1 | ! |
---|
2 | ! $Header$ |
---|
3 | ! |
---|
4 | subroutine convect1(len,nd,ndp1,noff,minorig, |
---|
5 | & t,q,qs,u,v, |
---|
6 | & p,ph,iflag,ft, |
---|
7 | & fq,fu,fv,precip,cbmf,delt,Ma) |
---|
8 | C.............................START PROLOGUE............................ |
---|
9 | C |
---|
10 | C SCCS IDENTIFICATION: @(#)convect1.f 1.1 04/21/00 |
---|
11 | C 19:40:52 /h/cm/library/nogaps4/src/sub/fcst/convect1.f_v |
---|
12 | C |
---|
13 | C CONFIGURATION IDENTIFICATION: None |
---|
14 | C |
---|
15 | C MODULE NAME: convect1 |
---|
16 | C |
---|
17 | C DESCRIPTION: |
---|
18 | C |
---|
19 | C convect1 The Emanuel Cumulus Convection Scheme |
---|
20 | C |
---|
21 | C CONTRACT NUMBER AND TITLE: None |
---|
22 | C |
---|
23 | C REFERENCES: Programmers K. Emanuel (MIT), Timothy F. Hogan, M. Peng (NRL) |
---|
24 | C |
---|
25 | C CLASSIFICATION: Unclassified |
---|
26 | C |
---|
27 | C RESTRICTIONS: None |
---|
28 | C |
---|
29 | C COMPILER DEPENDENCIES: FORTRAN 77, FORTRAN 90 |
---|
30 | C |
---|
31 | C COMPILE OPTIONS: Fortran 77: -Zu -Wf"-ei -o aggress" |
---|
32 | C Fortran 90: -O vector3,scalar3,task1,aggress,overindex -ei -r 2 |
---|
33 | C |
---|
34 | C LIBRARIES OF RESIDENCE: /a/ops/lib/libfcst159.a |
---|
35 | C |
---|
36 | C USAGE: call convect1(len,nd,noff,minorig, |
---|
37 | C & t,q,qs,u,v, |
---|
38 | C & p,ph,iflag,ft, |
---|
39 | C & fq,fu,fv,precip,cbmf,delt) |
---|
40 | C |
---|
41 | C PARAMETERS: |
---|
42 | C Name Type Usage Description |
---|
43 | C ---------- ---------- ------- ---------------------------- |
---|
44 | C |
---|
45 | C len Integer Input first (i) dimension |
---|
46 | C nd Integer Input vertical (k) dimension |
---|
47 | C ndp1 Integer Input nd + 1 |
---|
48 | C noff Integer Input integer limit for convection (nd-noff) |
---|
49 | C minorig Integer Input First level of convection |
---|
50 | C t Real Input temperature |
---|
51 | C q Real Input specific hum |
---|
52 | C qs Real Input sat specific hum |
---|
53 | C u Real Input u-wind |
---|
54 | C v Real Input v-wind |
---|
55 | C p Real Input full level pressure |
---|
56 | C ph Real Input half level pressure |
---|
57 | C iflag Integer Output iflag on latitude strip |
---|
58 | C ft Real Output temp tend |
---|
59 | C fq Real Output spec hum tend |
---|
60 | C fu Real Output u-wind tend |
---|
61 | C fv Real Output v-wind tend |
---|
62 | C cbmf Real In/Out cumulus mass flux |
---|
63 | C delt Real Input time step |
---|
64 | C iflag Integer Output integer flag for Emanuel conditions |
---|
65 | C |
---|
66 | C COMMON BLOCKS: |
---|
67 | C Block Name Type Usage Notes |
---|
68 | C -------- -------- ---- ------ ------------------------ |
---|
69 | C |
---|
70 | C FILES: None |
---|
71 | C |
---|
72 | C DATA BASES: None |
---|
73 | C |
---|
74 | C NON-FILE INPUT/OUTPUT: None |
---|
75 | C |
---|
76 | C ERROR CONDITIONS: None |
---|
77 | C |
---|
78 | C ADDITIONAL COMMENTS: None |
---|
79 | C |
---|
80 | C.................MAINTENANCE SECTION................................ |
---|
81 | C |
---|
82 | C MODULES CALLED: |
---|
83 | C Name Description |
---|
84 | C convect2 Emanuel cumulus convection tendency calculations |
---|
85 | C ------- ---------------------- |
---|
86 | C LOCAL VARIABLES AND |
---|
87 | C STRUCTURES: |
---|
88 | C Name Type Description |
---|
89 | C ------- ------ ----------- |
---|
90 | C See Comments Below |
---|
91 | C |
---|
92 | C i Integer loop index |
---|
93 | C k Integer loop index |
---|
94 | c |
---|
95 | C METHOD: |
---|
96 | C |
---|
97 | C See Emanuel, K. and M. Zivkovic-Rothman, 2000: Development and evaluation of a |
---|
98 | C convective scheme for use in climate models. |
---|
99 | C |
---|
100 | C FILES: None |
---|
101 | C |
---|
102 | C INCLUDE FILES: None |
---|
103 | C |
---|
104 | C MAKEFILE: /a/ops/met/nogaps/src/sub/fcst/fcst159lib.mak |
---|
105 | C |
---|
106 | C..............................END PROLOGUE............................. |
---|
107 | c |
---|
108 | c |
---|
109 | implicit none |
---|
110 | c |
---|
111 | #include "dimensions.h" |
---|
112 | #include "dimphy.h" |
---|
113 | c |
---|
114 | integer len |
---|
115 | integer nd |
---|
116 | integer ndp1 |
---|
117 | integer noff |
---|
118 | real t(len,nd) |
---|
119 | real q(len,nd) |
---|
120 | real qs(len,nd) |
---|
121 | real u(len,nd) |
---|
122 | real v(len,nd) |
---|
123 | real p(len,nd) |
---|
124 | real ph(len,ndp1) |
---|
125 | integer iflag(len) |
---|
126 | real ft(len,nd) |
---|
127 | real fq(len,nd) |
---|
128 | real fu(len,nd) |
---|
129 | real fv(len,nd) |
---|
130 | real precip(len) |
---|
131 | real cbmf(len) |
---|
132 | real Ma(len,nd) |
---|
133 | integer minorig |
---|
134 | real delt,cpd,cpv,cl,rv,rd,lv0,g |
---|
135 | real sigs,sigd,elcrit,tlcrit,omtsnow,dtmax,damp |
---|
136 | real alpha,entp,coeffs,coeffr,omtrain,cu |
---|
137 | c |
---|
138 | !------------------------------------------------------------------- |
---|
139 | ! --- ARGUMENTS |
---|
140 | !------------------------------------------------------------------- |
---|
141 | ! --- On input: |
---|
142 | ! |
---|
143 | ! t: Array of absolute temperature (K) of dimension ND, with first |
---|
144 | ! index corresponding to lowest model level. Note that this array |
---|
145 | ! will be altered by the subroutine if dry convective adjustment |
---|
146 | ! occurs and if IPBL is not equal to 0. |
---|
147 | ! |
---|
148 | ! q: Array of specific humidity (gm/gm) of dimension ND, with first |
---|
149 | ! index corresponding to lowest model level. Must be defined |
---|
150 | ! at same grid levels as T. Note that this array will be altered |
---|
151 | ! if dry convective adjustment occurs and if IPBL is not equal to 0. |
---|
152 | ! |
---|
153 | ! qs: Array of saturation specific humidity of dimension ND, with first |
---|
154 | ! index corresponding to lowest model level. Must be defined |
---|
155 | ! at same grid levels as T. Note that this array will be altered |
---|
156 | ! if dry convective adjustment occurs and if IPBL is not equal to 0. |
---|
157 | ! |
---|
158 | ! u: Array of zonal wind velocity (m/s) of dimension ND, witth first |
---|
159 | ! index corresponding with the lowest model level. Defined at |
---|
160 | ! same levels as T. Note that this array will be altered if |
---|
161 | ! dry convective adjustment occurs and if IPBL is not equal to 0. |
---|
162 | ! |
---|
163 | ! v: Same as u but for meridional velocity. |
---|
164 | ! |
---|
165 | ! tra: Array of passive tracer mixing ratio, of dimensions (ND,NTRA), |
---|
166 | ! where NTRA is the number of different tracers. If no |
---|
167 | ! convective tracer transport is needed, define a dummy |
---|
168 | ! input array of dimension (ND,1). Tracers are defined at |
---|
169 | ! same vertical levels as T. Note that this array will be altered |
---|
170 | ! if dry convective adjustment occurs and if IPBL is not equal to 0. |
---|
171 | ! |
---|
172 | ! p: Array of pressure (mb) of dimension ND, with first |
---|
173 | ! index corresponding to lowest model level. Must be defined |
---|
174 | ! at same grid levels as T. |
---|
175 | ! |
---|
176 | ! ph: Array of pressure (mb) of dimension ND+1, with first index |
---|
177 | ! corresponding to lowest level. These pressures are defined at |
---|
178 | ! levels intermediate between those of P, T, Q and QS. The first |
---|
179 | ! value of PH should be greater than (i.e. at a lower level than) |
---|
180 | ! the first value of the array P. |
---|
181 | ! |
---|
182 | ! nl: The maximum number of levels to which convection can penetrate, plus 1. |
---|
183 | ! NL MUST be less than or equal to ND-1. |
---|
184 | ! |
---|
185 | ! delt: The model time step (sec) between calls to CONVECT |
---|
186 | ! |
---|
187 | !---------------------------------------------------------------------------- |
---|
188 | ! --- On Output: |
---|
189 | ! |
---|
190 | ! iflag: An output integer whose value denotes the following: |
---|
191 | ! VALUE INTERPRETATION |
---|
192 | ! ----- -------------- |
---|
193 | ! 0 Moist convection occurs. |
---|
194 | ! 1 Moist convection occurs, but a CFL condition |
---|
195 | ! on the subsidence warming is violated. This |
---|
196 | ! does not cause the scheme to terminate. |
---|
197 | ! 2 Moist convection, but no precip because ep(inb) lt 0.0001 |
---|
198 | ! 3 No moist convection because new cbmf is 0 and old cbmf is 0. |
---|
199 | ! 4 No moist convection; atmosphere is not |
---|
200 | ! unstable |
---|
201 | ! 6 No moist convection because ihmin le minorig. |
---|
202 | ! 7 No moist convection because unreasonable |
---|
203 | ! parcel level temperature or specific humidity. |
---|
204 | ! 8 No moist convection: lifted condensation |
---|
205 | ! level is above the 200 mb level. |
---|
206 | ! 9 No moist convection: cloud base is higher |
---|
207 | ! then the level NL-1. |
---|
208 | ! |
---|
209 | ! ft: Array of temperature tendency (K/s) of dimension ND, defined at same |
---|
210 | ! grid levels as T, Q, QS and P. |
---|
211 | ! |
---|
212 | ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension ND, |
---|
213 | ! defined at same grid levels as T, Q, QS and P. |
---|
214 | ! |
---|
215 | ! fu: Array of forcing of zonal velocity (m/s^2) of dimension ND, |
---|
216 | ! defined at same grid levels as T. |
---|
217 | ! |
---|
218 | ! fv: Same as FU, but for forcing of meridional velocity. |
---|
219 | ! |
---|
220 | ! ftra: Array of forcing of tracer content, in tracer mixing ratio per |
---|
221 | ! second, defined at same levels as T. Dimensioned (ND,NTRA). |
---|
222 | ! |
---|
223 | ! precip: Scalar convective precipitation rate (mm/day). |
---|
224 | ! |
---|
225 | ! wd: A convective downdraft velocity scale. For use in surface |
---|
226 | ! flux parameterizations. See convect.ps file for details. |
---|
227 | ! |
---|
228 | ! tprime: A convective downdraft temperature perturbation scale (K). |
---|
229 | ! For use in surface flux parameterizations. See convect.ps |
---|
230 | ! file for details. |
---|
231 | ! |
---|
232 | ! qprime: A convective downdraft specific humidity |
---|
233 | ! perturbation scale (gm/gm). |
---|
234 | ! For use in surface flux parameterizations. See convect.ps |
---|
235 | ! file for details. |
---|
236 | ! |
---|
237 | ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST |
---|
238 | ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT |
---|
239 | ! ITS NEXT CALL. That is, the value of CBMF must be "remembered" |
---|
240 | ! by the calling program between calls to CONVECT. |
---|
241 | ! |
---|
242 | ! det: Array of detrainment mass flux of dimension ND. |
---|
243 | ! |
---|
244 | !------------------------------------------------------------------- |
---|
245 | c |
---|
246 | c Local arrays |
---|
247 | c |
---|
248 | integer nl |
---|
249 | integer nlp |
---|
250 | integer nlm |
---|
251 | integer i,k,n |
---|
252 | real delti |
---|
253 | real rowl |
---|
254 | real clmcpv |
---|
255 | real clmcpd |
---|
256 | real cpdmcp |
---|
257 | real cpvmcpd |
---|
258 | real eps |
---|
259 | real epsi |
---|
260 | real epsim1 |
---|
261 | real ginv |
---|
262 | real hrd |
---|
263 | real prccon1 |
---|
264 | integer icbmax |
---|
265 | real lv(klon,klev) |
---|
266 | real cpn(klon,klev) |
---|
267 | real cpx(klon,klev) |
---|
268 | real tv(klon,klev) |
---|
269 | real gz(klon,klev) |
---|
270 | real hm(klon,klev) |
---|
271 | real h(klon,klev) |
---|
272 | real work(klon) |
---|
273 | integer ihmin(klon) |
---|
274 | integer nk(klon) |
---|
275 | real rh(klon) |
---|
276 | real chi(klon) |
---|
277 | real plcl(klon) |
---|
278 | integer icb(klon) |
---|
279 | real tnk(klon) |
---|
280 | real qnk(klon) |
---|
281 | real gznk(klon) |
---|
282 | real pnk(klon) |
---|
283 | real qsnk(klon) |
---|
284 | real ticb(klon) |
---|
285 | real gzicb(klon) |
---|
286 | real tp(klon,klev) |
---|
287 | real tvp(klon,klev) |
---|
288 | real clw(klon,klev) |
---|
289 | c |
---|
290 | real ah0(klon),cpp(klon) |
---|
291 | real tg,qg,s,alv,tc,ahg,denom,es,rg |
---|
292 | c |
---|
293 | integer ncum |
---|
294 | integer idcum(klon) |
---|
295 | c |
---|
296 | cpd=1005.7 |
---|
297 | cpv=1870.0 |
---|
298 | cl=4190.0 |
---|
299 | rv=461.5 |
---|
300 | rd=287.04 |
---|
301 | lv0=2.501E6 |
---|
302 | g=9.8 |
---|
303 | C |
---|
304 | C *** ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) *** |
---|
305 | C *** TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- *** |
---|
306 | C *** CONVERSION THRESHOLD IS ASSUMED TO BE ZERO *** |
---|
307 | C *** (THE AUTOCONVERSION THRESHOLD VARIES LINEARLY *** |
---|
308 | C *** BETWEEN 0 C AND TLCRIT) *** |
---|
309 | C *** ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT *** |
---|
310 | C *** FORMULATION *** |
---|
311 | C *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
---|
312 | C *** SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
---|
313 | C *** OF CLOUD *** |
---|
314 | C *** OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN *** |
---|
315 | C *** OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW *** |
---|
316 | C *** COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
317 | C *** OF RAIN *** |
---|
318 | C *** COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
319 | C *** OF SNOW *** |
---|
320 | C *** CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM *** |
---|
321 | C *** TRANSPORT *** |
---|
322 | C *** DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION *** |
---|
323 | C *** A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC *** |
---|
324 | C *** ALPHA AND DAMP ARE PARAMETERS THAT CONTROL THE RATE OF *** |
---|
325 | C *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
326 | C *** (THEIR STANDARD VALUES ARE 0.20 AND 0.1, RESPECTIVELY) *** |
---|
327 | C *** (DAMP MUST BE LESS THAN 1) *** |
---|
328 | c |
---|
329 | sigs=0.12 |
---|
330 | sigd=0.05 |
---|
331 | elcrit=0.0011 |
---|
332 | tlcrit=-55.0 |
---|
333 | omtsnow=5.5 |
---|
334 | dtmax=0.9 |
---|
335 | damp=0.1 |
---|
336 | alpha=0.2 |
---|
337 | entp=1.5 |
---|
338 | coeffs=0.8 |
---|
339 | coeffr=1.0 |
---|
340 | omtrain=50.0 |
---|
341 | c |
---|
342 | cu=0.70 |
---|
343 | damp=0.1 |
---|
344 | c |
---|
345 | c |
---|
346 | c Define nl, nlp, nlm, and delti |
---|
347 | c |
---|
348 | nl=nd-noff |
---|
349 | nlp=nl+1 |
---|
350 | nlm=nl-1 |
---|
351 | delti=1.0/delt |
---|
352 | ! |
---|
353 | !------------------------------------------------------------------- |
---|
354 | ! --- SET CONSTANTS |
---|
355 | !------------------------------------------------------------------- |
---|
356 | ! |
---|
357 | rowl=1000.0 |
---|
358 | clmcpv=cl-cpv |
---|
359 | clmcpd=cl-cpd |
---|
360 | cpdmcp=cpd-cpv |
---|
361 | cpvmcpd=cpv-cpd |
---|
362 | eps=rd/rv |
---|
363 | epsi=1.0/eps |
---|
364 | epsim1=epsi-1.0 |
---|
365 | ginv=1.0/g |
---|
366 | hrd=0.5*rd |
---|
367 | prccon1=86400.0*1000.0/(rowl*g) |
---|
368 | ! |
---|
369 | ! dtmax is the maximum negative temperature perturbation. |
---|
370 | ! |
---|
371 | !===================================================================== |
---|
372 | ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS |
---|
373 | !===================================================================== |
---|
374 | ! |
---|
375 | do 20 k=1,nd |
---|
376 | do 10 i=1,len |
---|
377 | ft(i,k)=0.0 |
---|
378 | fq(i,k)=0.0 |
---|
379 | fu(i,k)=0.0 |
---|
380 | fv(i,k)=0.0 |
---|
381 | tvp(i,k)=0.0 |
---|
382 | tp(i,k)=0.0 |
---|
383 | clw(i,k)=0.0 |
---|
384 | gz(i,k) = 0. |
---|
385 | 10 continue |
---|
386 | 20 continue |
---|
387 | do 60 i=1,len |
---|
388 | precip(i)=0.0 |
---|
389 | iflag(i)=0 |
---|
390 | 60 continue |
---|
391 | c |
---|
392 | !===================================================================== |
---|
393 | ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY |
---|
394 | !===================================================================== |
---|
395 | do 110 k=1,nl+1 |
---|
396 | do 100 i=1,len |
---|
397 | lv(i,k)= lv0-clmcpv*(t(i,k)-273.15) |
---|
398 | cpn(i,k)=cpd*(1.0-q(i,k))+cpv*q(i,k) |
---|
399 | cpx(i,k)=cpd*(1.0-q(i,k))+cl*q(i,k) |
---|
400 | tv(i,k)=t(i,k)*(1.0+q(i,k)*epsim1) |
---|
401 | 100 continue |
---|
402 | 110 continue |
---|
403 | c |
---|
404 | c gz = phi at the full levels (same as p). |
---|
405 | c |
---|
406 | do 120 i=1,len |
---|
407 | gz(i,1)=0.0 |
---|
408 | 120 continue |
---|
409 | do 140 k=2,nlp |
---|
410 | do 130 i=1,len |
---|
411 | gz(i,k)=gz(i,k-1)+hrd*(tv(i,k-1)+tv(i,k)) |
---|
412 | & *(p(i,k-1)-p(i,k))/ph(i,k) |
---|
413 | 130 continue |
---|
414 | 140 continue |
---|
415 | c |
---|
416 | c h = phi + cpT (dry static energy). |
---|
417 | c hm = phi + cp(T-Tbase)+Lq |
---|
418 | c |
---|
419 | do 170 k=1,nlp |
---|
420 | do 160 i=1,len |
---|
421 | h(i,k)=gz(i,k)+cpn(i,k)*t(i,k) |
---|
422 | hm(i,k)=gz(i,k)+cpx(i,k)*(t(i,k)-t(i,1))+lv(i,k)*q(i,k) |
---|
423 | 160 continue |
---|
424 | 170 continue |
---|
425 | c |
---|
426 | !------------------------------------------------------------------- |
---|
427 | ! --- Find level of minimum moist static energy |
---|
428 | ! --- If level of minimum moist static energy coincides with |
---|
429 | ! --- or is lower than minimum allowable parcel origin level, |
---|
430 | ! --- set iflag to 6. |
---|
431 | !------------------------------------------------------------------- |
---|
432 | do 180 i=1,len |
---|
433 | work(i)=1.0e12 |
---|
434 | ihmin(i)=nl |
---|
435 | 180 continue |
---|
436 | do 200 k=2,nlp |
---|
437 | do 190 i=1,len |
---|
438 | if((hm(i,k).lt.work(i)).and. |
---|
439 | & (hm(i,k).lt.hm(i,k-1)))then |
---|
440 | work(i)=hm(i,k) |
---|
441 | ihmin(i)=k |
---|
442 | endif |
---|
443 | 190 continue |
---|
444 | 200 continue |
---|
445 | do 210 i=1,len |
---|
446 | ihmin(i)=min(ihmin(i),nlm) |
---|
447 | if(ihmin(i).le.minorig)then |
---|
448 | iflag(i)=6 |
---|
449 | endif |
---|
450 | 210 continue |
---|
451 | c |
---|
452 | !------------------------------------------------------------------- |
---|
453 | ! --- Find that model level below the level of minimum moist static |
---|
454 | ! --- energy that has the maximum value of moist static energy |
---|
455 | !------------------------------------------------------------------- |
---|
456 | |
---|
457 | do 220 i=1,len |
---|
458 | work(i)=hm(i,minorig) |
---|
459 | nk(i)=minorig |
---|
460 | 220 continue |
---|
461 | do 240 k=minorig+1,nl |
---|
462 | do 230 i=1,len |
---|
463 | if((hm(i,k).gt.work(i)).and.(k.le.ihmin(i)))then |
---|
464 | work(i)=hm(i,k) |
---|
465 | nk(i)=k |
---|
466 | endif |
---|
467 | 230 continue |
---|
468 | 240 continue |
---|
469 | !------------------------------------------------------------------- |
---|
470 | ! --- Check whether parcel level temperature and specific humidity |
---|
471 | ! --- are reasonable |
---|
472 | !------------------------------------------------------------------- |
---|
473 | do 250 i=1,len |
---|
474 | if(((t(i,nk(i)).lt.250.0).or. |
---|
475 | & (q(i,nk(i)).le.0.0).or. |
---|
476 | & (p(i,ihmin(i)).lt.400.0)).and. |
---|
477 | & (iflag(i).eq.0))iflag(i)=7 |
---|
478 | 250 continue |
---|
479 | !------------------------------------------------------------------- |
---|
480 | ! --- Calculate lifted condensation level of air at parcel origin level |
---|
481 | ! --- (Within 0.2% of formula of Bolton, MON. WEA. REV.,1980) |
---|
482 | !------------------------------------------------------------------- |
---|
483 | do 260 i=1,len |
---|
484 | tnk(i)=t(i,nk(i)) |
---|
485 | qnk(i)=q(i,nk(i)) |
---|
486 | gznk(i)=gz(i,nk(i)) |
---|
487 | pnk(i)=p(i,nk(i)) |
---|
488 | qsnk(i)=qs(i,nk(i)) |
---|
489 | c |
---|
490 | rh(i)=qnk(i)/qsnk(i) |
---|
491 | rh(i)=min(1.0,rh(i)) |
---|
492 | chi(i)=tnk(i)/(1669.0-122.0*rh(i)-tnk(i)) |
---|
493 | plcl(i)=pnk(i)*(rh(i)**chi(i)) |
---|
494 | if(((plcl(i).lt.200.0).or.(plcl(i).ge.2000.0)) |
---|
495 | & .and.(iflag(i).eq.0))iflag(i)=8 |
---|
496 | 260 continue |
---|
497 | !------------------------------------------------------------------- |
---|
498 | ! --- Calculate first level above lcl (=icb) |
---|
499 | !------------------------------------------------------------------- |
---|
500 | do 270 i=1,len |
---|
501 | icb(i)=nlm |
---|
502 | 270 continue |
---|
503 | c |
---|
504 | do 290 k=minorig,nl |
---|
505 | do 280 i=1,len |
---|
506 | if((k.ge.(nk(i)+1)).and.(p(i,k).lt.plcl(i))) |
---|
507 | & icb(i)=min(icb(i),k) |
---|
508 | 280 continue |
---|
509 | 290 continue |
---|
510 | c |
---|
511 | do 300 i=1,len |
---|
512 | if((icb(i).ge.nlm).and.(iflag(i).eq.0))iflag(i)=9 |
---|
513 | 300 continue |
---|
514 | c |
---|
515 | c Compute icbmax. |
---|
516 | c |
---|
517 | icbmax=2 |
---|
518 | do 310 i=1,len |
---|
519 | icbmax=max(icbmax,icb(i)) |
---|
520 | 310 continue |
---|
521 | ! |
---|
522 | !------------------------------------------------------------------- |
---|
523 | ! --- Calculates the lifted parcel virtual temperature at nk, |
---|
524 | ! --- the actual temperature, and the adiabatic |
---|
525 | ! --- liquid water content. The procedure is to solve the equation. |
---|
526 | ! cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
527 | !------------------------------------------------------------------- |
---|
528 | ! |
---|
529 | do 320 i=1,len |
---|
530 | tnk(i)=t(i,nk(i)) |
---|
531 | qnk(i)=q(i,nk(i)) |
---|
532 | gznk(i)=gz(i,nk(i)) |
---|
533 | ticb(i)=t(i,icb(i)) |
---|
534 | gzicb(i)=gz(i,icb(i)) |
---|
535 | 320 continue |
---|
536 | c |
---|
537 | c *** Calculate certain parcel quantities, including static energy *** |
---|
538 | c |
---|
539 | do 330 i=1,len |
---|
540 | ah0(i)=(cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) |
---|
541 | & +qnk(i)*(lv0-clmcpv*(tnk(i)-273.15))+gznk(i) |
---|
542 | cpp(i)=cpd*(1.-qnk(i))+qnk(i)*cpv |
---|
543 | 330 continue |
---|
544 | c |
---|
545 | c *** Calculate lifted parcel quantities below cloud base *** |
---|
546 | c |
---|
547 | do 350 k=minorig,icbmax-1 |
---|
548 | do 340 i=1,len |
---|
549 | tp(i,k)=tnk(i)-(gz(i,k)-gznk(i))/cpp(i) |
---|
550 | tvp(i,k)=tp(i,k)*(1.+qnk(i)*epsi) |
---|
551 | 340 continue |
---|
552 | 350 continue |
---|
553 | c |
---|
554 | c *** Find lifted parcel quantities above cloud base *** |
---|
555 | c |
---|
556 | do 360 i=1,len |
---|
557 | tg=ticb(i) |
---|
558 | qg=qs(i,icb(i)) |
---|
559 | alv=lv0-clmcpv*(ticb(i)-273.15) |
---|
560 | c |
---|
561 | c First iteration. |
---|
562 | c |
---|
563 | s=cpd+alv*alv*qg/(rv*ticb(i)*ticb(i)) |
---|
564 | s=1./s |
---|
565 | ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
566 | tg=tg+s*(ah0(i)-ahg) |
---|
567 | tg=max(tg,35.0) |
---|
568 | tc=tg-273.15 |
---|
569 | denom=243.5+tc |
---|
570 | if(tc.ge.0.0)then |
---|
571 | es=6.112*exp(17.67*tc/denom) |
---|
572 | else |
---|
573 | es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
574 | endif |
---|
575 | qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
576 | c |
---|
577 | c Second iteration. |
---|
578 | c |
---|
579 | s=cpd+alv*alv*qg/(rv*ticb(i)*ticb(i)) |
---|
580 | s=1./s |
---|
581 | ahg=cpd*tg+(cl-cpd)*qnk(i)*ticb(i)+alv*qg+gzicb(i) |
---|
582 | tg=tg+s*(ah0(i)-ahg) |
---|
583 | tg=max(tg,35.0) |
---|
584 | tc=tg-273.15 |
---|
585 | denom=243.5+tc |
---|
586 | if(tc.ge.0.0)then |
---|
587 | es=6.112*exp(17.67*tc/denom) |
---|
588 | else |
---|
589 | es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
590 | end if |
---|
591 | qg=eps*es/(p(i,icb(i))-es*(1.-eps)) |
---|
592 | c |
---|
593 | alv=lv0-clmcpv*(ticb(i)-273.15) |
---|
594 | tp(i,icb(i))=(ah0(i)-(cl-cpd)*qnk(i)*ticb(i) |
---|
595 | & -gz(i,icb(i))-alv*qg)/cpd |
---|
596 | clw(i,icb(i))=qnk(i)-qg |
---|
597 | clw(i,icb(i))=max(0.0,clw(i,icb(i))) |
---|
598 | rg=qg/(1.-qnk(i)) |
---|
599 | tvp(i,icb(i))=tp(i,icb(i))*(1.+rg*epsi) |
---|
600 | 360 continue |
---|
601 | c |
---|
602 | do 380 k=minorig,icbmax |
---|
603 | do 370 i=1,len |
---|
604 | tvp(i,k)=tvp(i,k)-tp(i,k)*qnk(i) |
---|
605 | 370 continue |
---|
606 | 380 continue |
---|
607 | c |
---|
608 | !------------------------------------------------------------------- |
---|
609 | ! --- Test for instability. |
---|
610 | ! --- If there was no convection at last time step and parcel |
---|
611 | ! --- is stable at icb, then set iflag to 4. |
---|
612 | !------------------------------------------------------------------- |
---|
613 | |
---|
614 | do 390 i=1,len |
---|
615 | if((cbmf(i).eq.0.0) .and.(iflag(i).eq.0).and. |
---|
616 | & (tvp(i,icb(i)).le.(tv(i,icb(i))-dtmax)))iflag(i)=4 |
---|
617 | 390 continue |
---|
618 | |
---|
619 | !===================================================================== |
---|
620 | ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY |
---|
621 | !===================================================================== |
---|
622 | c |
---|
623 | ncum=0 |
---|
624 | do 400 i=1,len |
---|
625 | if(iflag(i).eq.0)then |
---|
626 | ncum=ncum+1 |
---|
627 | idcum(ncum)=i |
---|
628 | endif |
---|
629 | 400 continue |
---|
630 | c |
---|
631 | c Call convect2, which compresses the points and computes the heating, |
---|
632 | c moistening, velocity mixing, and precipiation. |
---|
633 | c |
---|
634 | c print*,'cpd avant convect2 ',cpd |
---|
635 | if(ncum.gt.0)then |
---|
636 | call convect2(ncum,idcum,len,nd,ndp1,nl,minorig, |
---|
637 | & nk,icb, |
---|
638 | & t,q,qs,u,v,gz,tv,tp,tvp,clw,h, |
---|
639 | & lv,cpn,p,ph,ft,fq,fu,fv, |
---|
640 | & tnk,qnk,gznk,plcl, |
---|
641 | & precip,cbmf,iflag, |
---|
642 | & delt,cpd,cpv,cl,rv,rd,lv0,g, |
---|
643 | & sigs,sigd,elcrit,tlcrit,omtsnow,dtmax,damp, |
---|
644 | & alpha,entp,coeffs,coeffr,omtrain,cu,Ma) |
---|
645 | endif |
---|
646 | c |
---|
647 | return |
---|
648 | end |
---|