[388] | 1 | SUBROUTINE newmicro (paprs, pplay,ok_newmicro, |
---|
| 2 | . t, pqlwp, pclc, pcltau, pclemi, |
---|
| 3 | . pch, pcl, pcm, pct, pctlwp) |
---|
| 4 | IMPLICIT none |
---|
| 5 | c====================================================================== |
---|
| 6 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
---|
| 7 | c Objet: Calculer epaisseur optique et emmissivite des nuages |
---|
| 8 | c====================================================================== |
---|
| 9 | c Arguments: |
---|
| 10 | c t-------input-R-temperature |
---|
| 11 | c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) |
---|
| 12 | c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
---|
| 13 | c |
---|
| 14 | c pcltau--output-R-epaisseur optique des nuages |
---|
| 15 | c pclemi--output-R-emissivite des nuages (0 a 1) |
---|
| 16 | c====================================================================== |
---|
| 17 | C |
---|
| 18 | #include "YOMCST.h" |
---|
| 19 | c |
---|
| 20 | #include "dimensions.h" |
---|
| 21 | #include "dimphy.h" |
---|
| 22 | #include "nuage.h" |
---|
| 23 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
| 24 | REAL t(klon,klev) |
---|
| 25 | c |
---|
| 26 | REAL pclc(klon,klev) |
---|
| 27 | REAL pqlwp(klon,klev) |
---|
| 28 | REAL pcltau(klon,klev), pclemi(klon,klev) |
---|
| 29 | c |
---|
| 30 | REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) |
---|
| 31 | c |
---|
| 32 | LOGICAL lo |
---|
| 33 | c |
---|
| 34 | REAL cetahb, cetamb |
---|
| 35 | PARAMETER (cetahb = 0.45, cetamb = 0.80) |
---|
| 36 | C |
---|
| 37 | INTEGER i, k |
---|
| 38 | REAL zflwp, zradef, zfice, zmsac |
---|
| 39 | c |
---|
| 40 | REAL radius, rad_chaud |
---|
| 41 | cc PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) |
---|
| 42 | ccc PARAMETER (rad_chaud=15.0, rad_froid=35.0) |
---|
| 43 | c sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) |
---|
| 44 | REAL coef, coef_froi, coef_chau |
---|
| 45 | PARAMETER (coef_chau=0.13, coef_froi=0.09) |
---|
| 46 | REAL seuil_neb, t_glace |
---|
| 47 | PARAMETER (seuil_neb=0.001, t_glace=273.0-15.0) |
---|
| 48 | INTEGER nexpo ! exponentiel pour glace/eau |
---|
| 49 | PARAMETER (nexpo=6) |
---|
| 50 | ccc PARAMETER (nexpo=1) |
---|
| 51 | |
---|
| 52 | c -- sb: |
---|
| 53 | logical ok_newmicro |
---|
| 54 | c parameter (ok_newmicro=.FALSE.) |
---|
| 55 | real rel, tc, rei, zfiwp |
---|
| 56 | real k_liq, k_ice0, k_ice, DF |
---|
| 57 | parameter (k_liq=0.0903, k_ice0=0.005) ! units=m2/g |
---|
| 58 | parameter (DF=1.66) ! diffusivity factor |
---|
| 59 | c sb -- |
---|
| 60 | |
---|
| 61 | c |
---|
| 62 | c Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
| 63 | c |
---|
| 64 | DO k = 1, klev |
---|
| 65 | DO i = 1, klon |
---|
| 66 | rad_chaud = rad_chau1 |
---|
| 67 | IF (k.LE.3) rad_chaud = rad_chau2 |
---|
| 68 | pclc(i,k) = MAX(pclc(i,k), seuil_neb) |
---|
| 69 | zflwp = 1000.*pqlwp(i,k)/RG/pclc(i,k) |
---|
| 70 | . *(paprs(i,k)-paprs(i,k+1)) |
---|
| 71 | zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) |
---|
| 72 | zfice = MIN(MAX(zfice,0.0),1.0) |
---|
| 73 | zfice = zfice**nexpo |
---|
| 74 | radius = rad_chaud * (1.-zfice) + rad_froid * zfice |
---|
| 75 | coef = coef_chau * (1.-zfice) + coef_froi * zfice |
---|
| 76 | pcltau(i,k) = 3.0/2.0 * zflwp / radius |
---|
| 77 | pclemi(i,k) = 1.0 - EXP( - coef * zflwp) |
---|
| 78 | |
---|
| 79 | if (ok_newmicro) then |
---|
| 80 | |
---|
| 81 | c -- liquid/ice cloud water paths: |
---|
| 82 | |
---|
| 83 | zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) |
---|
| 84 | zfice = MIN(MAX(zfice,0.0),1.0) |
---|
| 85 | |
---|
| 86 | zflwp = 1000.*(1.-zfice)*pqlwp(i,k)/pclc(i,k) |
---|
| 87 | : *(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 88 | zfiwp = 1000.*zfice*pqlwp(i,k)/pclc(i,k) |
---|
| 89 | : *(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 90 | |
---|
| 91 | c -- effective cloud droplet radius (microns): |
---|
| 92 | |
---|
| 93 | c for liquid water clouds: |
---|
| 94 | rel = rad_chaud |
---|
| 95 | |
---|
| 96 | c for ice clouds: as a function of the ambiant temperature |
---|
| 97 | c [formula used by Iacobellis and Somerville (2000), with an |
---|
| 98 | c asymptotical value of 3.5 microns at T<-81.4 C added to be |
---|
| 99 | c consistent with observations of Heymsfield et al. 1986]: |
---|
| 100 | tc = t(i,k)-273.15 |
---|
| 101 | rei = 0.71*tc + 61.29 |
---|
| 102 | if (tc.le.-81.4) rei = 3.5 |
---|
| 103 | |
---|
| 104 | c -- cloud optical thickness : |
---|
| 105 | |
---|
| 106 | c [for liquid clouds, traditional formula, |
---|
| 107 | c for ice clouds, Ebert & Curry (1992)] |
---|
| 108 | |
---|
| 109 | if (zflwp.eq.0.) rel = 1. |
---|
| 110 | if (zfiwp.eq.0. .or. rei.le.0.) rei = 1. |
---|
| 111 | pcltau(i,k) = 3.0/2.0 * ( zflwp/rel ) |
---|
| 112 | . + zfiwp * (3.448e-03 + 2.431/rei) |
---|
| 113 | |
---|
| 114 | c -- cloud infrared emissivity: |
---|
| 115 | |
---|
| 116 | c [the broadband infrared absorption coefficient is parameterized |
---|
| 117 | c as a function of the effective cld droplet radius] |
---|
| 118 | |
---|
| 119 | c Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): |
---|
| 120 | k_ice = k_ice0 + 1.0/rei |
---|
| 121 | |
---|
| 122 | pclemi(i,k) = 1.0 |
---|
| 123 | . - EXP( - coef_chau*zflwp - DF*k_ice*zfiwp ) |
---|
| 124 | |
---|
| 125 | endif ! ok_newmicro |
---|
| 126 | |
---|
| 127 | lo = (pclc(i,k) .LE. seuil_neb) |
---|
| 128 | IF (lo) pclc(i,k) = 0.0 |
---|
| 129 | IF (lo) pcltau(i,k) = 0.0 |
---|
| 130 | IF (lo) pclemi(i,k) = 0.0 |
---|
| 131 | ENDDO |
---|
| 132 | ENDDO |
---|
| 133 | ccc DO k = 1, klev |
---|
| 134 | ccc DO i = 1, klon |
---|
| 135 | ccc t(i,k) = t(i,k) |
---|
| 136 | ccc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) |
---|
| 137 | ccc lo = pclc(i,k) .GT. (2.*1.e-5) |
---|
| 138 | ccc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) |
---|
| 139 | ccc . /(rg*pclc(i,k)) |
---|
| 140 | ccc zradef = 10.0 + (1.-sigs(k))*45.0 |
---|
| 141 | ccc pcltau(i,k) = 1.5 * zflwp / zradef |
---|
| 142 | ccc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) |
---|
| 143 | ccc zmsac = 0.13*(1.0-zfice) + 0.08*zfice |
---|
| 144 | ccc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) |
---|
| 145 | ccc if (.NOT.lo) pclc(i,k) = 0.0 |
---|
| 146 | ccc if (.NOT.lo) pcltau(i,k) = 0.0 |
---|
| 147 | ccc if (.NOT.lo) pclemi(i,k) = 0.0 |
---|
| 148 | ccc ENDDO |
---|
| 149 | ccc ENDDO |
---|
| 150 | cccccc print*, 'pas de nuage dans le rayonnement' |
---|
| 151 | cccccc DO k = 1, klev |
---|
| 152 | cccccc DO i = 1, klon |
---|
| 153 | cccccc pclc(i,k) = 0.0 |
---|
| 154 | cccccc pcltau(i,k) = 0.0 |
---|
| 155 | cccccc pclemi(i,k) = 0.0 |
---|
| 156 | cccccc ENDDO |
---|
| 157 | cccccc ENDDO |
---|
| 158 | C |
---|
| 159 | C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
| 160 | C |
---|
| 161 | DO i = 1, klon |
---|
| 162 | pct(i)=1.0 |
---|
| 163 | pch(i)=1.0 |
---|
| 164 | pcm(i) = 1.0 |
---|
| 165 | pcl(i) = 1.0 |
---|
| 166 | pctlwp(i) = 0.0 |
---|
| 167 | ENDDO |
---|
| 168 | C |
---|
| 169 | DO k = klev, 1, -1 |
---|
| 170 | DO i = 1, klon |
---|
| 171 | pctlwp(i) = pctlwp(i) |
---|
| 172 | . + pqlwp(i,k)*(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 173 | pct(i) = pct(i)*(1.0-pclc(i,k)) |
---|
| 174 | if (pplay(i,k).LE.cetahb*paprs(i,1)) |
---|
| 175 | . pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
| 176 | if (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
---|
| 177 | . pplay(i,k).LE.cetamb*paprs(i,1)) |
---|
| 178 | . pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
| 179 | if (pplay(i,k).GT.cetamb*paprs(i,1)) |
---|
| 180 | . pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
| 181 | ENDDO |
---|
| 182 | ENDDO |
---|
| 183 | C |
---|
| 184 | DO i = 1, klon |
---|
| 185 | pct(i)=1.-pct(i) |
---|
| 186 | pch(i)=1.-pch(i) |
---|
| 187 | pcm(i)=1.-pcm(i) |
---|
| 188 | pcl(i)=1.-pcl(i) |
---|
| 189 | ENDDO |
---|
| 190 | C |
---|
| 191 | RETURN |
---|
| 192 | END |
---|