 | ENDDO |
---|
| 1766 | ENDIF |
---|
| 1767 | c |
---|
| 1768 | IF (indice.EQ.is_sic) THEN |
---|
| 1769 | DO i = 1, knon |
---|
| 1770 | vcal(i) = calice |
---|
| 1771 | IF (snow(i) .GT. 0.0) vcal(i) = calsno |
---|
| 1772 | vbeta(i) = 1.0 |
---|
| 1773 | vdif(i) = 1.0/tau_gl |
---|
| 1774 | ccc vdif(i) = calice/tau_gl ! c'etait une erreur |
---|
| 1775 | ENDDO |
---|
| 1776 | ENDIF |
---|
| 1777 | c |
---|
| 1778 | IF (indice.EQ.is_ter) THEN |
---|
| 1779 | DO i = 1, knon |
---|
| 1780 | vcal(i) = calsol |
---|
| 1781 | IF (snow(i) .GT. 0.0) vcal(i) = calsno |
---|
| 1782 | vbeta(i) = MIN(2.0*qsol(i)/mx_eau_sol, 1.0) |
---|
| 1783 | vdif(i) = 0.0 |
---|
| 1784 | ENDDO |
---|
| 1785 | ENDIF |
---|
| 1786 | c |
---|
| 1787 | IF (indice.EQ.is_lic) THEN |
---|
| 1788 | DO i = 1, knon |
---|
| 1789 | vcal(i) = calice |
---|
| 1790 | IF (snow(i) .GT. 0.0) vcal(i) = calsno |
---|
| 1791 | vbeta(i) = 1.0 |
---|
| 1792 | vdif(i) = 0.0 |
---|
| 1793 | ENDDO |
---|
| 1794 | ENDIF |
---|
| 1795 | c |
---|
| 1796 | RETURN |
---|
| 1797 | END |
---|
| 1798 | C====================================================================== |
---|
| 1799 | SUBROUTINE nonlocal(knon, paprs, pplay, |
---|
| 1800 | . tsol,beta,u,v,t,q, |
---|
| 1801 | . cd_h, cd_m, pcfh, pcfm, cgh, cgq) |
---|
| 1802 | IMPLICIT none |
---|
| 1803 | c====================================================================== |
---|
| 1804 | c Laurent Li (LMD/CNRS), le 30 septembre 1998 |
---|
| 1805 | c Couche limite non-locale. Adaptation du code du CCM3. |
---|
| 1806 | c Code non teste, donc a ne pas utiliser. |
---|
| 1807 | c====================================================================== |
---|
| 1808 | c Nonlocal scheme that determines eddy diffusivities based on a |
---|
| 1809 | c diagnosed boundary layer height and a turbulent velocity scale. |
---|
| 1810 | c Also countergradient effects for heat and moisture are included. |
---|
| 1811 | c |
---|
| 1812 | c For more information, see Holtslag, A.A.M., and B.A. Boville, 1993: |
---|
| 1813 | c Local versus nonlocal boundary-layer diffusion in a global climate |
---|
| 1814 | c model. J. of Climate, vol. 6, 1825-1842. |
---|
| 1815 | c====================================================================== |
---|
| 1816 | #include "dimensions.h" |
---|
| 1817 | #include "dimphy.h" |
---|
| 1818 | #include "YOMCST.h" |
---|
| 1819 | c |
---|
| 1820 | c Arguments: |
---|
| 1821 | c |
---|
| 1822 | INTEGER knon ! nombre de points a calculer |
---|
| 1823 | REAL tsol(klon) ! temperature du sol (K) |
---|
| 1824 | REAL beta(klon) ! efficacite d'evaporation (entre 0 et 1) |
---|
| 1825 | REAL paprs(klon,klev+1) ! pression a inter-couche (Pa) |
---|
| 1826 | REAL pplay(klon,klev) ! pression au milieu de couche (Pa) |
---|
| 1827 | REAL u(klon,klev) ! vitesse U (m/s) |
---|
| 1828 | REAL v(klon,klev) ! vitesse V (m/s) |
---|
| 1829 | REAL t(klon,klev) ! temperature (K) |
---|
| 1830 | REAL q(klon,klev) ! vapeur d'eau (kg/kg) |
---|
| 1831 | REAL cd_h(klon) ! coefficient de friction au sol pour chaleur |
---|
| 1832 | REAL cd_m(klon) ! coefficient de friction au sol pour vitesse |
---|
| 1833 | c |
---|
| 1834 | INTEGER isommet |
---|
| 1835 | PARAMETER (isommet=klev) |
---|
| 1836 | REAL vk |
---|
| 1837 | PARAMETER (vk=0.40) |
---|
| 1838 | REAL ricr |
---|
| 1839 | PARAMETER (ricr=0.4) |
---|
| 1840 | REAL fak |
---|
| 1841 | PARAMETER (fak=8.5) |
---|
| 1842 | REAL fakn |
---|
| 1843 | PARAMETER (fakn=7.2) |
---|
| 1844 | REAL onet |
---|
| 1845 | PARAMETER (onet=1.0/3.0) |
---|
| 1846 | REAL t_coup |
---|
| 1847 | PARAMETER(t_coup=273.15) |
---|
| 1848 | REAL zkmin |
---|
| 1849 | PARAMETER (zkmin=0.01) |
---|
| 1850 | REAL betam |
---|
| 1851 | PARAMETER (betam=15.0) |
---|
| 1852 | REAL betah |
---|
| 1853 | PARAMETER (betah=15.0) |
---|
| 1854 | REAL betas |
---|
| 1855 | PARAMETER (betas=5.0) |
---|
| 1856 | REAL sffrac |
---|
| 1857 | PARAMETER (sffrac=0.1) |
---|
| 1858 | REAL binm |
---|
| 1859 | PARAMETER (binm=betam*sffrac) |
---|
| 1860 | REAL binh |
---|
| 1861 | PARAMETER (binh=betah*sffrac) |
---|
| 1862 | REAL ccon |
---|
| 1863 | PARAMETER (ccon=fak*sffrac*vk) |
---|
| 1864 | c |
---|
| 1865 | REAL z(klon,klev) |
---|
| 1866 | REAL pcfm(klon,klev), pcfh(klon,klev) |
---|
| 1867 | c |
---|
| 1868 | INTEGER i, k |
---|
| 1869 | REAL zxt, zxq, zxu, zxv, zxmod, taux, tauy |
---|
| 1870 | REAL zx_alf1, zx_alf2 ! parametres pour extrapolation |
---|
| 1871 | REAL khfs(klon) ! surface kinematic heat flux [mK/s] |
---|
| 1872 | REAL kqfs(klon) ! sfc kinematic constituent flux [m/s] |
---|
| 1873 | REAL heatv(klon) ! surface virtual heat flux |
---|
| 1874 | REAL ustar(klon) |
---|
| 1875 | REAL rino(klon,klev) ! bulk Richardon no. from level to ref lev |
---|
| 1876 | LOGICAL unstbl(klon) ! pts w/unstbl pbl (positive virtual ht flx) |
---|
| 1877 | LOGICAL stblev(klon) ! stable pbl with levels within pbl |
---|
| 1878 | LOGICAL unslev(klon) ! unstbl pbl with levels within pbl |
---|
| 1879 | LOGICAL unssrf(klon) ! unstb pbl w/lvls within srf pbl lyr |
---|
| 1880 | LOGICAL unsout(klon) ! unstb pbl w/lvls in outer pbl lyr |
---|
| 1881 | LOGICAL check(klon) ! True=>chk if Richardson no.>critcal |
---|
| 1882 | REAL pblh(klon) |
---|
| 1883 | REAL cgh(klon,2:klev) ! counter-gradient term for heat [K/m] |
---|
| 1884 | REAL cgq(klon,2:klev) ! counter-gradient term for constituents |
---|
| 1885 | REAL cgs(klon,2:klev) ! counter-gradient star (cg/flux) |
---|
| 1886 | REAL obklen(klon) |
---|
| 1887 | REAL ztvd, ztvu, zdu2 |
---|
| 1888 | REAL therm(klon) ! thermal virtual temperature excess |
---|
| 1889 | REAL phiminv(klon) ! inverse phi function for momentum |
---|
| 1890 | REAL phihinv(klon) ! inverse phi function for heat |
---|
| 1891 | REAL wm(klon) ! turbulent velocity scale for momentum |
---|
| 1892 | REAL fak1(klon) ! k*ustar*pblh |
---|
| 1893 | REAL fak2(klon) ! k*wm*pblh |
---|
| 1894 | REAL fak3(klon) ! fakn*wstr/wm |
---|
| 1895 | REAL pblk(klon) ! level eddy diffusivity for momentum |
---|
| 1896 | REAL pr(klon) ! Prandtl number for eddy diffusivities |
---|
| 1897 | REAL zl(klon) ! zmzp / Obukhov length |
---|
| 1898 | REAL zh(klon) ! zmzp / pblh |
---|
| 1899 | REAL zzh(klon) ! (1-(zmzp/pblh))**2 |
---|
| 1900 | REAL wstr(klon) ! w*, convective velocity scale |
---|
| 1901 | REAL zm(klon) ! current level height |
---|
| 1902 | REAL zp(klon) ! current level height + one level up |
---|
| 1903 | REAL zcor, zdelta, zcvm5, zxqs |
---|
| 1904 | REAL fac, pblmin, zmzp, term |
---|
| 1905 | c |
---|
| 1906 | #include "YOETHF.h" |
---|
| 1907 | #include "FCTTRE.h" |
---|
| 1908 | c |
---|
| 1909 | c Initialisation |
---|
| 1910 | c |
---|
| 1911 | DO i = 1, klon |
---|
| 1912 | pcfh(i,1) = cd_h(i) |
---|
| 1913 | pcfm(i,1) = cd_m(i) |
---|
| 1914 | ENDDO |
---|
| 1915 | DO k = 2, klev |
---|
| 1916 | DO i = 1, klon |
---|
| 1917 | pcfh(i,k) = zkmin |
---|
| 1918 | pcfm(i,k) = zkmin |
---|
| 1919 | cgs(i,k) = 0.0 |
---|
| 1920 | cgh(i,k) = 0.0 |
---|
| 1921 | cgq(i,k) = 0.0 |
---|
| 1922 | ENDDO |
---|
| 1923 | ENDDO |
---|
| 1924 | c |
---|
| 1925 | c Calculer les hauteurs de chaque couche |
---|
| 1926 | c |
---|
| 1927 | DO i = 1, knon |
---|
| 1928 | z(i,1) = RD * t(i,1) / (0.5*(paprs(i,1)+pplay(i,1))) |
---|
| 1929 | . * (paprs(i,1)-pplay(i,1)) / RG |
---|
| 1930 | ENDDO |
---|
| 1931 | DO k = 2, klev |
---|
| 1932 | DO i = 1, knon |
---|
| 1933 | z(i,k) = z(i,k-1) |
---|
| 1934 | . + RD * 0.5*(t(i,k-1)+t(i,k)) / paprs(i,k) |
---|
| 1935 | . * (pplay(i,k-1)-pplay(i,k)) / RG |
---|
| 1936 | ENDDO |
---|
| 1937 | ENDDO |
---|
| 1938 | c |
---|
| 1939 | DO i = 1, knon |
---|
| 1940 | IF (thermcep) THEN |
---|
| 1941 | zdelta=MAX(0.,SIGN(1.,RTT-tsol(i))) |
---|
| 1942 | zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta |
---|
| 1943 | zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*q(i,1)) |
---|
| 1944 | zxqs= r2es * FOEEW(tsol(i),zdelta)/paprs(i,1) |
---|
| 1945 | zxqs=MIN(0.5,zxqs) |
---|
| 1946 | zcor=1./(1.-retv*zxqs) |
---|
| 1947 | zxqs=zxqs*zcor |
---|
| 1948 | ELSE |
---|
| 1949 | IF (tsol(i).LT.t_coup) THEN |
---|
| 1950 | zxqs = qsats(tsol(i)) / paprs(i,1) |
---|
| 1951 | ELSE |
---|
| 1952 | zxqs = qsatl(tsol(i)) / paprs(i,1) |
---|
| 1953 | ENDIF |
---|
| 1954 | ENDIF |
---|
| 1955 | zx_alf1 = 1.0 |
---|
| 1956 | zx_alf2 = 1.0 - zx_alf1 |
---|
| 1957 | zxt = (t(i,1)+z(i,1)*RG/RCPD/(1.+RVTMP2*q(i,1))) |
---|
| 1958 | . *(1.+RETV*q(i,1))*zx_alf1 |
---|
| 1959 | . + (t(i,2)+z(i,2)*RG/RCPD/(1.+RVTMP2*q(i,2))) |
---|
| 1960 | . *(1.+RETV*q(i,2))*zx_alf2 |
---|
| 1961 | zxu = u(i,1)*zx_alf1+u(i,2)*zx_alf2 |
---|
| 1962 | zxv = v(i,1)*zx_alf1+v(i,2)*zx_alf2 |
---|
| 1963 | zxq = q(i,1)*zx_alf1+q(i,2)*zx_alf2 |
---|
| 1964 | zxmod = 1.0+SQRT(zxu**2+zxv**2) |
---|
| 1965 | khfs(i) = (tsol(i)*(1.+RETV*q(i,1))-zxt) *zxmod*cd_h(i) |
---|
| 1966 | kqfs(i) = (zxqs-zxq) *zxmod*cd_h(i) * beta(i) |
---|
| 1967 | heatv(i) = khfs(i) + 0.61*zxt*kqfs(i) |
---|
| 1968 | taux = zxu *zxmod*cd_m(i) |
---|
| 1969 | tauy = zxv *zxmod*cd_m(i) |
---|
| 1970 | ustar(i) = SQRT(taux**2+tauy**2) |
---|
| 1971 | ustar(i) = MAX(SQRT(ustar(i)),0.01) |
---|
| 1972 | ENDDO |
---|
| 1973 | c |
---|
| 1974 | DO i = 1, knon |
---|
| 1975 | rino(i,1) = 0.0 |
---|
| 1976 | check(i) = .TRUE. |
---|
| 1977 | pblh(i) = z(i,1) |
---|
| 1978 | obklen(i) = -t(i,1)*ustar(i)**3/(RG*vk*heatv(i)) |
---|
| 1979 | ENDDO |
---|
| 1980 | |
---|
| 1981 | C |
---|
| 1982 | C PBL height calculation: |
---|
| 1983 | C Search for level of pbl. Scan upward until the Richardson number between |
---|
| 1984 | C the first level and the current level exceeds the "critical" value. |
---|
| 1985 | C |
---|
| 1986 | fac = 100.0 |
---|
| 1987 | DO k = 1, isommet |
---|
| 1988 | DO i = 1, knon |
---|
| 1989 | IF (check(i)) THEN |
---|
| 1990 | zdu2 = (u(i,k)-u(i,1))**2+(v(i,k)-v(i,1))**2+fac*ustar(i)**2 |
---|
| 1991 | zdu2 = max(zdu2,1.0e-20) |
---|
| 1992 | ztvd =(t(i,k)+z(i,k)*0.5*RG/RCPD/(1.+RVTMP2*q(i,k))) |
---|
| 1993 | . *(1.+RETV*q(i,k)) |
---|
| 1994 | ztvu =(t(i,1)-z(i,k)*0.5*RG/RCPD/(1.+RVTMP2*q(i,1))) |
---|
| 1995 | . *(1.+RETV*q(i,1)) |
---|
| 1996 | rino(i,k) = (z(i,k)-z(i,1))*RG*(ztvd-ztvu) |
---|
| 1997 | . /(zdu2*0.5*(ztvd+ztvu)) |
---|
| 1998 | IF (rino(i,k).GE.ricr) THEN |
---|
| 1999 | pblh(i) = z(i,k-1) + (z(i,k-1)-z(i,k)) * |
---|
| 2000 | . (ricr-rino(i,k-1))/(rino(i,k-1)-rino(i,k)) |
---|
| 2001 | check(i) = .FALSE. |
---|
| 2002 | ENDIF |
---|
| 2003 | ENDIF |
---|
| 2004 | ENDDO |
---|
| 2005 | ENDDO |
---|
| 2006 | |
---|
| 2007 | C |
---|
| 2008 | C Set pbl height to maximum value where computation exceeds number of |
---|
| 2009 | C layers allowed |
---|
| 2010 | C |
---|
| 2011 | DO i = 1, knon |
---|
| 2012 | if (check(i)) pblh(i) = z(i,isommet) |
---|
| 2013 | ENDDO |
---|
| 2014 | C |
---|
| 2015 | C Improve estimate of pbl height for the unstable points. |
---|
| 2016 | C Find unstable points (sensible heat flux is upward): |
---|
| 2017 | C |
---|
| 2018 | DO i = 1, knon |
---|
| 2019 | IF (heatv(i) .GT. 0.) THEN |
---|
| 2020 | unstbl(i) = .TRUE. |
---|
| 2021 | check(i) = .TRUE. |
---|
| 2022 | ELSE |
---|
| 2023 | unstbl(i) = .FALSE. |
---|
| 2024 | check(i) = .FALSE. |
---|
| 2025 | ENDIF |
---|
| 2026 | ENDDO |
---|
| 2027 | C |
---|
| 2028 | C For the unstable case, compute velocity scale and the |
---|
| 2029 | C convective temperature excess: |
---|
| 2030 | C |
---|
| 2031 | DO i = 1, knon |
---|
| 2032 | IF (check(i)) THEN |
---|
| 2033 | phiminv(i) = (1.-binm*pblh(i)/obklen(i))**onet |
---|
| 2034 | wm(i)= ustar(i)*phiminv(i) |
---|
| 2035 | therm(i) = heatv(i)*fak/wm(i) |
---|
| 2036 | rino(i,1) = 0.0 |
---|
| 2037 | ENDIF |
---|
| 2038 | ENDDO |
---|
| 2039 | C |
---|
| 2040 | C Improve pblh estimate for unstable conditions using the |
---|
| 2041 | C convective temperature excess: |
---|
| 2042 | C |
---|
| 2043 | DO k = 1, isommet |
---|
| 2044 | DO i = 1, knon |
---|
| 2045 | IF (check(i)) THEN |
---|
| 2046 | zdu2 = (u(i,k)-u(i,1))**2+(v(i,k)-v(i,1))**2+fac*ustar(i)**2 |
---|
| 2047 | zdu2 = max(zdu2,1.0e-20) |
---|
| 2048 | ztvd =(t(i,k)+z(i,k)*0.5*RG/RCPD/(1.+RVTMP2*q(i,k))) |
---|
| 2049 | . *(1.+RETV*q(i,k)) |
---|
| 2050 | ztvu =(t(i,1)+therm(i)-z(i,k)*0.5*RG/RCPD/(1.+RVTMP2*q(i,1))) |
---|
| 2051 | . *(1.+RETV*q(i,1)) |
---|
| 2052 | rino(i,k) = (z(i,k)-z(i,1))*RG*(ztvd-ztvu) |
---|
| 2053 | . /(zdu2*0.5*(ztvd+ztvu)) |
---|
| 2054 | IF (rino(i,k).GE.ricr) THEN |
---|
| 2055 | pblh(i) = z(i,k-1) + (z(i,k-1)-z(i,k)) * |
---|
| 2056 | . (ricr-rino(i,k-1))/(rino(i,k-1)-rino(i,k)) |
---|
| 2057 | check(i) = .FALSE. |
---|
| 2058 | ENDIF |
---|
| 2059 | ENDIF |
---|
| 2060 | ENDDO |
---|
| 2061 | ENDDO |
---|
| 2062 | C |
---|
| 2063 | C Set pbl height to maximum value where computation exceeds number of |
---|
| 2064 | C layers allowed |
---|
| 2065 | C |
---|
| 2066 | DO i = 1, knon |
---|
| 2067 | if (check(i)) pblh(i) = z(i,isommet) |
---|
| 2068 | ENDDO |
---|
| 2069 | C |
---|
| 2070 | C Points for which pblh exceeds number of pbl layers allowed; |
---|
| 2071 | C set to maximum |
---|
| 2072 | C |
---|
| 2073 | DO i = 1, knon |
---|
| 2074 | IF (check(i)) pblh(i) = z(i,isommet) |
---|
| 2075 | ENDDO |
---|
| 2076 | C |
---|
| 2077 | C PBL height must be greater than some minimum mechanical mixing depth |
---|
| 2078 | C Several investigators have proposed minimum mechanical mixing depth |
---|
| 2079 | C relationships as a function of the local friction velocity, u*. We |
---|
| 2080 | C make use of a linear relationship of the form h = c u* where c=700. |
---|
| 2081 | C The scaling arguments that give rise to this relationship most often |
---|
| 2082 | C represent the coefficient c as some constant over the local coriolis |
---|
| 2083 | C parameter. Here we make use of the experimental results of Koracin |
---|
| 2084 | C and Berkowicz (1988) [BLM, Vol 43] for wich they recommend 0.07/f |
---|
| 2085 | C where f was evaluated at 39.5 N and 52 N. Thus we use a typical mid |
---|
| 2086 | C latitude value for f so that c = 0.07/f = 700. |
---|
| 2087 | C |
---|
| 2088 | DO i = 1, knon |
---|
| 2089 | pblmin = 700.0*ustar(i) |
---|
| 2090 | pblh(i) = MAX(pblh(i),pblmin) |
---|
| 2091 | ENDDO |
---|
| 2092 | C |
---|
| 2093 | C pblh is now available; do preparation for diffusivity calculation: |
---|
| 2094 | C |
---|
| 2095 | DO i = 1, knon |
---|
| 2096 | pblk(i) = 0.0 |
---|
| 2097 | fak1(i) = ustar(i)*pblh(i)*vk |
---|
| 2098 | C |
---|
| 2099 | C Do additional preparation for unstable cases only, set temperature |
---|
| 2100 | C and moisture perturbations depending on stability. |
---|
| 2101 | C |
---|
| 2102 | IF (unstbl(i)) THEN |
---|
| 2103 | zxt=(t(i,1)-z(i,1)*0.5*RG/RCPD/(1.+RVTMP2*q(i,1))) |
---|
| 2104 | . *(1.+RETV*q(i,1)) |
---|
| 2105 | phiminv(i) = (1. - binm*pblh(i)/obklen(i))**onet |
---|
| 2106 | phihinv(i) = sqrt(1. - binh*pblh(i)/obklen(i)) |
---|
| 2107 | wm(i) = ustar(i)*phiminv(i) |
---|
| 2108 | fak2(i) = wm(i)*pblh(i)*vk |
---|
| 2109 | wstr(i) = (heatv(i)*RG*pblh(i)/zxt)**onet |
---|
| 2110 | fak3(i) = fakn*wstr(i)/wm(i) |
---|
| 2111 | ENDIF |
---|
| 2112 | ENDDO |
---|
| 2113 | |
---|
| 2114 | C Main level loop to compute the diffusivities and |
---|
| 2115 | C counter-gradient terms: |
---|
| 2116 | C |
---|
| 2117 | DO 1000 k = 2, isommet |
---|
| 2118 | C |
---|
| 2119 | C Find levels within boundary layer: |
---|
| 2120 | C |
---|
| 2121 | DO i = 1, knon |
---|
| 2122 | unslev(i) = .FALSE. |
---|
| 2123 | stblev(i) = .FALSE. |
---|
| 2124 | zm(i) = z(i,k-1) |
---|
| 2125 | zp(i) = z(i,k) |
---|
| 2126 | IF (zkmin.EQ.0.0 .AND. zp(i).GT.pblh(i)) zp(i) = pblh(i) |
---|
| 2127 | IF (zm(i) .LT. pblh(i)) THEN |
---|
| 2128 | zmzp = 0.5*(zm(i) + zp(i)) |
---|
| 2129 | zh(i) = zmzp/pblh(i) |
---|
| 2130 | zl(i) = zmzp/obklen(i) |
---|
| 2131 | zzh(i) = 0. |
---|
| 2132 | IF (zh(i).LE.1.0) zzh(i) = (1. - zh(i))**2 |
---|
| 2133 | C |
---|
| 2134 | C stblev for points zm < plbh and stable and neutral |
---|
| 2135 | C unslev for points zm < plbh and unstable |
---|
| 2136 | C |
---|
| 2137 | IF (unstbl(i)) THEN |
---|
| 2138 | unslev(i) = .TRUE. |
---|
| 2139 | ELSE |
---|
| 2140 | stblev(i) = .TRUE. |
---|
| 2141 | ENDIF |
---|
| 2142 | ENDIF |
---|
| 2143 | ENDDO |
---|
| 2144 | C |
---|
| 2145 | C Stable and neutral points; set diffusivities; counter-gradient |
---|
| 2146 | C terms zero for stable case: |
---|
| 2147 | C |
---|
| 2148 | DO i = 1, knon |
---|
| 2149 | IF (stblev(i)) THEN |
---|
| 2150 | IF (zl(i).LE.1.) THEN |
---|
| 2151 | pblk(i) = fak1(i)*zh(i)*zzh(i)/(1. + betas*zl(i)) |
---|
| 2152 | ELSE |
---|
| 2153 | pblk(i) = fak1(i)*zh(i)*zzh(i)/(betas + zl(i)) |
---|
| 2154 | ENDIF |
---|
| 2155 | pcfm(i,k) = pblk(i) |
---|
| 2156 | pcfh(i,k) = pcfm(i,k) |
---|
| 2157 | ENDIF |
---|
| 2158 | ENDDO |
---|
| 2159 | C |
---|
| 2160 | C unssrf, unstable within surface layer of pbl |
---|
| 2161 | C unsout, unstable within outer layer of pbl |
---|
| 2162 | C |
---|
| 2163 | DO i = 1, knon |
---|
| 2164 | unssrf(i) = .FALSE. |
---|
| 2165 | unsout(i) = .FALSE. |
---|
| 2166 | IF (unslev(i)) THEN |
---|
| 2167 | IF (zh(i).lt.sffrac) THEN |
---|
| 2168 | unssrf(i) = .TRUE. |
---|
| 2169 | ELSE |
---|
| 2170 | unsout(i) = .TRUE. |
---|
| 2171 | ENDIF |
---|
| 2172 | ENDIF |
---|
| 2173 | ENDDO |
---|
| 2174 | C |
---|
| 2175 | C Unstable for surface layer; counter-gradient terms zero |
---|
| 2176 | C |
---|
| 2177 | DO i = 1, knon |
---|
| 2178 | IF (unssrf(i)) THEN |
---|
| 2179 | term = (1. - betam*zl(i))**onet |
---|
| 2180 | pblk(i) = fak1(i)*zh(i)*zzh(i)*term |
---|
| 2181 | pr(i) = term/sqrt(1. - betah*zl(i)) |
---|
| 2182 | ENDIF |
---|
| 2183 | ENDDO |
---|
| 2184 | C |
---|
| 2185 | C Unstable for outer layer; counter-gradient terms non-zero: |
---|
| 2186 | C |
---|
| 2187 | DO i = 1, knon |
---|
| 2188 | IF (unsout(i)) THEN |
---|
| 2189 | pblk(i) = fak2(i)*zh(i)*zzh(i) |
---|
| 2190 | cgs(i,k) = fak3(i)/(pblh(i)*wm(i)) |
---|
| 2191 | cgh(i,k) = khfs(i)*cgs(i,k) |
---|
| 2192 | pr(i) = phiminv(i)/phihinv(i) + ccon*fak3(i)/fak |
---|
| 2193 | cgq(i,k) = kqfs(i)*cgs(i,k) |
---|
| 2194 | ENDIF |
---|
| 2195 | ENDDO |
---|
| 2196 | C |
---|
| 2197 | C For all unstable layers, set diffusivities |
---|
| 2198 | C |
---|
| 2199 | DO i = 1, knon |
---|
| 2200 | IF (unslev(i)) THEN |
---|
| 2201 | pcfm(i,k) = pblk(i) |
---|
| 2202 | pcfh(i,k) = pblk(i)/pr(i) |
---|
| 2203 | ENDIF |
---|
| 2204 | ENDDO |
---|
| 2205 | 1000 continue ! end of level loop |
---|
| 2206 | |
---|
| 2207 | RETURN |
---|
| 2208 | END |
---|