1 | SUBROUTINE drag_noro (nlon,nlev,dtime,paprs,pplay, |
---|
2 | e pmea,pstd, psig, pgam, pthe,ppic,pval, |
---|
3 | e kgwd,kgwdim,kdx,ktest, |
---|
4 | e t, u, v, |
---|
5 | s pulow, pvlow, pustr, pvstr, |
---|
6 | s d_t, d_u, d_v) |
---|
7 | c |
---|
8 | IMPLICIT none |
---|
9 | c====================================================================== |
---|
10 | c Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
11 | c Objet: Frottement de la montagne Interface |
---|
12 | c====================================================================== |
---|
13 | c Arguments: |
---|
14 | c dtime---input-R- pas d'integration (s) |
---|
15 | c paprs---input-R-pression pour chaque inter-couche (en Pa) |
---|
16 | c pplay---input-R-pression pour le mileu de chaque couche (en Pa) |
---|
17 | c t-------input-R-temperature (K) |
---|
18 | c u-------input-R-vitesse horizontale (m/s) |
---|
19 | c v-------input-R-vitesse horizontale (m/s) |
---|
20 | c |
---|
21 | c d_t-----output-R-increment de la temperature |
---|
22 | c d_u-----output-R-increment de la vitesse u |
---|
23 | c d_v-----output-R-increment de la vitesse v |
---|
24 | c====================================================================== |
---|
25 | #include "dimensions.h" |
---|
26 | #include "dimphy.h" |
---|
27 | #include "YOMCST.h" |
---|
28 | c |
---|
29 | c ARGUMENTS |
---|
30 | c |
---|
31 | INTEGER nlon,nlev |
---|
32 | REAL dtime |
---|
33 | REAL paprs(klon,klev+1) |
---|
34 | REAL pplay(klon,klev) |
---|
35 | REAL pmea(nlon),pstd(nlon),psig(nlon),pgam(nlon),pthe(nlon) |
---|
36 | REAL ppic(nlon),pval(nlon) |
---|
37 | REAL pulow(nlon),pvlow(nlon),pustr(nlon),pvstr(nlon) |
---|
38 | REAL t(nlon,nlev), u(nlon,nlev), v(nlon,nlev) |
---|
39 | REAL d_t(nlon,nlev), d_u(nlon,nlev), d_v(nlon,nlev) |
---|
40 | c |
---|
41 | INTEGER i, k, kgwd, kgwdim, kdx(nlon), ktest(nlon) |
---|
42 | c |
---|
43 | c Variables locales: |
---|
44 | c |
---|
45 | REAL zgeom(klon,klev) |
---|
46 | REAL pdtdt(klon,klev), pdudt(klon,klev), pdvdt(klon,klev) |
---|
47 | REAL pt(klon,klev), pu(klon,klev), pv(klon,klev) |
---|
48 | REAL papmf(klon,klev),papmh(klon,klev+1) |
---|
49 | c |
---|
50 | c initialiser les variables de sortie (pour securite) |
---|
51 | c |
---|
52 | DO i = 1,klon |
---|
53 | pulow(i) = 0.0 |
---|
54 | pvlow(i) = 0.0 |
---|
55 | pustr(i) = 0.0 |
---|
56 | pvstr(i) = 0.0 |
---|
57 | ENDDO |
---|
58 | DO k = 1, klev |
---|
59 | DO i = 1, klon |
---|
60 | d_t(i,k) = 0.0 |
---|
61 | d_u(i,k) = 0.0 |
---|
62 | d_v(i,k) = 0.0 |
---|
63 | pdudt(i,k)=0.0 |
---|
64 | pdvdt(i,k)=0.0 |
---|
65 | pdtdt(i,k)=0.0 |
---|
66 | ENDDO |
---|
67 | ENDDO |
---|
68 | c |
---|
69 | c preparer les variables d'entree (attention: l'ordre des niveaux |
---|
70 | c verticaux augmente du haut vers le bas) |
---|
71 | c |
---|
72 | DO k = 1, klev |
---|
73 | DO i = 1, klon |
---|
74 | pt(i,k) = t(i,klev-k+1) |
---|
75 | pu(i,k) = u(i,klev-k+1) |
---|
76 | pv(i,k) = v(i,klev-k+1) |
---|
77 | papmf(i,k) = pplay(i,klev-k+1) |
---|
78 | ENDDO |
---|
79 | ENDDO |
---|
80 | DO k = 1, klev+1 |
---|
81 | DO i = 1, klon |
---|
82 | papmh(i,k) = paprs(i,klev-k+2) |
---|
83 | ENDDO |
---|
84 | ENDDO |
---|
85 | DO i = 1, klon |
---|
86 | zgeom(i,klev) = RD * pt(i,klev) |
---|
87 | . * LOG(papmh(i,klev+1)/papmf(i,klev)) |
---|
88 | ENDDO |
---|
89 | DO k = klev-1, 1, -1 |
---|
90 | DO i = 1, klon |
---|
91 | zgeom(i,k) = zgeom(i,k+1) + RD * (pt(i,k)+pt(i,k+1))/2.0 |
---|
92 | . * LOG(papmf(i,k+1)/papmf(i,k)) |
---|
93 | ENDDO |
---|
94 | ENDDO |
---|
95 | c |
---|
96 | c appeler la routine principale |
---|
97 | c |
---|
98 | CALL orodrag(klon,klev,kgwd,kgwdim,kdx,ktest, |
---|
99 | . dtime, |
---|
100 | . papmh, papmf, zgeom, |
---|
101 | . pt, pu, pv, |
---|
102 | . pmea, pstd, psig, pgam, pthe, ppic,pval, |
---|
103 | . pulow,pvlow, |
---|
104 | . pdudt,pdvdt,pdtdt) |
---|
105 | C |
---|
106 | DO k = 1, klev |
---|
107 | DO i = 1, klon |
---|
108 | d_u(i,klev+1-k) = dtime*pdudt(i,k) |
---|
109 | d_v(i,klev+1-k) = dtime*pdvdt(i,k) |
---|
110 | d_t(i,klev+1-k) = dtime*pdtdt(i,k) |
---|
111 | pustr(i) = pustr(i) |
---|
112 | . +rg*pdudt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
113 | pvstr(i) = pvstr(i) |
---|
114 | . +rg*pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
115 | ENDDO |
---|
116 | ENDDO |
---|
117 | c |
---|
118 | RETURN |
---|
119 | END |
---|
120 | SUBROUTINE orodrag( nlon,nlev |
---|
121 | i , kgwd, kgwdim, kdx, ktest |
---|
122 | r , ptsphy |
---|
123 | r , paphm1,papm1,pgeom1,ptm1,pum1,pvm1 |
---|
124 | r , pmea, pstd, psig, pgamma, ptheta, ppic, pval |
---|
125 | c outputs |
---|
126 | r , pulow,pvlow |
---|
127 | r , pvom,pvol,pte ) |
---|
128 | c |
---|
129 | c |
---|
130 | c**** *gwdrag* - does the gravity wave parametrization. |
---|
131 | c |
---|
132 | c purpose. |
---|
133 | c -------- |
---|
134 | c |
---|
135 | c this routine computes the physical tendencies of the |
---|
136 | c prognostic variables u,v and t due to vertical transports by |
---|
137 | c subgridscale orographically excited gravity waves |
---|
138 | c |
---|
139 | c** interface. |
---|
140 | c ---------- |
---|
141 | c called from *callpar*. |
---|
142 | c |
---|
143 | c the routine takes its input from the long-term storage: |
---|
144 | c u,v,t and p at t-1. |
---|
145 | c |
---|
146 | c explicit arguments : |
---|
147 | c -------------------- |
---|
148 | c ==== inputs === |
---|
149 | c ==== outputs === |
---|
150 | c |
---|
151 | c implicit arguments : none |
---|
152 | c -------------------- |
---|
153 | c |
---|
154 | implicit logical (l) |
---|
155 | c |
---|
156 | c method. |
---|
157 | c ------- |
---|
158 | c |
---|
159 | c externals. |
---|
160 | c ---------- |
---|
161 | integer ismin, ismax |
---|
162 | external ismin, ismax |
---|
163 | c |
---|
164 | c reference. |
---|
165 | c ---------- |
---|
166 | c |
---|
167 | c author. |
---|
168 | c ------- |
---|
169 | c m.miller + b.ritter e.c.m.w.f. 15/06/86. |
---|
170 | c |
---|
171 | c f.lott + m. miller e.c.m.w.f. 22/11/94 |
---|
172 | c----------------------------------------------------------------------- |
---|
173 | c |
---|
174 | c |
---|
175 | #include "dimensions.h" |
---|
176 | #include "dimphy.h" |
---|
177 | #include "YOMCST.h" |
---|
178 | #include "YOEGWD.h" |
---|
179 | c----------------------------------------------------------------------- |
---|
180 | c |
---|
181 | c* 0.1 arguments |
---|
182 | c --------- |
---|
183 | c |
---|
184 | c |
---|
185 | real pte(nlon,nlev), |
---|
186 | * pvol(nlon,nlev), |
---|
187 | * pvom(nlon,nlev), |
---|
188 | * pulow(klon), |
---|
189 | * pvlow(klon) |
---|
190 | real pum1(nlon,nlev), |
---|
191 | * pvm1(nlon,nlev), |
---|
192 | * ptm1(nlon,nlev), |
---|
193 | * pmea(nlon),pstd(nlon),psig(nlon), |
---|
194 | * pgamma(nlon),ptheta(nlon),ppic(nlon),pval(nlon), |
---|
195 | * pgeom1(nlon,nlev), |
---|
196 | * papm1(nlon,nlev), |
---|
197 | * paphm1(nlon,nlev+1) |
---|
198 | c |
---|
199 | integer kdx(nlon),ktest(nlon) |
---|
200 | c----------------------------------------------------------------------- |
---|
201 | c |
---|
202 | c* 0.2 local arrays |
---|
203 | c ------------ |
---|
204 | integer isect(klon), |
---|
205 | * icrit(klon), |
---|
206 | * ikcrith(klon), |
---|
207 | * ikenvh(klon), |
---|
208 | * iknu(klon), |
---|
209 | * iknu2(klon), |
---|
210 | * ikcrit(klon), |
---|
211 | * ikhlim(klon) |
---|
212 | c |
---|
213 | real ztau(klon,klev+1), |
---|
214 | * zstab(klon,klev+1), |
---|
215 | * zvph(klon,klev+1), |
---|
216 | * zrho(klon,klev+1), |
---|
217 | * zri(klon,klev+1), |
---|
218 | * zpsi(klon,klev+1), |
---|
219 | * zzdep(klon,klev) |
---|
220 | real zdudt(klon), |
---|
221 | * zdvdt(klon), |
---|
222 | * zdtdt(klon), |
---|
223 | * zdedt(klon), |
---|
224 | * zvidis(klon), |
---|
225 | * ztfr(klon), |
---|
226 | * znu(klon), |
---|
227 | * zd1(klon), |
---|
228 | * zd2(klon), |
---|
229 | * zdmod(klon) |
---|
230 | c |
---|
231 | c------------------------------------------------------------------ |
---|
232 | c |
---|
233 | c* 1. initialization |
---|
234 | c -------------- |
---|
235 | c |
---|
236 | 100 continue |
---|
237 | c |
---|
238 | c ------------------------------------------------------------------ |
---|
239 | c |
---|
240 | c* 1.1 computational constants |
---|
241 | c ----------------------- |
---|
242 | c |
---|
243 | 110 continue |
---|
244 | c |
---|
245 | c ztmst=twodt |
---|
246 | c if(nstep.eq.nstart) ztmst=0.5*twodt |
---|
247 | klevm1=klev-1 |
---|
248 | ztmst=ptsphy |
---|
249 | zrtmst=1./ztmst |
---|
250 | c ------------------------------------------------------------------ |
---|
251 | c |
---|
252 | 120 continue |
---|
253 | c |
---|
254 | c ------------------------------------------------------------------ |
---|
255 | c |
---|
256 | c* 1.3 check whether row contains point for printing |
---|
257 | c --------------------------------------------- |
---|
258 | c |
---|
259 | 130 continue |
---|
260 | c |
---|
261 | c ------------------------------------------------------------------ |
---|
262 | c |
---|
263 | c* 2. precompute basic state variables. |
---|
264 | c* ---------- ----- ----- ---------- |
---|
265 | c* define low level wind, project winds in plane of |
---|
266 | c* low level wind, determine sector in which to take |
---|
267 | c* the variance and set indicator for critical levels. |
---|
268 | c |
---|
269 | 200 continue |
---|
270 | c |
---|
271 | c |
---|
272 | c |
---|
273 | call orosetup |
---|
274 | * ( nlon, nlev , ktest |
---|
275 | * , ikcrit, ikcrith, icrit, isect, ikhlim, ikenvh,iknu,iknu2 |
---|
276 | * , paphm1, papm1 , pum1 , pvm1 , ptm1 , pgeom1, pstd |
---|
277 | * , zrho , zri , zstab , ztau , zvph , zpsi, zzdep |
---|
278 | * , pulow, pvlow |
---|
279 | * , ptheta,pgamma,pmea,ppic,pval,znu ,zd1, zd2, zdmod ) |
---|
280 | c |
---|
281 | c |
---|
282 | c |
---|
283 | c*********************************************************** |
---|
284 | c |
---|
285 | c |
---|
286 | c* 3. compute low level stresses using subcritical and |
---|
287 | c* supercritical forms.computes anisotropy coefficient |
---|
288 | c* as measure of orographic twodimensionality. |
---|
289 | c |
---|
290 | 300 continue |
---|
291 | c |
---|
292 | call gwstress |
---|
293 | * ( nlon , nlev |
---|
294 | * , ikcrit, isect, ikhlim, ktest, ikcrith, icrit, ikenvh, iknu |
---|
295 | * , zrho , zstab, zvph , pstd, psig, pmea, ppic, pval |
---|
296 | * , ztfr , ztau |
---|
297 | * , pgeom1,pgamma,zd1,zd2,zdmod,znu) |
---|
298 | c |
---|
299 | c |
---|
300 | c* 4. compute stress profile. |
---|
301 | c* ------- ------ -------- |
---|
302 | c |
---|
303 | 400 continue |
---|
304 | c |
---|
305 | c |
---|
306 | call gwprofil |
---|
307 | * ( nlon , nlev |
---|
308 | * , kgwd , kdx , ktest |
---|
309 | * , ikcrit, ikcrith, icrit , ikenvh, iknu |
---|
310 | * ,iknu2 , paphm1, zrho , zstab , ztfr , zvph |
---|
311 | * , zri , ztau , ztauf |
---|
312 | c |
---|
313 | * , zdmod , znu , psig , pgamma , pstd , ppic , pval) |
---|
314 | c |
---|
315 | c |
---|
316 | c* 5. compute tendencies. |
---|
317 | c* ------------------- |
---|
318 | c |
---|
319 | 500 continue |
---|
320 | c |
---|
321 | c explicit solution at all levels for the gravity wave |
---|
322 | c implicit solution for the blocked levels |
---|
323 | |
---|
324 | do 510 jl=kidia,kfdia |
---|
325 | zvidis(jl)=0.0 |
---|
326 | zdudt(jl)=0.0 |
---|
327 | zdvdt(jl)=0.0 |
---|
328 | zdtdt(jl)=0.0 |
---|
329 | 510 continue |
---|
330 | c |
---|
331 | ilevp1=klev+1 |
---|
332 | c |
---|
333 | c |
---|
334 | do 524 jk=1,klev |
---|
335 | c |
---|
336 | c |
---|
337 | do 523 jl=1,kgwd |
---|
338 | ji=kdx(jl) |
---|
339 | zdelp=paphm1(ji,jk+1)-paphm1(ji,jk) |
---|
340 | ztemp=-rg*(ztau(ji,jk+1)-ztau(ji,jk))/(zvph(ji,ilevp1)*zdelp) |
---|
341 | zdudt(ji)=(pulow(ji)*zd1(ji)-pvlow(ji)*zd2(ji))*ztemp/zdmod(ji) |
---|
342 | zdvdt(ji)=(pvlow(ji)*zd1(ji)+pulow(ji)*zd2(ji))*ztemp/zdmod(ji) |
---|
343 | c |
---|
344 | c controle des overshoots: |
---|
345 | c |
---|
346 | zforc=sqrt(zdudt(ji)**2+zdvdt(ji)**2)+1.E-12 |
---|
347 | ztend=sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/ztmst+1.E-12 |
---|
348 | rover=0.25 |
---|
349 | if(zforc.ge.rover*ztend)then |
---|
350 | zdudt(ji)=rover*ztend/zforc*zdudt(ji) |
---|
351 | zdvdt(ji)=rover*ztend/zforc*zdvdt(ji) |
---|
352 | endif |
---|
353 | c |
---|
354 | c fin du controle des overshoots |
---|
355 | c |
---|
356 | if(jk.ge.ikenvh(ji)) then |
---|
357 | zb=1.0-0.18*pgamma(ji)-0.04*pgamma(ji)**2 |
---|
358 | zc=0.48*pgamma(ji)+0.3*pgamma(ji)**2 |
---|
359 | zconb=2.*ztmst*gkwake*psig(ji)/(4.*pstd(ji)) |
---|
360 | zabsv=sqrt(pum1(ji,jk)**2+pvm1(ji,jk)**2)/2. |
---|
361 | zzd1=zb*cos(zpsi(ji,jk))**2+zc*sin(zpsi(ji,jk))**2 |
---|
362 | ratio=(cos(zpsi(ji,jk))**2+pgamma(ji)*sin(zpsi(ji,jk))**2)/ |
---|
363 | * (pgamma(ji)*cos(zpsi(ji,jk))**2+sin(zpsi(ji,jk))**2) |
---|
364 | zbet=max(0.,2.-1./ratio)*zconb*zzdep(ji,jk)*zzd1*zabsv |
---|
365 | c |
---|
366 | c simplement oppose au vent |
---|
367 | c |
---|
368 | zdudt(ji)=-pum1(ji,jk)/ztmst |
---|
369 | zdvdt(ji)=-pvm1(ji,jk)/ztmst |
---|
370 | c |
---|
371 | c projection dans la direction de l'axe principal de l'orographie |
---|
372 | cmod zdudt(ji)=-(pum1(ji,jk)*cos(ptheta(ji)*rpi/180.) |
---|
373 | cmod * +pvm1(ji,jk)*sin(ptheta(ji)*rpi/180.)) |
---|
374 | cmod * *cos(ptheta(ji)*rpi/180.)/ztmst |
---|
375 | cmod zdvdt(ji)=-(pum1(ji,jk)*cos(ptheta(ji)*rpi/180.) |
---|
376 | cmod * +pvm1(ji,jk)*sin(ptheta(ji)*rpi/180.)) |
---|
377 | cmod * *sin(ptheta(ji)*rpi/180.)/ztmst |
---|
378 | zdudt(ji)=zdudt(ji)*(zbet/(1.+zbet)) |
---|
379 | zdvdt(ji)=zdvdt(ji)*(zbet/(1.+zbet)) |
---|
380 | end if |
---|
381 | pvom(ji,jk)=zdudt(ji) |
---|
382 | pvol(ji,jk)=zdvdt(ji) |
---|
383 | zust=pum1(ji,jk)+ztmst*zdudt(ji) |
---|
384 | zvst=pvm1(ji,jk)+ztmst*zdvdt(ji) |
---|
385 | zdis=0.5*(pum1(ji,jk)**2+pvm1(ji,jk)**2-zust**2-zvst**2) |
---|
386 | zdedt(ji)=zdis/ztmst |
---|
387 | zvidis(ji)=zvidis(ji)+zdis*zdelp |
---|
388 | zdtdt(ji)=zdedt(ji)/rcpd |
---|
389 | c pte(ji,jk)=zdtdt(ji) |
---|
390 | c |
---|
391 | c ENCORE UN TRUC POUR EVITER LES EXPLOSIONS |
---|
392 | c |
---|
393 | pte(ji,jk)=0.0 |
---|
394 | |
---|
395 | 523 continue |
---|
396 | |
---|
397 | 524 continue |
---|
398 | c |
---|
399 | c |
---|
400 | return |
---|
401 | end |
---|
402 | SUBROUTINE orosetup |
---|
403 | * ( nlon , nlev , ktest |
---|
404 | * , kkcrit, kkcrith, kcrit, ksect , kkhlim |
---|
405 | * , kkenvh, kknu , kknu2 |
---|
406 | * , paphm1, papm1 , pum1 , pvm1 , ptm1 , pgeom1, pstd |
---|
407 | * , prho , pri , pstab , ptau , pvph ,ppsi, pzdep |
---|
408 | * , pulow , pvlow |
---|
409 | * , ptheta, pgamma, pmea, ppic, pval |
---|
410 | * , pnu , pd1 , pd2 ,pdmod ) |
---|
411 | c |
---|
412 | c**** *gwsetup* |
---|
413 | c |
---|
414 | c purpose. |
---|
415 | c -------- |
---|
416 | c |
---|
417 | c** interface. |
---|
418 | c ---------- |
---|
419 | c from *orodrag* |
---|
420 | c |
---|
421 | c explicit arguments : |
---|
422 | c -------------------- |
---|
423 | c ==== inputs === |
---|
424 | c ==== outputs === |
---|
425 | c |
---|
426 | c implicit arguments : none |
---|
427 | c -------------------- |
---|
428 | c |
---|
429 | c method. |
---|
430 | c ------- |
---|
431 | c |
---|
432 | c |
---|
433 | c externals. |
---|
434 | c ---------- |
---|
435 | c |
---|
436 | c |
---|
437 | c reference. |
---|
438 | c ---------- |
---|
439 | c |
---|
440 | c see ecmwf research department documentation of the "i.f.s." |
---|
441 | c |
---|
442 | c author. |
---|
443 | c ------- |
---|
444 | c |
---|
445 | c modifications. |
---|
446 | c -------------- |
---|
447 | c f.lott for the new-gwdrag scheme november 1993 |
---|
448 | c |
---|
449 | c----------------------------------------------------------------------- |
---|
450 | implicit logical (l) |
---|
451 | c |
---|
452 | |
---|
453 | #include "dimensions.h" |
---|
454 | #include "dimphy.h" |
---|
455 | #include "YOMCST.h" |
---|
456 | #include "YOEGWD.h" |
---|
457 | |
---|
458 | c----------------------------------------------------------------------- |
---|
459 | c |
---|
460 | c* 0.1 arguments |
---|
461 | c --------- |
---|
462 | c |
---|
463 | integer kkcrit(nlon),kkcrith(nlon),kcrit(nlon),ksect(nlon), |
---|
464 | * kkhlim(nlon),ktest(nlon),kkenvh(nlon) |
---|
465 | |
---|
466 | c |
---|
467 | real paphm1(nlon,klev+1),papm1(nlon,klev),pum1(nlon,klev), |
---|
468 | * pvm1(nlon,klev),ptm1(nlon,klev),pgeom1(nlon,klev), |
---|
469 | * prho(nlon,klev+1),pri(nlon,klev+1),pstab(nlon,klev+1), |
---|
470 | * ptau(nlon,klev+1),pvph(nlon,klev+1),ppsi(nlon,klev+1), |
---|
471 | * pzdep(nlon,klev) |
---|
472 | real pulow(nlon),pvlow(nlon),ptheta(nlon),pgamma(nlon),pnu(nlon), |
---|
473 | * pd1(nlon),pd2(nlon),pdmod(nlon) |
---|
474 | real pstd(nlon),pmea(nlon),ppic(nlon),pval(nlon) |
---|
475 | c |
---|
476 | c----------------------------------------------------------------------- |
---|
477 | c |
---|
478 | c* 0.2 local arrays |
---|
479 | c ------------ |
---|
480 | c |
---|
481 | c |
---|
482 | logical ll1(klon,klev+1) |
---|
483 | integer kknu(klon),kknu2(klon),kknub(klon),kknul(klon), |
---|
484 | * kentp(klon),ncount(klon) |
---|
485 | c |
---|
486 | real zhcrit(klon,klev),zvpf(klon,klev), |
---|
487 | * zdp(klon,klev) |
---|
488 | real znorm(klon),zpsi(klon),zb(klon),zc(klon), |
---|
489 | * zulow(klon),zvlow(klon),znup(klon),znum(klon) |
---|
490 | c |
---|
491 | c ------------------------------------------------------------------ |
---|
492 | c |
---|
493 | c* 1. initialization |
---|
494 | c -------------- |
---|
495 | c |
---|
496 | c print *,' entree gwsetup' |
---|
497 | 100 continue |
---|
498 | c |
---|
499 | c ------------------------------------------------------------------ |
---|
500 | c |
---|
501 | c* 1.1 computational constants |
---|
502 | c ----------------------- |
---|
503 | c |
---|
504 | 110 continue |
---|
505 | c |
---|
506 | ilevm1=klev-1 |
---|
507 | ilevm2=klev-2 |
---|
508 | ilevh =klev/3 |
---|
509 | c |
---|
510 | zcons1=1./rd |
---|
511 | cold zcons2=g**2/cpd |
---|
512 | zcons2=rg**2/rcpd |
---|
513 | cold zcons3=1.5*api |
---|
514 | zcons3=1.5*rpi |
---|
515 | c |
---|
516 | c |
---|
517 | c ------------------------------------------------------------------ |
---|
518 | c |
---|
519 | c* 2. |
---|
520 | c -------------- |
---|
521 | c |
---|
522 | 200 continue |
---|
523 | c |
---|
524 | c ------------------------------------------------------------------ |
---|
525 | c |
---|
526 | c* 2.1 define low level wind, project winds in plane of |
---|
527 | c* low level wind, determine sector in which to take |
---|
528 | c* the variance and set indicator for critical levels. |
---|
529 | c |
---|
530 | c |
---|
531 | c |
---|
532 | do 2001 jl=kidia,kfdia |
---|
533 | kknu(jl) =klev |
---|
534 | kknu2(jl) =klev |
---|
535 | kknub(jl) =klev |
---|
536 | kknul(jl) =klev |
---|
537 | pgamma(jl) =max(pgamma(jl),gtsec) |
---|
538 | ll1(jl,klev+1)=.false. |
---|
539 | 2001 continue |
---|
540 | c |
---|
541 | c Ajouter une initialisation (L. Li, le 23fev99): |
---|
542 | c |
---|
543 | do jk=klev,ilevh,-1 |
---|
544 | do jl=kidia,kfdia |
---|
545 | ll1(jl,jk)= .FALSE. |
---|
546 | ENDDO |
---|
547 | ENDDO |
---|
548 | c |
---|
549 | c* define top of low level flow |
---|
550 | c ---------------------------- |
---|
551 | do 2002 jk=klev,ilevh,-1 |
---|
552 | do 2003 jl=kidia,kfdia |
---|
553 | lo=(paphm1(jl,jk)/paphm1(jl,klev+1)).ge.gsigcr |
---|
554 | if(lo) then |
---|
555 | kkcrit(jl)=jk |
---|
556 | endif |
---|
557 | zhcrit(jl,jk)=ppic(jl) |
---|
558 | zhgeo=pgeom1(jl,jk)/rg |
---|
559 | ll1(jl,jk)=(zhgeo.gt.zhcrit(jl,jk)) |
---|
560 | if(ll1(jl,jk).xor.ll1(jl,jk+1)) then |
---|
561 | kknu(jl)=jk |
---|
562 | endif |
---|
563 | if(.not.ll1(jl,ilevh))kknu(jl)=ilevh |
---|
564 | 2003 continue |
---|
565 | 2002 continue |
---|
566 | do 2004 jk=klev,ilevh,-1 |
---|
567 | do 2005 jl=kidia,kfdia |
---|
568 | zhcrit(jl,jk)=ppic(jl)-pval(jl) |
---|
569 | zhgeo=pgeom1(jl,jk)/rg |
---|
570 | ll1(jl,jk)=(zhgeo.gt.zhcrit(jl,jk)) |
---|
571 | if(ll1(jl,jk).xor.ll1(jl,jk+1)) then |
---|
572 | kknu2(jl)=jk |
---|
573 | endif |
---|
574 | if(.not.ll1(jl,ilevh))kknu2(jl)=ilevh |
---|
575 | 2005 continue |
---|
576 | 2004 continue |
---|
577 | do 2006 jk=klev,ilevh,-1 |
---|
578 | do 2007 jl=kidia,kfdia |
---|
579 | zhcrit(jl,jk)=amax1(ppic(jl)-pmea(jl),pmea(jl)-pval(jl)) |
---|
580 | zhgeo=pgeom1(jl,jk)/rg |
---|
581 | ll1(jl,jk)=(zhgeo.gt.zhcrit(jl,jk)) |
---|
582 | if(ll1(jl,jk).xor.ll1(jl,jk+1)) then |
---|
583 | kknub(jl)=jk |
---|
584 | endif |
---|
585 | if(.not.ll1(jl,ilevh))kknub(jl)=ilevh |
---|
586 | 2007 continue |
---|
587 | 2006 continue |
---|
588 | c |
---|
589 | do 2010 jl=kidia,kfdia |
---|
590 | kknu(jl)=min(kknu(jl),nktopg) |
---|
591 | kknu2(jl)=min(kknu2(jl),nktopg) |
---|
592 | kknub(jl)=min(kknub(jl),nktopg) |
---|
593 | kknul(jl)=klev |
---|
594 | 2010 continue |
---|
595 | c |
---|
596 | |
---|
597 | 210 continue |
---|
598 | c |
---|
599 | c |
---|
600 | cc* initialize various arrays |
---|
601 | c |
---|
602 | do 2107 jl=kidia,kfdia |
---|
603 | prho(jl,klev+1) =0.0 |
---|
604 | pstab(jl,klev+1) =0.0 |
---|
605 | pstab(jl,1) =0.0 |
---|
606 | pri(jl,klev+1) =9999.0 |
---|
607 | ppsi(jl,klev+1) =0.0 |
---|
608 | pri(jl,1) =0.0 |
---|
609 | pvph(jl,1) =0.0 |
---|
610 | pulow(jl) =0.0 |
---|
611 | pvlow(jl) =0.0 |
---|
612 | zulow(jl) =0.0 |
---|
613 | zvlow(jl) =0.0 |
---|
614 | kkcrith(jl) =klev |
---|
615 | kkenvh(jl) =klev |
---|
616 | kentp(jl) =klev |
---|
617 | kcrit(jl) =1 |
---|
618 | ncount(jl) =0 |
---|
619 | ll1(jl,klev+1) =.false. |
---|
620 | 2107 continue |
---|
621 | c |
---|
622 | c* define low-level flow |
---|
623 | c --------------------- |
---|
624 | c |
---|
625 | do 223 jk=klev,2,-1 |
---|
626 | do 222 jl=kidia,kfdia |
---|
627 | if(ktest(jl).eq.1) then |
---|
628 | zdp(jl,jk)=papm1(jl,jk)-papm1(jl,jk-1) |
---|
629 | prho(jl,jk)=2.*paphm1(jl,jk)*zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
630 | pstab(jl,jk)=2.*zcons2/(ptm1(jl,jk)+ptm1(jl,jk-1))* |
---|
631 | * (1.-rcpd*prho(jl,jk)*(ptm1(jl,jk)-ptm1(jl,jk-1))/zdp(jl,jk)) |
---|
632 | pstab(jl,jk)=max(pstab(jl,jk),gssec) |
---|
633 | endif |
---|
634 | 222 continue |
---|
635 | 223 continue |
---|
636 | c |
---|
637 | c******************************************************************** |
---|
638 | c |
---|
639 | c* define blocked flow |
---|
640 | c ------------------- |
---|
641 | do 2115 jk=klev,ilevh,-1 |
---|
642 | do 2116 jl=kidia,kfdia |
---|
643 | if(jk.ge.kknub(jl).and.jk.le.kknul(jl)) then |
---|
644 | pulow(jl)=pulow(jl)+pum1(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
645 | pvlow(jl)=pvlow(jl)+pvm1(jl,jk)*(paphm1(jl,jk+1)-paphm1(jl,jk)) |
---|
646 | end if |
---|
647 | 2116 continue |
---|
648 | 2115 continue |
---|
649 | do 2110 jl=kidia,kfdia |
---|
650 | pulow(jl)=pulow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknub(jl))) |
---|
651 | pvlow(jl)=pvlow(jl)/(paphm1(jl,kknul(jl)+1)-paphm1(jl,kknub(jl))) |
---|
652 | znorm(jl)=max(sqrt(pulow(jl)**2+pvlow(jl)**2),gvsec) |
---|
653 | pvph(jl,klev+1)=znorm(jl) |
---|
654 | 2110 continue |
---|
655 | c |
---|
656 | c******* setup orography axes and define plane of profiles ******* |
---|
657 | c |
---|
658 | do 2112 jl=kidia,kfdia |
---|
659 | lo=(pulow(jl).lt.gvsec).and.(pulow(jl).ge.-gvsec) |
---|
660 | if(lo) then |
---|
661 | zu=pulow(jl)+2.*gvsec |
---|
662 | else |
---|
663 | zu=pulow(jl) |
---|
664 | endif |
---|
665 | zphi=atan(pvlow(jl)/zu) |
---|
666 | ppsi(jl,klev+1)=ptheta(jl)*rpi/180.-zphi |
---|
667 | zb(jl)=1.-0.18*pgamma(jl)-0.04*pgamma(jl)**2 |
---|
668 | zc(jl)=0.48*pgamma(jl)+0.3*pgamma(jl)**2 |
---|
669 | pd1(jl)=zb(jl)-(zb(jl)-zc(jl))*(sin(ppsi(jl,klev+1))**2) |
---|
670 | pd2(jl)=(zb(jl)-zc(jl))*sin(ppsi(jl,klev+1))*cos(ppsi(jl,klev+1)) |
---|
671 | pdmod(jl)=sqrt(pd1(jl)**2+pd2(jl)**2) |
---|
672 | 2112 continue |
---|
673 | c |
---|
674 | c ************ define flow in plane of lowlevel stress ************* |
---|
675 | c |
---|
676 | do 213 jk=1,klev |
---|
677 | do 212 jl=kidia,kfdia |
---|
678 | if(ktest(jl).eq.1) then |
---|
679 | zvt1 =pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk) |
---|
680 | zvt2 =-pvlow(jl)*pum1(jl,jk)+pulow(jl)*pvm1(jl,jk) |
---|
681 | zvpf(jl,jk)=(zvt1*pd1(jl)+zvt2*pd2(jl))/(znorm(jl)*pdmod(jl)) |
---|
682 | endif |
---|
683 | ptau(jl,jk) =0.0 |
---|
684 | pzdep(jl,jk) =0.0 |
---|
685 | ppsi(jl,jk) =0.0 |
---|
686 | ll1(jl,jk) =.false. |
---|
687 | 212 continue |
---|
688 | 213 continue |
---|
689 | do 215 jk=2,klev |
---|
690 | do 214 jl=kidia,kfdia |
---|
691 | if(ktest(jl).eq.1) then |
---|
692 | zdp(jl,jk)=papm1(jl,jk)-papm1(jl,jk-1) |
---|
693 | pvph(jl,jk)=((paphm1(jl,jk)-papm1(jl,jk-1))*zvpf(jl,jk)+ |
---|
694 | * (papm1(jl,jk)-paphm1(jl,jk))*zvpf(jl,jk-1)) |
---|
695 | * /zdp(jl,jk) |
---|
696 | if(pvph(jl,jk).lt.gvsec) then |
---|
697 | pvph(jl,jk)=gvsec |
---|
698 | kcrit(jl)=jk |
---|
699 | endif |
---|
700 | endif |
---|
701 | 214 continue |
---|
702 | 215 continue |
---|
703 | c |
---|
704 | c |
---|
705 | c* 2.2 brunt-vaisala frequency and density at half levels. |
---|
706 | c |
---|
707 | 220 continue |
---|
708 | c |
---|
709 | do 2211 jk=ilevh,klev |
---|
710 | do 221 jl=kidia,kfdia |
---|
711 | if(ktest(jl).eq.1) then |
---|
712 | if(jk.ge.(kknub(jl)+1).and.jk.le.kknul(jl)) then |
---|
713 | zst=zcons2/ptm1(jl,jk)*(1.-rcpd*prho(jl,jk)* |
---|
714 | * (ptm1(jl,jk)-ptm1(jl,jk-1))/zdp(jl,jk)) |
---|
715 | pstab(jl,klev+1)=pstab(jl,klev+1)+zst*zdp(jl,jk) |
---|
716 | pstab(jl,klev+1)=max(pstab(jl,klev+1),gssec) |
---|
717 | prho(jl,klev+1)=prho(jl,klev+1)+paphm1(jl,jk)*2.*zdp(jl,jk) |
---|
718 | * *zcons1/(ptm1(jl,jk)+ptm1(jl,jk-1)) |
---|
719 | endif |
---|
720 | endif |
---|
721 | 221 continue |
---|
722 | 2211 continue |
---|
723 | c |
---|
724 | do 2212 jl=kidia,kfdia |
---|
725 | pstab(jl,klev+1)=pstab(jl,klev+1)/(papm1(jl,kknul(jl)) |
---|
726 | * -papm1(jl,kknub(jl))) |
---|
727 | prho(jl,klev+1)=prho(jl,klev+1)/(papm1(jl,kknul(jl)) |
---|
728 | * -papm1(jl,kknub(jl))) |
---|
729 | zvar=pstd(jl) |
---|
730 | 2212 continue |
---|
731 | c |
---|
732 | c* 2.3 mean flow richardson number. |
---|
733 | c* and critical height for froude layer |
---|
734 | c |
---|
735 | 230 continue |
---|
736 | c |
---|
737 | do 232 jk=2,klev |
---|
738 | do 231 jl=kidia,kfdia |
---|
739 | if(ktest(jl).eq.1) then |
---|
740 | zdwind=max(abs(zvpf(jl,jk)-zvpf(jl,jk-1)),gvsec) |
---|
741 | pri(jl,jk)=pstab(jl,jk)*(zdp(jl,jk) |
---|
742 | * /(rg*prho(jl,jk)*zdwind))**2 |
---|
743 | pri(jl,jk)=max(pri(jl,jk),grcrit) |
---|
744 | endif |
---|
745 | 231 continue |
---|
746 | 232 continue |
---|
747 | |
---|
748 | c |
---|
749 | c |
---|
750 | c* define top of 'envelope' layer |
---|
751 | c ---------------------------- |
---|
752 | |
---|
753 | do 233 jl=kidia,kfdia |
---|
754 | pnu (jl)=0.0 |
---|
755 | znum(jl)=0.0 |
---|
756 | 233 continue |
---|
757 | |
---|
758 | do 234 jk=2,klev-1 |
---|
759 | do 234 jl=kidia,kfdia |
---|
760 | |
---|
761 | if(ktest(jl).eq.1) then |
---|
762 | |
---|
763 | if (jk.ge.kknub(jl)) then |
---|
764 | |
---|
765 | znum(jl)=pnu(jl) |
---|
766 | zwind=(pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ |
---|
767 | * max(sqrt(pulow(jl)**2+pvlow(jl)**2),gvsec) |
---|
768 | zwind=max(sqrt(zwind**2),gvsec) |
---|
769 | zdelp=paphm1(jl,jk+1)-paphm1(jl,jk) |
---|
770 | zstabm=sqrt(max(pstab(jl,jk ),gssec)) |
---|
771 | zstabp=sqrt(max(pstab(jl,jk+1),gssec)) |
---|
772 | zrhom=prho(jl,jk ) |
---|
773 | zrhop=prho(jl,jk+1) |
---|
774 | pnu(jl) = pnu(jl) + (zdelp/rg)* |
---|
775 | * ((zstabp/zrhop+zstabm/zrhom)/2.)/zwind |
---|
776 | if((znum(jl).le.gfrcrit).and.(pnu(jl).gt.gfrcrit) |
---|
777 | * .and.(kkenvh(jl).eq.klev)) |
---|
778 | * kkenvh(jl)=jk |
---|
779 | |
---|
780 | endif |
---|
781 | |
---|
782 | endif |
---|
783 | |
---|
784 | 234 continue |
---|
785 | |
---|
786 | c calculation of a dynamical mixing height for the breaking |
---|
787 | c of gravity waves: |
---|
788 | |
---|
789 | |
---|
790 | do 235 jl=kidia,kfdia |
---|
791 | znup(jl)=0.0 |
---|
792 | znum(jl)=0.0 |
---|
793 | 235 continue |
---|
794 | |
---|
795 | do 236 jk=klev-1,2,-1 |
---|
796 | do 236 jl=kidia,kfdia |
---|
797 | |
---|
798 | if(ktest(jl).eq.1) then |
---|
799 | |
---|
800 | znum(jl)=znup(jl) |
---|
801 | zwind=(pulow(jl)*pum1(jl,jk)+pvlow(jl)*pvm1(jl,jk))/ |
---|
802 | * max(sqrt(pulow(jl)**2+pvlow(jl)**2),gvsec) |
---|
803 | zwind=max(sqrt(zwind**2),gvsec) |
---|
804 | zdelp=paphm1(jl,jk+1)-paphm1(jl,jk) |
---|
805 | zstabm=sqrt(max(pstab(jl,jk ),gssec)) |
---|
806 | zstabp=sqrt(max(pstab(jl,jk+1),gssec)) |
---|
807 | zrhom=prho(jl,jk ) |
---|
808 | zrhop=prho(jl,jk+1) |
---|
809 | znup(jl) = znup(jl) + (zdelp/rg)* |
---|
810 | * ((zstabp/zrhop+zstabm/zrhom)/2.)/zwind |
---|
811 | if((znum(jl).le.rpi/2.).and.(znup(jl).gt.rpi/2.) |
---|
812 | * .and.(kkcrith(jl).eq.klev)) |
---|
813 | * kkcrith(jl)=jk |
---|
814 | |
---|
815 | endif |
---|
816 | |
---|
817 | 236 continue |
---|
818 | |
---|
819 | do 237 jl=kidia,kfdia |
---|
820 | kkcrith(jl)=min0(kkcrith(jl),kknu2(jl)) |
---|
821 | kkcrith(jl)=max0(kkcrith(jl),ilevh*2) |
---|
822 | 237 continue |
---|
823 | c |
---|
824 | c directional info for flow blocking ************************* |
---|
825 | c |
---|
826 | do 251 jk=ilevh,klev |
---|
827 | do 252 jl=kidia,kfdia |
---|
828 | if(jk.ge.kkenvh(jl)) then |
---|
829 | lo=(pum1(jl,jk).lt.gvsec).and.(pum1(jl,jk).ge.-gvsec) |
---|
830 | if(lo) then |
---|
831 | zu=pum1(jl,jk)+2.*gvsec |
---|
832 | else |
---|
833 | zu=pum1(jl,jk) |
---|
834 | endif |
---|
835 | zphi=atan(pvm1(jl,jk)/zu) |
---|
836 | ppsi(jl,jk)=ptheta(jl)*rpi/180.-zphi |
---|
837 | end if |
---|
838 | 252 continue |
---|
839 | 251 continue |
---|
840 | c forms the vertical 'leakiness' ************************** |
---|
841 | |
---|
842 | alpha=3. |
---|
843 | |
---|
844 | do 254 jk=ilevh,klev |
---|
845 | do 253 jl=kidia,kfdia |
---|
846 | if(jk.ge.kkenvh(jl)) then |
---|
847 | zggeenv=amax1(1., |
---|
848 | * (pgeom1(jl,kkenvh(jl))+pgeom1(jl,kkenvh(jl)-1))/2.) |
---|
849 | zggeom1=amax1(pgeom1(jl,jk),1.) |
---|
850 | zgvar=amax1(pstd(jl)*rg,1.) |
---|
851 | cmod pzdep(jl,jk)=sqrt((zggeenv-zggeom1)/(zggeom1+zgvar)) |
---|
852 | pzdep(jl,jk)=(pgeom1(jl,kkenvh(jl)-1)-pgeom1(jl, jk))/ |
---|
853 | * (pgeom1(jl,kkenvh(jl)-1)-pgeom1(jl,klev)) |
---|
854 | end if |
---|
855 | 253 continue |
---|
856 | 254 continue |
---|
857 | |
---|
858 | 260 continue |
---|
859 | |
---|
860 | return |
---|
861 | end |
---|
862 | SUBROUTINE gwstress |
---|
863 | * ( nlon , nlev |
---|
864 | * , kkcrit, ksect, kkhlim, ktest, kkcrith, kcrit, kkenvh |
---|
865 | * , kknu |
---|
866 | * , prho , pstab , pvph , pstd, psig |
---|
867 | * , pmea , ppic , pval , ptfr , ptau |
---|
868 | * , pgeom1 , pgamma , pd1 , pd2 , pdmod , pnu ) |
---|
869 | c |
---|
870 | c**** *gwstress* |
---|
871 | c |
---|
872 | c purpose. |
---|
873 | c -------- |
---|
874 | c |
---|
875 | c** interface. |
---|
876 | c ---------- |
---|
877 | c call *gwstress* from *gwdrag* |
---|
878 | c |
---|
879 | c explicit arguments : |
---|
880 | c -------------------- |
---|
881 | c ==== inputs === |
---|
882 | c ==== outputs === |
---|
883 | c |
---|
884 | c implicit arguments : none |
---|
885 | c -------------------- |
---|
886 | c |
---|
887 | c method. |
---|
888 | c ------- |
---|
889 | c |
---|
890 | c |
---|
891 | c externals. |
---|
892 | c ---------- |
---|
893 | c |
---|
894 | c |
---|
895 | c reference. |
---|
896 | c ---------- |
---|
897 | c |
---|
898 | c see ecmwf research department documentation of the "i.f.s." |
---|
899 | c |
---|
900 | c author. |
---|
901 | c ------- |
---|
902 | c |
---|
903 | c modifications. |
---|
904 | c -------------- |
---|
905 | c f. lott put the new gwd on ifs 22/11/93 |
---|
906 | c |
---|
907 | c----------------------------------------------------------------------- |
---|
908 | implicit logical (l) |
---|
909 | #include "dimensions.h" |
---|
910 | #include "dimphy.h" |
---|
911 | #include "YOMCST.h" |
---|
912 | #include "YOEGWD.h" |
---|
913 | |
---|
914 | c----------------------------------------------------------------------- |
---|
915 | c |
---|
916 | c* 0.1 arguments |
---|
917 | c --------- |
---|
918 | c |
---|
919 | integer kkcrit(nlon),kkcrith(nlon),kcrit(nlon),ksect(nlon), |
---|
920 | * kkhlim(nlon),ktest(nlon),kkenvh(nlon),kknu(nlon) |
---|
921 | c |
---|
922 | real prho(nlon,nlev+1),pstab(nlon,nlev+1),ptau(nlon,nlev+1), |
---|
923 | * pvph(nlon,nlev+1),ptfr(nlon), |
---|
924 | * pgeom1(nlon,nlev),pstd(nlon) |
---|
925 | c |
---|
926 | real pd1(nlon),pd2(nlon),pnu(nlon),psig(nlon),pgamma(nlon) |
---|
927 | real pmea(nlon),ppic(nlon),pval(nlon) |
---|
928 | real pdmod(nlon) |
---|
929 | c |
---|
930 | c----------------------------------------------------------------------- |
---|
931 | c |
---|
932 | c* 0.2 local arrays |
---|
933 | c ------------ |
---|
934 | c |
---|
935 | c----------------------------------------------------------------------- |
---|
936 | c |
---|
937 | c* 0.3 functions |
---|
938 | c --------- |
---|
939 | c ------------------------------------------------------------------ |
---|
940 | c |
---|
941 | c* 1. initialization |
---|
942 | c -------------- |
---|
943 | c |
---|
944 | 100 continue |
---|
945 | c |
---|
946 | c* 3.1 gravity wave stress. |
---|
947 | c |
---|
948 | 300 continue |
---|
949 | c |
---|
950 | c |
---|
951 | do 301 jl=kidia,kfdia |
---|
952 | if(ktest(jl).eq.1) then |
---|
953 | |
---|
954 | c effective mountain height above the blocked flow |
---|
955 | |
---|
956 | if(kkenvh(jl).eq.klev)then |
---|
957 | zblock=0.0 |
---|
958 | else |
---|
959 | zblock=(pgeom1(jl,kkenvh(jl))+pgeom1(jl,kkenvh(jl)+1))/2./rg |
---|
960 | endif |
---|
961 | |
---|
962 | zvar=ppic(jl)-pmea(jl) |
---|
963 | zeff=amax1(0.,zvar-zblock) |
---|
964 | |
---|
965 | ptau(jl,klev+1)=prho(jl,klev+1)*gkdrag*psig(jl)*zeff**2 |
---|
966 | * /4./pstd(jl)*pvph(jl,klev+1)*pdmod(jl)*sqrt(pstab(jl,klev+1)) |
---|
967 | |
---|
968 | c too small value of stress or low level flow include critical level |
---|
969 | c or low level flow: gravity wave stress nul. |
---|
970 | |
---|
971 | lo=(ptau(jl,klev+1).lt.gtsec).or.(kcrit(jl).ge.kknu(jl)) |
---|
972 | * .or.(pvph(jl,klev+1).lt.gvcrit) |
---|
973 | c if(lo) ptau(jl,klev+1)=0.0 |
---|
974 | |
---|
975 | else |
---|
976 | |
---|
977 | ptau(jl,klev+1)=0.0 |
---|
978 | |
---|
979 | endif |
---|
980 | |
---|
981 | 301 continue |
---|
982 | c |
---|
983 | return |
---|
984 | end |
---|
985 | SUBROUTINE GWPROFIL |
---|
986 | * ( NLON, NLEV |
---|
987 | * , kgwd ,kdx , ktest |
---|
988 | * , KKCRIT, KKCRITH, KCRIT , kkenvh, kknu,kknu2 |
---|
989 | * , PAPHM1, PRHO , PSTAB , PTFR , PVPH , PRI , PTAU |
---|
990 | * , ptauf ,pdmod , pnu , psig ,pgamma, pvar, ppic,pval) |
---|
991 | |
---|
992 | C**** *GWPROFIL* |
---|
993 | C |
---|
994 | C PURPOSE. |
---|
995 | C -------- |
---|
996 | C |
---|
997 | C** INTERFACE. |
---|
998 | C ---------- |
---|
999 | C FROM *GWDRAG* |
---|
1000 | C |
---|
1001 | C EXPLICIT ARGUMENTS : |
---|
1002 | C -------------------- |
---|
1003 | C ==== INPUTS === |
---|
1004 | C ==== OUTPUTS === |
---|
1005 | C |
---|
1006 | C IMPLICIT ARGUMENTS : NONE |
---|
1007 | C -------------------- |
---|
1008 | C |
---|
1009 | C METHOD: |
---|
1010 | C ------- |
---|
1011 | C THE STRESS PROFILE FOR GRAVITY WAVES IS COMPUTED AS FOLLOWS: |
---|
1012 | C IT IS CONSTANT (NO GWD) AT THE LEVELS BETWEEN THE GROUND |
---|
1013 | C AND THE TOP OF THE BLOCKED LAYER (KKENVH). |
---|
1014 | C IT DECREASES LINEARLY WITH HEIGHTS FROM THE TOP OF THE |
---|
1015 | C BLOCKED LAYER TO 3*VAROR (kKNU), TO SIMULATES LEE WAVES OR |
---|
1016 | C NONLINEAR GRAVITY WAVE BREAKING. |
---|
1017 | C ABOVE IT IS CONSTANT, EXCEPT WHEN THE WAVE ENCOUNTERS A CRITICAL |
---|
1018 | C LEVEL (KCRIT) OR WHEN IT BREAKS. |
---|
1019 | C |
---|
1020 | C |
---|
1021 | C |
---|
1022 | C EXTERNALS. |
---|
1023 | C ---------- |
---|
1024 | C |
---|
1025 | C |
---|
1026 | C REFERENCE. |
---|
1027 | C ---------- |
---|
1028 | C |
---|
1029 | C SEE ECMWF RESEARCH DEPARTMENT DOCUMENTATION OF THE "I.F.S." |
---|
1030 | C |
---|
1031 | C AUTHOR. |
---|
1032 | C ------- |
---|
1033 | C |
---|
1034 | C MODIFICATIONS. |
---|
1035 | C -------------- |
---|
1036 | C PASSAGE OF THE NEW GWDRAG TO I.F.S. (F. LOTT, 22/11/93) |
---|
1037 | C----------------------------------------------------------------------- |
---|
1038 | IMPLICIT LOGICAL (L) |
---|
1039 | C |
---|
1040 | |
---|
1041 | C |
---|
1042 | |
---|
1043 | #include "dimensions.h" |
---|
1044 | #include "dimphy.h" |
---|
1045 | #include "YOMCST.h" |
---|
1046 | #include "YOEGWD.h" |
---|
1047 | |
---|
1048 | C----------------------------------------------------------------------- |
---|
1049 | C |
---|
1050 | C* 0.1 ARGUMENTS |
---|
1051 | C --------- |
---|
1052 | C |
---|
1053 | INTEGER KKCRIT(NLON),KKCRITH(NLON),KCRIT(NLON) |
---|
1054 | * ,kdx(nlon),ktest(NLON) |
---|
1055 | * ,kkenvh(NLON),kknu(NLON),kknu2(NLON) |
---|
1056 | C |
---|
1057 | REAL PAPHM1(NLON,NLEV+1), PSTAB(NLON,NLEV+1), |
---|
1058 | * PRHO (NLON,NLEV+1), PVPH (NLON,NLEV+1), |
---|
1059 | * PRI (NLON,NLEV+1), PTFR (NLON), PTAU(NLON,NLEV+1), |
---|
1060 | * ptauf (NLON,nlev+1) |
---|
1061 | |
---|
1062 | REAL pdmod (NLON) , pnu (NLON) , psig(NLON), |
---|
1063 | * pgamma(NLON) , pvar(NLON) , ppic(NLON), pval(NLON) |
---|
1064 | |
---|
1065 | C----------------------------------------------------------------------- |
---|
1066 | C |
---|
1067 | C* 0.2 LOCAL ARRAYS |
---|
1068 | C ------------ |
---|
1069 | C |
---|
1070 | REAL ZDZ2 (KLON,KLEV) , ZNORM(KLON) , zoro(KLON) |
---|
1071 | REAL ZTAU (KLON,KLEV+1) |
---|
1072 | C |
---|
1073 | C----------------------------------------------------------------------- |
---|
1074 | C |
---|
1075 | C* 1. INITIALIZATION |
---|
1076 | C -------------- |
---|
1077 | C |
---|
1078 | c print *,' entree gwprofil' |
---|
1079 | 100 CONTINUE |
---|
1080 | C |
---|
1081 | C |
---|
1082 | C* COMPUTATIONAL CONSTANTS. |
---|
1083 | C ------------- ---------- |
---|
1084 | C |
---|
1085 | ilevh=KLEV/3 |
---|
1086 | C |
---|
1087 | DO 400 ji=1,kgwd |
---|
1088 | jl=kdx(ji) |
---|
1089 | Zoro(JL)=Psig(JL)*Pdmod(JL)/4./max(pvar(jl),1.0) |
---|
1090 | ZTAU(JL,KLEV+1)=PTAU(JL,KLEV+1) |
---|
1091 | 400 CONTINUE |
---|
1092 | |
---|
1093 | C |
---|
1094 | DO 430 JK=KLEV,2,-1 |
---|
1095 | C |
---|
1096 | C |
---|
1097 | C* 4.1 CONSTANT WAVE STRESS UNTIL TOP OF THE |
---|
1098 | C BLOCKING LAYER. |
---|
1099 | 410 CONTINUE |
---|
1100 | C |
---|
1101 | DO 411 ji=1,kgwd |
---|
1102 | jl=kdx(ji) |
---|
1103 | IF(JK.GT.KKCRITH(JL)) THEN |
---|
1104 | PTAU(JL,JK)=ZTAU(JL,KLEV+1) |
---|
1105 | C ENDIF |
---|
1106 | C IF(JK.EQ.KKCRITH(JL)) THEN |
---|
1107 | ELSE |
---|
1108 | PTAU(JL,JK)=GRAHILO*ZTAU(JL,KLEV+1) |
---|
1109 | ENDIF |
---|
1110 | 411 CONTINUE |
---|
1111 | C |
---|
1112 | C* 4.15 CONSTANT SHEAR STRESS UNTIL THE TOP OF THE |
---|
1113 | C LOW LEVEL FLOW LAYER. |
---|
1114 | 415 CONTINUE |
---|
1115 | C |
---|
1116 | C |
---|
1117 | C* 4.2 WAVE DISPLACEMENT AT NEXT LEVEL. |
---|
1118 | C |
---|
1119 | 420 CONTINUE |
---|
1120 | C |
---|
1121 | DO 421 ji=1,kgwd |
---|
1122 | jl=kdx(ji) |
---|
1123 | IF(JK.LT.KKCRITH(JL)) THEN |
---|
1124 | ZNORM(JL)=gkdrag*PRHO(JL,JK)*SQRT(PSTAB(JL,JK))*PVPH(JL,JK) |
---|
1125 | * *zoro(jl) |
---|
1126 | ZDZ2(JL,JK)=PTAU(JL,JK+1)/max(ZNORM(JL),gssec) |
---|
1127 | ENDIF |
---|
1128 | 421 CONTINUE |
---|
1129 | C |
---|
1130 | C* 4.3 WAVE RICHARDSON NUMBER, NEW WAVE DISPLACEMENT |
---|
1131 | C* AND STRESS: BREAKING EVALUATION AND CRITICAL |
---|
1132 | C LEVEL |
---|
1133 | C |
---|
1134 | |
---|
1135 | DO 431 ji=1,kgwd |
---|
1136 | jl=kdx(ji) |
---|
1137 | IF(JK.LT.KKCRITH(JL)) THEN |
---|
1138 | IF((PTAU(JL,JK+1).LT.GTSEC).OR.(JK.LE.KCRIT(JL))) THEN |
---|
1139 | PTAU(JL,JK)=0.0 |
---|
1140 | ELSE |
---|
1141 | ZSQR=SQRT(PRI(JL,JK)) |
---|
1142 | ZALFA=SQRT(PSTAB(JL,JK)*ZDZ2(JL,JK))/PVPH(JL,JK) |
---|
1143 | ZRIW=PRI(JL,JK)*(1.-ZALFA)/(1+ZALFA*ZSQR)**2 |
---|
1144 | IF(ZRIW.LT.GRCRIT) THEN |
---|
1145 | ZDEL=4./ZSQR/GRCRIT+1./GRCRIT**2+4./GRCRIT |
---|
1146 | ZB=1./GRCRIT+2./ZSQR |
---|
1147 | ZALPHA=0.5*(-ZB+SQRT(ZDEL)) |
---|
1148 | ZDZ2N=(PVPH(JL,JK)*ZALPHA)**2/PSTAB(JL,JK) |
---|
1149 | PTAU(JL,JK)=ZNORM(JL)*ZDZ2N |
---|
1150 | ELSE |
---|
1151 | PTAU(JL,JK)=ZNORM(JL)*ZDZ2(JL,JK) |
---|
1152 | ENDIF |
---|
1153 | PTAU(JL,JK)=MIN(PTAU(JL,JK),PTAU(JL,JK+1)) |
---|
1154 | ENDIF |
---|
1155 | ENDIF |
---|
1156 | 431 CONTINUE |
---|
1157 | |
---|
1158 | 430 CONTINUE |
---|
1159 | 440 CONTINUE |
---|
1160 | |
---|
1161 | C REORGANISATION OF THE STRESS PROFILE AT LOW LEVEL |
---|
1162 | |
---|
1163 | DO 530 ji=1,kgwd |
---|
1164 | jl=kdx(ji) |
---|
1165 | ZTAU(JL,KKCRITH(JL))=PTAU(JL,KKCRITH(JL)) |
---|
1166 | ZTAU(JL,NSTRA)=PTAU(JL,NSTRA) |
---|
1167 | 530 CONTINUE |
---|
1168 | |
---|
1169 | DO 531 JK=1,KLEV |
---|
1170 | |
---|
1171 | DO 532 ji=1,kgwd |
---|
1172 | jl=kdx(ji) |
---|
1173 | |
---|
1174 | IF(JK.GT.KKCRITH(JL))THEN |
---|
1175 | |
---|
1176 | ZDELP=PAPHM1(JL,JK)-PAPHM1(JL,KLEV+1 ) |
---|
1177 | ZDELPT=PAPHM1(JL,KKCRITH(JL))-PAPHM1(JL,KLEV+1 ) |
---|
1178 | PTAU(JL,JK)=ZTAU(JL,KLEV+1 ) + |
---|
1179 | . (ZTAU(JL,KKCRITH(JL))-ZTAU(JL,KLEV+1 ) )* |
---|
1180 | . ZDELP/ZDELPT |
---|
1181 | |
---|
1182 | ENDIF |
---|
1183 | |
---|
1184 | 532 CONTINUE |
---|
1185 | |
---|
1186 | C REORGANISATION IN THE STRATOSPHERE |
---|
1187 | |
---|
1188 | DO 533 ji=1,kgwd |
---|
1189 | jl=kdx(ji) |
---|
1190 | |
---|
1191 | IF(JK.LT.NSTRA)THEN |
---|
1192 | |
---|
1193 | ZDELP =PAPHM1(JL,NSTRA) |
---|
1194 | ZDELPT=PAPHM1(JL,JK) |
---|
1195 | PTAU(JL,JK)=ZTAU(JL,NSTRA)*ZDELPT/ZDELP |
---|
1196 | |
---|
1197 | ENDIF |
---|
1198 | |
---|
1199 | 533 CONTINUE |
---|
1200 | |
---|
1201 | C REORGANISATION IN THE TROPOSPHERE |
---|
1202 | |
---|
1203 | DO 534 ji=1,kgwd |
---|
1204 | jl=kdx(ji) |
---|
1205 | |
---|
1206 | IF(JK.LT.KKCRITH(JL).AND.JK.GT.NSTRA)THEN |
---|
1207 | |
---|
1208 | ZDELP=PAPHM1(JL,JK)-PAPHM1(JL,KKCRITH(JL)) |
---|
1209 | ZDELPT=PAPHM1(JL,NSTRA)-PAPHM1(JL,KKCRITH(JL)) |
---|
1210 | PTAU(JL,JK)=ZTAU(JL,KKCRITH(JL)) + |
---|
1211 | * (ZTAU(JL,NSTRA)-ZTAU(JL,KKCRITH(JL)))*ZDELP/ZDELPT |
---|
1212 | |
---|
1213 | ENDIF |
---|
1214 | 534 CONTINUE |
---|
1215 | |
---|
1216 | |
---|
1217 | 531 CONTINUE |
---|
1218 | |
---|
1219 | |
---|
1220 | RETURN |
---|
1221 | END |
---|
1222 | SUBROUTINE lift_noro (nlon,nlev,dtime,paprs,pplay, |
---|
1223 | e plat,pmea,pstd, psig, pgam, pthe, ppic,pval, |
---|
1224 | e kgwd,kgwdim,kdx,ktest, |
---|
1225 | e t, u, v, |
---|
1226 | s pulow, pvlow, pustr, pvstr, |
---|
1227 | s d_t, d_u, d_v) |
---|
1228 | c |
---|
1229 | IMPLICIT none |
---|
1230 | c====================================================================== |
---|
1231 | c Auteur(s): F.Lott (LMD/CNRS) date: 19950201 |
---|
1232 | c Objet: Frottement de la montagne Interface |
---|
1233 | c====================================================================== |
---|
1234 | c Arguments: |
---|
1235 | c dtime---input-R- pas d'integration (s) |
---|
1236 | c paprs---input-R-pression pour chaque inter-couche (en Pa) |
---|
1237 | c pplay---input-R-pression pour le mileu de chaque couche (en Pa) |
---|
1238 | c t-------input-R-temperature (K) |
---|
1239 | c u-------input-R-vitesse horizontale (m/s) |
---|
1240 | c v-------input-R-vitesse horizontale (m/s) |
---|
1241 | c |
---|
1242 | c d_t-----output-R-increment de la temperature |
---|
1243 | c d_u-----output-R-increment de la vitesse u |
---|
1244 | c d_v-----output-R-increment de la vitesse v |
---|
1245 | c====================================================================== |
---|
1246 | #include "dimensions.h" |
---|
1247 | #include "dimphy.h" |
---|
1248 | #include "YOMCST.h" |
---|
1249 | c |
---|
1250 | c ARGUMENTS |
---|
1251 | c |
---|
1252 | INTEGER nlon,nlev |
---|
1253 | REAL dtime |
---|
1254 | REAL paprs(klon,klev+1) |
---|
1255 | REAL pplay(klon,klev) |
---|
1256 | REAL plat(nlon),pmea(nlon) |
---|
1257 | REAL pstd(nlon),psig(nlon),pgam(nlon),pthe(nlon) |
---|
1258 | REAL ppic(nlon),pval(nlon) |
---|
1259 | REAL pulow(nlon),pvlow(nlon),pustr(nlon),pvstr(nlon) |
---|
1260 | REAL t(nlon,nlev), u(nlon,nlev), v(nlon,nlev) |
---|
1261 | REAL d_t(nlon,nlev), d_u(nlon,nlev), d_v(nlon,nlev) |
---|
1262 | c |
---|
1263 | INTEGER i, k, kgwd, kgwdim, kdx(nlon), ktest(nlon) |
---|
1264 | c |
---|
1265 | c Variables locales: |
---|
1266 | c |
---|
1267 | REAL zgeom(klon,klev) |
---|
1268 | REAL pdtdt(klon,klev), pdudt(klon,klev), pdvdt(klon,klev) |
---|
1269 | REAL pt(klon,klev), pu(klon,klev), pv(klon,klev) |
---|
1270 | REAL papmf(klon,klev),papmh(klon,klev+1) |
---|
1271 | c |
---|
1272 | c initialiser les variables de sortie (pour securite) |
---|
1273 | c |
---|
1274 | DO i = 1,klon |
---|
1275 | pulow(i) = 0.0 |
---|
1276 | pvlow(i) = 0.0 |
---|
1277 | pustr(i) = 0.0 |
---|
1278 | pvstr(i) = 0.0 |
---|
1279 | ENDDO |
---|
1280 | DO k = 1, klev |
---|
1281 | DO i = 1, klon |
---|
1282 | d_t(i,k) = 0.0 |
---|
1283 | d_u(i,k) = 0.0 |
---|
1284 | d_v(i,k) = 0.0 |
---|
1285 | pdudt(i,k)=0.0 |
---|
1286 | pdvdt(i,k)=0.0 |
---|
1287 | pdtdt(i,k)=0.0 |
---|
1288 | ENDDO |
---|
1289 | ENDDO |
---|
1290 | c |
---|
1291 | c preparer les variables d'entree (attention: l'ordre des niveaux |
---|
1292 | c verticaux augmente du haut vers le bas) |
---|
1293 | c |
---|
1294 | DO k = 1, klev |
---|
1295 | DO i = 1, klon |
---|
1296 | pt(i,k) = t(i,klev-k+1) |
---|
1297 | pu(i,k) = u(i,klev-k+1) |
---|
1298 | pv(i,k) = v(i,klev-k+1) |
---|
1299 | papmf(i,k) = pplay(i,klev-k+1) |
---|
1300 | ENDDO |
---|
1301 | ENDDO |
---|
1302 | DO k = 1, klev+1 |
---|
1303 | DO i = 1, klon |
---|
1304 | papmh(i,k) = paprs(i,klev-k+2) |
---|
1305 | ENDDO |
---|
1306 | ENDDO |
---|
1307 | DO i = 1, klon |
---|
1308 | zgeom(i,klev) = RD * pt(i,klev) |
---|
1309 | . * LOG(papmh(i,klev+1)/papmf(i,klev)) |
---|
1310 | ENDDO |
---|
1311 | DO k = klev-1, 1, -1 |
---|
1312 | DO i = 1, klon |
---|
1313 | zgeom(i,k) = zgeom(i,k+1) + RD * (pt(i,k)+pt(i,k+1))/2.0 |
---|
1314 | . * LOG(papmf(i,k+1)/papmf(i,k)) |
---|
1315 | ENDDO |
---|
1316 | ENDDO |
---|
1317 | c |
---|
1318 | c appeler la routine principale |
---|
1319 | c |
---|
1320 | CALL OROLIFT(klon,klev,kgwd,kgwdim,kdx,ktest, |
---|
1321 | . dtime, |
---|
1322 | . papmh, papmf, zgeom, |
---|
1323 | . pt, pu, pv, |
---|
1324 | . plat,pmea, pstd, psig, pgam, pthe, ppic,pval, |
---|
1325 | . pulow,pvlow, |
---|
1326 | . pdudt,pdvdt,pdtdt) |
---|
1327 | C |
---|
1328 | DO k = 1, klev |
---|
1329 | DO i = 1, klon |
---|
1330 | d_u(i,klev+1-k) = dtime*pdudt(i,k) |
---|
1331 | d_v(i,klev+1-k) = dtime*pdvdt(i,k) |
---|
1332 | d_t(i,klev+1-k) = dtime*pdtdt(i,k) |
---|
1333 | pustr(i) = pustr(i) |
---|
1334 | . +RG*pdudt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
1335 | pvstr(i) = pvstr(i) |
---|
1336 | . +RG*pdvdt(i,k)*(papmh(i,k+1)-papmh(i,k)) |
---|
1337 | ENDDO |
---|
1338 | ENDDO |
---|
1339 | c |
---|
1340 | RETURN |
---|
1341 | END |
---|
1342 | SUBROUTINE OROLIFT( NLON,NLEV |
---|
1343 | I , KGWD, KGWDIM, KDX, KTEST |
---|
1344 | R , PTSPHY |
---|
1345 | R , PAPHM1,PAPM1,PGEOM1,PTM1,PUM1,PVM1 |
---|
1346 | R , PLAT |
---|
1347 | R , PMEA, PVAROR, PSIG, PGAMMA, PTHETA,ppic,pval |
---|
1348 | C OUTPUTS |
---|
1349 | R , PULOW,PVLOW |
---|
1350 | R , PVOM,PVOL,PTE ) |
---|
1351 | |
---|
1352 | C |
---|
1353 | C**** *OROLIFT: SIMULATE THE GEOSTROPHIC LIFT. |
---|
1354 | C |
---|
1355 | C PURPOSE. |
---|
1356 | C -------- |
---|
1357 | C |
---|
1358 | C** INTERFACE. |
---|
1359 | C ---------- |
---|
1360 | C CALLED FROM *lift_noro |
---|
1361 | C ---------- |
---|
1362 | C |
---|
1363 | C AUTHOR. |
---|
1364 | C ------- |
---|
1365 | C F.LOTT LMD 22/11/95 |
---|
1366 | C |
---|
1367 | IMPLICIT LOGICAL (L) |
---|
1368 | C |
---|
1369 | C |
---|
1370 | #include "dimensions.h" |
---|
1371 | #include "dimphy.h" |
---|
1372 | #include "YOMCST.h" |
---|
1373 | #include "YOEGWD.h" |
---|
1374 | C----------------------------------------------------------------------- |
---|
1375 | C |
---|
1376 | C* 0.1 ARGUMENTS |
---|
1377 | C --------- |
---|
1378 | C |
---|
1379 | C |
---|
1380 | REAL PTE(NLON,NLEV), |
---|
1381 | * PVOL(NLON,NLEV), |
---|
1382 | * PVOM(NLON,NLEV), |
---|
1383 | * PULOW(NLON), |
---|
1384 | * PVLOW(NLON) |
---|
1385 | REAL PUM1(NLON,NLEV), |
---|
1386 | * PVM1(NLON,NLEV), |
---|
1387 | * PTM1(NLON,NLEV), |
---|
1388 | * PLAT(NLON),PMEA(NLON), |
---|
1389 | * PVAROR(NLON),PSIG(NLON),PGAMMA(NLON), |
---|
1390 | * PTHETA(NLON),ppic(NLON),pval(NLON), |
---|
1391 | * PGEOM1(NLON,NLEV), |
---|
1392 | * PAPM1(NLON,NLEV), |
---|
1393 | * PAPHM1(NLON,NLEV+1) |
---|
1394 | C |
---|
1395 | INTEGER KDX(NLON),KTEST(NLON) |
---|
1396 | C----------------------------------------------------------------------- |
---|
1397 | C |
---|
1398 | C* 0.2 LOCAL ARRAYS |
---|
1399 | C ------------ |
---|
1400 | INTEGER ISECT(KLON), |
---|
1401 | * ICRIT(KLON), |
---|
1402 | * IKCRITH(KLON), |
---|
1403 | * IKenvh(klon), |
---|
1404 | * IKNUB(klon), |
---|
1405 | * IKNUL(klon), |
---|
1406 | * IKCRIT(KLON), |
---|
1407 | * IKHLIM(KLON) |
---|
1408 | LOGICAL LL1(KLON,KLEV+1) |
---|
1409 | C |
---|
1410 | REAL ZTAU(KLON,KLEV+1), |
---|
1411 | * ZTAV(KLON,KLEV+1), |
---|
1412 | * ZSTAB(KLON,KLEV+1), |
---|
1413 | * ZVPH(KLON,KLEV+1), |
---|
1414 | * ZRHO(KLON,KLEV+1), |
---|
1415 | * ZRI(KLON,KLEV+1), |
---|
1416 | * ZpsI(KLON,KLEV+1), |
---|
1417 | * Zzdep(KLON,KLEV) |
---|
1418 | REAL ZDUDT(KLON), |
---|
1419 | * ZDVDT(KLON), |
---|
1420 | * ZDTDT(KLON), |
---|
1421 | * ZDEDT(KLON), |
---|
1422 | * ZVIDIS(KLON), |
---|
1423 | * ZTFR(KLON), |
---|
1424 | * Znu(KLON), |
---|
1425 | * Zd1(KLON), |
---|
1426 | * Zd2(KLON), |
---|
1427 | * Zdmod(KLON) |
---|
1428 | REAL ZHCRIT(KLON,KLEV) |
---|
1429 | C----------------------------------------------------------------------- |
---|
1430 | C |
---|
1431 | C* 1.1 INITIALIZATIONS |
---|
1432 | C --------------- |
---|
1433 | |
---|
1434 | LIFTHIGH=.FALSE. |
---|
1435 | |
---|
1436 | IF(NLON.NE.KLON.OR.NLEV.NE.KLEV)STOP |
---|
1437 | ZCONS1=1./RD |
---|
1438 | KLEVM1=KLEV-1 |
---|
1439 | ZTMST=PTSPHY |
---|
1440 | ZRTMST=1./ZTMST |
---|
1441 | ZPI=ACOS(-1.) |
---|
1442 | C |
---|
1443 | DO 1001 JL=kidia,kfdia |
---|
1444 | ZRHO(JL,KLEV+1) =0.0 |
---|
1445 | PULOW(JL) =0.0 |
---|
1446 | PVLOW(JL) =0.0 |
---|
1447 | iknub(JL) =klev |
---|
1448 | iknul(JL) =klev |
---|
1449 | ilevh=klev/3 |
---|
1450 | ll1(jl,klev+1)=.false. |
---|
1451 | DO 1000 JK=1,KLEV |
---|
1452 | PVOM(JL,JK)=0.0 |
---|
1453 | PVOL(JL,JK)=0.0 |
---|
1454 | PTE (JL,JK)=0.0 |
---|
1455 | 1000 CONTINUE |
---|
1456 | 1001 CONTINUE |
---|
1457 | |
---|
1458 | C |
---|
1459 | C* 2.1 DEFINE LOW LEVEL WIND, PROJECT WINDS IN PLANE OF |
---|
1460 | C* LOW LEVEL WIND, DETERMINE SECTOR IN WHICH TO TAKE |
---|
1461 | C* THE VARIANCE AND SET INDICATOR FOR CRITICAL LEVELS. |
---|
1462 | C |
---|
1463 | C |
---|
1464 | C |
---|
1465 | DO 2006 JK=KLEV,1,-1 |
---|
1466 | DO 2007 JL=kidia,kfdia |
---|
1467 | IF(KTEST(JL).EQ.1) THEN |
---|
1468 | ZHCRIT(JL,JK)=amax1(Ppic(JL)-pmea(JL),100.) |
---|
1469 | ZHGEO=PGEOM1(JL,JK)/RG |
---|
1470 | ll1(JL,JK)=(ZHGEO.GT.ZHCRIT(JL,JK)) |
---|
1471 | IF(ll1(JL,JK).XOR.ll1(JL,JK+1)) THEN |
---|
1472 | iknub(JL)=JK |
---|
1473 | ENDIF |
---|
1474 | ENDIF |
---|
1475 | 2007 CONTINUE |
---|
1476 | 2006 CONTINUE |
---|
1477 | C |
---|
1478 | do 2010 jl=kidia,kfdia |
---|
1479 | IF(KTEST(JL).EQ.1) THEN |
---|
1480 | iknub(jl)=max(iknub(jl),klev/2) |
---|
1481 | iknul(jl)=max(iknul(jl),2*klev/3) |
---|
1482 | if(iknub(jl).gt.nktopg) iknub(jl)=nktopg |
---|
1483 | if(iknub(jl).eq.nktopg) iknul(jl)=klev |
---|
1484 | if(iknub(jl).eq.iknul(jl)) iknub(jl)=iknul(jl)-1 |
---|
1485 | ENDIF |
---|
1486 | 2010 continue |
---|
1487 | |
---|
1488 | C do 2011 jl=kidia,kfdia |
---|
1489 | C IF(KTEST(JL).EQ.1) THEN |
---|
1490 | C print *,' iknul= ',iknul(jl),' iknub=',iknub(jl) |
---|
1491 | C ENDIF |
---|
1492 | C2011 continue |
---|
1493 | |
---|
1494 | C PRINT *,' DANS OROLIFT: 2010' |
---|
1495 | |
---|
1496 | DO 223 JK=KLEV,2,-1 |
---|
1497 | DO 222 JL=kidia,kfdia |
---|
1498 | ZRHO(JL,JK)=2.*PAPHM1(JL,JK)*ZCONS1/(PTM1(JL,JK)+PTM1(JL,JK-1)) |
---|
1499 | 222 CONTINUE |
---|
1500 | 223 CONTINUE |
---|
1501 | C PRINT *,' DANS OROLIFT: 223' |
---|
1502 | |
---|
1503 | C******************************************************************** |
---|
1504 | C |
---|
1505 | C* DEFINE LOW LEVEL FLOW |
---|
1506 | C ------------------- |
---|
1507 | DO 2115 JK=klev,1,-1 |
---|
1508 | DO 2116 JL=kidia,kfdia |
---|
1509 | IF(KTEST(JL).EQ.1) THEN |
---|
1510 | if(jk.ge.iknub(jl).and.jk.le.iknul(jl)) then |
---|
1511 | pulow(JL)=pulow(JL)+PUM1(JL,JK)*(PAPHM1(JL,JK+1)-PAPHM1(JL,JK)) |
---|
1512 | pvlow(JL)=pvlow(JL)+PVM1(JL,JK)*(PAPHM1(JL,JK+1)-PAPHM1(JL,JK)) |
---|
1513 | zrho(JL,klev+1)=zrho(JL,klev+1) |
---|
1514 | * +zrho(JL,JK)*(PAPHM1(JL,JK+1)-PAPHM1(JL,JK)) |
---|
1515 | end if |
---|
1516 | ENDIF |
---|
1517 | 2116 CONTINUE |
---|
1518 | 2115 CONTINUE |
---|
1519 | DO 2110 JL=kidia,kfdia |
---|
1520 | IF(KTEST(JL).EQ.1) THEN |
---|
1521 | pulow(JL)=pulow(JL)/(PAPHM1(JL,iknul(jl)+1)-PAPHM1(JL,iknub(jl))) |
---|
1522 | pvlow(JL)=pvlow(JL)/(PAPHM1(JL,iknul(jl)+1)-PAPHM1(JL,iknub(jl))) |
---|
1523 | zrho(JL,klev+1)=zrho(JL,klev+1) |
---|
1524 | * /(PAPHM1(JL,iknul(jl)+1)-PAPHM1(JL,iknub(jl))) |
---|
1525 | ENDIF |
---|
1526 | 2110 CONTINUE |
---|
1527 | |
---|
1528 | |
---|
1529 | 200 CONTINUE |
---|
1530 | |
---|
1531 | C*********************************************************** |
---|
1532 | C |
---|
1533 | C* 3. COMPUTE MOUNTAIN LIFT |
---|
1534 | C |
---|
1535 | 300 CONTINUE |
---|
1536 | C |
---|
1537 | DO 301 JL=kidia,kfdia |
---|
1538 | IF(KTEST(JL).EQ.1) THEN |
---|
1539 | ZTAU(JL,KLEV+1)= - GKLIFT*ZRHO(JL,KLEV+1)*2.*ROMEGA* |
---|
1540 | C * (2*PVAROR(JL)+PMEA(JL))* |
---|
1541 | * 2*PVAROR(JL)* |
---|
1542 | * SIN(ZPI/180.*PLAT(JL))*PVLOW(JL) |
---|
1543 | ZTAV(JL,KLEV+1)= GKLIFT*ZRHO(JL,KLEV+1)*2.*ROMEGA* |
---|
1544 | C * (2*PVAROR(JL)+PMEA(JL))* |
---|
1545 | * 2*PVAROR(JL)* |
---|
1546 | * SIN(ZPI/180.*PLAT(JL))*PULOW(JL) |
---|
1547 | ELSE |
---|
1548 | ZTAU(JL,KLEV+1)=0.0 |
---|
1549 | ZTAV(JL,KLEV+1)=0.0 |
---|
1550 | ENDIF |
---|
1551 | 301 CONTINUE |
---|
1552 | |
---|
1553 | C |
---|
1554 | C* 4. COMPUTE LIFT PROFILE |
---|
1555 | C* -------------------- |
---|
1556 | C |
---|
1557 | |
---|
1558 | 400 CONTINUE |
---|
1559 | |
---|
1560 | DO 401 JK=1,KLEV |
---|
1561 | DO 401 JL=kidia,kfdia |
---|
1562 | IF(KTEST(JL).EQ.1) THEN |
---|
1563 | ZTAU(JL,JK)=ZTAU(JL,KLEV+1)*PAPHM1(JL,JK)/PAPHM1(JL,KLEV+1) |
---|
1564 | ZTAV(JL,JK)=ZTAV(JL,KLEV+1)*PAPHM1(JL,JK)/PAPHM1(JL,KLEV+1) |
---|
1565 | ELSE |
---|
1566 | ZTAU(JL,JK)=0.0 |
---|
1567 | ZTAV(JL,JK)=0.0 |
---|
1568 | ENDIF |
---|
1569 | 401 CONTINUE |
---|
1570 | C |
---|
1571 | C |
---|
1572 | C* 5. COMPUTE TENDENCIES. |
---|
1573 | C* ------------------- |
---|
1574 | IF(LIFTHIGH)THEN |
---|
1575 | C |
---|
1576 | 500 CONTINUE |
---|
1577 | C PRINT *,' DANS OROLIFT: 500' |
---|
1578 | C |
---|
1579 | C EXPLICIT SOLUTION AT ALL LEVELS |
---|
1580 | C |
---|
1581 | DO 524 JK=1,klev |
---|
1582 | DO 523 JL=KIDIA,KFDIA |
---|
1583 | IF(KTEST(JL).EQ.1) THEN |
---|
1584 | ZDELP=PAPHM1(JL,JK+1)-PAPHM1(JL,JK) |
---|
1585 | ZDUDT(JL)=-RG*(ZTAU(JL,JK+1)-ZTAU(JL,JK))/ZDELP |
---|
1586 | ZDVDT(JL)=-RG*(ZTAV(JL,JK+1)-ZTAV(JL,JK))/ZDELP |
---|
1587 | ENDIF |
---|
1588 | 523 CONTINUE |
---|
1589 | 524 CONTINUE |
---|
1590 | C |
---|
1591 | C PROJECT PERPENDICULARLY TO U NOT TO DESTROY ENERGY |
---|
1592 | C |
---|
1593 | DO 530 JK=1,klev |
---|
1594 | DO 530 JL=KIDIA,KFDIA |
---|
1595 | IF(KTEST(JL).EQ.1) THEN |
---|
1596 | |
---|
1597 | ZSLOW=SQRT(PULOW(JL)**2+PVLOW(JL)**2) |
---|
1598 | ZSQUA=AMAX1(SQRT(PUM1(JL,JK)**2+PVM1(JL,JK)**2),GVSEC) |
---|
1599 | ZSCAV=-ZDUDT(JL)*PVM1(JL,JK)+ZDVDT(JL)*PUM1(JL,JK) |
---|
1600 | IF(ZSQUA.GT.GVSEC)THEN |
---|
1601 | PVOM(JL,JK)=-ZSCAV*PVM1(JL,JK)/ZSQUA**2 |
---|
1602 | PVOL(JL,JK)= ZSCAV*PUM1(JL,JK)/ZSQUA**2 |
---|
1603 | ELSE |
---|
1604 | PVOM(JL,JK)=0.0 |
---|
1605 | PVOL(JL,JK)=0.0 |
---|
1606 | ENDIF |
---|
1607 | ZSQUA=SQRT(PUM1(JL,JK)**2+PUM1(JL,JK)**2) |
---|
1608 | IF(ZSQUA.LT.ZSLOW)THEN |
---|
1609 | PVOM(JL,JK)=ZSQUA/ZSLOW*PVOM(JL,JK) |
---|
1610 | PVOL(JL,JK)=ZSQUA/ZSLOW*PVOL(JL,JK) |
---|
1611 | ENDIF |
---|
1612 | |
---|
1613 | ENDIF |
---|
1614 | 530 CONTINUE |
---|
1615 | C |
---|
1616 | C 6. LOW LEVEL LIFT, SEMI IMPLICIT: |
---|
1617 | C ---------------------------------- |
---|
1618 | |
---|
1619 | ELSE |
---|
1620 | |
---|
1621 | DO 601 JL=KIDIA,KFDIA |
---|
1622 | IF(KTEST(JL).EQ.1) THEN |
---|
1623 | DO JK=KLEV,IKNUB(JL),-1 |
---|
1624 | ZBET=GKLIFT*2.*ROMEGA*SIN(ZPI/180.*PLAT(JL))*ztmst* |
---|
1625 | * (PGEOM1(JL,IKNUB(JL)-1)-PGEOM1(JL, JK))/ |
---|
1626 | * (PGEOM1(JL,IKNUB(JL)-1)-PGEOM1(JL,KLEV)) |
---|
1627 | ZDUDT(JL)=-PUM1(JL,JK)/ztmst/(1+ZBET**2) |
---|
1628 | ZDVDT(JL)=-PVM1(JL,JK)/ztmst/(1+ZBET**2) |
---|
1629 | PVOM(JL,JK)= ZBET**2*ZDUDT(JL) - ZBET *ZDVDT(JL) |
---|
1630 | PVOL(JL,JK)= ZBET *ZDUDT(JL) + ZBET**2*ZDVDT(JL) |
---|
1631 | ENDDO |
---|
1632 | ENDIF |
---|
1633 | 601 CONTINUE |
---|
1634 | |
---|
1635 | ENDIF |
---|
1636 | |
---|
1637 | RETURN |
---|
1638 | END |
---|
1639 | SUBROUTINE SUGWD(NLON,NLEV,paprs,pplay) |
---|
1640 | C |
---|
1641 | C**** *SUGWD* INITIALIZE COMMON YOEGWD CONTROLLING GRAVITY WAVE DRAG |
---|
1642 | C |
---|
1643 | C PURPOSE. |
---|
1644 | C -------- |
---|
1645 | C INITIALIZE YOEGWD, THE COMMON THAT CONTROLS THE |
---|
1646 | C GRAVITY WAVE DRAG PARAMETRIZATION. |
---|
1647 | C |
---|
1648 | C** INTERFACE. |
---|
1649 | C ---------- |
---|
1650 | C CALL *SUGWD* FROM *SUPHEC* |
---|
1651 | C ----- ------ |
---|
1652 | C |
---|
1653 | C EXPLICIT ARGUMENTS : |
---|
1654 | C -------------------- |
---|
1655 | C PSIG : VERTICAL COORDINATE TABLE |
---|
1656 | C NLEV : NUMBER OF MODEL LEVELS |
---|
1657 | C |
---|
1658 | C IMPLICIT ARGUMENTS : |
---|
1659 | C -------------------- |
---|
1660 | C COMMON YOEGWD |
---|
1661 | C |
---|
1662 | C METHOD. |
---|
1663 | C ------- |
---|
1664 | C SEE DOCUMENTATION |
---|
1665 | C |
---|
1666 | C EXTERNALS. |
---|
1667 | C ---------- |
---|
1668 | C NONE |
---|
1669 | C |
---|
1670 | C REFERENCE. |
---|
1671 | C ---------- |
---|
1672 | C ECMWF Research Department documentation of the IFS |
---|
1673 | C |
---|
1674 | C AUTHOR. |
---|
1675 | C ------- |
---|
1676 | C MARTIN MILLER *ECMWF* |
---|
1677 | C |
---|
1678 | C MODIFICATIONS. |
---|
1679 | C -------------- |
---|
1680 | C ORIGINAL : 90-01-01 |
---|
1681 | C ------------------------------------------------------------------ |
---|
1682 | IMPLICIT LOGICAL(L) |
---|
1683 | C |
---|
1684 | C ----------------------------------------------------------------- |
---|
1685 | #include "YOEGWD.h" |
---|
1686 | C ---------------------------------------------------------------- |
---|
1687 | C |
---|
1688 | integer nlon,nlev |
---|
1689 | REAL paprs(nlon,nlev+1) |
---|
1690 | REAL pplay(nlon,nlev) |
---|
1691 | C |
---|
1692 | C* 1. SET THE VALUES OF THE PARAMETERS |
---|
1693 | C -------------------------------- |
---|
1694 | C |
---|
1695 | 100 CONTINUE |
---|
1696 | C |
---|
1697 | PRINT *,' DANS SUGWD NLEV=',NLEV |
---|
1698 | GHMAX=10000. |
---|
1699 | C |
---|
1700 | ZPR=100000. |
---|
1701 | ZSTRA=0.1 |
---|
1702 | ZSIGT=0.94 |
---|
1703 | cold ZPR=80000. |
---|
1704 | cold ZSIGT=0.85 |
---|
1705 | C |
---|
1706 | DO 110 JK=1,NLEV |
---|
1707 | ZPM1R=pplay(nlon/2,jk)/paprs(nlon/2,1) |
---|
1708 | IF(ZPM1R.GE.ZSIGT)THEN |
---|
1709 | nktopg=JK |
---|
1710 | ENDIF |
---|
1711 | ZPM1R=pplay(nlon/2,jk)/paprs(nlon/2,1) |
---|
1712 | IF(ZPM1R.GE.ZSTRA)THEN |
---|
1713 | NSTRA=JK |
---|
1714 | ENDIF |
---|
1715 | 110 CONTINUE |
---|
1716 | c |
---|
1717 | c inversion car dans orodrag on compte les niveaux a l'envers |
---|
1718 | nktopg=nlev-nktopg+1 |
---|
1719 | nstra=nlev-nstra |
---|
1720 | print *,' DANS SUGWD nktopg=', nktopg |
---|
1721 | print *,' DANS SUGWD nstra=', nstra |
---|
1722 | C |
---|
1723 | GSIGCR=0.80 |
---|
1724 | C |
---|
1725 | GKDRAG=0.2 |
---|
1726 | GRAHILO=1 |
---|
1727 | GRCRIT=0.01 |
---|
1728 | GFRCRIT=1.0 |
---|
1729 | GKWAKE=0.50 |
---|
1730 | C |
---|
1731 | GKLIFT=0.50 |
---|
1732 | GVCRIT =0.0 |
---|
1733 | C |
---|
1734 | C |
---|
1735 | C ---------------------------------------------------------------- |
---|
1736 | C |
---|
1737 | C* 2. SET VALUES OF SECURITY PARAMETERS |
---|
1738 | C --------------------------------- |
---|
1739 | C |
---|
1740 | 200 CONTINUE |
---|
1741 | C |
---|
1742 | GVSEC=0.10 |
---|
1743 | GSSEC=1.E-12 |
---|
1744 | C |
---|
1745 | GTSEC=1.E-07 |
---|
1746 | C |
---|
1747 | C ---------------------------------------------------------------- |
---|
1748 | C |
---|
1749 | RETURN |
---|
1750 | END |
---|