1 | SUBROUTINE nuage (paprs, pplay, |
---|
2 | . t, pqlwp, pclc, pcltau, pclemi, |
---|
3 | . pch, pcl, pcm, pct, pctlwp) |
---|
4 | IMPLICIT none |
---|
5 | c====================================================================== |
---|
6 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
---|
7 | c Objet: Calculer epaisseur optique et emmissivite des nuages |
---|
8 | c====================================================================== |
---|
9 | c Arguments: |
---|
10 | c t-------input-R-temperature |
---|
11 | c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) |
---|
12 | c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
---|
13 | c |
---|
14 | c pcltau--output-R-epaisseur optique des nuages |
---|
15 | c pclemi--output-R-emissivite des nuages (0 a 1) |
---|
16 | c====================================================================== |
---|
17 | C |
---|
18 | #include "YOMCST.h" |
---|
19 | c |
---|
20 | #include "dimensions.h" |
---|
21 | #include "dimphy.h" |
---|
22 | #include "nuage.h" |
---|
23 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
24 | REAL t(klon,klev) |
---|
25 | c |
---|
26 | REAL pclc(klon,klev) |
---|
27 | REAL pqlwp(klon,klev) |
---|
28 | REAL pcltau(klon,klev), pclemi(klon,klev) |
---|
29 | c |
---|
30 | REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) |
---|
31 | c |
---|
32 | LOGICAL lo |
---|
33 | c |
---|
34 | REAL cetahb, cetamb |
---|
35 | PARAMETER (cetahb = 0.45, cetamb = 0.80) |
---|
36 | C |
---|
37 | INTEGER i, k |
---|
38 | REAL zflwp, zradef, zfice, zmsac |
---|
39 | c |
---|
40 | REAL radius, rad_chaud |
---|
41 | ccc PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) |
---|
42 | ccc PARAMETER (rad_chaud=15.0, rad_froid=35.0) |
---|
43 | c sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) |
---|
44 | REAL coef, coef_froi, coef_chau |
---|
45 | PARAMETER (coef_chau=0.13, coef_froi=0.09) |
---|
46 | REAL seuil_neb, t_glace |
---|
47 | PARAMETER (seuil_neb=0.001, t_glace=273.0-15.0) |
---|
48 | INTEGER nexpo ! exponentiel pour glace/eau |
---|
49 | PARAMETER (nexpo=6) |
---|
50 | ccc PARAMETER (nexpo=1) |
---|
51 | c |
---|
52 | c Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
53 | c |
---|
54 | DO k = 1, klev |
---|
55 | DO i = 1, klon |
---|
56 | rad_chaud = rad_chau1 |
---|
57 | IF (k.LE.3) rad_chaud = rad_chau2 |
---|
58 | pclc(i,k) = MAX(pclc(i,k), seuil_neb) |
---|
59 | zflwp = 1000.*pqlwp(i,k)/RG/pclc(i,k) |
---|
60 | . *(paprs(i,k)-paprs(i,k+1)) |
---|
61 | zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) |
---|
62 | zfice = MIN(MAX(zfice,0.0),1.0) |
---|
63 | zfice = zfice**nexpo |
---|
64 | radius = rad_chaud * (1.-zfice) + rad_froid * zfice |
---|
65 | coef = coef_chau * (1.-zfice) + coef_froi * zfice |
---|
66 | pcltau(i,k) = 3.0/2.0 * zflwp / radius |
---|
67 | pclemi(i,k) = 1.0 - EXP( - coef * zflwp) |
---|
68 | lo = (pclc(i,k) .LE. seuil_neb) |
---|
69 | IF (lo) pclc(i,k) = 0.0 |
---|
70 | IF (lo) pcltau(i,k) = 0.0 |
---|
71 | IF (lo) pclemi(i,k) = 0.0 |
---|
72 | ENDDO |
---|
73 | ENDDO |
---|
74 | ccc DO k = 1, klev |
---|
75 | ccc DO i = 1, klon |
---|
76 | ccc t(i,k) = t(i,k) |
---|
77 | ccc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) |
---|
78 | ccc lo = pclc(i,k) .GT. (2.*1.e-5) |
---|
79 | ccc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) |
---|
80 | ccc . /(rg*pclc(i,k)) |
---|
81 | ccc zradef = 10.0 + (1.-sigs(k))*45.0 |
---|
82 | ccc pcltau(i,k) = 1.5 * zflwp / zradef |
---|
83 | ccc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) |
---|
84 | ccc zmsac = 0.13*(1.0-zfice) + 0.08*zfice |
---|
85 | ccc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) |
---|
86 | ccc if (.NOT.lo) pclc(i,k) = 0.0 |
---|
87 | ccc if (.NOT.lo) pcltau(i,k) = 0.0 |
---|
88 | ccc if (.NOT.lo) pclemi(i,k) = 0.0 |
---|
89 | ccc ENDDO |
---|
90 | ccc ENDDO |
---|
91 | cccccc print*, 'pas de nuage dans le rayonnement' |
---|
92 | cccccc DO k = 1, klev |
---|
93 | cccccc DO i = 1, klon |
---|
94 | cccccc pclc(i,k) = 0.0 |
---|
95 | cccccc pcltau(i,k) = 0.0 |
---|
96 | cccccc pclemi(i,k) = 0.0 |
---|
97 | cccccc ENDDO |
---|
98 | cccccc ENDDO |
---|
99 | C |
---|
100 | C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
101 | C |
---|
102 | DO i = 1, klon |
---|
103 | pct(i)=1.0 |
---|
104 | pch(i)=1.0 |
---|
105 | pcm(i) = 1.0 |
---|
106 | pcl(i) = 1.0 |
---|
107 | pctlwp(i) = 0.0 |
---|
108 | ENDDO |
---|
109 | C |
---|
110 | DO k = klev, 1, -1 |
---|
111 | DO i = 1, klon |
---|
112 | pctlwp(i) = pctlwp(i) |
---|
113 | . + pqlwp(i,k)*(paprs(i,k)-paprs(i,k+1))/RG |
---|
114 | pct(i) = pct(i)*(1.0-pclc(i,k)) |
---|
115 | if (pplay(i,k).LE.cetahb*paprs(i,1)) |
---|
116 | . pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
117 | if (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
---|
118 | . pplay(i,k).LE.cetamb*paprs(i,1)) |
---|
119 | . pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
120 | if (pplay(i,k).GT.cetamb*paprs(i,1)) |
---|
121 | . pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
122 | ENDDO |
---|
123 | ENDDO |
---|
124 | C |
---|
125 | DO i = 1, klon |
---|
126 | pct(i)=1.-pct(i) |
---|
127 | pch(i)=1.-pch(i) |
---|
128 | pcm(i)=1.-pcm(i) |
---|
129 | pcl(i)=1.-pcl(i) |
---|
130 | ENDDO |
---|
131 | C |
---|
132 | RETURN |
---|
133 | END |
---|
134 | SUBROUTINE diagcld1(paprs,pplay,rain,snow,kbot,ktop, |
---|
135 | . diafra,dialiq) |
---|
136 | IMPLICIT none |
---|
137 | c |
---|
138 | c Laurent Li (LMD/CNRS), le 12 octobre 1998 |
---|
139 | c (adaptation du code ECMWF) |
---|
140 | c |
---|
141 | c Dans certains cas, le schema pronostique des nuages n'est |
---|
142 | c pas suffisament performant. On a donc besoin de diagnostiquer |
---|
143 | c ces nuages. Je dois avouer que c'est une frustration. |
---|
144 | c |
---|
145 | #include "dimensions.h" |
---|
146 | #include "dimphy.h" |
---|
147 | #include "YOMCST.h" |
---|
148 | c |
---|
149 | c Arguments d'entree: |
---|
150 | REAL paprs(klon,klev+1) ! pression (Pa) a inter-couche |
---|
151 | REAL pplay(klon,klev) ! pression (Pa) au milieu de couche |
---|
152 | REAL t(klon,klev) ! temperature (K) |
---|
153 | REAL q(klon,klev) ! humidite specifique (Kg/Kg) |
---|
154 | REAL rain(klon) ! pluie convective (kg/m2/s) |
---|
155 | REAL snow(klon) ! neige convective (kg/m2/s) |
---|
156 | INTEGER ktop(klon) ! sommet de la convection |
---|
157 | INTEGER kbot(klon) ! bas de la convection |
---|
158 | c |
---|
159 | c Arguments de sortie: |
---|
160 | REAL diafra(klon,klev) ! fraction nuageuse diagnostiquee |
---|
161 | REAL dialiq(klon,klev) ! eau liquide nuageuse |
---|
162 | c |
---|
163 | c Constantes ajustables: |
---|
164 | REAL CANVA, CANVB, CANVH |
---|
165 | PARAMETER (CANVA=2.0, CANVB=0.3, CANVH=0.4) |
---|
166 | REAL CCA, CCB, CCC |
---|
167 | PARAMETER (CCA=0.125, CCB=1.5, CCC=0.8) |
---|
168 | REAL CCFCT, CCSCAL |
---|
169 | PARAMETER (CCFCT=0.400) |
---|
170 | PARAMETER (CCSCAL=1.0E+11) |
---|
171 | REAL CETAHB, CETAMB |
---|
172 | PARAMETER (CETAHB=0.45, CETAMB=0.80) |
---|
173 | REAL CCLWMR |
---|
174 | PARAMETER (CCLWMR=1.E-04) |
---|
175 | REAL ZEPSCR |
---|
176 | PARAMETER (ZEPSCR=1.0E-10) |
---|
177 | c |
---|
178 | c Variables locales: |
---|
179 | INTEGER i, k |
---|
180 | REAL zcc(klon) |
---|
181 | c |
---|
182 | c Initialisation: |
---|
183 | c |
---|
184 | DO k = 1, klev |
---|
185 | DO i = 1, klon |
---|
186 | diafra(i,k) = 0.0 |
---|
187 | dialiq(i,k) = 0.0 |
---|
188 | ENDDO |
---|
189 | ENDDO |
---|
190 | c |
---|
191 | DO i = 1, klon ! Calculer la fraction nuageuse |
---|
192 | zcc(i) = 0.0 |
---|
193 | IF((rain(i)+snow(i)).GT.0.) THEN |
---|
194 | zcc(i)= CCA * LOG(MAX(ZEPSCR,(rain(i)+snow(i))*CCSCAL))-CCB |
---|
195 | zcc(i)= MIN(CCC,MAX(0.0,zcc(i))) |
---|
196 | ENDIF |
---|
197 | ENDDO |
---|
198 | c |
---|
199 | DO i = 1, klon ! pour traiter les enclumes |
---|
200 | diafra(i,ktop(i)) = MAX(diafra(i,ktop(i)),zcc(i)*CCFCT) |
---|
201 | IF ((zcc(i).GE.CANVH) .AND. |
---|
202 | . (pplay(i,ktop(i)).LE.CETAHB*paprs(i,1))) |
---|
203 | . diafra(i,ktop(i)) = MAX(diafra(i,ktop(i)), |
---|
204 | . MAX(zcc(i)*CCFCT,CANVA*(zcc(i)-CANVB))) |
---|
205 | dialiq(i,ktop(i))=CCLWMR*diafra(i,ktop(i)) |
---|
206 | ENDDO |
---|
207 | c |
---|
208 | DO k = 1, klev ! nuages convectifs (sauf enclumes) |
---|
209 | DO i = 1, klon |
---|
210 | IF (k.LT.ktop(i) .AND. k.GE.kbot(i)) THEN |
---|
211 | diafra(i,k)=MAX(diafra(i,k),zcc(i)*CCFCT) |
---|
212 | dialiq(i,k)=CCLWMR*diafra(i,k) |
---|
213 | ENDIF |
---|
214 | ENDDO |
---|
215 | ENDDO |
---|
216 | c |
---|
217 | RETURN |
---|
218 | END |
---|
219 | SUBROUTINE diagcld2(paprs,pplay,t,q, diafra,dialiq) |
---|
220 | IMPLICIT none |
---|
221 | c |
---|
222 | #include "dimensions.h" |
---|
223 | #include "dimphy.h" |
---|
224 | #include "YOMCST.h" |
---|
225 | c |
---|
226 | c Arguments d'entree: |
---|
227 | REAL paprs(klon,klev+1) ! pression (Pa) a inter-couche |
---|
228 | REAL pplay(klon,klev) ! pression (Pa) au milieu de couche |
---|
229 | REAL t(klon,klev) ! temperature (K) |
---|
230 | REAL q(klon,klev) ! humidite specifique (Kg/Kg) |
---|
231 | c |
---|
232 | c Arguments de sortie: |
---|
233 | REAL diafra(klon,klev) ! fraction nuageuse diagnostiquee |
---|
234 | REAL dialiq(klon,klev) ! eau liquide nuageuse |
---|
235 | c |
---|
236 | REAL CETAMB |
---|
237 | PARAMETER (CETAMB=0.80) |
---|
238 | REAL CLOIA, CLOIB, CLOIC, CLOID |
---|
239 | PARAMETER (CLOIA=1.0E+02, CLOIB=-10.00, CLOIC=-0.6, CLOID=5.0) |
---|
240 | ccc PARAMETER (CLOIA=1.0E+02, CLOIB=-10.00, CLOIC=-0.9, CLOID=5.0) |
---|
241 | REAL RGAMMAS |
---|
242 | PARAMETER (RGAMMAS=0.05) |
---|
243 | REAL CRHL |
---|
244 | PARAMETER (CRHL=0.15) |
---|
245 | ccc PARAMETER (CRHL=0.70) |
---|
246 | REAL t_coup |
---|
247 | PARAMETER (t_coup=234.0) |
---|
248 | c |
---|
249 | c Variables locales: |
---|
250 | INTEGER i, k, kb, invb(klon) |
---|
251 | REAL zqs, zrhb, zcll, zdthmin(klon), zdthdp |
---|
252 | REAL zdelta, zcor |
---|
253 | c |
---|
254 | c Fonctions thermodynamiques: |
---|
255 | #include "YOETHF.h" |
---|
256 | #include "FCTTRE.h" |
---|
257 | c |
---|
258 | c Initialisation: |
---|
259 | c |
---|
260 | DO k = 1, klev |
---|
261 | DO i = 1, klon |
---|
262 | diafra(i,k) = 0.0 |
---|
263 | dialiq(i,k) = 0.0 |
---|
264 | ENDDO |
---|
265 | ENDDO |
---|
266 | c |
---|
267 | DO i = 1, klon |
---|
268 | invb(i) = klev |
---|
269 | zdthmin(i)=0.0 |
---|
270 | ENDDO |
---|
271 | |
---|
272 | DO k = 2, klev/2-1 |
---|
273 | DO i = 1, klon |
---|
274 | zdthdp = (t(i,k)-t(i,k+1))/(pplay(i,k)-pplay(i,k+1)) |
---|
275 | . - RD * 0.5*(t(i,k)+t(i,k+1))/RCPD/paprs(i,k+1) |
---|
276 | zdthdp = zdthdp * CLOIA |
---|
277 | IF (pplay(i,k).GT.CETAMB*paprs(i,1) .AND. |
---|
278 | . zdthdp.LT.zdthmin(i) ) THEN |
---|
279 | zdthmin(i) = zdthdp |
---|
280 | invb(i) = k |
---|
281 | ENDIF |
---|
282 | ENDDO |
---|
283 | ENDDO |
---|
284 | |
---|
285 | DO i = 1, klon |
---|
286 | kb=invb(i) |
---|
287 | IF (thermcep) THEN |
---|
288 | zdelta=MAX(0.,SIGN(1.,RTT-t(i,kb))) |
---|
289 | zqs= R2ES*FOEEW(t(i,kb),zdelta)/pplay(i,kb) |
---|
290 | zqs=MIN(0.5,zqs) |
---|
291 | zcor=1./(1.-RETV*zqs) |
---|
292 | zqs=zqs*zcor |
---|
293 | ELSE |
---|
294 | IF (t(i,kb) .LT. t_coup) THEN |
---|
295 | zqs = qsats(t(i,kb)) / pplay(i,kb) |
---|
296 | ELSE |
---|
297 | zqs = qsatl(t(i,kb)) / pplay(i,kb) |
---|
298 | ENDIF |
---|
299 | ENDIF |
---|
300 | zcll = CLOIB * zdthmin(i) + CLOIC |
---|
301 | zcll = MIN(1.0,MAX(0.0,zcll)) |
---|
302 | zrhb= q(i,kb)/zqs |
---|
303 | IF (zcll.GT.0.0.AND.zrhb.LT.CRHL) |
---|
304 | . zcll=zcll*(1.-(CRHL-zrhb)*CLOID) |
---|
305 | zcll=MIN(1.0,MAX(0.0,zcll)) |
---|
306 | diafra(i,kb) = MAX(diafra(i,kb),zcll) |
---|
307 | dialiq(i,kb)= diafra(i,kb) * RGAMMAS*zqs |
---|
308 | ENDDO |
---|
309 | c |
---|
310 | RETURN |
---|
311 | END |
---|