1 | SUBROUTINE clmain(dtime,pctsrf,t,q,u,v, |
---|
2 | . soil_model,ts,soilcap,soilflux, |
---|
3 | . paprs,pplay,radsol,snow,qsol, |
---|
4 | . xlat, rugos, |
---|
5 | . d_t,d_q,d_u,d_v,d_ts, |
---|
6 | . flux_t,flux_q,flux_u,flux_v,cdragh,cdragm, |
---|
7 | . rugmer, dflux_t,dflux_q, |
---|
8 | . zcoefh,zu1,zv1) |
---|
9 | cAA . itr, tr, flux_surf, d_tr) |
---|
10 | cAA REM: |
---|
11 | cAA----- |
---|
12 | cAA Tout ce qui a trait au traceurs est dans phytrac maintenant |
---|
13 | cAA pour l'instant le calcul de la couche limite pour les traceurs |
---|
14 | cAA se fait avec cltrac et ne tient pas compte de la differentiation |
---|
15 | cAA des sous-fraction de sol. |
---|
16 | cAA REM bis : |
---|
17 | cAA---------- |
---|
18 | cAA Pour pouvoir extraire les coefficient d'echanges et le vent |
---|
19 | cAA dans la premiere couche, 3 champs supplementaires ont ete crees |
---|
20 | cAA zcoefh,zu1 et zv1. Pour l'instant nous avons moyenne les valeurs |
---|
21 | cAA de ces trois champs sur les 4 subsurfaces du modele. Dans l'avenir |
---|
22 | cAA si les informations des subsurfaces doivent etre prises en compte |
---|
23 | cAA il faudra sortir ces memes champs en leur ajoutant une dimension, |
---|
24 | cAA c'est a dire nbsrf (nbre de subsurface). |
---|
25 | |
---|
26 | IMPLICIT none |
---|
27 | c====================================================================== |
---|
28 | c Auteur(s) Z.X. Li (LMD/CNRS) date: 19930818 |
---|
29 | c Objet: interface de "couche limite" (diffusion verticale) |
---|
30 | c Arguments: |
---|
31 | c dtime----input-R- interval du temps (secondes) |
---|
32 | c t--------input-R- temperature (K) |
---|
33 | c q--------input-R- vapeur d'eau (kg/kg) |
---|
34 | c u--------input-R- vitesse u |
---|
35 | c v--------input-R- vitesse v |
---|
36 | c ts-------input-R- temperature du sol (en Kelvin) |
---|
37 | c paprs----input-R- pression a intercouche (Pa) |
---|
38 | c pplay----input-R- pression au milieu de couche (Pa) |
---|
39 | c radsol---input-R- flux radiatif net (positif vers le sol) en W/m**2 |
---|
40 | c capsol---input-R- inversion de l'effective capacite du sol (J/m2/K) |
---|
41 | c beta-----input-R- coefficient de l'evaporation reelle (0 a 1) |
---|
42 | c dif_grnd-input-R- coeff. de diffusion (chaleur) vers le sol profond |
---|
43 | c xlat-----input-R- latitude en degree |
---|
44 | c rugos----input-R- longeur de rugosite (en m) |
---|
45 | c |
---|
46 | c d_t------output-R- le changement pour "t" |
---|
47 | c d_q------output-R- le changement pour "q" |
---|
48 | c d_u------output-R- le changement pour "u" |
---|
49 | c d_v------output-R- le changement pour "v" |
---|
50 | c d_ts-----output-R- le changement pour "ts" |
---|
51 | c flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2) |
---|
52 | c (orientation positive vers le bas) |
---|
53 | c flux_q---output-R- flux de vapeur d'eau (kg/m**2/s) |
---|
54 | c flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal |
---|
55 | c flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal |
---|
56 | c rugmer---output-R- longeur de rugosite sur mer (m) |
---|
57 | c dflux_t derive du flux sensible |
---|
58 | c dflux_q derive du flux latent |
---|
59 | cAA on rajoute en output yu1 et yv1 qui sont les vents dans |
---|
60 | cAA la premiere couche |
---|
61 | cAA ces 4 variables sont maintenant traites dans phytrac |
---|
62 | c itr--------input-I- nombre de traceurs |
---|
63 | c tr---------input-R- q. de traceurs |
---|
64 | c flux_surf--input-R- flux de traceurs a la surface |
---|
65 | c d_tr-------output-R tendance de traceurs |
---|
66 | c====================================================================== |
---|
67 | #include "dimensions.h" |
---|
68 | #include "dimphy.h" |
---|
69 | #include "indicesol.h" |
---|
70 | c |
---|
71 | LOGICAL soil_model |
---|
72 | c |
---|
73 | REAL dtime |
---|
74 | REAL t(klon,klev), q(klon,klev) |
---|
75 | REAL u(klon,klev), v(klon,klev) |
---|
76 | REAL paprs(klon,klev+1), pplay(klon,klev), radsol(klon) |
---|
77 | REAL xlat(klon) |
---|
78 | REAL d_t(klon, klev), d_q(klon, klev) |
---|
79 | REAL d_u(klon, klev), d_v(klon, klev) |
---|
80 | REAL flux_t(klon,klev), flux_q(klon,klev) |
---|
81 | REAL dflux_t(klon), dflux_q(klon) |
---|
82 | REAL flux_u(klon,klev), flux_v(klon,klev) |
---|
83 | REAL rugmer(klon) |
---|
84 | REAL cdragh(klon), cdragm(klon) |
---|
85 | cAA INTEGER itr |
---|
86 | cAA REAL tr(klon,klev,nbtr) |
---|
87 | cAA REAL d_tr(klon,klev,nbtr) |
---|
88 | cAA REAL flux_surf(klon,nbtr) |
---|
89 | c |
---|
90 | REAL pctsrf(klon,nbsrf) |
---|
91 | REAL ts(klon,nbsrf) |
---|
92 | REAL d_ts(klon,nbsrf) |
---|
93 | REAL snow(klon,nbsrf) |
---|
94 | REAL qsol(klon,nbsrf) |
---|
95 | REAL rugos(klon,nbsrf) |
---|
96 | cAA |
---|
97 | REAL zcoefh(klon,klev) |
---|
98 | REAL zu1(klon) |
---|
99 | REAL zv1(klon) |
---|
100 | cAA |
---|
101 | c====================================================================== |
---|
102 | EXTERNAL clqh, clvent, coefkz, calbeta, cltrac |
---|
103 | c====================================================================== |
---|
104 | REAL yts(klon), yrugos(klon), ypct(klon) |
---|
105 | REAL ycal(klon), ybeta(klon), ydif(klon) |
---|
106 | REAL yu1(klon), yv1(klon) |
---|
107 | REAL yrugm(klon), yrads(klon) |
---|
108 | REAL y_d_ts(klon) |
---|
109 | REAL y_d_t(klon, klev), y_d_q(klon, klev) |
---|
110 | REAL y_d_u(klon, klev), y_d_v(klon, klev) |
---|
111 | REAL y_flux_t(klon,klev), y_flux_q(klon,klev) |
---|
112 | REAL y_flux_u(klon,klev), y_flux_v(klon,klev) |
---|
113 | REAL y_dflux_t(klon), y_dflux_q(klon) |
---|
114 | REAL ycoefh(klon,klev), ycoefm(klon,klev) |
---|
115 | REAL ygamt(klon,2:klev) ! contre-gradient pour temperature |
---|
116 | REAL ygamq(klon,2:klev) ! contre-gradient pour humidite |
---|
117 | REAL yu(klon,klev), yv(klon,klev) |
---|
118 | REAL yt(klon,klev), yq(klon,klev) |
---|
119 | REAL ypaprs(klon,klev+1), ypplay(klon,klev), ydelp(klon,klev) |
---|
120 | cAA REAL ytr(klon,klev,nbtr) |
---|
121 | cAA REAL y_d_tr(klon,klev,nbtr) |
---|
122 | cAA REAL yflxsrf(klon,nbtr) |
---|
123 | c |
---|
124 | LOGICAL contreg |
---|
125 | PARAMETER (contreg=.TRUE.) |
---|
126 | c |
---|
127 | LOGICAL ok_nonloc |
---|
128 | PARAMETER (ok_nonloc=.FALSE.) |
---|
129 | REAL y_cd_h(klon), y_cd_m(klon) |
---|
130 | REAL ycoefm0(klon,klev), ycoefh0(klon,klev) |
---|
131 | c |
---|
132 | #include "YOMCST.h" |
---|
133 | REAL u1lay(klon), v1lay(klon) |
---|
134 | REAL delp(klon,klev) |
---|
135 | REAL capsol(klon), beta(klon), dif_grnd(klon) |
---|
136 | REAL cal(klon) |
---|
137 | REAL soilcap(klon,nbsrf), soilflux(klon,nbsrf) |
---|
138 | REAL totalflu(klon) |
---|
139 | INTEGER i, k, nsrf |
---|
140 | cAA INTEGER it |
---|
141 | INTEGER ni(klon), knon, j |
---|
142 | c====================================================================== |
---|
143 | REAL zx_alf1, zx_alf2 !valeur ambiante par extrapola. |
---|
144 | c====================================================================== |
---|
145 | DO k = 1, klev ! epaisseur de couche |
---|
146 | DO i = 1, klon |
---|
147 | delp(i,k) = paprs(i,k)-paprs(i,k+1) |
---|
148 | ENDDO |
---|
149 | ENDDO |
---|
150 | DO i = 1, klon ! vent de la premiere couche |
---|
151 | ccc zx_alf1 = (paprs(i,1)-pplay(i,2))/(pplay(i,1)-pplay(i,2)) |
---|
152 | zx_alf1 = 1.0 |
---|
153 | zx_alf2 = 1.0 - zx_alf1 |
---|
154 | u1lay(i) = u(i,1)*zx_alf1 + u(i,2)*zx_alf2 |
---|
155 | v1lay(i) = v(i,1)*zx_alf1 + v(i,2)*zx_alf2 |
---|
156 | ENDDO |
---|
157 | c |
---|
158 | c initialisation: |
---|
159 | c |
---|
160 | DO i = 1, klon |
---|
161 | rugmer(i) = 0.0 |
---|
162 | cdragh(i) = 0.0 |
---|
163 | cdragm(i) = 0.0 |
---|
164 | dflux_t(i) = 0.0 |
---|
165 | dflux_q(i) = 0.0 |
---|
166 | zu1(i) = 0.0 |
---|
167 | zv1(i) = 0.0 |
---|
168 | ENDDO |
---|
169 | DO nsrf = 1, nbsrf |
---|
170 | DO i = 1, klon |
---|
171 | d_ts(i,nsrf) = 0.0 |
---|
172 | ENDDO |
---|
173 | ENDDO |
---|
174 | DO k = 1, klev |
---|
175 | DO i = 1, klon |
---|
176 | d_t(i,k) = 0.0 |
---|
177 | d_q(i,k) = 0.0 |
---|
178 | flux_t(i,k) = 0.0 |
---|
179 | flux_q(i,k) = 0.0 |
---|
180 | d_u(i,k) = 0.0 |
---|
181 | d_v(i,k) = 0.0 |
---|
182 | flux_u(i,k) = 0.0 |
---|
183 | flux_v(i,k) = 0.0 |
---|
184 | zcoefh(i,k) = 0.0 |
---|
185 | ENDDO |
---|
186 | ENDDO |
---|
187 | cAA IF (itr.GE.1) THEN |
---|
188 | cAA DO it = 1, itr |
---|
189 | cAA DO k = 1, klev |
---|
190 | cAA DO i = 1, klon |
---|
191 | cAA d_tr(i,k,it) = 0.0 |
---|
192 | cAA ENDDO |
---|
193 | cAA ENDDO |
---|
194 | cAA ENDDO |
---|
195 | cAA ENDIF |
---|
196 | c |
---|
197 | c Boucler sur toutes les sous-fractions du sol: |
---|
198 | c |
---|
199 | DO 99999 nsrf = 1, nbsrf |
---|
200 | c |
---|
201 | c prescrire les proprietes du sol: |
---|
202 | CALL calbeta(dtime,nsrf,snow,qsol, beta,capsol,dif_grnd) |
---|
203 | IF (.NOT.soil_model) THEN |
---|
204 | DO i = 1, klon |
---|
205 | cal(i) = RCPD * capsol(i) |
---|
206 | totalflu(i) = radsol(i) |
---|
207 | ENDDO |
---|
208 | ELSE |
---|
209 | DO i = 1, klon |
---|
210 | totalflu(i) = soilflux(i,nsrf) + radsol(i) |
---|
211 | IF (nsrf.EQ.is_oce) THEN |
---|
212 | cal(i) = 0.0 |
---|
213 | ELSE |
---|
214 | cal(i) = RCPD / soilcap(i,nsrf) |
---|
215 | ENDIF |
---|
216 | ENDDO |
---|
217 | ENDIF |
---|
218 | c |
---|
219 | c chercher les indices: |
---|
220 | DO j = 1, klon |
---|
221 | ni(j) = 0 |
---|
222 | ENDDO |
---|
223 | knon = 0 |
---|
224 | DO i = 1, klon |
---|
225 | IF (pctsrf(i,nsrf).GT.epsfra) THEN |
---|
226 | knon = knon + 1 |
---|
227 | ni(knon) = i |
---|
228 | ENDIF |
---|
229 | ENDDO |
---|
230 | c |
---|
231 | IF (knon.EQ.0) GOTO 99999 |
---|
232 | DO j = 1, knon |
---|
233 | i = ni(j) |
---|
234 | ypct(j) = pctsrf(i,nsrf) |
---|
235 | yts(j) = ts(i,nsrf) |
---|
236 | yrugos(j) = rugos(i,nsrf) |
---|
237 | yu1(j) = u1lay(i) |
---|
238 | yv1(j) = v1lay(i) |
---|
239 | yrads(j) = totalflu(i) |
---|
240 | ycal(j) = cal(i) |
---|
241 | ybeta(j) = beta(i) |
---|
242 | ydif(j) = dif_grnd(i) |
---|
243 | ypaprs(j,klev+1) = paprs(i,klev+1) |
---|
244 | ENDDO |
---|
245 | DO k = 1, klev |
---|
246 | DO j = 1, knon |
---|
247 | i = ni(j) |
---|
248 | ypaprs(j,k) = paprs(i,k) |
---|
249 | ypplay(j,k) = pplay(i,k) |
---|
250 | ydelp(j,k) = delp(i,k) |
---|
251 | yu(j,k) = u(i,k) |
---|
252 | yv(j,k) = v(i,k) |
---|
253 | yt(j,k) = t(i,k) |
---|
254 | yq(j,k) = q(i,k) |
---|
255 | ENDDO |
---|
256 | ENDDO |
---|
257 | c |
---|
258 | cAA IF (itr.GE.1) THEN |
---|
259 | cAA DO it = 1, itr |
---|
260 | cAA DO k = 1, klev |
---|
261 | cAA DO j = 1, knon |
---|
262 | cAA i = ni(j) |
---|
263 | cAA ytr(j,k,it) = tr(i,k,it) |
---|
264 | cAA ENDDO |
---|
265 | cAA ENDDO |
---|
266 | cAA DO j = 1, knon |
---|
267 | cAA i = ni(j) |
---|
268 | cAA yflxsrf(j,it) = flux_surf(i,it) |
---|
269 | cAA ENDDO |
---|
270 | cAA ENDDO |
---|
271 | cAA ENDIF |
---|
272 | c |
---|
273 | c calculer Cdrag et les coefficients d'echange |
---|
274 | CALL coefkz(nsrf, knon, ypaprs, ypplay, |
---|
275 | . yts, yrugos, yu, yv, yt, yq, |
---|
276 | . ycoefm, ycoefh) |
---|
277 | CALL coefkz2(nsrf, knon, paprs, pplay,t, |
---|
278 | . ycoefm0, ycoefh0) |
---|
279 | DO k = 1, klev |
---|
280 | DO i = 1, knon |
---|
281 | ycoefm(i,k) = MAX(ycoefm(i,k),ycoefm0(i,k)) |
---|
282 | ycoefh(i,k) = MAX(ycoefh(i,k),ycoefh0(i,k)) |
---|
283 | ENDDO |
---|
284 | ENDDO |
---|
285 | c |
---|
286 | c parametrisation non-locale: |
---|
287 | IF (ok_nonloc) THEN |
---|
288 | DO i = 1, knon |
---|
289 | y_cd_h(i) = ycoefh(i,1) |
---|
290 | y_cd_m(i) = ycoefm(i,1) |
---|
291 | ENDDO |
---|
292 | CALL nonlocal(knon, ypaprs, ypplay, |
---|
293 | . yts,ybeta,yu,yv,yt,yq, |
---|
294 | . y_cd_h, y_cd_m, ycoefm0, ycoefh0, ygamt, ygamq) |
---|
295 | DO k = 1, klev |
---|
296 | DO i = 1, knon |
---|
297 | ycoefm(i,k) = MAX(ycoefm(i,k),ycoefm0(i,k)) |
---|
298 | ycoefh(i,k) = MAX(ycoefh(i,k),ycoefh0(i,k)) |
---|
299 | ENDDO |
---|
300 | ENDDO |
---|
301 | ELSE |
---|
302 | IF (.NOT.contreg) THEN |
---|
303 | DO k = 2, klev |
---|
304 | DO i = 1, knon |
---|
305 | ygamq(i,k) = 0.0 |
---|
306 | ygamt(i,k) = 0.0 |
---|
307 | ENDDO |
---|
308 | ENDDO |
---|
309 | ELSE |
---|
310 | DO k = 3, klev |
---|
311 | DO i = 1, knon |
---|
312 | ygamq(i,k) = 0.0 |
---|
313 | ygamt(i,k) = -1.0E-03 |
---|
314 | ENDDO |
---|
315 | ENDDO |
---|
316 | DO i = 1, knon |
---|
317 | ygamq(i,2) = 0.0 |
---|
318 | ygamt(i,2) = -2.5E-03 |
---|
319 | ENDDO |
---|
320 | ENDIF |
---|
321 | ENDIF |
---|
322 | c |
---|
323 | c calculer la diffusion de "q" et de "h" |
---|
324 | CALL clqh(knon, dtime, yu1, yv1, |
---|
325 | e ycoefh,yt,yq,yts,ypaprs,ypplay,ydelp,yrads, |
---|
326 | e ycal,ybeta,ydif,ygamt,ygamq, |
---|
327 | s y_d_t, y_d_q, y_d_ts, |
---|
328 | s y_flux_t, y_flux_q, y_dflux_t, y_dflux_q) |
---|
329 | c |
---|
330 | c calculer la diffusion des vitesses "u" et "v" |
---|
331 | CALL clvent(knon,dtime,yu1,yv1,ycoefm,yt,yu,ypaprs,ypplay,ydelp, |
---|
332 | s y_d_u,y_flux_u) |
---|
333 | CALL clvent(knon,dtime,yu1,yv1,ycoefm,yt,yv,ypaprs,ypplay,ydelp, |
---|
334 | s y_d_v,y_flux_v) |
---|
335 | c |
---|
336 | c calculer la longueur de rugosite sur ocean |
---|
337 | IF (nsrf.EQ.is_oce) THEN |
---|
338 | DO j = 1, knon |
---|
339 | yrugm(j) = 0.018*ycoefm(j,1) * (yu1(j)**2+yv1(j)**2)/RG |
---|
340 | yrugm(j) = MAX(1.5e-05,yrugm(j)) |
---|
341 | ENDDO |
---|
342 | ENDIF |
---|
343 | c |
---|
344 | cAA MAINTENANT DANS PHYTRAC |
---|
345 | cAAc calculer la diffusion des traceurs |
---|
346 | cAA IF (itr.GE.1) THEN |
---|
347 | cAA DO it = 1, itr |
---|
348 | cAA CALL cltrac(knon,dtime,ycoefh, yt, ytr(1,1,it), yflxsrf(1,it), |
---|
349 | cAA e ypaprs, ypplay, ydelp, |
---|
350 | cAA s y_d_tr(1,1,it)) |
---|
351 | cAA ENDDO |
---|
352 | cAA ENDIF |
---|
353 | c |
---|
354 | DO j = 1, knon |
---|
355 | y_dflux_t(j) = y_dflux_t(j) * ypct(j) |
---|
356 | y_dflux_q(j) = y_dflux_q(j) * ypct(j) |
---|
357 | yu1(j) = yu1(j) * ypct(j) |
---|
358 | yv1(j) = yv1(j) * ypct(j) |
---|
359 | ENDDO |
---|
360 | c |
---|
361 | DO k = 1, klev |
---|
362 | DO j = 1, knon |
---|
363 | ycoefh(j,k) = ycoefh(j,k) * ypct(j) |
---|
364 | ycoefm(j,k) = ycoefm(j,k) * ypct(j) |
---|
365 | y_d_t(j,k) = y_d_t(j,k) * ypct(j) |
---|
366 | y_d_q(j,k) = y_d_q(j,k) * ypct(j) |
---|
367 | y_flux_t(j,k) = y_flux_t(j,k) * ypct(j) |
---|
368 | y_flux_q(j,k) = y_flux_q(j,k) * ypct(j) |
---|
369 | y_d_u(j,k) = y_d_u(j,k) * ypct(j) |
---|
370 | y_d_v(j,k) = y_d_v(j,k) * ypct(j) |
---|
371 | y_flux_u(j,k) = y_flux_u(j,k) * ypct(j) |
---|
372 | y_flux_v(j,k) = y_flux_v(j,k) * ypct(j) |
---|
373 | ENDDO |
---|
374 | ENDDO |
---|
375 | c |
---|
376 | DO j = 1, knon |
---|
377 | i = ni(j) |
---|
378 | d_ts(i,nsrf) = y_d_ts(j) |
---|
379 | rugmer(i) = yrugm(j) |
---|
380 | cdragh(i) = cdragh(i) + ycoefh(j,1) |
---|
381 | cdragm(i) = cdragm(i) + ycoefm(j,1) |
---|
382 | dflux_t(i) = dflux_t(i) + y_dflux_t(j) |
---|
383 | dflux_q(i) = dflux_q(i) + y_dflux_q(j) |
---|
384 | zu1(i) = zu1(i) + yu1(j) |
---|
385 | zv1(i) = zv1(i) + yv1(j) |
---|
386 | ENDDO |
---|
387 | c |
---|
388 | #ifdef CRAY |
---|
389 | DO k = 1, klev |
---|
390 | DO j = 1, knon |
---|
391 | i = ni(j) |
---|
392 | #else |
---|
393 | DO j = 1, knon |
---|
394 | i = ni(j) |
---|
395 | DO k = 1, klev |
---|
396 | #endif |
---|
397 | d_t(i,k) = d_t(i,k) + y_d_t(j,k) |
---|
398 | d_q(i,k) = d_q(i,k) + y_d_q(j,k) |
---|
399 | flux_t(i,k) = flux_t(i,k) + y_flux_t(j,k) |
---|
400 | flux_q(i,k) = flux_q(i,k) + y_flux_q(j,k) |
---|
401 | d_u(i,k) = d_u(i,k) + y_d_u(j,k) |
---|
402 | d_v(i,k) = d_v(i,k) + y_d_v(j,k) |
---|
403 | flux_u(i,k) = flux_u(i,k) + y_flux_u(j,k) |
---|
404 | flux_v(i,k) = flux_v(i,k) + y_flux_v(j,k) |
---|
405 | zcoefh(i,k) = zcoefh(i,k) + ycoefh(j,k) |
---|
406 | ENDDO |
---|
407 | ENDDO |
---|
408 | c |
---|
409 | cAA IF (itr.GE.1) THEN |
---|
410 | cAA DO it = 1, itr |
---|
411 | cAA DO k = 1, klev |
---|
412 | cAA DO j = 1, knon |
---|
413 | cAA y_d_tr(j,k,it) = y_d_tr(j,k,it) * ypct(j) |
---|
414 | cAA ENDDO |
---|
415 | cAA ENDDO |
---|
416 | cAA ENDDO |
---|
417 | cAA DO j = 1, knon |
---|
418 | cAA i = ni(j) |
---|
419 | cAA DO it = 1, itr |
---|
420 | cAA DO k = 1, klev |
---|
421 | cAA d_tr(i,k,it) = d_tr(i,k,it) + y_d_tr(j,k,it) |
---|
422 | cAA ENDDO |
---|
423 | cAA ENDDO |
---|
424 | cAA ENDDO |
---|
425 | cAA ENDIF |
---|
426 | c |
---|
427 | 99999 CONTINUE |
---|
428 | c |
---|
429 | RETURN |
---|
430 | END |
---|
431 | SUBROUTINE clqh(knon,dtime,u1lay,v1lay,coef,t,q,ts,paprs,pplay, |
---|
432 | e delp,radsol,cal,beta,dif_grnd, gamt,gamq, |
---|
433 | s d_t, d_q, d_ts, flux_t, flux_q,dflux_s,dflux_l) |
---|
434 | IMPLICIT none |
---|
435 | c====================================================================== |
---|
436 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 |
---|
437 | c Objet: diffusion verticale de "q" et de "h" |
---|
438 | c====================================================================== |
---|
439 | #include "dimensions.h" |
---|
440 | #include "dimphy.h" |
---|
441 | c Arguments: |
---|
442 | INTEGER knon |
---|
443 | REAL dtime ! intervalle du temps (s) |
---|
444 | REAL u1lay(klon) ! vitesse u de la 1ere couche (m/s) |
---|
445 | REAL v1lay(klon) ! vitesse v de la 1ere couche (m/s) |
---|
446 | REAL coef(klon,klev) ! le coefficient d'echange (m**2/s) |
---|
447 | c multiplie par le cisaillement du |
---|
448 | c vent (dV/dz); la premiere valeur |
---|
449 | c indique la valeur de Cdrag (sans unite) |
---|
450 | REAL cal(klon) ! Cp/cal indique la capacite calorifique |
---|
451 | c surfacique du sol |
---|
452 | REAL beta(klon) ! evap. reelle / evapotranspiration |
---|
453 | REAL dif_grnd(klon) ! coeff. diffusion vers le sol profond |
---|
454 | REAL t(klon,klev) ! temperature (K) |
---|
455 | REAL q(klon,klev) ! humidite specifique (kg/kg) |
---|
456 | REAL ts(klon) ! temperature du sol (K) |
---|
457 | REAL paprs(klon,klev+1) ! pression a inter-couche (Pa) |
---|
458 | REAL pplay(klon,klev) ! pression au milieu de couche (Pa) |
---|
459 | REAL delp(klon,klev) ! epaisseur de couche en pression (Pa) |
---|
460 | REAL radsol(klon) ! ray. net au sol (Solaire+IR) W/m2 |
---|
461 | c |
---|
462 | REAL d_t(klon,klev) ! incrementation de "t" |
---|
463 | REAL d_q(klon,klev) ! incrementation de "q" |
---|
464 | REAL d_ts(klon) ! incrementation de "ts" |
---|
465 | REAL flux_t(klon,klev) ! (diagnostic) flux de la chaleur |
---|
466 | c sensible, flux de Cp*T, positif vers |
---|
467 | c le bas: j/(m**2 s) c.a.d.: W/m2 |
---|
468 | REAL flux_q(klon,klev) ! flux de la vapeur d'eau:kg/(m**2 s) |
---|
469 | REAL dflux_s(klon) ! derivee du flux sensible dF/dTs |
---|
470 | REAL dflux_l(klon) ! derivee du flux latent dF/dTs |
---|
471 | REAL dflux_g(klon) ! derivee du flux du sol profond dF/dTs |
---|
472 | c====================================================================== |
---|
473 | REAL t_grnd ! temperature de rappel pour glace de mer |
---|
474 | PARAMETER (t_grnd=271.35) |
---|
475 | REAL t_coup |
---|
476 | PARAMETER(t_coup=273.15) |
---|
477 | c====================================================================== |
---|
478 | INTEGER i, k |
---|
479 | REAL zx_a |
---|
480 | REAL zx_b |
---|
481 | REAL zx_qs |
---|
482 | REAL zx_dq_s_dh |
---|
483 | REAL zx_h_grnd |
---|
484 | REAL zx_cq0(klon) |
---|
485 | REAL zx_dq0(klon) |
---|
486 | REAL zx_cq(klon,klev) |
---|
487 | REAL zx_dq(klon,klev) |
---|
488 | REAL zx_ch(klon,klev) |
---|
489 | REAL zx_dh(klon,klev) |
---|
490 | REAL zx_buf1(klon) |
---|
491 | REAL zx_buf2(klon) |
---|
492 | REAL zx_coef(klon,klev) |
---|
493 | REAL zx_q_0(klon) |
---|
494 | REAL zx_h_ts(klon) |
---|
495 | REAL zx_sl(klon) |
---|
496 | REAL local_h(klon,klev) ! enthalpie potentielle |
---|
497 | REAL local_q(klon,klev) |
---|
498 | REAL local_ts(klon) |
---|
499 | REAL psref(klon) ! pression de reference pour temperature potent. |
---|
500 | REAL zx_pkh(klon,klev), zx_pkf(klon,klev) |
---|
501 | c====================================================================== |
---|
502 | c contre-gradient pour la vapeur d'eau: (kg/kg)/metre |
---|
503 | REAL gamq(klon,2:klev) |
---|
504 | c contre-gradient pour la chaleur sensible: Kelvin/metre |
---|
505 | REAL gamt(klon,2:klev) |
---|
506 | REAL z_gamaq(klon,2:klev), z_gamah(klon,2:klev) |
---|
507 | REAL zdelz |
---|
508 | c====================================================================== |
---|
509 | C Variables intermediaires pour le calcul des fluxs a la surface |
---|
510 | real zx_mh(klon), zx_nh(klon), zx_oh(klon) |
---|
511 | real zx_mq(klon), zx_nq(klon), zx_oq(klon) |
---|
512 | real zx_k1(klon), zx_dq_s_dt(klon) |
---|
513 | real zx_qsat(klon) |
---|
514 | c====================================================================== |
---|
515 | REAL zcor, zdelta, zcvm5 |
---|
516 | #include "YOMCST.h" |
---|
517 | #include "YOETHF.h" |
---|
518 | #include "FCTTRE.h" |
---|
519 | c====================================================================== |
---|
520 | DO i = 1, knon |
---|
521 | psref(i) = paprs(i,1) !pression de reference est celle au sol |
---|
522 | local_ts(i) = ts(i) |
---|
523 | ENDDO |
---|
524 | DO k = 1, klev |
---|
525 | DO i = 1, knon |
---|
526 | zx_pkh(i,k) = (psref(i)/paprs(i,k))**RKAPPA |
---|
527 | zx_pkf(i,k) = (psref(i)/pplay(i,k))**RKAPPA |
---|
528 | local_h(i,k) = RCPD * t(i,k) * zx_pkf(i,k) |
---|
529 | local_q(i,k) = q(i,k) |
---|
530 | ENDDO |
---|
531 | ENDDO |
---|
532 | c |
---|
533 | c Convertir les coefficients en variables convenables au calcul: |
---|
534 | c |
---|
535 | DO i = 1, knon |
---|
536 | zx_coef(i,1) = coef(i,1) |
---|
537 | . * (1.0+SQRT(u1lay(i)**2+v1lay(i)**2)) |
---|
538 | . * pplay(i,1)/(RD*t(i,1)) |
---|
539 | ENDDO |
---|
540 | c |
---|
541 | DO k = 2, klev |
---|
542 | DO i = 1, knon |
---|
543 | zx_coef(i,k) = coef(i,k)*RG/(pplay(i,k-1)-pplay(i,k)) |
---|
544 | . *(paprs(i,k)*2/(t(i,k)+t(i,k-1))/RD)**2 |
---|
545 | zx_coef(i,k) = zx_coef(i,k) * dtime*RG |
---|
546 | ENDDO |
---|
547 | ENDDO |
---|
548 | c |
---|
549 | c Preparer les flux lies aux contre-gardients |
---|
550 | c |
---|
551 | DO k = 2, klev |
---|
552 | DO i = 1, knon |
---|
553 | zdelz = RD * (t(i,k-1)+t(i,k))/2.0 / RG /paprs(i,k) |
---|
554 | . *(pplay(i,k-1)-pplay(i,k)) |
---|
555 | z_gamaq(i,k) = gamq(i,k) * zdelz |
---|
556 | z_gamah(i,k) = gamt(i,k) * zdelz *RCPD * zx_pkh(i,k) |
---|
557 | ENDDO |
---|
558 | ENDDO |
---|
559 | c====================================================================== |
---|
560 | c |
---|
561 | c zx_qs = qsat en kg/kg |
---|
562 | c |
---|
563 | DO i = 1, knon |
---|
564 | IF (thermcep) THEN |
---|
565 | zdelta=MAX(0.,SIGN(1.,rtt-local_ts(i))) |
---|
566 | zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta |
---|
567 | zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*q(i,1)) |
---|
568 | zx_qs= r2es * FOEEW(local_ts(i),zdelta)/paprs(i,1) |
---|
569 | zx_qs=MIN(0.5,zx_qs) |
---|
570 | zcor=1./(1.-retv*zx_qs) |
---|
571 | zx_qs=zx_qs*zcor |
---|
572 | zx_dq_s_dh = FOEDE(local_ts(i),zdelta,zcvm5,zx_qs,zcor) |
---|
573 | . /RLVTT / zx_pkh(i,1) |
---|
574 | ELSE |
---|
575 | IF (local_ts(i).LT.t_coup) THEN |
---|
576 | zx_qs = qsats(local_ts(i)) / paprs(i,1) |
---|
577 | zx_dq_s_dh = dqsats(local_ts(i),zx_qs)/RLVTT |
---|
578 | . / zx_pkh(i,1) |
---|
579 | ELSE |
---|
580 | zx_qs = qsatl(local_ts(i)) / paprs(i,1) |
---|
581 | zx_dq_s_dh = dqsatl(local_ts(i),zx_qs)/RLVTT |
---|
582 | . / zx_pkh(i,1) |
---|
583 | ENDIF |
---|
584 | ENDIF |
---|
585 | |
---|
586 | c zx_dq_s_dh = 0. |
---|
587 | zx_dq_s_dt(i) = RCPD * zx_pkh(i,1) * zx_dq_s_dh |
---|
588 | zx_qsat(i) = zx_qs |
---|
589 | c |
---|
590 | ENDDO |
---|
591 | DO i = 1, knon |
---|
592 | zx_buf1(i) = zx_coef(i,klev) + delp(i,klev) |
---|
593 | zx_cq(i,klev) = (local_q(i,klev)*delp(i,klev) |
---|
594 | . -zx_coef(i,klev)*z_gamaq(i,klev))/zx_buf1(i) |
---|
595 | zx_dq(i,klev) = zx_coef(i,klev) / zx_buf1(i) |
---|
596 | c |
---|
597 | zx_buf2(i) = delp(i,klev) + zx_coef(i,klev) |
---|
598 | zx_ch(i,klev) = (local_h(i,klev)*delp(i,klev) |
---|
599 | . -zx_coef(i,klev)*z_gamah(i,klev))/zx_buf2(i) |
---|
600 | zx_dh(i,klev) = zx_coef(i,klev) / zx_buf2(i) |
---|
601 | ENDDO |
---|
602 | DO k = klev-1, 2 , -1 |
---|
603 | DO i = 1, knon |
---|
604 | zx_buf1(i) = delp(i,k)+zx_coef(i,k) |
---|
605 | . +zx_coef(i,k+1)*(1.-zx_dq(i,k+1)) |
---|
606 | zx_cq(i,k) = (local_q(i,k)*delp(i,k) |
---|
607 | . +zx_coef(i,k+1)*zx_cq(i,k+1) |
---|
608 | . +zx_coef(i,k+1)*z_gamaq(i,k+1) |
---|
609 | . -zx_coef(i,k)*z_gamaq(i,k))/zx_buf1(i) |
---|
610 | zx_dq(i,k) = zx_coef(i,k) / zx_buf1(i) |
---|
611 | c |
---|
612 | zx_buf2(i) = delp(i,k)+zx_coef(i,k) |
---|
613 | . +zx_coef(i,k+1)*(1.-zx_dh(i,k+1)) |
---|
614 | zx_ch(i,k) = (local_h(i,k)*delp(i,k) |
---|
615 | . +zx_coef(i,k+1)*zx_ch(i,k+1) |
---|
616 | . +zx_coef(i,k+1)*z_gamah(i,k+1) |
---|
617 | . -zx_coef(i,k)*z_gamah(i,k))/zx_buf2(i) |
---|
618 | zx_dh(i,k) = zx_coef(i,k) / zx_buf2(i) |
---|
619 | ENDDO |
---|
620 | ENDDO |
---|
621 | C |
---|
622 | C nouvelle formulation JL Dufresne |
---|
623 | C |
---|
624 | C q1 = zx_cq(i,1) + zx_dq(i,1) * Flux_Q(i,1) * dt |
---|
625 | C h1 = zx_ch(i,1) + zx_dh(i,1) * Flux_H(i,1) * dt |
---|
626 | C |
---|
627 | DO i = 1, knon |
---|
628 | zx_buf1(i) = delp(i,1) + zx_coef(i,2)*(1.-zx_dq(i,2)) |
---|
629 | zx_cq(i,1) = (local_q(i,1)*delp(i,1) |
---|
630 | . +zx_coef(i,2)*(z_gamaq(i,2)+zx_cq(i,2))) |
---|
631 | . /zx_buf1(i) |
---|
632 | zx_dq(i,1) = -1. * RG / zx_buf1(i) |
---|
633 | c |
---|
634 | zx_buf2(i) = delp(i,1) + zx_coef(i,2)*(1.-zx_dh(i,2)) |
---|
635 | zx_ch(i,1) = (local_h(i,1)*delp(i,1) |
---|
636 | . +zx_coef(i,2)*(z_gamah(i,2)+zx_ch(i,2))) |
---|
637 | . /zx_buf2(i) |
---|
638 | zx_dh(i,1) = -1. * RG / zx_buf2(i) |
---|
639 | ENDDO |
---|
640 | |
---|
641 | C === Calcul de la temperature de surface === |
---|
642 | C |
---|
643 | C zx_sl = chaleur latente d'evaporation ou de sublimation |
---|
644 | C |
---|
645 | do i = 1, knon |
---|
646 | zx_sl(i) = RLVTT |
---|
647 | if (local_ts(i) .LT. RTT) zx_sl(i) = RLSTT |
---|
648 | zx_k1(i) = zx_coef(i,1) |
---|
649 | enddo |
---|
650 | do i = 1, knon |
---|
651 | C Q |
---|
652 | zx_oq(i) = 1. - (beta(i) * zx_k1(i) * zx_dq(i,1) * dtime) |
---|
653 | zx_mq(i) = beta(i) * zx_k1(i) * |
---|
654 | . (zx_cq(i,1) - zx_qsat(i) |
---|
655 | . + zx_dq_s_dt(i) * local_ts(i)) |
---|
656 | . / zx_oq(i) |
---|
657 | zx_nq(i) = beta(i) * zx_k1(i) * (-1. * zx_dq_s_dt(i)) |
---|
658 | . / zx_oq(i) |
---|
659 | c H |
---|
660 | zx_oh(i) = 1. - (zx_k1(i) * zx_dh(i,1) * dtime) |
---|
661 | zx_mh(i) = zx_k1(i) * zx_ch(i,1) / zx_oh(i) |
---|
662 | zx_nh(i) = - (zx_k1(i) * RCPD * zx_pkh(i,1))/ zx_oh(i) |
---|
663 | c Tsurface |
---|
664 | local_ts(i) = (ts(i) + cal(i)/(RCPD * zx_pkh(i,1)) * dtime * |
---|
665 | . (radsol(i) + zx_mh(i) + zx_sl(i) * zx_mq(i)) |
---|
666 | . + dif_grnd(i) * t_grnd * dtime)/ |
---|
667 | . ( 1. - dtime * cal(i)/(RCPD * zx_pkh(i,1)) * ( |
---|
668 | . zx_nh(i) + zx_sl(i) * zx_nq(i)) |
---|
669 | . + dtime * dif_grnd(i)) |
---|
670 | zx_h_ts(i) = local_ts(i) * RCPD * zx_pkh(i,1) |
---|
671 | d_ts(i) = local_ts(i) - ts(i) |
---|
672 | zx_q_0(i) = zx_qsat(i) + zx_dq_s_dt(i) * d_ts(i) |
---|
673 | c== flux_q est le flux de vapeur d'eau: kg/(m**2 s) positive vers bas |
---|
674 | c== flux_t est le flux de cpt (energie sensible): j/(m**2 s) |
---|
675 | flux_q(i,1) = zx_mq(i) + zx_nq(i) * local_ts(i) |
---|
676 | flux_t(i,1) = zx_mh(i) + zx_nh(i) * local_ts(i) |
---|
677 | c Derives des flux dF/dTs (W m-2 K-1): |
---|
678 | dflux_s(i) = zx_nh(i) |
---|
679 | dflux_l(i) = (zx_sl(i) * zx_nq(i)) |
---|
680 | ENDDO |
---|
681 | |
---|
682 | |
---|
683 | c==== une fois on a zx_h_ts, on peut faire l'iteration ======== |
---|
684 | DO i = 1, knon |
---|
685 | local_h(i,1) = zx_ch(i,1) + zx_dh(i,1)*flux_t(i,1)*dtime |
---|
686 | local_q(i,1) = zx_cq(i,1) + zx_dq(i,1)*flux_q(i,1)*dtime |
---|
687 | ENDDO |
---|
688 | DO k = 2, klev |
---|
689 | DO i = 1, knon |
---|
690 | local_q(i,k) = zx_cq(i,k) + zx_dq(i,k)*local_q(i,k-1) |
---|
691 | local_h(i,k) = zx_ch(i,k) + zx_dh(i,k)*local_h(i,k-1) |
---|
692 | ENDDO |
---|
693 | ENDDO |
---|
694 | c====================================================================== |
---|
695 | c== flux_q est le flux de vapeur d'eau: kg/(m**2 s) positive vers bas |
---|
696 | c== flux_t est le flux de cpt (energie sensible): j/(m**2 s) |
---|
697 | DO k = 2, klev |
---|
698 | DO i = 1, knon |
---|
699 | flux_q(i,k) = (zx_coef(i,k)/RG/dtime) |
---|
700 | . * (local_q(i,k)-local_q(i,k-1)+z_gamaq(i,k)) |
---|
701 | flux_t(i,k) = (zx_coef(i,k)/RG/dtime) |
---|
702 | . * (local_h(i,k)-local_h(i,k-1)+z_gamah(i,k)) |
---|
703 | . / zx_pkh(i,k) |
---|
704 | ENDDO |
---|
705 | ENDDO |
---|
706 | c====================================================================== |
---|
707 | C Calcul tendances |
---|
708 | DO k = 1, klev |
---|
709 | DO i = 1, knon |
---|
710 | d_t(i,k) = local_h(i,k)/zx_pkf(i,k)/RCPD - t(i,k) |
---|
711 | d_q(i,k) = local_q(i,k) - q(i,k) |
---|
712 | ENDDO |
---|
713 | ENDDO |
---|
714 | c |
---|
715 | RETURN |
---|
716 | END |
---|
717 | SUBROUTINE clvent(knon,dtime, u1lay,v1lay,coef,t,ven, |
---|
718 | e paprs,pplay,delp, |
---|
719 | s d_ven,flux_v) |
---|
720 | IMPLICIT none |
---|
721 | c====================================================================== |
---|
722 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930818 |
---|
723 | c Objet: diffusion vertical de la vitesse "ven" |
---|
724 | c====================================================================== |
---|
725 | c Arguments: |
---|
726 | c dtime----input-R- intervalle du temps (en second) |
---|
727 | c u1lay----input-R- vent u de la premiere couche (m/s) |
---|
728 | c v1lay----input-R- vent v de la premiere couche (m/s) |
---|
729 | c coef-----input-R- le coefficient d'echange (m**2/s) multiplie par |
---|
730 | c le cisaillement du vent (dV/dz); la premiere |
---|
731 | c valeur indique la valeur de Cdrag (sans unite) |
---|
732 | c t--------input-R- temperature (K) |
---|
733 | c ven------input-R- vitesse horizontale (m/s) |
---|
734 | c paprs----input-R- pression a inter-couche (Pa) |
---|
735 | c pplay----input-R- pression au milieu de couche (Pa) |
---|
736 | c delp-----input-R- epaisseur de couche (Pa) |
---|
737 | c |
---|
738 | c |
---|
739 | c d_ven----output-R- le changement de "ven" |
---|
740 | c flux_v---output-R- (diagnostic) flux du vent: (kg m/s)/(m**2 s) |
---|
741 | c====================================================================== |
---|
742 | #include "dimensions.h" |
---|
743 | #include "dimphy.h" |
---|
744 | INTEGER knon |
---|
745 | REAL dtime |
---|
746 | REAL u1lay(klon), v1lay(klon) |
---|
747 | REAL coef(klon,klev) |
---|
748 | REAL t(klon,klev), ven(klon,klev) |
---|
749 | REAL paprs(klon,klev+1), pplay(klon,klev), delp(klon,klev) |
---|
750 | REAL d_ven(klon,klev) |
---|
751 | REAL flux_v(klon,klev) |
---|
752 | c====================================================================== |
---|
753 | #include "YOMCST.h" |
---|
754 | c====================================================================== |
---|
755 | INTEGER i, k |
---|
756 | REAL zx_cv(klon,2:klev) |
---|
757 | REAL zx_dv(klon,2:klev) |
---|
758 | REAL zx_buf(klon) |
---|
759 | REAL zx_coef(klon,klev) |
---|
760 | REAL local_ven(klon,klev) |
---|
761 | REAL zx_alf1(klon), zx_alf2(klon) |
---|
762 | c====================================================================== |
---|
763 | DO k = 1, klev |
---|
764 | DO i = 1, knon |
---|
765 | local_ven(i,k) = ven(i,k) |
---|
766 | ENDDO |
---|
767 | ENDDO |
---|
768 | c====================================================================== |
---|
769 | DO i = 1, knon |
---|
770 | ccc zx_alf1(i) = (paprs(i,1)-pplay(i,2))/(pplay(i,1)-pplay(i,2)) |
---|
771 | zx_alf1(i) = 1.0 |
---|
772 | zx_alf2(i) = 1.0 - zx_alf1(i) |
---|
773 | zx_coef(i,1) = coef(i,1) |
---|
774 | . * (1.0+SQRT(u1lay(i)**2+v1lay(i)**2)) |
---|
775 | . * pplay(i,1)/(RD*t(i,1)) |
---|
776 | zx_coef(i,1) = zx_coef(i,1) * dtime*RG |
---|
777 | ENDDO |
---|
778 | c====================================================================== |
---|
779 | DO k = 2, klev |
---|
780 | DO i = 1, knon |
---|
781 | zx_coef(i,k) = coef(i,k)*RG/(pplay(i,k-1)-pplay(i,k)) |
---|
782 | . *(paprs(i,k)*2/(t(i,k)+t(i,k-1))/RD)**2 |
---|
783 | zx_coef(i,k) = zx_coef(i,k) * dtime*RG |
---|
784 | ENDDO |
---|
785 | ENDDO |
---|
786 | c====================================================================== |
---|
787 | DO i = 1, knon |
---|
788 | zx_buf(i) = delp(i,1) + zx_coef(i,1)*zx_alf1(i)+zx_coef(i,2) |
---|
789 | zx_cv(i,2) = local_ven(i,1)*delp(i,1) / zx_buf(i) |
---|
790 | zx_dv(i,2) = (zx_coef(i,2)-zx_alf2(i)*zx_coef(i,1)) |
---|
791 | . /zx_buf(i) |
---|
792 | ENDDO |
---|
793 | DO k = 3, klev |
---|
794 | DO i = 1, knon |
---|
795 | zx_buf(i) = delp(i,k-1) + zx_coef(i,k) |
---|
796 | . + zx_coef(i,k-1)*(1.-zx_dv(i,k-1)) |
---|
797 | zx_cv(i,k) = (local_ven(i,k-1)*delp(i,k-1) |
---|
798 | . +zx_coef(i,k-1)*zx_cv(i,k-1) )/zx_buf(i) |
---|
799 | zx_dv(i,k) = zx_coef(i,k)/zx_buf(i) |
---|
800 | ENDDO |
---|
801 | ENDDO |
---|
802 | DO i = 1, knon |
---|
803 | local_ven(i,klev) = ( local_ven(i,klev)*delp(i,klev) |
---|
804 | . +zx_coef(i,klev)*zx_cv(i,klev) ) |
---|
805 | . / ( delp(i,klev) + zx_coef(i,klev) |
---|
806 | . -zx_coef(i,klev)*zx_dv(i,klev) ) |
---|
807 | ENDDO |
---|
808 | DO k = klev-1, 1, -1 |
---|
809 | DO i = 1, knon |
---|
810 | local_ven(i,k) = zx_cv(i,k+1) + zx_dv(i,k+1)*local_ven(i,k+1) |
---|
811 | ENDDO |
---|
812 | ENDDO |
---|
813 | c====================================================================== |
---|
814 | c== flux_v est le flux de moment angulaire (positif vers bas) |
---|
815 | c== dont l'unite est: (kg m/s)/(m**2 s) |
---|
816 | DO i = 1, knon |
---|
817 | flux_v(i,1) = zx_coef(i,1)/(RG*dtime) |
---|
818 | . *(local_ven(i,1)*zx_alf1(i) |
---|
819 | . +local_ven(i,2)*zx_alf2(i)) |
---|
820 | ENDDO |
---|
821 | DO k = 2, klev |
---|
822 | DO i = 1, knon |
---|
823 | flux_v(i,k) = zx_coef(i,k)/(RG*dtime) |
---|
824 | . * (local_ven(i,k)-local_ven(i,k-1)) |
---|
825 | ENDDO |
---|
826 | ENDDO |
---|
827 | c |
---|
828 | DO k = 1, klev |
---|
829 | DO i = 1, knon |
---|
830 | d_ven(i,k) = local_ven(i,k) - ven(i,k) |
---|
831 | ENDDO |
---|
832 | ENDDO |
---|
833 | c |
---|
834 | RETURN |
---|
835 | END |
---|
836 | SUBROUTINE coefkz(nsrf, knon, paprs, pplay, |
---|
837 | . ts, rugos, |
---|
838 | . u,v,t,q, |
---|
839 | . pcfm, pcfh) |
---|
840 | IMPLICIT none |
---|
841 | c====================================================================== |
---|
842 | c Auteur(s) F. Hourdin, M. Forichon, Z.X. Li (LMD/CNRS) date: 19930922 |
---|
843 | c (une version strictement identique a l'ancien modele) |
---|
844 | c Objet: calculer le coefficient du frottement du sol (Cdrag) et les |
---|
845 | c coefficients d'echange turbulent dans l'atmosphere. |
---|
846 | c Arguments: |
---|
847 | c nsrf-----input-I- indicateur de la nature du sol |
---|
848 | c knon-----input-I- nombre de points a traiter |
---|
849 | c paprs----input-R- pression a chaque intercouche (en Pa) |
---|
850 | c pplay----input-R- pression au milieu de chaque couche (en Pa) |
---|
851 | c ts-------input-R- temperature du sol (en Kelvin) |
---|
852 | c rugos----input-R- longeur de rugosite (en m) |
---|
853 | c xlat-----input-R- latitude en degree |
---|
854 | c u--------input-R- vitesse u |
---|
855 | c v--------input-R- vitesse v |
---|
856 | c t--------input-R- temperature (K) |
---|
857 | c q--------input-R- vapeur d'eau (kg/kg) |
---|
858 | c |
---|
859 | c itop-----output-I- numero de couche du sommet de la couche limite |
---|
860 | c pcfm-----output-R- coefficients a calculer (vitesse) |
---|
861 | c pcfh-----output-R- coefficients a calculer (chaleur et humidite) |
---|
862 | c====================================================================== |
---|
863 | #include "dimensions.h" |
---|
864 | #include "dimphy.h" |
---|
865 | #include "YOMCST.h" |
---|
866 | #include "indicesol.h" |
---|
867 | c |
---|
868 | c Arguments: |
---|
869 | c |
---|
870 | INTEGER knon, nsrf |
---|
871 | REAL ts(klon) |
---|
872 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
873 | REAL u(klon,klev), v(klon,klev), t(klon,klev), q(klon,klev) |
---|
874 | REAL rugos(klon) |
---|
875 | REAL xlat(klon) |
---|
876 | c |
---|
877 | REAL pcfm(klon,klev), pcfh(klon,klev) |
---|
878 | INTEGER itop(klon) |
---|
879 | c |
---|
880 | c Quelques constantes et options: |
---|
881 | c |
---|
882 | REAL cepdu2, ckap, cb, cc, cd, clam |
---|
883 | PARAMETER (cepdu2 =(0.1)**2) |
---|
884 | PARAMETER (ckap=0.35) |
---|
885 | PARAMETER (cb=5.0) |
---|
886 | PARAMETER (cc=5.0) |
---|
887 | PARAMETER (cd=5.0) |
---|
888 | PARAMETER (clam=160.0) |
---|
889 | REAL ratqs ! largeur de distribution de vapeur d'eau |
---|
890 | PARAMETER (ratqs=0.05) |
---|
891 | LOGICAL richum ! utilise le nombre de Richardson humide |
---|
892 | PARAMETER (richum=.TRUE.) |
---|
893 | REAL ric ! nombre de Richardson critique |
---|
894 | PARAMETER(ric=0.4) |
---|
895 | REAL prandtl |
---|
896 | PARAMETER (prandtl=0.4) |
---|
897 | REAL kstable ! diffusion minimale (situation stable) |
---|
898 | PARAMETER (kstable=1.0e-10) |
---|
899 | REAL mixlen ! constante controlant longueur de melange |
---|
900 | PARAMETER (mixlen=35.0) |
---|
901 | INTEGER isommet ! le sommet de la couche limite |
---|
902 | PARAMETER (isommet=klev) |
---|
903 | LOGICAL tvirtu ! calculer Ri d'une maniere plus performante |
---|
904 | PARAMETER (tvirtu=.TRUE.) |
---|
905 | LOGICAL opt_ec ! formule du Centre Europeen dans l'atmosphere |
---|
906 | PARAMETER (opt_ec=.FALSE.) |
---|
907 | LOGICAL contreg ! utiliser le contre-gradient dans Ri |
---|
908 | PARAMETER (contreg=.TRUE.) |
---|
909 | c |
---|
910 | c Variables locales: |
---|
911 | c |
---|
912 | INTEGER i, k |
---|
913 | REAL zgeop(klon,klev) |
---|
914 | REAL zmgeom(klon) |
---|
915 | REAL zri(klon) |
---|
916 | REAL zl2(klon) |
---|
917 | REAL zcfm1(klon), zcfm2(klon) |
---|
918 | REAL zcfh1(klon), zcfh2(klon) |
---|
919 | REAL zdphi, zdu2, ztvd, ztvu, ztsolv, zcdn |
---|
920 | REAL zscf, zucf, zcr |
---|
921 | REAL zt, zq, zdelta, zcvm5, zcor, zqs, zfr, zdqs |
---|
922 | REAL z2geomf, zalh2, zalm2, zscfh, zscfm |
---|
923 | REAL t_coup |
---|
924 | PARAMETER (t_coup=273.15) |
---|
925 | c |
---|
926 | c contre-gradient pour la chaleur sensible: Kelvin/metre |
---|
927 | REAL gamt(2:klev) |
---|
928 | c |
---|
929 | LOGICAL appel1er |
---|
930 | SAVE appel1er |
---|
931 | c |
---|
932 | c Fonctions thermodynamiques et fonctions d'instabilite |
---|
933 | REAL fsta, fins, x |
---|
934 | LOGICAL zxli ! utiliser un jeu de fonctions simples |
---|
935 | PARAMETER (zxli=.FALSE.) |
---|
936 | c |
---|
937 | #include "YOETHF.h" |
---|
938 | #include "FCTTRE.h" |
---|
939 | fsta(x) = 1.0 / (1.0+10.0*x*(1+8.0*x)) |
---|
940 | fins(x) = SQRT(1.0-18.0*x) |
---|
941 | c |
---|
942 | DATA appel1er /.TRUE./ |
---|
943 | c |
---|
944 | IF (appel1er) THEN |
---|
945 | PRINT*, 'coefkz, opt_ec:', opt_ec |
---|
946 | PRINT*, 'coefkz, richum:', richum |
---|
947 | IF (richum) PRINT*, 'coefkz, ratqs:', ratqs |
---|
948 | PRINT*, 'coefkz, isommet:', isommet |
---|
949 | PRINT*, 'coefkz, tvirtu:', tvirtu |
---|
950 | appel1er = .FALSE. |
---|
951 | ENDIF |
---|
952 | c |
---|
953 | c Initialiser les sorties |
---|
954 | c |
---|
955 | DO k = 1, klev |
---|
956 | DO i = 1, knon |
---|
957 | pcfm(i,k) = 0.0 |
---|
958 | pcfh(i,k) = 0.0 |
---|
959 | ENDDO |
---|
960 | ENDDO |
---|
961 | DO i = 1, knon |
---|
962 | itop(i) = 0 |
---|
963 | ENDDO |
---|
964 | c |
---|
965 | c Prescrire la valeur de contre-gradient |
---|
966 | c |
---|
967 | IF (.NOT.contreg) THEN |
---|
968 | DO k = 2, klev |
---|
969 | gamt(k) = 0.0 |
---|
970 | ENDDO |
---|
971 | ELSE |
---|
972 | DO k = 3, klev |
---|
973 | gamt(k) = -1.0E-03 |
---|
974 | ENDDO |
---|
975 | gamt(2) = -2.5E-03 |
---|
976 | ENDIF |
---|
977 | c |
---|
978 | c Calculer les geopotentiels de chaque couche |
---|
979 | c |
---|
980 | DO i = 1, knon |
---|
981 | zgeop(i,1) = RD * t(i,1) / (0.5*(paprs(i,1)+pplay(i,1))) |
---|
982 | . * (paprs(i,1)-pplay(i,1)) |
---|
983 | ENDDO |
---|
984 | DO k = 2, klev |
---|
985 | DO i = 1, knon |
---|
986 | zgeop(i,k) = zgeop(i,k-1) |
---|
987 | . + RD * 0.5*(t(i,k-1)+t(i,k)) / paprs(i,k) |
---|
988 | . * (pplay(i,k-1)-pplay(i,k)) |
---|
989 | ENDDO |
---|
990 | ENDDO |
---|
991 | c |
---|
992 | c Calculer le frottement au sol (Cdrag) |
---|
993 | c |
---|
994 | DO i = 1, knon |
---|
995 | zdu2=max(cepdu2,u(i,1)**2+v(i,1)**2) |
---|
996 | zdphi=zgeop(i,1) |
---|
997 | ztsolv = ts(i) * (1.0+RETV*q(i,1)) ! qsol approx = q(i,1) |
---|
998 | ztvd=(t(i,1)+zdphi/RCPD/(1.+RVTMP2*q(i,1))) |
---|
999 | . *(1.+RETV*q(i,1)) |
---|
1000 | zri(i)=zgeop(i,1)*(ztvd-ztsolv)/(zdu2*ztvd) |
---|
1001 | zcdn = (ckap/log(1.+zgeop(i,1)/(RG*rugos(i))))**2 |
---|
1002 | IF (zri(i) .ge. 0.) THEN ! situation stable |
---|
1003 | IF (.NOT.zxli) THEN |
---|
1004 | zscf=SQRT(1.+cd*ABS(zri(i))) |
---|
1005 | zcfm1(i) = zcdn/(1.+2.0*cb*zri(i)/zscf) |
---|
1006 | zcfh1(i) = zcdn/(1.+3.0*cb*zri(i)*zscf) |
---|
1007 | pcfm(i,1) = zcfm1(i) |
---|
1008 | pcfh(i,1) = zcfh1(i) |
---|
1009 | ELSE |
---|
1010 | pcfm(i,1) = zcdn* fsta(zri(i)) |
---|
1011 | pcfh(i,1) = zcdn* fsta(zri(i)) |
---|
1012 | ENDIF |
---|
1013 | ELSE ! situation instable |
---|
1014 | IF (.NOT.zxli) THEN |
---|
1015 | zucf=1./(1.+3.0*cb*cc*zcdn*SQRT(ABS(zri(i)) |
---|
1016 | . *(1.0+zgeop(i,1)/(RG*rugos(i))))) |
---|
1017 | zcfm2(i) = zcdn*(1.-2.0*cb*zri(i)*zucf) |
---|
1018 | zcfh2(i) = zcdn*(1.-3.0*cb*zri(i)*zucf) |
---|
1019 | pcfm(i,1) = zcfm2(i) |
---|
1020 | pcfh(i,1) = zcfh2(i) |
---|
1021 | ELSE |
---|
1022 | pcfm(i,1) = zcdn* fins(zri(i)) |
---|
1023 | pcfh(i,1) = zcdn* fins(zri(i)) |
---|
1024 | ENDIF |
---|
1025 | zcr = (0.0016/(zcdn*SQRT(zdu2)))*ABS(ztvd-ztsolv)**(1./3.) |
---|
1026 | IF(nsrf.EQ.is_oce)pcfh(i,1)=zcdn*(1.0+zcr**1.25)**(1./1.25) |
---|
1027 | ENDIF |
---|
1028 | ENDDO |
---|
1029 | c |
---|
1030 | c Calculer les coefficients turbulents dans l'atmosphere |
---|
1031 | c |
---|
1032 | DO i = 1, knon |
---|
1033 | itop(i) = isommet |
---|
1034 | ENDDO |
---|
1035 | |
---|
1036 | DO k = 2, isommet |
---|
1037 | DO i = 1, knon |
---|
1038 | zdu2=MAX(cepdu2,(u(i,k)-u(i,k-1))**2 |
---|
1039 | . +(v(i,k)-v(i,k-1))**2) |
---|
1040 | zmgeom(i)=zgeop(i,k)-zgeop(i,k-1) |
---|
1041 | zdphi =zmgeom(i) / 2.0 |
---|
1042 | zt = (t(i,k)+t(i,k-1)) * 0.5 |
---|
1043 | zq = (q(i,k)+q(i,k-1)) * 0.5 |
---|
1044 | c |
---|
1045 | c calculer Qs et dQs/dT: |
---|
1046 | c |
---|
1047 | IF (thermcep) THEN |
---|
1048 | zdelta = MAX(0.,SIGN(1.,RTT-zt)) |
---|
1049 | zcvm5 = R5LES*RLVTT/RCPD/(1.0+RVTMP2*zq)*(1.-zdelta) |
---|
1050 | . + R5IES*RLSTT/RCPD/(1.0+RVTMP2*zq)*zdelta |
---|
1051 | zqs = R2ES * FOEEW(zt,zdelta) / pplay(i,k) |
---|
1052 | zqs = MIN(0.5,zqs) |
---|
1053 | zcor = 1./(1.-RETV*zqs) |
---|
1054 | zqs = zqs*zcor |
---|
1055 | zdqs = FOEDE(zt,zdelta,zcvm5,zqs,zcor) |
---|
1056 | ELSE |
---|
1057 | IF (zt .LT. t_coup) THEN |
---|
1058 | zqs = qsats(zt) / pplay(i,k) |
---|
1059 | zdqs = dqsats(zt,zqs) |
---|
1060 | ELSE |
---|
1061 | zqs = qsatl(zt) / pplay(i,k) |
---|
1062 | zdqs = dqsatl(zt,zqs) |
---|
1063 | ENDIF |
---|
1064 | ENDIF |
---|
1065 | c |
---|
1066 | c calculer la fraction nuageuse (processus humide): |
---|
1067 | c |
---|
1068 | zfr = (zq+ratqs*zq-zqs) / (2.0*ratqs*zq) |
---|
1069 | zfr = MAX(0.0,MIN(1.0,zfr)) |
---|
1070 | IF (.NOT.richum) zfr = 0.0 |
---|
1071 | c |
---|
1072 | c calculer le nombre de Richardson: |
---|
1073 | c |
---|
1074 | IF (tvirtu) THEN |
---|
1075 | ztvd =( t(i,k) |
---|
1076 | . + zdphi/RCPD/(1.+RVTMP2*zq) |
---|
1077 | . *( (1.-zfr) + zfr*(1.+RLVTT*zqs/RD/zt)/(1.+zdqs) ) |
---|
1078 | . )*(1.+RETV*q(i,k)) |
---|
1079 | ztvu =( t(i,k-1) |
---|
1080 | . - zdphi/RCPD/(1.+RVTMP2*zq) |
---|
1081 | . *( (1.-zfr) + zfr*(1.+RLVTT*zqs/RD/zt)/(1.+zdqs) ) |
---|
1082 | . )*(1.+RETV*q(i,k-1)) |
---|
1083 | zri(i) =zmgeom(i)*(ztvd-ztvu)/(zdu2*0.5*(ztvd+ztvu)) |
---|
1084 | zri(i) = zri(i) |
---|
1085 | . + zmgeom(i)*zmgeom(i)/RG*gamt(k) |
---|
1086 | . *(paprs(i,k)/101325.0)**RKAPPA |
---|
1087 | . /(zdu2*0.5*(ztvd+ztvu)) |
---|
1088 | c |
---|
1089 | ELSE ! calcul de Ridchardson compatible LMD5 |
---|
1090 | c |
---|
1091 | zri(i) =(RCPD*(t(i,k)-t(i,k-1)) |
---|
1092 | . -RD*0.5*(t(i,k)+t(i,k-1))/paprs(i,k) |
---|
1093 | . *(pplay(i,k)-pplay(i,k-1)) |
---|
1094 | . )*zmgeom(i)/(zdu2*0.5*RCPD*(t(i,k-1)+t(i,k))) |
---|
1095 | zri(i) = zri(i) + |
---|
1096 | . zmgeom(i)*zmgeom(i)*gamt(k)/RG |
---|
1097 | cSB . /(paprs(i,k)/101325.0)**RKAPPA |
---|
1098 | . *(paprs(i,k)/101325.0)**RKAPPA |
---|
1099 | . /(zdu2*0.5*(t(i,k-1)+t(i,k))) |
---|
1100 | ENDIF |
---|
1101 | c |
---|
1102 | c finalement, les coefficients d'echange sont obtenus: |
---|
1103 | c |
---|
1104 | zcdn=SQRT(zdu2) / zmgeom(i) * RG |
---|
1105 | c |
---|
1106 | IF (opt_ec) THEN |
---|
1107 | z2geomf=zgeop(i,k-1)+zgeop(i,k) |
---|
1108 | zalm2=(0.5*ckap/RG*z2geomf |
---|
1109 | . /(1.+0.5*ckap/rg/clam*z2geomf))**2 |
---|
1110 | zalh2=(0.5*ckap/rg*z2geomf |
---|
1111 | . /(1.+0.5*ckap/RG/(clam*SQRT(1.5*cd))*z2geomf))**2 |
---|
1112 | IF (zri(i).LT.0.0) THEN ! situation instable |
---|
1113 | zscf = ((zgeop(i,k)/zgeop(i,k-1))**(1./3.)-1.)**3 |
---|
1114 | . / (zmgeom(i)/RG)**3 / (zgeop(i,k-1)/RG) |
---|
1115 | zscf = SQRT(-zri(i)*zscf) |
---|
1116 | zscfm = 1.0 / (1.0+3.0*cb*cc*zalm2*zscf) |
---|
1117 | zscfh = 1.0 / (1.0+3.0*cb*cc*zalh2*zscf) |
---|
1118 | pcfm(i,k)=zcdn*zalm2*(1.-2.0*cb*zri(i)*zscfm) |
---|
1119 | pcfh(i,k)=zcdn*zalh2*(1.-3.0*cb*zri(i)*zscfh) |
---|
1120 | ELSE ! situation stable |
---|
1121 | zscf=SQRT(1.+cd*zri(i)) |
---|
1122 | pcfm(i,k)=zcdn*zalm2/(1.+2.0*cb*zri(i)/zscf) |
---|
1123 | pcfh(i,k)=zcdn*zalh2/(1.+3.0*cb*zri(i)*zscf) |
---|
1124 | ENDIF |
---|
1125 | ELSE |
---|
1126 | zl2(i)=(mixlen*MAX(0.0,(paprs(i,k)-paprs(i,itop(i)+1)) |
---|
1127 | . /(paprs(i,2)-paprs(i,itop(i)+1)) ))**2 |
---|
1128 | pcfm(i,k)=sqrt(max(zcdn*zcdn*(ric-zri(i))/ric, kstable)) |
---|
1129 | pcfm(i,k)= zl2(i)* pcfm(i,k) |
---|
1130 | pcfh(i,k) = pcfm(i,k) /prandtl ! h et m different |
---|
1131 | ENDIF |
---|
1132 | ENDDO |
---|
1133 | ENDDO |
---|
1134 | c |
---|
1135 | c Au-dela du sommet, pas de diffusion turbulente: |
---|
1136 | c |
---|
1137 | DO i = 1, knon |
---|
1138 | IF (itop(i)+1 .LE. klev) THEN |
---|
1139 | DO k = itop(i)+1, klev |
---|
1140 | pcfh(i,k) = 0.0 |
---|
1141 | pcfm(i,k) = 0.0 |
---|
1142 | ENDDO |
---|
1143 | ENDIF |
---|
1144 | ENDDO |
---|
1145 | c |
---|
1146 | RETURN |
---|
1147 | END |
---|
1148 | SUBROUTINE coefkz2(nsrf, knon, paprs, pplay,t, |
---|
1149 | . pcfm, pcfh) |
---|
1150 | IMPLICIT none |
---|
1151 | c====================================================================== |
---|
1152 | c J'introduit un peu de diffusion sauf dans les endroits |
---|
1153 | c ou une forte inversion est presente |
---|
1154 | c On peut dire qu'il represente la convection peu profonde |
---|
1155 | c |
---|
1156 | c Arguments: |
---|
1157 | c nsrf-----input-I- indicateur de la nature du sol |
---|
1158 | c knon-----input-I- nombre de points a traiter |
---|
1159 | c paprs----input-R- pression a chaque intercouche (en Pa) |
---|
1160 | c pplay----input-R- pression au milieu de chaque couche (en Pa) |
---|
1161 | c t--------input-R- temperature (K) |
---|
1162 | c |
---|
1163 | c pcfm-----output-R- coefficients a calculer (vitesse) |
---|
1164 | c pcfh-----output-R- coefficients a calculer (chaleur et humidite) |
---|
1165 | c====================================================================== |
---|
1166 | #include "dimensions.h" |
---|
1167 | #include "dimphy.h" |
---|
1168 | #include "YOMCST.h" |
---|
1169 | #include "indicesol.h" |
---|
1170 | c |
---|
1171 | c Arguments: |
---|
1172 | c |
---|
1173 | INTEGER knon, nsrf |
---|
1174 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
1175 | REAL t(klon,klev) |
---|
1176 | c |
---|
1177 | REAL pcfm(klon,klev), pcfh(klon,klev) |
---|
1178 | c |
---|
1179 | c Quelques constantes et options: |
---|
1180 | c |
---|
1181 | REAL prandtl |
---|
1182 | PARAMETER (prandtl=0.4) |
---|
1183 | REAL kstable |
---|
1184 | PARAMETER (kstable=0.002) |
---|
1185 | ccc PARAMETER (kstable=0.001) |
---|
1186 | REAL mixlen ! constante controlant longueur de melange |
---|
1187 | PARAMETER (mixlen=35.0) |
---|
1188 | REAL seuil ! au-dela l'inversion est consideree trop faible |
---|
1189 | PARAMETER (seuil=-0.02) |
---|
1190 | ccc PARAMETER (seuil=-0.04) |
---|
1191 | ccc PARAMETER (seuil=-0.06) |
---|
1192 | ccc PARAMETER (seuil=-0.09) |
---|
1193 | c |
---|
1194 | c Variables locales: |
---|
1195 | c |
---|
1196 | INTEGER i, k, invb(klon) |
---|
1197 | REAL zl2(klon) |
---|
1198 | REAL zdthmin(klon), zdthdp |
---|
1199 | c |
---|
1200 | c Initialiser les sorties |
---|
1201 | c |
---|
1202 | DO k = 1, klev |
---|
1203 | DO i = 1, knon |
---|
1204 | pcfm(i,k) = 0.0 |
---|
1205 | pcfh(i,k) = 0.0 |
---|
1206 | ENDDO |
---|
1207 | ENDDO |
---|
1208 | c |
---|
1209 | c Chercher la zone d'inversion forte |
---|
1210 | c |
---|
1211 | DO i = 1, klon |
---|
1212 | invb(i) = klev |
---|
1213 | zdthmin(i)=0.0 |
---|
1214 | ENDDO |
---|
1215 | DO k = 2, klev/2-1 |
---|
1216 | DO i = 1, klon |
---|
1217 | zdthdp = (t(i,k)-t(i,k+1))/(pplay(i,k)-pplay(i,k+1)) |
---|
1218 | . - RD * 0.5*(t(i,k)+t(i,k+1))/RCPD/paprs(i,k+1) |
---|
1219 | zdthdp = zdthdp * 100.0 |
---|
1220 | IF (pplay(i,k).GT.0.8*paprs(i,1) .AND. |
---|
1221 | . zdthdp.LT.zdthmin(i) ) THEN |
---|
1222 | zdthmin(i) = zdthdp |
---|
1223 | invb(i) = k |
---|
1224 | ENDIF |
---|
1225 | ENDDO |
---|
1226 | ENDDO |
---|
1227 | c |
---|
1228 | c Introduire une diffusion: |
---|
1229 | c |
---|
1230 | DO k = 2, klev |
---|
1231 | DO i = 1, knon |
---|
1232 | IF ( (nsrf.NE.is_oce) .OR. ! si ce n'est pas sur l'ocean |
---|
1233 | . (invb(i).EQ.klev) .OR. ! s'il n'y a pas d'inversion |
---|
1234 | . (zdthmin(i).GT.seuil) )THEN ! si l'inversion est trop faible |
---|
1235 | zl2(i)=(mixlen*MAX(0.0,(paprs(i,k)-paprs(i,klev+1)) |
---|
1236 | . /(paprs(i,2)-paprs(i,klev+1)) ))**2 |
---|
1237 | pcfm(i,k)= zl2(i)* kstable |
---|
1238 | pcfh(i,k) = pcfm(i,k) /prandtl ! h et m different |
---|
1239 | ENDIF |
---|
1240 | ENDDO |
---|
1241 | ENDDO |
---|
1242 | c |
---|
1243 | RETURN |
---|
1244 | END |
---|
1245 | SUBROUTINE calbeta(dtime,indice,snow,qsol, |
---|
1246 | . vbeta,vcal,vdif) |
---|
1247 | IMPLICIT none |
---|
1248 | c====================================================================== |
---|
1249 | c Auteur(s): Z.X. Li (LMD/CNRS) (adaptation du GCM du LMD) |
---|
1250 | c date: 19940414 |
---|
1251 | c====================================================================== |
---|
1252 | c |
---|
1253 | c Calculer quelques parametres pour appliquer la couche limite |
---|
1254 | c ------------------------------------------------------------ |
---|
1255 | #include "dimensions.h" |
---|
1256 | #include "dimphy.h" |
---|
1257 | #include "YOMCST.h" |
---|
1258 | #include "indicesol.h" |
---|
1259 | REAL tau_gl ! temps de relaxation pour la glace de mer |
---|
1260 | ccc PARAMETER (tau_gl=86400.0*30.0) |
---|
1261 | PARAMETER (tau_gl=86400.0*5.0) |
---|
1262 | REAL mx_eau_sol |
---|
1263 | PARAMETER (mx_eau_sol=150.0) |
---|
1264 | c |
---|
1265 | REAL calsol, calsno, calice ! epaisseur du sol: 0.15 m |
---|
1266 | PARAMETER (calsol=1.0/(2.5578E+06*0.15)) |
---|
1267 | PARAMETER (calsno=1.0/(2.3867E+06*0.15)) |
---|
1268 | PARAMETER (calice=1.0/(5.1444E+06*0.15)) |
---|
1269 | C |
---|
1270 | INTEGER i |
---|
1271 | c |
---|
1272 | REAL dtime |
---|
1273 | REAL snow(klon,nbsrf), qsol(klon,nbsrf) |
---|
1274 | INTEGER indice |
---|
1275 | C |
---|
1276 | REAL vbeta(klon) |
---|
1277 | REAL vcal(klon) |
---|
1278 | REAL vdif(klon) |
---|
1279 | C |
---|
1280 | IF (indice.EQ.is_oce) THEN |
---|
1281 | DO i = 1, klon |
---|
1282 | vcal(i) = 0.0 |
---|
1283 | vbeta(i) = 1.0 |
---|
1284 | vdif(i) = 0.0 |
---|
1285 | ENDDO |
---|
1286 | ENDIF |
---|
1287 | c |
---|
1288 | IF (indice.EQ.is_sic) THEN |
---|
1289 | DO i = 1, klon |
---|
1290 | vcal(i) = calice |
---|
1291 | IF (snow(i,is_sic) .GT. 0.0) vcal(i) = calsno |
---|
1292 | vbeta(i) = 1.0 |
---|
1293 | vdif(i) = 1.0/tau_gl |
---|
1294 | ccc vdif(i) = calice/tau_gl ! c'etait une erreur |
---|
1295 | ENDDO |
---|
1296 | ENDIF |
---|
1297 | c |
---|
1298 | IF (indice.EQ.is_ter) THEN |
---|
1299 | DO i = 1, klon |
---|
1300 | vcal(i) = calsol |
---|
1301 | IF (snow(i,is_ter) .GT. 0.0) vcal(i) = calsno |
---|
1302 | vbeta(i) = MIN(2.0*qsol(i,is_ter)/mx_eau_sol, 1.0) |
---|
1303 | vdif(i) = 0.0 |
---|
1304 | ENDDO |
---|
1305 | ENDIF |
---|
1306 | c |
---|
1307 | IF (indice.EQ.is_lic) THEN |
---|
1308 | DO i = 1, klon |
---|
1309 | vcal(i) = calice |
---|
1310 | IF (snow(i,is_lic) .GT. 0.0) vcal(i) = calsno |
---|
1311 | vbeta(i) = 1.0 |
---|
1312 | vdif(i) = 0.0 |
---|
1313 | ENDDO |
---|
1314 | ENDIF |
---|
1315 | c |
---|
1316 | RETURN |
---|
1317 | END |
---|
1318 | C====================================================================== |
---|
1319 | SUBROUTINE nonlocal(knon, paprs, pplay, |
---|
1320 | . tsol,beta,u,v,t,q, |
---|
1321 | . cd_h, cd_m, pcfh, pcfm, cgh, cgq) |
---|
1322 | IMPLICIT none |
---|
1323 | c====================================================================== |
---|
1324 | c Laurent Li (LMD/CNRS), le 30 septembre 1998 |
---|
1325 | c Couche limite non-locale. Adaptation du code du CCM3. |
---|
1326 | c Code non teste, donc a ne pas utiliser. |
---|
1327 | c====================================================================== |
---|
1328 | c Nonlocal scheme that determines eddy diffusivities based on a |
---|
1329 | c diagnosed boundary layer height and a turbulent velocity scale. |
---|
1330 | c Also countergradient effects for heat and moisture are included. |
---|
1331 | c |
---|
1332 | c For more information, see Holtslag, A.A.M., and B.A. Boville, 1993: |
---|
1333 | c Local versus nonlocal boundary-layer diffusion in a global climate |
---|
1334 | c model. J. of Climate, vol. 6, 1825-1842. |
---|
1335 | c====================================================================== |
---|
1336 | #include "dimensions.h" |
---|
1337 | #include "dimphy.h" |
---|
1338 | #include "YOMCST.h" |
---|
1339 | c |
---|
1340 | c Arguments: |
---|
1341 | c |
---|
1342 | INTEGER knon ! nombre de points a calculer |
---|
1343 | REAL tsol(klon) ! temperature du sol (K) |
---|
1344 | REAL beta(klon) ! efficacite d'evaporation (entre 0 et 1) |
---|
1345 | REAL paprs(klon,klev+1) ! pression a inter-couche (Pa) |
---|
1346 | REAL pplay(klon,klev) ! pression au milieu de couche (Pa) |
---|
1347 | REAL u(klon,klev) ! vitesse U (m/s) |
---|
1348 | REAL v(klon,klev) ! vitesse V (m/s) |
---|
1349 | REAL t(klon,klev) ! temperature (K) |
---|
1350 | REAL q(klon,klev) ! vapeur d'eau (kg/kg) |
---|
1351 | REAL cd_h(klon) ! coefficient de friction au sol pour chaleur |
---|
1352 | REAL cd_m(klon) ! coefficient de friction au sol pour vitesse |
---|
1353 | c |
---|
1354 | INTEGER isommet |
---|
1355 | PARAMETER (isommet=klev) |
---|
1356 | REAL vk |
---|
1357 | PARAMETER (vk=0.35) |
---|
1358 | REAL ricr |
---|
1359 | PARAMETER (ricr=0.4) |
---|
1360 | REAL fak |
---|
1361 | PARAMETER (fak=8.5) |
---|
1362 | REAL fakn |
---|
1363 | PARAMETER (fakn=7.2) |
---|
1364 | REAL onet |
---|
1365 | PARAMETER (onet=1.0/3.0) |
---|
1366 | REAL t_coup |
---|
1367 | PARAMETER(t_coup=273.15) |
---|
1368 | REAL zkmin |
---|
1369 | PARAMETER (zkmin=0.01) |
---|
1370 | REAL betam |
---|
1371 | PARAMETER (betam=15.0) |
---|
1372 | REAL betah |
---|
1373 | PARAMETER (betah=15.0) |
---|
1374 | REAL betas |
---|
1375 | PARAMETER (betas=5.0) |
---|
1376 | REAL sffrac |
---|
1377 | PARAMETER (sffrac=0.1) |
---|
1378 | REAL binm |
---|
1379 | PARAMETER (binm=betam*sffrac) |
---|
1380 | REAL binh |
---|
1381 | PARAMETER (binh=betah*sffrac) |
---|
1382 | REAL ccon |
---|
1383 | PARAMETER (ccon=fak*sffrac*vk) |
---|
1384 | c |
---|
1385 | REAL z(klon,klev) |
---|
1386 | REAL pcfm(klon,klev), pcfh(klon,klev) |
---|
1387 | c |
---|
1388 | INTEGER i, k |
---|
1389 | REAL zxt, zxq, zxu, zxv, zxmod, taux, tauy |
---|
1390 | REAL zx_alf1, zx_alf2 ! parametres pour extrapolation |
---|
1391 | REAL khfs(klon) ! surface kinematic heat flux [mK/s] |
---|
1392 | REAL kqfs(klon) ! sfc kinematic constituent flux [m/s] |
---|
1393 | REAL heatv(klon) ! surface virtual heat flux |
---|
1394 | REAL ustar(klon) |
---|
1395 | REAL rino(klon,klev) ! bulk Richardon no. from level to ref lev |
---|
1396 | LOGICAL unstbl(klon) ! pts w/unstbl pbl (positive virtual ht flx) |
---|
1397 | LOGICAL stblev(klon) ! stable pbl with levels within pbl |
---|
1398 | LOGICAL unslev(klon) ! unstbl pbl with levels within pbl |
---|
1399 | LOGICAL unssrf(klon) ! unstb pbl w/lvls within srf pbl lyr |
---|
1400 | LOGICAL unsout(klon) ! unstb pbl w/lvls in outer pbl lyr |
---|
1401 | LOGICAL check(klon) ! True=>chk if Richardson no.>critcal |
---|
1402 | REAL pblh(klon) |
---|
1403 | REAL cgh(klon,2:klev) ! counter-gradient term for heat [K/m] |
---|
1404 | REAL cgq(klon,2:klev) ! counter-gradient term for constituents |
---|
1405 | REAL cgs(klon,2:klev) ! counter-gradient star (cg/flux) |
---|
1406 | REAL obklen(klon) |
---|
1407 | REAL ztvd, ztvu, zdu2 |
---|
1408 | REAL therm(klon) ! thermal virtual temperature excess |
---|
1409 | REAL phiminv(klon) ! inverse phi function for momentum |
---|
1410 | REAL phihinv(klon) ! inverse phi function for heat |
---|
1411 | REAL wm(klon) ! turbulent velocity scale for momentum |
---|
1412 | REAL fak1(klon) ! k*ustar*pblh |
---|
1413 | REAL fak2(klon) ! k*wm*pblh |
---|
1414 | REAL fak3(klon) ! fakn*wstr/wm |
---|
1415 | REAL pblk(klon) ! level eddy diffusivity for momentum |
---|
1416 | REAL pr(klon) ! Prandtl number for eddy diffusivities |
---|
1417 | REAL zl(klon) ! zmzp / Obukhov length |
---|
1418 | REAL zh(klon) ! zmzp / pblh |
---|
1419 | REAL zzh(klon) ! (1-(zmzp/pblh))**2 |
---|
1420 | REAL wstr(klon) ! w*, convective velocity scale |
---|
1421 | REAL zm(klon) ! current level height |
---|
1422 | REAL zp(klon) ! current level height + one level up |
---|
1423 | REAL zcor, zdelta, zcvm5, zxqs |
---|
1424 | REAL fac, pblmin, zmzp, term |
---|
1425 | c |
---|
1426 | #include "YOETHF.h" |
---|
1427 | #include "FCTTRE.h" |
---|
1428 | c |
---|
1429 | c Initialisation |
---|
1430 | c |
---|
1431 | DO i = 1, klon |
---|
1432 | pcfh(i,1) = cd_h(i) |
---|
1433 | pcfm(i,1) = cd_m(i) |
---|
1434 | ENDDO |
---|
1435 | DO k = 2, klev |
---|
1436 | DO i = 1, klon |
---|
1437 | pcfh(i,k) = zkmin |
---|
1438 | pcfm(i,k) = zkmin |
---|
1439 | cgs(i,k) = 0.0 |
---|
1440 | cgh(i,k) = 0.0 |
---|
1441 | cgq(i,k) = 0.0 |
---|
1442 | ENDDO |
---|
1443 | ENDDO |
---|
1444 | c |
---|
1445 | c Calculer les hauteurs de chaque couche |
---|
1446 | c |
---|
1447 | DO i = 1, knon |
---|
1448 | z(i,1) = RD * t(i,1) / (0.5*(paprs(i,1)+pplay(i,1))) |
---|
1449 | . * (paprs(i,1)-pplay(i,1)) / RG |
---|
1450 | ENDDO |
---|
1451 | DO k = 2, klev |
---|
1452 | DO i = 1, knon |
---|
1453 | z(i,k) = z(i,k-1) |
---|
1454 | . + RD * 0.5*(t(i,k-1)+t(i,k)) / paprs(i,k) |
---|
1455 | . * (pplay(i,k-1)-pplay(i,k)) / RG |
---|
1456 | ENDDO |
---|
1457 | ENDDO |
---|
1458 | c |
---|
1459 | DO i = 1, knon |
---|
1460 | IF (thermcep) THEN |
---|
1461 | zdelta=MAX(0.,SIGN(1.,RTT-tsol(i))) |
---|
1462 | zcvm5 = R5LES*RLVTT*(1.-zdelta) + R5IES*RLSTT*zdelta |
---|
1463 | zcvm5 = zcvm5 / RCPD / (1.0+RVTMP2*q(i,1)) |
---|
1464 | zxqs= r2es * FOEEW(tsol(i),zdelta)/paprs(i,1) |
---|
1465 | zxqs=MIN(0.5,zxqs) |
---|
1466 | zcor=1./(1.-retv*zxqs) |
---|
1467 | zxqs=zxqs*zcor |
---|
1468 | ELSE |
---|
1469 | IF (tsol(i).LT.t_coup) THEN |
---|
1470 | zxqs = qsats(tsol(i)) / paprs(i,1) |
---|
1471 | ELSE |
---|
1472 | zxqs = qsatl(tsol(i)) / paprs(i,1) |
---|
1473 | ENDIF |
---|
1474 | ENDIF |
---|
1475 | zx_alf1 = 1.0 |
---|
1476 | zx_alf2 = 1.0 - zx_alf1 |
---|
1477 | zxt = (t(i,1)+z(i,1)*RG/RCPD/(1.+RVTMP2*q(i,1))) |
---|
1478 | . *(1.+RETV*q(i,1))*zx_alf1 |
---|
1479 | . + (t(i,2)+z(i,2)*RG/RCPD/(1.+RVTMP2*q(i,2))) |
---|
1480 | . *(1.+RETV*q(i,2))*zx_alf2 |
---|
1481 | zxu = u(i,1)*zx_alf1+u(i,2)*zx_alf2 |
---|
1482 | zxv = v(i,1)*zx_alf1+v(i,2)*zx_alf2 |
---|
1483 | zxq = q(i,1)*zx_alf1+q(i,2)*zx_alf2 |
---|
1484 | zxmod = 1.0+SQRT(zxu**2+zxv**2) |
---|
1485 | khfs(i) = (tsol(i)*(1.+RETV*q(i,1))-zxt) *zxmod*cd_h(i) |
---|
1486 | kqfs(i) = (zxqs-zxq) *zxmod*cd_h(i) * beta(i) |
---|
1487 | heatv(i) = khfs(i) + 0.61*zxt*kqfs(i) |
---|
1488 | taux = zxu *zxmod*cd_m(i) |
---|
1489 | tauy = zxv *zxmod*cd_m(i) |
---|
1490 | ustar(i) = SQRT(taux**2+tauy**2) |
---|
1491 | ustar(i) = MAX(SQRT(ustar(i)),0.01) |
---|
1492 | ENDDO |
---|
1493 | c |
---|
1494 | DO i = 1, knon |
---|
1495 | rino(i,1) = 0.0 |
---|
1496 | check(i) = .TRUE. |
---|
1497 | pblh(i) = z(i,1) |
---|
1498 | obklen(i) = -t(i,1)*ustar(i)**3/(RG*vk*heatv(i)) |
---|
1499 | ENDDO |
---|
1500 | |
---|
1501 | C |
---|
1502 | C PBL height calculation: |
---|
1503 | C Search for level of pbl. Scan upward until the Richardson number between |
---|
1504 | C the first level and the current level exceeds the "critical" value. |
---|
1505 | C |
---|
1506 | fac = 100.0 |
---|
1507 | DO k = 1, isommet |
---|
1508 | DO i = 1, knon |
---|
1509 | IF (check(i)) THEN |
---|
1510 | zdu2 = (u(i,k)-u(i,1))**2+(v(i,k)-v(i,1))**2+fac*ustar(i)**2 |
---|
1511 | zdu2 = max(zdu2,1.0e-20) |
---|
1512 | ztvd =(t(i,k)+z(i,k)*0.5*RG/RCPD/(1.+RVTMP2*q(i,k))) |
---|
1513 | . *(1.+RETV*q(i,k)) |
---|
1514 | ztvu =(t(i,1)-z(i,k)*0.5*RG/RCPD/(1.+RVTMP2*q(i,1))) |
---|
1515 | . *(1.+RETV*q(i,1)) |
---|
1516 | rino(i,k) = (z(i,k)-z(i,1))*RG*(ztvd-ztvu) |
---|
1517 | . /(zdu2*0.5*(ztvd+ztvu)) |
---|
1518 | IF (rino(i,k).GE.ricr) THEN |
---|
1519 | pblh(i) = z(i,k-1) + (z(i,k-1)-z(i,k)) * |
---|
1520 | . (ricr-rino(i,k-1))/(rino(i,k-1)-rino(i,k)) |
---|
1521 | check(i) = .FALSE. |
---|
1522 | ENDIF |
---|
1523 | ENDIF |
---|
1524 | ENDDO |
---|
1525 | ENDDO |
---|
1526 | |
---|
1527 | C |
---|
1528 | C Set pbl height to maximum value where computation exceeds number of |
---|
1529 | C layers allowed |
---|
1530 | C |
---|
1531 | DO i = 1, knon |
---|
1532 | if (check(i)) pblh(i) = z(i,isommet) |
---|
1533 | ENDDO |
---|
1534 | C |
---|
1535 | C Improve estimate of pbl height for the unstable points. |
---|
1536 | C Find unstable points (sensible heat flux is upward): |
---|
1537 | C |
---|
1538 | DO i = 1, knon |
---|
1539 | IF (heatv(i) .GT. 0.) THEN |
---|
1540 | unstbl(i) = .TRUE. |
---|
1541 | check(i) = .TRUE. |
---|
1542 | ELSE |
---|
1543 | unstbl(i) = .FALSE. |
---|
1544 | check(i) = .FALSE. |
---|
1545 | ENDIF |
---|
1546 | ENDDO |
---|
1547 | C |
---|
1548 | C For the unstable case, compute velocity scale and the |
---|
1549 | C convective temperature excess: |
---|
1550 | C |
---|
1551 | DO i = 1, knon |
---|
1552 | IF (check(i)) THEN |
---|
1553 | phiminv(i) = (1.-binm*pblh(i)/obklen(i))**onet |
---|
1554 | wm(i)= ustar(i)*phiminv(i) |
---|
1555 | therm(i) = heatv(i)*fak/wm(i) |
---|
1556 | rino(i,1) = 0.0 |
---|
1557 | ENDIF |
---|
1558 | ENDDO |
---|
1559 | C |
---|
1560 | C Improve pblh estimate for unstable conditions using the |
---|
1561 | C convective temperature excess: |
---|
1562 | C |
---|
1563 | DO k = 1, isommet |
---|
1564 | DO i = 1, knon |
---|
1565 | IF (check(i)) THEN |
---|
1566 | zdu2 = (u(i,k)-u(i,1))**2+(v(i,k)-v(i,1))**2+fac*ustar(i)**2 |
---|
1567 | zdu2 = max(zdu2,1.0e-20) |
---|
1568 | ztvd =(t(i,k)+z(i,k)*0.5*RG/RCPD/(1.+RVTMP2*q(i,k))) |
---|
1569 | . *(1.+RETV*q(i,k)) |
---|
1570 | ztvu =(t(i,1)+therm(i)-z(i,k)*0.5*RG/RCPD/(1.+RVTMP2*q(i,1))) |
---|
1571 | . *(1.+RETV*q(i,1)) |
---|
1572 | rino(i,k) = (z(i,k)-z(i,1))*RG*(ztvd-ztvu) |
---|
1573 | . /(zdu2*0.5*(ztvd+ztvu)) |
---|
1574 | IF (rino(i,k).GE.ricr) THEN |
---|
1575 | pblh(i) = z(i,k-1) + (z(i,k-1)-z(i,k)) * |
---|
1576 | . (ricr-rino(i,k-1))/(rino(i,k-1)-rino(i,k)) |
---|
1577 | check(i) = .FALSE. |
---|
1578 | ENDIF |
---|
1579 | ENDIF |
---|
1580 | ENDDO |
---|
1581 | ENDDO |
---|
1582 | C |
---|
1583 | C Set pbl height to maximum value where computation exceeds number of |
---|
1584 | C layers allowed |
---|
1585 | C |
---|
1586 | DO i = 1, knon |
---|
1587 | if (check(i)) pblh(i) = z(i,isommet) |
---|
1588 | ENDDO |
---|
1589 | C |
---|
1590 | C Points for which pblh exceeds number of pbl layers allowed; |
---|
1591 | C set to maximum |
---|
1592 | C |
---|
1593 | DO i = 1, knon |
---|
1594 | IF (check(i)) pblh(i) = z(i,isommet) |
---|
1595 | ENDDO |
---|
1596 | C |
---|
1597 | C PBL height must be greater than some minimum mechanical mixing depth |
---|
1598 | C Several investigators have proposed minimum mechanical mixing depth |
---|
1599 | C relationships as a function of the local friction velocity, u*. We |
---|
1600 | C make use of a linear relationship of the form h = c u* where c=700. |
---|
1601 | C The scaling arguments that give rise to this relationship most often |
---|
1602 | C represent the coefficient c as some constant over the local coriolis |
---|
1603 | C parameter. Here we make use of the experimental results of Koracin |
---|
1604 | C and Berkowicz (1988) [BLM, Vol 43] for wich they recommend 0.07/f |
---|
1605 | C where f was evaluated at 39.5 N and 52 N. Thus we use a typical mid |
---|
1606 | C latitude value for f so that c = 0.07/f = 700. |
---|
1607 | C |
---|
1608 | DO i = 1, knon |
---|
1609 | pblmin = 700.0*ustar(i) |
---|
1610 | pblh(i) = MAX(pblh(i),pblmin) |
---|
1611 | ENDDO |
---|
1612 | C |
---|
1613 | C pblh is now available; do preparation for diffusivity calculation: |
---|
1614 | C |
---|
1615 | DO i = 1, knon |
---|
1616 | pblk(i) = 0.0 |
---|
1617 | fak1(i) = ustar(i)*pblh(i)*vk |
---|
1618 | C |
---|
1619 | C Do additional preparation for unstable cases only, set temperature |
---|
1620 | C and moisture perturbations depending on stability. |
---|
1621 | C |
---|
1622 | IF (unstbl(i)) THEN |
---|
1623 | zxt=(t(i,1)-z(i,1)*0.5*RG/RCPD/(1.+RVTMP2*q(i,1))) |
---|
1624 | . *(1.+RETV*q(i,1)) |
---|
1625 | phiminv(i) = (1. - binm*pblh(i)/obklen(i))**onet |
---|
1626 | phihinv(i) = sqrt(1. - binh*pblh(i)/obklen(i)) |
---|
1627 | wm(i) = ustar(i)*phiminv(i) |
---|
1628 | fak2(i) = wm(i)*pblh(i)*vk |
---|
1629 | wstr(i) = (heatv(i)*RG*pblh(i)/zxt)**onet |
---|
1630 | fak3(i) = fakn*wstr(i)/wm(i) |
---|
1631 | ENDIF |
---|
1632 | ENDDO |
---|
1633 | |
---|
1634 | C Main level loop to compute the diffusivities and |
---|
1635 | C counter-gradient terms: |
---|
1636 | C |
---|
1637 | DO 1000 k = 2, isommet |
---|
1638 | C |
---|
1639 | C Find levels within boundary layer: |
---|
1640 | C |
---|
1641 | DO i = 1, knon |
---|
1642 | unslev(i) = .FALSE. |
---|
1643 | stblev(i) = .FALSE. |
---|
1644 | zm(i) = z(i,k-1) |
---|
1645 | zp(i) = z(i,k) |
---|
1646 | IF (zkmin.EQ.0.0 .AND. zp(i).GT.pblh(i)) zp(i) = pblh(i) |
---|
1647 | IF (zm(i) .LT. pblh(i)) THEN |
---|
1648 | zmzp = 0.5*(zm(i) + zp(i)) |
---|
1649 | zh(i) = zmzp/pblh(i) |
---|
1650 | zl(i) = zmzp/obklen(i) |
---|
1651 | zzh(i) = 0. |
---|
1652 | IF (zh(i).LE.1.0) zzh(i) = (1. - zh(i))**2 |
---|
1653 | C |
---|
1654 | C stblev for points zm < plbh and stable and neutral |
---|
1655 | C unslev for points zm < plbh and unstable |
---|
1656 | C |
---|
1657 | IF (unstbl(i)) THEN |
---|
1658 | unslev(i) = .TRUE. |
---|
1659 | ELSE |
---|
1660 | stblev(i) = .TRUE. |
---|
1661 | ENDIF |
---|
1662 | ENDIF |
---|
1663 | ENDDO |
---|
1664 | C |
---|
1665 | C Stable and neutral points; set diffusivities; counter-gradient |
---|
1666 | C terms zero for stable case: |
---|
1667 | C |
---|
1668 | DO i = 1, knon |
---|
1669 | IF (stblev(i)) THEN |
---|
1670 | IF (zl(i).LE.1.) THEN |
---|
1671 | pblk(i) = fak1(i)*zh(i)*zzh(i)/(1. + betas*zl(i)) |
---|
1672 | ELSE |
---|
1673 | pblk(i) = fak1(i)*zh(i)*zzh(i)/(betas + zl(i)) |
---|
1674 | ENDIF |
---|
1675 | pcfm(i,k) = pblk(i) |
---|
1676 | pcfh(i,k) = pcfm(i,k) |
---|
1677 | ENDIF |
---|
1678 | ENDDO |
---|
1679 | C |
---|
1680 | C unssrf, unstable within surface layer of pbl |
---|
1681 | C unsout, unstable within outer layer of pbl |
---|
1682 | C |
---|
1683 | DO i = 1, knon |
---|
1684 | unssrf(i) = .FALSE. |
---|
1685 | unsout(i) = .FALSE. |
---|
1686 | IF (unslev(i)) THEN |
---|
1687 | IF (zh(i).lt.sffrac) THEN |
---|
1688 | unssrf(i) = .TRUE. |
---|
1689 | ELSE |
---|
1690 | unsout(i) = .TRUE. |
---|
1691 | ENDIF |
---|
1692 | ENDIF |
---|
1693 | ENDDO |
---|
1694 | C |
---|
1695 | C Unstable for surface layer; counter-gradient terms zero |
---|
1696 | C |
---|
1697 | DO i = 1, knon |
---|
1698 | IF (unssrf(i)) THEN |
---|
1699 | term = (1. - betam*zl(i))**onet |
---|
1700 | pblk(i) = fak1(i)*zh(i)*zzh(i)*term |
---|
1701 | pr(i) = term/sqrt(1. - betah*zl(i)) |
---|
1702 | ENDIF |
---|
1703 | ENDDO |
---|
1704 | C |
---|
1705 | C Unstable for outer layer; counter-gradient terms non-zero: |
---|
1706 | C |
---|
1707 | DO i = 1, knon |
---|
1708 | IF (unsout(i)) THEN |
---|
1709 | pblk(i) = fak2(i)*zh(i)*zzh(i) |
---|
1710 | cgs(i,k) = fak3(i)/(pblh(i)*wm(i)) |
---|
1711 | cgh(i,k) = khfs(i)*cgs(i,k) |
---|
1712 | pr(i) = phiminv(i)/phihinv(i) + ccon*fak3(i)/fak |
---|
1713 | cgq(i,k) = kqfs(i)*cgs(i,k) |
---|
1714 | ENDIF |
---|
1715 | ENDDO |
---|
1716 | C |
---|
1717 | C For all unstable layers, set diffusivities |
---|
1718 | C |
---|
1719 | DO i = 1, knon |
---|
1720 | IF (unslev(i)) THEN |
---|
1721 | pcfm(i,k) = pblk(i) |
---|
1722 | pcfh(i,k) = pblk(i)/pr(i) |
---|
1723 | ENDIF |
---|
1724 | ENDDO |
---|
1725 | 1000 continue ! end of level loop |
---|
1726 | |
---|
1727 | RETURN |
---|
1728 | END |
---|