[429] | 1 | SUBROUTINE diagphy(airephy,tit,iprt |
---|
[374] | 2 | $ , tops, topl, sols, soll, sens |
---|
| 3 | $ , evap, rain_fall, snow_fall, ts |
---|
| 4 | $ , d_etp_tot, d_qt_tot, d_ec_tot |
---|
| 5 | $ , fs_bound, fq_bound) |
---|
| 6 | C====================================================================== |
---|
| 7 | C |
---|
| 8 | C Purpose: |
---|
| 9 | C Compute the thermal flux and the watter mass flux at the atmosphere |
---|
| 10 | c boundaries. Print them and also the atmospheric enthalpy change and |
---|
| 11 | C the atmospheric mass change. |
---|
| 12 | C |
---|
| 13 | C Arguments: |
---|
[429] | 14 | C airephy-------input-R- grid area |
---|
[374] | 15 | C tit---------input-A15- Comment to be added in PRINT (CHARACTER*15) |
---|
| 16 | C iprt--------input-I- PRINT level ( <=0 : no PRINT) |
---|
| 17 | C tops(klon)--input-R- SW rad. at TOA (W/m2), positive up. |
---|
| 18 | C topl(klon)--input-R- LW rad. at TOA (W/m2), positive down |
---|
| 19 | C sols(klon)--input-R- Net SW flux above surface (W/m2), positive up |
---|
| 20 | C (i.e. -1 * flux absorbed by the surface) |
---|
| 21 | C soll(klon)--input-R- Net LW flux above surface (W/m2), positive up |
---|
| 22 | C (i.e. flux emited - flux absorbed by the surface) |
---|
| 23 | C sens(klon)--input-R- Sensible Flux at surface (W/m2), positive down |
---|
| 24 | C evap(klon)--input-R- Evaporation + sublimation watter vapour mass flux |
---|
| 25 | C (kg/m2/s), positive up |
---|
| 26 | C rain_fall(klon) |
---|
| 27 | C --input-R- Liquid watter mass flux (kg/m2/s), positive down |
---|
| 28 | C snow_fall(klon) |
---|
| 29 | C --input-R- Solid watter mass flux (kg/m2/s), positive down |
---|
| 30 | C ts(klon)----input-R- Surface temperature (K) |
---|
| 31 | C d_etp_tot---input-R- Heat flux equivalent to atmospheric enthalpy |
---|
| 32 | C change (W/m2) |
---|
| 33 | C d_qt_tot----input-R- Mass flux equivalent to atmospheric watter mass |
---|
| 34 | C change (kg/m2/s) |
---|
| 35 | C d_ec_tot----input-R- Flux equivalent to atmospheric cinetic energy |
---|
| 36 | C change (W/m2) |
---|
| 37 | C |
---|
| 38 | C fs_bound---output-R- Thermal flux at the atmosphere boundaries (W/m2) |
---|
| 39 | C fq_bound---output-R- Watter mass flux at the atmosphere boundaries (kg/m2/s) |
---|
| 40 | C |
---|
| 41 | C J.L. Dufresne, July 2002 |
---|
| 42 | C====================================================================== |
---|
| 43 | C |
---|
| 44 | implicit none |
---|
| 45 | |
---|
| 46 | #include "dimensions.h" |
---|
| 47 | #include "dimphy.h" |
---|
| 48 | #include "YOMCST.h" |
---|
| 49 | #include "YOETHF.h" |
---|
| 50 | C |
---|
| 51 | C Input variables |
---|
[429] | 52 | real airephy(klon) |
---|
[374] | 53 | CHARACTER*15 tit |
---|
| 54 | INTEGER iprt |
---|
| 55 | real tops(klon),topl(klon),sols(klon),soll(klon) |
---|
| 56 | real sens(klon),evap(klon),rain_fall(klon),snow_fall(klon) |
---|
| 57 | REAL ts(klon) |
---|
| 58 | REAL d_etp_tot, d_qt_tot, d_ec_tot |
---|
| 59 | c Output variables |
---|
| 60 | REAL fs_bound, fq_bound |
---|
| 61 | C |
---|
| 62 | C Local variables |
---|
| 63 | real stops,stopl,ssols,ssoll |
---|
| 64 | real ssens,sfront,slat |
---|
| 65 | real airetot, zcpvap, zcwat, zcice |
---|
| 66 | REAL rain_fall_tot, snow_fall_tot, evap_tot |
---|
| 67 | C |
---|
| 68 | integer i |
---|
| 69 | C |
---|
| 70 | integer pas |
---|
| 71 | save pas |
---|
| 72 | data pas/0/ |
---|
| 73 | C |
---|
| 74 | pas=pas+1 |
---|
| 75 | stops=0. |
---|
| 76 | stopl=0. |
---|
| 77 | ssols=0. |
---|
| 78 | ssoll=0. |
---|
| 79 | ssens=0. |
---|
| 80 | sfront = 0. |
---|
| 81 | evap_tot = 0. |
---|
| 82 | rain_fall_tot = 0. |
---|
| 83 | snow_fall_tot = 0. |
---|
| 84 | airetot=0. |
---|
| 85 | C |
---|
| 86 | C Pour les chaleur specifiques de la vapeur d'eau, de l'eau et de |
---|
| 87 | C la glace, on travaille par difference a la chaleur specifique de l' |
---|
| 88 | c air sec. En effet, comme on travaille a niveau de pression donne, |
---|
| 89 | C toute variation de la masse d'un constituant est totalement |
---|
| 90 | c compense par une variation de masse d'air. |
---|
| 91 | C |
---|
| 92 | zcpvap=RCPV-RCPD |
---|
| 93 | zcwat=RCW-RCPD |
---|
| 94 | zcice=RCS-RCPD |
---|
| 95 | C |
---|
| 96 | do i=1,klon |
---|
| 97 | stops=stops+tops(i)*airephy(i) |
---|
| 98 | stopl=stopl+topl(i)*airephy(i) |
---|
| 99 | ssols=ssols+sols(i)*airephy(i) |
---|
| 100 | ssoll=ssoll+soll(i)*airephy(i) |
---|
| 101 | ssens=ssens+sens(i)*airephy(i) |
---|
| 102 | sfront = sfront |
---|
| 103 | $ + ( evap(i)*zcpvap-rain_fall(i)*zcwat-snow_fall(i)*zcice |
---|
| 104 | $ ) *ts(i) *airephy(i) |
---|
| 105 | evap_tot = evap_tot + evap(i)*airephy(i) |
---|
| 106 | rain_fall_tot = rain_fall_tot + rain_fall(i)*airephy(i) |
---|
| 107 | snow_fall_tot = snow_fall_tot + snow_fall(i)*airephy(i) |
---|
| 108 | airetot=airetot+airephy(i) |
---|
| 109 | enddo |
---|
| 110 | stops=stops/airetot |
---|
| 111 | stopl=stopl/airetot |
---|
| 112 | ssols=ssols/airetot |
---|
| 113 | ssoll=ssoll/airetot |
---|
| 114 | ssens=ssens/airetot |
---|
| 115 | sfront = sfront/airetot |
---|
| 116 | evap_tot = evap_tot /airetot |
---|
| 117 | rain_fall_tot = rain_fall_tot/airetot |
---|
| 118 | snow_fall_tot = snow_fall_tot/airetot |
---|
| 119 | C |
---|
| 120 | slat = RLVTT * rain_fall_tot + RLSTT * snow_fall_tot |
---|
| 121 | C Heat flux at atm. boundaries |
---|
| 122 | fs_bound = stops-stopl - (ssols+ssoll)+ssens+sfront |
---|
| 123 | $ + slat |
---|
| 124 | C Watter flux at atm. boundaries |
---|
| 125 | fq_bound = evap_tot - rain_fall_tot -snow_fall_tot |
---|
| 126 | C |
---|
| 127 | IF (iprt.ge.1) write(6,6666) |
---|
| 128 | $ tit, pas, fs_bound, d_etp_tot, fq_bound, d_qt_tot |
---|
| 129 | C |
---|
[429] | 130 | IF (iprt.ge.1) write(6,6668) |
---|
| 131 | $ tit, pas, d_etp_tot+d_ec_tot-fs_bound, d_qt_tot-fq_bound |
---|
| 132 | C |
---|
[374] | 133 | IF (iprt.ge.2) write(6,6667) |
---|
| 134 | $ tit, pas, stops,stopl,ssols,ssoll,ssens,slat,evap_tot |
---|
| 135 | $ ,rain_fall_tot+snow_fall_tot |
---|
| 136 | |
---|
| 137 | return |
---|
| 138 | |
---|
[429] | 139 | 6666 format('Phys. Flux Budget ',a15,1i6,2f8.2,2(1pE13.5)) |
---|
| 140 | 6667 format('Phys. Boundary Flux ',a15,1i6,6f8.2,2(1pE13.5)) |
---|
| 141 | 6668 format('Phys. Total Budget ',a15,1i6,f8.2,2(1pE13.5)) |
---|
[374] | 142 | |
---|
| 143 | end |
---|
| 144 | |
---|
| 145 | C====================================================================== |
---|
[429] | 146 | SUBROUTINE diagetpq(airephy,tit,iprt,idiag,idiag2,dtime |
---|
[374] | 147 | e ,t,q,ql,qs,u,v,paprs,pplay |
---|
| 148 | s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) |
---|
| 149 | C====================================================================== |
---|
| 150 | C |
---|
| 151 | C Purpose: |
---|
| 152 | C Calcul la difference d'enthalpie et de masse d'eau entre 2 appels, |
---|
| 153 | C et calcul le flux de chaleur et le flux d'eau necessaire a ces |
---|
| 154 | C changements. Ces valeurs sont moyennees sur la surface de tout |
---|
| 155 | C le globe et sont exprime en W/2 et kg/s/m2 |
---|
| 156 | C Outil pour diagnostiquer la conservation de l'energie |
---|
| 157 | C et de la masse dans la physique. Suppose que les niveau de |
---|
| 158 | c pression entre couche ne varie pas entre 2 appels. |
---|
| 159 | C |
---|
| 160 | C Plusieurs de ces diagnostics peuvent etre fait en parallele: les |
---|
| 161 | c bilans sont sauvegardes dans des tableaux indices. On parlera |
---|
| 162 | C "d'indice de diagnostic" |
---|
| 163 | c |
---|
| 164 | C |
---|
| 165 | c====================================================================== |
---|
| 166 | C Arguments: |
---|
[429] | 167 | C airephy-------input-R- grid area |
---|
[374] | 168 | C tit-----imput-A15- Comment added in PRINT (CHARACTER*15) |
---|
| 169 | C iprt----input-I- PRINT level ( <=1 : no PRINT) |
---|
| 170 | C idiag---input-I- indice dans lequel sera range les nouveaux |
---|
| 171 | C bilans d' entalpie et de masse |
---|
| 172 | C idiag2--input-I-les nouveaux bilans d'entalpie et de masse |
---|
| 173 | C sont compare au bilan de d'enthalpie de masse de |
---|
| 174 | C l'indice numero idiag2 |
---|
| 175 | C Cas parriculier : si idiag2=0, pas de comparaison, on |
---|
| 176 | c sort directement les bilans d'enthalpie et de masse |
---|
| 177 | C dtime----input-R- time step (s) |
---|
| 178 | c t--------input-R- temperature (K) |
---|
| 179 | c q--------input-R- vapeur d'eau (kg/kg) |
---|
| 180 | c ql-------input-R- liquid watter (kg/kg) |
---|
| 181 | c qs-------input-R- solid watter (kg/kg) |
---|
| 182 | c u--------input-R- vitesse u |
---|
| 183 | c v--------input-R- vitesse v |
---|
| 184 | c paprs----input-R- pression a intercouche (Pa) |
---|
| 185 | c pplay----input-R- pression au milieu de couche (Pa) |
---|
| 186 | c |
---|
| 187 | C the following total value are computed by UNIT of earth surface |
---|
| 188 | C |
---|
| 189 | C d_h_vcol--output-R- Heat flux (W/m2) define as the Enthalpy |
---|
| 190 | c change (J/m2) during one time step (dtime) for the whole |
---|
| 191 | C atmosphere (air, watter vapour, liquid and solid) |
---|
| 192 | C d_qt------output-R- total water mass flux (kg/m2/s) defined as the |
---|
| 193 | C total watter (kg/m2) change during one time step (dtime), |
---|
| 194 | C d_qw------output-R- same, for the watter vapour only (kg/m2/s) |
---|
| 195 | C d_ql------output-R- same, for the liquid watter only (kg/m2/s) |
---|
| 196 | C d_qs------output-R- same, for the solid watter only (kg/m2/s) |
---|
| 197 | C d_ec------output-R- Cinetic Energy Budget (W/m2) for vertical air column |
---|
| 198 | C |
---|
| 199 | C other (COMMON...) |
---|
[429] | 200 | C RCPD, RCPV, .... |
---|
[374] | 201 | C |
---|
| 202 | C J.L. Dufresne, July 2002 |
---|
| 203 | c====================================================================== |
---|
| 204 | |
---|
| 205 | IMPLICIT NONE |
---|
| 206 | C |
---|
| 207 | #include "dimensions.h" |
---|
| 208 | #include "dimphy.h" |
---|
| 209 | #include "YOMCST.h" |
---|
| 210 | #include "YOETHF.h" |
---|
| 211 | C |
---|
| 212 | c Input variables |
---|
[429] | 213 | real airephy(klon) |
---|
[374] | 214 | CHARACTER*15 tit |
---|
| 215 | INTEGER iprt,idiag, idiag2 |
---|
| 216 | REAL dtime |
---|
| 217 | REAL t(klon,klev), q(klon,klev), ql(klon,klev), qs(klon,klev) |
---|
| 218 | REAL u(klon,klev), v(klon,klev) |
---|
| 219 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
| 220 | c Output variables |
---|
| 221 | REAL d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec |
---|
| 222 | C |
---|
| 223 | C Local variables |
---|
| 224 | c |
---|
| 225 | REAL h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot |
---|
| 226 | . , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot |
---|
| 227 | c h_vcol_tot-- total enthalpy of vertical air column |
---|
| 228 | C (air with watter vapour, liquid and solid) (J/m2) |
---|
| 229 | c h_dair_tot-- total enthalpy of dry air (J/m2) |
---|
| 230 | c h_qw_tot---- total enthalpy of watter vapour (J/m2) |
---|
| 231 | c h_ql_tot---- total enthalpy of liquid watter (J/m2) |
---|
| 232 | c h_qs_tot---- total enthalpy of solid watter (J/m2) |
---|
| 233 | c qw_tot------ total mass of watter vapour (kg/m2) |
---|
| 234 | c ql_tot------ total mass of liquid watter (kg/m2) |
---|
| 235 | c qs_tot------ total mass of solid watter (kg/m2) |
---|
| 236 | c ec_tot------ total cinetic energy (kg/m2) |
---|
| 237 | C |
---|
| 238 | REAL zairm(klon,klev) ! layer air mass (kg/m2) |
---|
| 239 | REAL zqw_col(klon) |
---|
| 240 | REAL zql_col(klon) |
---|
| 241 | REAL zqs_col(klon) |
---|
| 242 | REAL zec_col(klon) |
---|
| 243 | REAL zh_dair_col(klon) |
---|
| 244 | REAL zh_qw_col(klon), zh_ql_col(klon), zh_qs_col(klon) |
---|
| 245 | C |
---|
| 246 | REAL d_h_dair, d_h_qw, d_h_ql, d_h_qs |
---|
| 247 | C |
---|
| 248 | REAL airetot, zcpvap, zcwat, zcice |
---|
| 249 | C |
---|
| 250 | INTEGER i, k |
---|
| 251 | C |
---|
| 252 | INTEGER ndiag ! max number of diagnostic in parallel |
---|
| 253 | PARAMETER (ndiag=10) |
---|
| 254 | integer pas(ndiag) |
---|
| 255 | save pas |
---|
| 256 | data pas/ndiag*0/ |
---|
| 257 | C |
---|
| 258 | REAL h_vcol_pre(ndiag), h_dair_pre(ndiag), h_qw_pre(ndiag) |
---|
| 259 | $ , h_ql_pre(ndiag), h_qs_pre(ndiag), qw_pre(ndiag) |
---|
| 260 | $ , ql_pre(ndiag), qs_pre(ndiag) , ec_pre(ndiag) |
---|
| 261 | SAVE h_vcol_pre, h_dair_pre, h_qw_pre, h_ql_pre |
---|
| 262 | $ , h_qs_pre, qw_pre, ql_pre, qs_pre , ec_pre |
---|
| 263 | |
---|
| 264 | c====================================================================== |
---|
| 265 | C |
---|
| 266 | DO k = 1, klev |
---|
| 267 | DO i = 1, klon |
---|
| 268 | C layer air mass |
---|
| 269 | zairm(i,k) = (paprs(i,k)-paprs(i,k+1))/RG |
---|
| 270 | ENDDO |
---|
| 271 | END DO |
---|
| 272 | C |
---|
| 273 | C Reset variables |
---|
| 274 | DO i = 1, klon |
---|
| 275 | zqw_col(i)=0. |
---|
| 276 | zql_col(i)=0. |
---|
| 277 | zqs_col(i)=0. |
---|
| 278 | zec_col(i) = 0. |
---|
| 279 | zh_dair_col(i) = 0. |
---|
| 280 | zh_qw_col(i) = 0. |
---|
| 281 | zh_ql_col(i) = 0. |
---|
| 282 | zh_qs_col(i) = 0. |
---|
| 283 | ENDDO |
---|
| 284 | C |
---|
| 285 | zcpvap=RCPV |
---|
| 286 | zcwat=RCW |
---|
| 287 | zcice=RCS |
---|
| 288 | C |
---|
| 289 | C Compute vertical sum for each atmospheric column |
---|
| 290 | C ================================================ |
---|
| 291 | DO k = 1, klev |
---|
| 292 | DO i = 1, klon |
---|
| 293 | C Watter mass |
---|
| 294 | zqw_col(i) = zqw_col(i) + q(i,k)*zairm(i,k) |
---|
| 295 | zql_col(i) = zql_col(i) + ql(i,k)*zairm(i,k) |
---|
| 296 | zqs_col(i) = zqs_col(i) + qs(i,k)*zairm(i,k) |
---|
| 297 | C Cinetic Energy |
---|
| 298 | zec_col(i) = zec_col(i) |
---|
[429] | 299 | $ +0.5*(u(i,k)**2+v(i,k)**2)*zairm(i,k) |
---|
[374] | 300 | C Air enthalpy |
---|
| 301 | zh_dair_col(i) = zh_dair_col(i) |
---|
| 302 | $ + RCPD*(1.-q(i,k)-ql(i,k)-qs(i,k))*zairm(i,k)*t(i,k) |
---|
| 303 | zh_qw_col(i) = zh_qw_col(i) |
---|
| 304 | $ + zcpvap*q(i,k)*zairm(i,k)*t(i,k) |
---|
| 305 | zh_ql_col(i) = zh_ql_col(i) |
---|
| 306 | $ + zcwat*ql(i,k)*zairm(i,k)*t(i,k) |
---|
| 307 | $ - RLVTT*ql(i,k)*zairm(i,k) |
---|
| 308 | zh_qs_col(i) = zh_qs_col(i) |
---|
| 309 | $ + zcice*qs(i,k)*zairm(i,k)*t(i,k) |
---|
| 310 | $ - RLSTT*qs(i,k)*zairm(i,k) |
---|
| 311 | |
---|
| 312 | END DO |
---|
| 313 | ENDDO |
---|
| 314 | C |
---|
| 315 | C Mean over the planete surface |
---|
| 316 | C ============================= |
---|
| 317 | qw_tot = 0. |
---|
| 318 | ql_tot = 0. |
---|
| 319 | qs_tot = 0. |
---|
| 320 | ec_tot = 0. |
---|
| 321 | h_vcol_tot = 0. |
---|
| 322 | h_dair_tot = 0. |
---|
| 323 | h_qw_tot = 0. |
---|
| 324 | h_ql_tot = 0. |
---|
| 325 | h_qs_tot = 0. |
---|
| 326 | airetot=0. |
---|
| 327 | C |
---|
| 328 | do i=1,klon |
---|
| 329 | qw_tot = qw_tot + zqw_col(i)*airephy(i) |
---|
| 330 | ql_tot = ql_tot + zql_col(i)*airephy(i) |
---|
| 331 | qs_tot = qs_tot + zqs_col(i)*airephy(i) |
---|
| 332 | ec_tot = ec_tot + zec_col(i)*airephy(i) |
---|
| 333 | h_dair_tot = h_dair_tot + zh_dair_col(i)*airephy(i) |
---|
| 334 | h_qw_tot = h_qw_tot + zh_qw_col(i)*airephy(i) |
---|
| 335 | h_ql_tot = h_ql_tot + zh_ql_col(i)*airephy(i) |
---|
| 336 | h_qs_tot = h_qs_tot + zh_qs_col(i)*airephy(i) |
---|
| 337 | airetot=airetot+airephy(i) |
---|
| 338 | END DO |
---|
| 339 | C |
---|
| 340 | qw_tot = qw_tot/airetot |
---|
| 341 | ql_tot = ql_tot/airetot |
---|
| 342 | qs_tot = qs_tot/airetot |
---|
| 343 | ec_tot = ec_tot/airetot |
---|
| 344 | h_dair_tot = h_dair_tot/airetot |
---|
| 345 | h_qw_tot = h_qw_tot/airetot |
---|
| 346 | h_ql_tot = h_ql_tot/airetot |
---|
| 347 | h_qs_tot = h_qs_tot/airetot |
---|
| 348 | C |
---|
| 349 | h_vcol_tot = h_dair_tot+h_qw_tot+h_ql_tot+h_qs_tot |
---|
| 350 | C |
---|
| 351 | C Compute the change of the atmospheric state compare to the one |
---|
| 352 | C stored in "idiag2", and convert it in flux. THis computation |
---|
| 353 | C is performed IF idiag2 /= 0 and IF it is not the first CALL |
---|
| 354 | c for "idiag" |
---|
| 355 | C =================================== |
---|
| 356 | C |
---|
| 357 | IF ( (idiag2.gt.0) .and. (pas(idiag2) .ne. 0) ) THEN |
---|
| 358 | d_h_vcol = (h_vcol_tot - h_vcol_pre(idiag2) )/dtime |
---|
| 359 | d_h_dair = (h_dair_tot- h_dair_pre(idiag2))/dtime |
---|
| 360 | d_h_qw = (h_qw_tot - h_qw_pre(idiag2) )/dtime |
---|
| 361 | d_h_ql = (h_ql_tot - h_ql_pre(idiag2) )/dtime |
---|
| 362 | d_h_qs = (h_qs_tot - h_qs_pre(idiag2) )/dtime |
---|
| 363 | d_qw = (qw_tot - qw_pre(idiag2) )/dtime |
---|
| 364 | d_ql = (ql_tot - ql_pre(idiag2) )/dtime |
---|
| 365 | d_qs = (qs_tot - qs_pre(idiag2) )/dtime |
---|
| 366 | d_ec = (ec_tot - ec_pre(idiag2) )/dtime |
---|
| 367 | d_qt = d_qw + d_ql + d_qs |
---|
| 368 | ELSE |
---|
| 369 | d_h_vcol = 0. |
---|
| 370 | d_h_dair = 0. |
---|
| 371 | d_h_qw = 0. |
---|
| 372 | d_h_ql = 0. |
---|
| 373 | d_h_qs = 0. |
---|
| 374 | d_qw = 0. |
---|
| 375 | d_ql = 0. |
---|
| 376 | d_qs = 0. |
---|
| 377 | d_ec = 0. |
---|
| 378 | d_qt = 0. |
---|
| 379 | ENDIF |
---|
| 380 | C |
---|
| 381 | IF (iprt.ge.2) THEN |
---|
| 382 | WRITE(6,9000) tit,pas(idiag),d_qt,d_qw,d_ql,d_qs |
---|
[429] | 383 | 9000 format('Phys. Watter Mass Budget (kg/m2/s)',A15 |
---|
[374] | 384 | $ ,1i6,10(1pE14.6)) |
---|
| 385 | WRITE(6,9001) tit,pas(idiag), d_h_vcol |
---|
[429] | 386 | 9001 format('Phys. Enthalpy Budget (W/m2) ',A15,1i6,10(F8.2)) |
---|
[374] | 387 | WRITE(6,9002) tit,pas(idiag), d_ec |
---|
[429] | 388 | 9002 format('Phys. Cinetic Energy Budget (W/m2) ',A15,1i6,10(F8.2)) |
---|
[374] | 389 | END IF |
---|
| 390 | C |
---|
| 391 | C Store the new atmospheric state in "idiag" |
---|
| 392 | C |
---|
| 393 | pas(idiag)=pas(idiag)+1 |
---|
| 394 | h_vcol_pre(idiag) = h_vcol_tot |
---|
| 395 | h_dair_pre(idiag) = h_dair_tot |
---|
| 396 | h_qw_pre(idiag) = h_qw_tot |
---|
| 397 | h_ql_pre(idiag) = h_ql_tot |
---|
| 398 | h_qs_pre(idiag) = h_qs_tot |
---|
| 399 | qw_pre(idiag) = qw_tot |
---|
| 400 | ql_pre(idiag) = ql_tot |
---|
| 401 | qs_pre(idiag) = qs_tot |
---|
| 402 | ec_pre (idiag) = ec_tot |
---|
| 403 | C |
---|
| 404 | RETURN |
---|
| 405 | END |
---|