[388] | 1 | SUBROUTINE newmicro (paprs, pplay,ok_newmicro, |
---|
| 2 | . t, pqlwp, pclc, pcltau, pclemi, |
---|
[486] | 3 | cIM . pch, pcl, pcm, pct, pctlwp) |
---|
| 4 | . pch, pcl, pcm, pct, pctlwp, |
---|
| 5 | . xflwp, xfiwp, xflwc, xfiwc) |
---|
| 6 | |
---|
[388] | 7 | IMPLICIT none |
---|
| 8 | c====================================================================== |
---|
| 9 | c Auteur(s): Z.X. Li (LMD/CNRS) date: 19930910 |
---|
| 10 | c Objet: Calculer epaisseur optique et emmissivite des nuages |
---|
| 11 | c====================================================================== |
---|
| 12 | c Arguments: |
---|
| 13 | c t-------input-R-temperature |
---|
| 14 | c pqlwp---input-R-eau liquide nuageuse dans l'atmosphere (kg/kg) |
---|
| 15 | c pclc----input-R-couverture nuageuse pour le rayonnement (0 a 1) |
---|
| 16 | c |
---|
| 17 | c pcltau--output-R-epaisseur optique des nuages |
---|
| 18 | c pclemi--output-R-emissivite des nuages (0 a 1) |
---|
| 19 | c====================================================================== |
---|
| 20 | C |
---|
| 21 | #include "YOMCST.h" |
---|
| 22 | c |
---|
| 23 | #include "dimensions.h" |
---|
| 24 | #include "dimphy.h" |
---|
| 25 | #include "nuage.h" |
---|
| 26 | REAL paprs(klon,klev+1), pplay(klon,klev) |
---|
| 27 | REAL t(klon,klev) |
---|
| 28 | c |
---|
| 29 | REAL pclc(klon,klev) |
---|
| 30 | REAL pqlwp(klon,klev) |
---|
| 31 | REAL pcltau(klon,klev), pclemi(klon,klev) |
---|
| 32 | c |
---|
| 33 | REAL pct(klon), pctlwp(klon), pch(klon), pcl(klon), pcm(klon) |
---|
| 34 | c |
---|
| 35 | LOGICAL lo |
---|
| 36 | c |
---|
| 37 | REAL cetahb, cetamb |
---|
| 38 | PARAMETER (cetahb = 0.45, cetamb = 0.80) |
---|
| 39 | C |
---|
| 40 | INTEGER i, k |
---|
[486] | 41 | cIM: 091003 REAL zflwp, zradef, zfice, zmsac |
---|
| 42 | REAL zflwp(klon), zradef, zfice, zmsac |
---|
| 43 | cIM: 091003 rajout |
---|
| 44 | REAL xflwp(klon), xfiwp(klon) |
---|
| 45 | REAL xflwc(klon,klev), xfiwc(klon,klev) |
---|
[388] | 46 | c |
---|
| 47 | REAL radius, rad_chaud |
---|
| 48 | cc PARAMETER (rad_chau1=13.0, rad_chau2=9.0, rad_froid=35.0) |
---|
| 49 | ccc PARAMETER (rad_chaud=15.0, rad_froid=35.0) |
---|
| 50 | c sintex initial PARAMETER (rad_chaud=10.0, rad_froid=30.0) |
---|
| 51 | REAL coef, coef_froi, coef_chau |
---|
| 52 | PARAMETER (coef_chau=0.13, coef_froi=0.09) |
---|
| 53 | REAL seuil_neb, t_glace |
---|
| 54 | PARAMETER (seuil_neb=0.001, t_glace=273.0-15.0) |
---|
| 55 | INTEGER nexpo ! exponentiel pour glace/eau |
---|
| 56 | PARAMETER (nexpo=6) |
---|
| 57 | ccc PARAMETER (nexpo=1) |
---|
| 58 | |
---|
| 59 | c -- sb: |
---|
| 60 | logical ok_newmicro |
---|
| 61 | c parameter (ok_newmicro=.FALSE.) |
---|
[486] | 62 | cIM: 091003 real rel, tc, rei, zfiwp |
---|
| 63 | real rel, tc, rei, zfiwp(klon) |
---|
[388] | 64 | real k_liq, k_ice0, k_ice, DF |
---|
| 65 | parameter (k_liq=0.0903, k_ice0=0.005) ! units=m2/g |
---|
| 66 | parameter (DF=1.66) ! diffusivity factor |
---|
| 67 | c sb -- |
---|
| 68 | |
---|
| 69 | c |
---|
| 70 | c Calculer l'epaisseur optique et l'emmissivite des nuages |
---|
| 71 | c |
---|
[486] | 72 | cIM inversion des DO |
---|
| 73 | DO i = 1, klon |
---|
| 74 | xflwp(i)=0. |
---|
| 75 | xfiwp(i)=0. |
---|
[388] | 76 | DO k = 1, klev |
---|
[486] | 77 | c |
---|
| 78 | xflwc(i,k)=0. |
---|
| 79 | xfiwc(i,k)=0. |
---|
| 80 | c |
---|
[388] | 81 | rad_chaud = rad_chau1 |
---|
| 82 | IF (k.LE.3) rad_chaud = rad_chau2 |
---|
| 83 | pclc(i,k) = MAX(pclc(i,k), seuil_neb) |
---|
[486] | 84 | zflwp(i) = 1000.*pqlwp(i,k)/RG/pclc(i,k) |
---|
[388] | 85 | . *(paprs(i,k)-paprs(i,k+1)) |
---|
| 86 | zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) |
---|
| 87 | zfice = MIN(MAX(zfice,0.0),1.0) |
---|
| 88 | zfice = zfice**nexpo |
---|
| 89 | radius = rad_chaud * (1.-zfice) + rad_froid * zfice |
---|
| 90 | coef = coef_chau * (1.-zfice) + coef_froi * zfice |
---|
[486] | 91 | pcltau(i,k) = 3.0/2.0 * zflwp(i) / radius |
---|
| 92 | pclemi(i,k) = 1.0 - EXP( - coef * zflwp(i)) |
---|
[388] | 93 | |
---|
| 94 | if (ok_newmicro) then |
---|
| 95 | |
---|
| 96 | c -- liquid/ice cloud water paths: |
---|
| 97 | |
---|
| 98 | zfice = 1.0 - (t(i,k)-t_glace) / (273.13-t_glace) |
---|
| 99 | zfice = MIN(MAX(zfice,0.0),1.0) |
---|
| 100 | |
---|
[486] | 101 | zflwp(i) = 1000.*(1.-zfice)*pqlwp(i,k)/pclc(i,k) |
---|
[388] | 102 | : *(paprs(i,k)-paprs(i,k+1))/RG |
---|
[486] | 103 | zfiwp(i) = 1000.*zfice*pqlwp(i,k)/pclc(i,k) |
---|
[388] | 104 | : *(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 105 | |
---|
[486] | 106 | xflwp(i) = xflwp(i)+ (1.-zfice)*pqlwp(i,k) |
---|
| 107 | : *(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 108 | xfiwp(i) = xfiwp(i)+ zfice*pqlwp(i,k) |
---|
| 109 | : *(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 110 | |
---|
| 111 | cIM Total Liquid/Ice water content |
---|
| 112 | xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k) |
---|
| 113 | xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k) |
---|
| 114 | cIM In-Cloud Liquid/Ice water content |
---|
| 115 | c xflwc(i,k) = xflwc(i,k)+(1.-zfice)*pqlwp(i,k)/pclc(i,k) |
---|
| 116 | c xfiwc(i,k) = xfiwc(i,k)+zfice*pqlwp(i,k)/pclc(i,k) |
---|
| 117 | |
---|
[388] | 118 | c -- effective cloud droplet radius (microns): |
---|
| 119 | |
---|
| 120 | c for liquid water clouds: |
---|
| 121 | rel = rad_chaud |
---|
| 122 | |
---|
| 123 | c for ice clouds: as a function of the ambiant temperature |
---|
| 124 | c [formula used by Iacobellis and Somerville (2000), with an |
---|
| 125 | c asymptotical value of 3.5 microns at T<-81.4 C added to be |
---|
| 126 | c consistent with observations of Heymsfield et al. 1986]: |
---|
| 127 | tc = t(i,k)-273.15 |
---|
| 128 | rei = 0.71*tc + 61.29 |
---|
| 129 | if (tc.le.-81.4) rei = 3.5 |
---|
| 130 | |
---|
| 131 | c -- cloud optical thickness : |
---|
| 132 | |
---|
| 133 | c [for liquid clouds, traditional formula, |
---|
| 134 | c for ice clouds, Ebert & Curry (1992)] |
---|
| 135 | |
---|
[486] | 136 | if (zflwp(i).eq.0.) rel = 1. |
---|
| 137 | if (zfiwp(i).eq.0. .or. rei.le.0.) rei = 1. |
---|
| 138 | pcltau(i,k) = 3.0/2.0 * ( zflwp(i)/rel ) |
---|
| 139 | . + zfiwp(i) * (3.448e-03 + 2.431/rei) |
---|
[388] | 140 | |
---|
| 141 | c -- cloud infrared emissivity: |
---|
| 142 | |
---|
| 143 | c [the broadband infrared absorption coefficient is parameterized |
---|
| 144 | c as a function of the effective cld droplet radius] |
---|
| 145 | |
---|
| 146 | c Ebert and Curry (1992) formula as used by Kiehl & Zender (1995): |
---|
| 147 | k_ice = k_ice0 + 1.0/rei |
---|
| 148 | |
---|
| 149 | pclemi(i,k) = 1.0 |
---|
[486] | 150 | . - EXP( - coef_chau*zflwp(i) - DF*k_ice*zfiwp(i) ) |
---|
[388] | 151 | |
---|
| 152 | endif ! ok_newmicro |
---|
| 153 | |
---|
| 154 | lo = (pclc(i,k) .LE. seuil_neb) |
---|
| 155 | IF (lo) pclc(i,k) = 0.0 |
---|
| 156 | IF (lo) pcltau(i,k) = 0.0 |
---|
| 157 | IF (lo) pclemi(i,k) = 0.0 |
---|
| 158 | ENDDO |
---|
| 159 | ENDDO |
---|
| 160 | ccc DO k = 1, klev |
---|
| 161 | ccc DO i = 1, klon |
---|
| 162 | ccc t(i,k) = t(i,k) |
---|
| 163 | ccc pclc(i,k) = MAX( 1.e-5 , pclc(i,k) ) |
---|
| 164 | ccc lo = pclc(i,k) .GT. (2.*1.e-5) |
---|
| 165 | ccc zflwp = pqlwp(i,k)*1000.*(paprs(i,k)-paprs(i,k+1)) |
---|
| 166 | ccc . /(rg*pclc(i,k)) |
---|
| 167 | ccc zradef = 10.0 + (1.-sigs(k))*45.0 |
---|
| 168 | ccc pcltau(i,k) = 1.5 * zflwp / zradef |
---|
| 169 | ccc zfice=1.0-MIN(MAX((t(i,k)-263.)/(273.-263.),0.0),1.0) |
---|
| 170 | ccc zmsac = 0.13*(1.0-zfice) + 0.08*zfice |
---|
| 171 | ccc pclemi(i,k) = 1.-EXP(-zmsac*zflwp) |
---|
| 172 | ccc if (.NOT.lo) pclc(i,k) = 0.0 |
---|
| 173 | ccc if (.NOT.lo) pcltau(i,k) = 0.0 |
---|
| 174 | ccc if (.NOT.lo) pclemi(i,k) = 0.0 |
---|
| 175 | ccc ENDDO |
---|
| 176 | ccc ENDDO |
---|
| 177 | cccccc print*, 'pas de nuage dans le rayonnement' |
---|
| 178 | cccccc DO k = 1, klev |
---|
| 179 | cccccc DO i = 1, klon |
---|
| 180 | cccccc pclc(i,k) = 0.0 |
---|
| 181 | cccccc pcltau(i,k) = 0.0 |
---|
| 182 | cccccc pclemi(i,k) = 0.0 |
---|
| 183 | cccccc ENDDO |
---|
| 184 | cccccc ENDDO |
---|
| 185 | C |
---|
| 186 | C COMPUTE CLOUD LIQUID PATH AND TOTAL CLOUDINESS |
---|
| 187 | C |
---|
| 188 | DO i = 1, klon |
---|
| 189 | pct(i)=1.0 |
---|
| 190 | pch(i)=1.0 |
---|
| 191 | pcm(i) = 1.0 |
---|
| 192 | pcl(i) = 1.0 |
---|
| 193 | pctlwp(i) = 0.0 |
---|
| 194 | ENDDO |
---|
| 195 | C |
---|
| 196 | DO k = klev, 1, -1 |
---|
| 197 | DO i = 1, klon |
---|
| 198 | pctlwp(i) = pctlwp(i) |
---|
| 199 | . + pqlwp(i,k)*(paprs(i,k)-paprs(i,k+1))/RG |
---|
| 200 | pct(i) = pct(i)*(1.0-pclc(i,k)) |
---|
| 201 | if (pplay(i,k).LE.cetahb*paprs(i,1)) |
---|
| 202 | . pch(i) = pch(i)*(1.0-pclc(i,k)) |
---|
| 203 | if (pplay(i,k).GT.cetahb*paprs(i,1) .AND. |
---|
| 204 | . pplay(i,k).LE.cetamb*paprs(i,1)) |
---|
| 205 | . pcm(i) = pcm(i)*(1.0-pclc(i,k)) |
---|
| 206 | if (pplay(i,k).GT.cetamb*paprs(i,1)) |
---|
| 207 | . pcl(i) = pcl(i)*(1.0-pclc(i,k)) |
---|
| 208 | ENDDO |
---|
| 209 | ENDDO |
---|
| 210 | C |
---|
| 211 | DO i = 1, klon |
---|
| 212 | pct(i)=1.-pct(i) |
---|
| 213 | pch(i)=1.-pch(i) |
---|
| 214 | pcm(i)=1.-pcm(i) |
---|
| 215 | pcl(i)=1.-pcl(i) |
---|
| 216 | ENDDO |
---|
| 217 | C |
---|
| 218 | RETURN |
---|
| 219 | END |
---|