[388] | 1 | SUBROUTINE newmicro (paprs, pplay,ok_newmicro, |
---|
| 2 | . t, pqlwp, pclc, pcltau, pclemi, |
---|
[486] | 3 | . pch, pcl, pcm, pct, pctlwp, |
---|
[517] | 4 | s xflwp, xfiwp, xflwc, xfiwc, |
---|
| 5 | e ok_aie, |
---|
| 6 | e sulfate, sulfate_pi, |
---|
| 7 | e bl95_b0, bl95_b1, |
---|
| 8 | s cldtaupi, re, fl) |
---|
[388] | 9 | IMPLICIT none |
---|
| 10 | c====================================================================== |
---|
| 11 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
---|
| 12 | c Objet: Calculer epaisseur optique et emmissivite des nuages |
---|
| 13 | c====================================================================== |
---|
| 14 | c Arguments: |
---|
| 15 | c t-------input-R-temperature |
---|
| 16 | c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) |
---|
| 17 | c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
---|
| 18 | c |
---|
[517] | 19 | c ok_aie--input-L-apply aerosol indirect effect or not |
---|
| 20 | c sulfate-input-R-sulfate aerosol mass concentration [um/m^3] |
---|
| 21 | c sulfate_pi-input-R-dito, pre-industrial value |
---|
| 22 | c bl95_b0-input-R-a parameter, may be varied for tests (s-sea, l-land) |
---|
| 23 | c bl95_b1-input-R-a parameter, may be varied for tests ( -"- ) |
---|
| 24 | c |
---|
| 25 | c cldtaupi-output-R-pre-industrial value of cloud optical thickness, |
---|
| 26 | c needed for the diagnostics of the aerosol indirect |
---|
| 27 | c radiative forcing (see radlwsw) |
---|
| 28 | c re------output-R-Cloud droplet effective radius multiplied by fl [um] |
---|
| 29 | c fl------output-R-Denominator to re, introduced to avoid problems in |
---|
| 30 | c the averaging of the output. fl is the fraction of liquid |
---|
| 31 | c water clouds within a grid cell |
---|
[388] | 32 | c pcltau--output-R-epaisseur optique des nuages |
---|
| 33 | c pclemi--output-R-emissivite des nuages (0 a 1) |
---|
| 34 | c====================================================================== |
---|
| 35 | C |
---|
| 36 | #include "YOMCST.h" |
---|
| 37 | c |
---|
| 38 | #include "dimensions.h" |
---|
| 39 | #include "dimphy.h" |
---|
| 40 | #include "nuage.h" |
---|
| 41 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
| 42 | REAL t(klon,klev) |
---|
| 43 | c |
---|
| 44 | REAL pclc(klon,klev) |
---|
| 45 | REAL pqlwp(klon,klev) |
---|
| 46 | REAL pcltau(klon,klev), pclemi(klon,klev) |
---|
| 47 | c |
---|
| 48 | REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) |
---|
| 49 | c |
---|
| 50 | LOGICAL lo |
---|
| 51 | c |
---|
| 52 | REAL cetahb, cetamb |
---|
| 53 | PARAMETER (cetahb = 0.45, cetamb = 0.80) |
---|
| 54 | C |
---|
| 55 | INTEGER i, k |
---|
[486] | 56 | cIM: 091003 REAL zflwp, zradef, zfice, zmsac |
---|
| 57 | REAL zflwp(klon), zradef, zfice, zmsac |
---|
| 58 | cIM: 091003 rajout |
---|
| 59 | REAL xflwp(klon), xfiwp(klon) |
---|
| 60 | REAL xflwc(klon,klev), xfiwc(klon,klev) |
---|
[388] | 61 | c |
---|
| 62 | REAL radius, rad_chaud |
---|
| 63 | cc PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) |
---|
| 64 | ccc PARAMETER (rad_chaud=15.0, rad_froid=35.0) |
---|
| 65 | c sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) |
---|
| 66 | REAL coef, coef_froi, coef_chau |
---|
| 67 | PARAMETER (coef_chau=0.13, coef_froi=0.09) |
---|
| 68 | REAL seuil_neb, t_glace |
---|
| 69 | PARAMETER (seuil_neb=0.001, t_glace=273.0-15.0) |
---|
| 70 | INTEGER nexpo ! exponentiel pour glace/eau |
---|
| 71 | PARAMETER (nexpo=6) |
---|
| 72 | ccc PARAMETER (nexpo=1) |
---|
| 73 | |
---|
| 74 | c -- sb: |
---|
| 75 | logical ok_newmicro |
---|
| 76 | c parameter (ok_newmicro=.FALSE.) |
---|
[486] | 77 | cIM: 091003 real rel, tc, rei, zfiwp |
---|
| 78 | real rel, tc, rei, zfiwp(klon) |
---|
[388] | 79 | real k_liq, k_ice0, k_ice, DF |
---|
| 80 | parameter (k_liq=0.0903, k_ice0=0.005) ! units=m2/g |
---|
| 81 | parameter (DF=1.66) ! diffusivity factor |
---|
| 82 | c sb -- |
---|
[517] | 83 | cjq for the aerosol indirect effect |
---|
| 84 | cjq introduced by Johannes Quaas (quaas@lmd.jussieu.fr), 27/11/2003 |
---|
| 85 | cjq |
---|
| 86 | LOGICAL ok_aie ! Apply AIE or not? |
---|
| 87 | LOGICAL ok_a1lwpdep ! a1 LWP dependent? |
---|
| 88 | |
---|
| 89 | REAL sulfate(klon, klev) ! sulfate aerosol mass concentration [ug m-3] |
---|
| 90 | REAL cdnc(klon, klev) ! cloud droplet number concentration [m-3] |
---|
| 91 | REAL re(klon, klev) ! cloud droplet effective radius [um] |
---|
| 92 | REAL sulfate_pi(klon, klev) ! sulfate aerosol mass concentration [ug m-3] (pre-industrial value) |
---|
| 93 | REAL cdnc_pi(klon, klev) ! cloud droplet number concentration [m-3] (pi value) |
---|
| 94 | REAL re_pi(klon, klev) ! cloud droplet effective radius [um] (pi value) |
---|
| 95 | |
---|
| 96 | REAL fl(klon, klev) ! xliq * rneb (denominator to re; fraction of liquid water clouds within the grid cell) |
---|
| 97 | |
---|
| 98 | REAL bl95_b0, bl95_b1 ! Parameter in B&L 95-Formula |
---|
| 99 | |
---|
| 100 | REAL cldtaupi(klon, klev) ! pre-industrial cloud opt thickness for diag |
---|
| 101 | cjq-end |
---|
[388] | 102 | c |
---|
| 103 | c Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
| 104 | c |
---|
[486] | 105 | cIM inversion des DO |
---|
| 106 | DO i = 1, klon |
---|
| 107 | xflwp(i)=0. |
---|
| 108 | xfiwp(i)=0. |
---|
[388] | 109 | DO k = 1, klev |
---|
[486] | 110 | c |
---|
| 111 | xflwc(i,k)=0. |
---|
| 112 | xfiwc(i,k)=0. |
---|
| 113 | c |
---|
[388] | 114 | rad_chaud = rad_chau1 |
---|
| 115 | IF (k.LE.3) rad_chaud = rad_chau2 |
---|
| 116 | pclc(i,k) = MAX(pclc(i,k), seuil_neb) |
---|
[486] | 117 | zflwp(i) = 1000.*pqlwp(i,k)/RG/pclc(i,k) |
---|
[388] | 118 | . *(paprs(i,k)-paprs(i,k+1)) |
---|
| 119 | zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) |
---|
| 120 | zfice = MIN(MAX(zfice,0.0),1.0) |
---|
| 121 | zfice = zfice**nexpo |
---|
| 122 | radius = rad_chaud * (1.-zfice) + rad_froid * zfice |
---|
| 123 | coef = coef_chau * (1.-zfice) + coef_froi * zfice |
---|
[486] | 124 | pcltau(i,k) = 3.0/2.0 * zflwp(i) / radius |
---|
| 125 | pclemi(i,k) = 1.0 - EXP( - coef * zflwp(i)) |
---|
[388] | 126 | |
---|
| 127 | if (ok_newmicro) then |
---|
| 128 | |
---|
| 129 | c -- liquid/ice cloud water paths: |
---|
| 130 | |
---|
| 131 | zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) |
---|
| 132 | zfice = MIN(MAX(zfice,0.0),1.0) |
---|
| 133 | |
---|
[486] | 134 | zflwp(i) = 1000.*(1.-zfice)*pqlwp(i,k)/pclc(i,k) |
---|
[388] | 135 | : *(paprs(i,k)-paprs(i,k+1))/RG |
---|
[486] | 136 | zfiwp(i) = 1000.*zfice*pqlwp(i,k)/pclc(i,k) |
---|
[388] | 137 | : *(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 138 | |
---|
[486] | 139 | xflwp(i) = xflwp(i)+ (1.-zfice)*pqlwp(i,k) |
---|
| 140 | : *(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 141 | xfiwp(i) = xfiwp(i)+ zfice*pqlwp(i,k) |
---|
| 142 | : *(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 143 | |
---|
| 144 | cIM Total Liquid/Ice water content |
---|
| 145 | xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k) |
---|
| 146 | xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k) |
---|
| 147 | cIM In-Cloud Liquid/Ice water content |
---|
| 148 | c xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k)/pclc(i,k) |
---|
| 149 | c xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k)/pclc(i,k) |
---|
| 150 | |
---|
[388] | 151 | c -- effective cloud droplet radius (microns): |
---|
| 152 | |
---|
| 153 | c for liquid water clouds: |
---|
[517] | 154 | IF (ok_aie) THEN |
---|
| 155 | ! Formula "D" of Boucher and Lohmann, Tellus, 1995 |
---|
| 156 | ! |
---|
| 157 | cdnc(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
| 158 | . log(MAX(sulfate(i,k),1.e-4))/log(10.))*1.e6 !-m-3 |
---|
| 159 | ! Cloud droplet number concentration (CDNC) is restricted |
---|
| 160 | ! to be within [20, 1000 cm^3] |
---|
| 161 | ! |
---|
| 162 | cdnc(i,k)=MIN(1000.e6,MAX(20.e6,cdnc(i,k))) |
---|
| 163 | ! |
---|
| 164 | ! |
---|
| 165 | cdnc_pi(i,k) = 10.**(bl95_b0+bl95_b1* |
---|
| 166 | . log(MAX(sulfate_pi(i,k),1.e-4))/log(10.))*1.e6 !-m-3 |
---|
| 167 | cdnc_pi(i,k)=MIN(1000.e6,MAX(20.e6,cdnc_pi(i,k))) |
---|
| 168 | ! |
---|
| 169 | ! |
---|
| 170 | ! air density: pplay(i,k) / (RD * zT(i,k)) |
---|
| 171 | ! factor 1.1: derive effective radius from volume-mean radius |
---|
| 172 | ! factor 1000 is the water density |
---|
| 173 | ! _chaud means that this is the CDR for liquid water clouds |
---|
| 174 | ! |
---|
| 175 | rad_chaud = |
---|
| 176 | . 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) ) |
---|
| 177 | . / (4./3. * RPI * 1000. * cdnc(i,k)) )**(1./3.) |
---|
| 178 | ! |
---|
| 179 | ! Convert to um. CDR shall be at least 3 um. |
---|
| 180 | ! |
---|
| 181 | c rad_chaud = MAX(rad_chaud*1.e6, 3.) |
---|
| 182 | rad_chaud = MAX(rad_chaud*1.e6, 5.) |
---|
| 183 | |
---|
| 184 | ! Pre-industrial cloud opt thickness |
---|
| 185 | ! |
---|
| 186 | ! "radius" is calculated as rad_chaud above (plus the |
---|
| 187 | ! ice cloud contribution) but using cdnc_pi instead of |
---|
| 188 | ! cdnc. |
---|
| 189 | radius = |
---|
| 190 | . 1.1 * ( (pqlwp(i,k) * pplay(i,k) / (RD * T(i,k)) ) |
---|
| 191 | . / (4./3. * RPI * 1000. * cdnc_pi(i,k)) )**(1./3.) |
---|
[535] | 192 | radius = MAX(radius*1.e6, 5.) |
---|
[517] | 193 | |
---|
| 194 | tc = t(i,k)-273.15 |
---|
| 195 | rei = 0.71*tc + 61.29 |
---|
| 196 | if (tc.le.-81.4) rei = 3.5 |
---|
| 197 | if (zflwp(i).eq.0.) radius = 1. |
---|
| 198 | if (zfiwp(i).eq.0. .or. rei.le.0.) rei = 1. |
---|
| 199 | cldtaupi(i,k) = 3.0/2.0 * zflwp(i) / radius |
---|
| 200 | . + zfiwp(i) * (3.448e-03 + 2.431/rei) |
---|
| 201 | ENDIF ! ok_aie |
---|
| 202 | ! For output diagnostics |
---|
| 203 | ! |
---|
| 204 | ! Cloud droplet effective radius [um] |
---|
| 205 | ! |
---|
| 206 | ! we multiply here with f * xl (fraction of liquid water |
---|
| 207 | ! clouds in the grid cell) to avoid problems in the |
---|
| 208 | ! averaging of the output. |
---|
| 209 | ! In the output of IOIPSL, derive the real cloud droplet |
---|
| 210 | ! effective radius as re/fl |
---|
| 211 | ! |
---|
| 212 | fl(i,k) = pclc(i,k)*(1.-zfice) |
---|
| 213 | re(i,k) = rad_chaud*fl(i,k) |
---|
| 214 | |
---|
| 215 | c-jq end |
---|
| 216 | |
---|
[388] | 217 | rel = rad_chaud |
---|
| 218 | c for ice clouds: as a function of the ambiant temperature |
---|
| 219 | c [formula used by Iacobellis and Somerville (2000), with an |
---|
| 220 | c asymptotical value of 3.5 microns at T<-81.4 C added to be |
---|
| 221 | c consistent with observations of Heymsfield et al. 1986]: |
---|
| 222 | tc = t(i,k)-273.15 |
---|
| 223 | rei = 0.71*tc + 61.29 |
---|
| 224 | if (tc.le.-81.4) rei = 3.5 |
---|
| 225 | |
---|
| 226 | c -- cloud optical thickness : |
---|
| 227 | |
---|
| 228 | c [for liquid clouds, traditional formula, |
---|
| 229 | c for ice clouds, Ebert & Curry (1992)] |
---|
| 230 | |
---|
[486] | 231 | if (zflwp(i).eq.0.) rel = 1. |
---|
| 232 | if (zfiwp(i).eq.0. .or. rei.le.0.) rei = 1. |
---|
| 233 | pcltau(i,k) = 3.0/2.0 * ( zflwp(i)/rel ) |
---|
| 234 | . + zfiwp(i) * (3.448e-03 + 2.431/rei) |
---|
[388] | 235 | |
---|
| 236 | c -- cloud infrared emissivity: |
---|
| 237 | |
---|
| 238 | c [the broadband infrared absorption coefficient is parameterized |
---|
| 239 | c as a function of the effective cld droplet radius] |
---|
| 240 | |
---|
| 241 | c Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): |
---|
| 242 | k_ice = k_ice0 + 1.0/rei |
---|
| 243 | |
---|
| 244 | pclemi(i,k) = 1.0 |
---|
[486] | 245 | . - EXP( - coef_chau*zflwp(i) - DF*k_ice*zfiwp(i) ) |
---|
[388] | 246 | |
---|
| 247 | endif ! ok_newmicro |
---|
| 248 | |
---|
| 249 | lo = (pclc(i,k) .LE. seuil_neb) |
---|
| 250 | IF (lo) pclc(i,k) = 0.0 |
---|
| 251 | IF (lo) pcltau(i,k) = 0.0 |
---|
| 252 | IF (lo) pclemi(i,k) = 0.0 |
---|
[517] | 253 | |
---|
| 254 | IF (lo) cldtaupi(i,k) = 0.0 |
---|
| 255 | IF (.NOT.ok_aie) cldtaupi(i,k)=pcltau(i,k) |
---|
[388] | 256 | ENDDO |
---|
| 257 | ENDDO |
---|
| 258 | ccc DO k = 1, klev |
---|
| 259 | ccc DO i = 1, klon |
---|
| 260 | ccc t(i,k) = t(i,k) |
---|
| 261 | ccc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) |
---|
| 262 | ccc lo = pclc(i,k) .GT. (2.*1.e-5) |
---|
| 263 | ccc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) |
---|
| 264 | ccc . /(rg*pclc(i,k)) |
---|
| 265 | ccc zradef = 10.0 + (1.-sigs(k))*45.0 |
---|
| 266 | ccc pcltau(i,k) = 1.5 * zflwp / zradef |
---|
| 267 | ccc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) |
---|
| 268 | ccc zmsac = 0.13*(1.0-zfice) + 0.08*zfice |
---|
| 269 | ccc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) |
---|
| 270 | ccc if (.NOT.lo) pclc(i,k) = 0.0 |
---|
| 271 | ccc if (.NOT.lo) pcltau(i,k) = 0.0 |
---|
| 272 | ccc if (.NOT.lo) pclemi(i,k) = 0.0 |
---|
| 273 | ccc ENDDO |
---|
| 274 | ccc ENDDO |
---|
| 275 | cccccc print*, 'pas de nuage dans le rayonnement' |
---|
| 276 | cccccc DO k = 1, klev |
---|
| 277 | cccccc DO i = 1, klon |
---|
| 278 | cccccc pclc(i,k) = 0.0 |
---|
| 279 | cccccc pcltau(i,k) = 0.0 |
---|
| 280 | cccccc pclemi(i,k) = 0.0 |
---|
| 281 | cccccc ENDDO |
---|
| 282 | cccccc ENDDO |
---|
| 283 | C |
---|
| 284 | C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
| 285 | C |
---|
| 286 | DO i = 1, klon |
---|
| 287 | pct(i)=1.0 |
---|
| 288 | pch(i)=1.0 |
---|
| 289 | pcm(i) = 1.0 |
---|
| 290 | pcl(i) = 1.0 |
---|
| 291 | pctlwp(i) = 0.0 |
---|
| 292 | ENDDO |
---|
| 293 | C |
---|
| 294 | DO k = klev, 1, -1 |
---|
| 295 | DO i = 1, klon |
---|
| 296 | pctlwp(i) = pctlwp(i) |
---|
| 297 | . + pqlwp(i,k)*(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 298 | pct(i) = pct(i)*(1.0-pclc(i,k)) |
---|
| 299 | if (pplay(i,k).LE.cetahb*paprs(i,1)) |
---|
| 300 | . pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
| 301 | if (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
---|
| 302 | . pplay(i,k).LE.cetamb*paprs(i,1)) |
---|
| 303 | . pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
| 304 | if (pplay(i,k).GT.cetamb*paprs(i,1)) |
---|
| 305 | . pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
| 306 | ENDDO |
---|
| 307 | ENDDO |
---|
| 308 | C |
---|
| 309 | DO i = 1, klon |
---|
| 310 | pct(i)=1.-pct(i) |
---|
| 311 | pch(i)=1.-pch(i) |
---|
| 312 | pcm(i)=1.-pcm(i) |
---|
| 313 | pcl(i)=1.-pcl(i) |
---|
| 314 | ENDDO |
---|
| 315 | C |
---|
| 316 | RETURN |
---|
| 317 | END |
---|