[254] | 1 | subroutine convect2(ncum,idcum,len,nd,ndp1,nl,minorig, |
---|
| 2 | & nk1,icb1, |
---|
| 3 | & t1,q1,qs1,u1,v1,gz1,tv1,tp1,tvp1,clw1,h1, |
---|
| 4 | & lv1,cpn1,p1,ph1,ft1,fq1,fu1,fv1, |
---|
| 5 | & tnk1,qnk1,gznk1,plcl1, |
---|
| 6 | & precip1,cbmf1,iflag1, |
---|
| 7 | & delt,cpd,cpv,cl,rv,rd,lv0,g, |
---|
| 8 | & sigs,sigd,elcrit,tlcrit,omtsnow,dtmax,damp, |
---|
| 9 | & alpha,entp,coeffs,coeffr,omtrain,cu,Ma) |
---|
| 10 | C.............................START PROLOGUE............................ |
---|
| 11 | C |
---|
| 12 | C SCCS IDENTIFICATION: @(#)convect2.f 1.2 05/18/00 |
---|
| 13 | C 22:06:22 /h/cm/library/nogaps4/src/sub/fcst/convect2.f_v |
---|
| 14 | C |
---|
| 15 | C CONFIGURATION IDENTIFICATION: None |
---|
| 16 | C |
---|
| 17 | C MODULE NAME: convect2 |
---|
| 18 | C |
---|
| 19 | C DESCRIPTION: |
---|
| 20 | C |
---|
| 21 | C convect1 The Emanuel Cumulus Convection Scheme - compute tendencies |
---|
| 22 | C |
---|
| 23 | C CONTRACT NUMBER AND TITLE: None |
---|
| 24 | C |
---|
| 25 | C REFERENCES: Programmers K. Emanuel (MIT), Timothy F. Hogan, M. Peng (NRL) |
---|
| 26 | C |
---|
| 27 | C CLASSIFICATION: Unclassified |
---|
| 28 | C |
---|
| 29 | C RESTRICTIONS: None |
---|
| 30 | C |
---|
| 31 | C COMPILER DEPENDENCIES: FORTRAN 77, FORTRAN 90 |
---|
| 32 | C |
---|
| 33 | C COMPILE OPTIONS: Fortran 77: -Zu -Wf"-ei -o aggress" |
---|
| 34 | C Fortran 90: -O vector3,scalar3,task1,aggress,overindex -ei -r 2 |
---|
| 35 | C |
---|
| 36 | C LIBRARIES OF RESIDENCE: /a/ops/lib/libfcst159.a |
---|
| 37 | C |
---|
| 38 | C USAGE: call convect2(ncum,idcum,len,nd,nl,minorig, |
---|
| 39 | C & nk1,icb1, |
---|
| 40 | C & t1,q1,qs1,u1,v1,gz1,tv1,tp1,tvp1,clw1,h1, |
---|
| 41 | C & lv1,cpn1,p1,ph1,ft1,fq1,fu1,fv1, |
---|
| 42 | C & tnk1,qnk1,gznk1,plcl1, |
---|
| 43 | C & precip1,cbmf1,iflag1, |
---|
| 44 | C & delt,cpd,cpv,cl,rv,rd,lv0,g, |
---|
| 45 | C & sigs,sigd,elcrit,tlcrit,omtsnow,dtmax,damp, |
---|
| 46 | C & alpha,entp,coeffs,coeffr,omtrain,cu) |
---|
| 47 | C |
---|
| 48 | C PARAMETERS: |
---|
| 49 | C Name Type Usage Description |
---|
| 50 | C ---------- ---------- ------- ---------------------------- |
---|
| 51 | C |
---|
| 52 | C ncum Integer Input number of cumulus points |
---|
| 53 | C idcum Integer Input index of cumulus point |
---|
| 54 | C len Integer Input first dimension |
---|
| 55 | C nd Integer Input total vertical dimension |
---|
| 56 | C ndp1 Integer Input nd + 1 |
---|
| 57 | C nl Integer Input vertical dimension for convection |
---|
| 58 | C minorig Integer Input First level where convection is allow to begin |
---|
| 59 | C nk1 Integer Input First level of convection |
---|
| 60 | C ncb1 Integer Input Level of free convection |
---|
| 61 | C t1 Real Input temperature |
---|
| 62 | C q1 Real Input specific hum |
---|
| 63 | C qs1 Real Input sat specific hum |
---|
| 64 | C u1 Real Input u-wind |
---|
| 65 | C v1 Real Input v-wind |
---|
| 66 | C gz1 Real Inout geop |
---|
| 67 | C tv1 Real Input virtual temp |
---|
| 68 | C tp1 Real Input |
---|
| 69 | C clw1 Real Inout cloud liquid water |
---|
| 70 | C h1 Real Inout |
---|
| 71 | C lv1 Real Inout |
---|
| 72 | C cpn1 Real Inout |
---|
| 73 | C p1 Real Input full level pressure |
---|
| 74 | C ph1 Real Input half level pressure |
---|
| 75 | C ft1 Real Output temp tend |
---|
| 76 | C fq1 Real Output spec hum tend |
---|
| 77 | C fu1 Real Output u-wind tend |
---|
| 78 | C fv1 Real Output v-wind tend |
---|
| 79 | C precip1 Real Output prec |
---|
| 80 | C cbmf1 Real In/Out cumulus mass flux |
---|
| 81 | C iflag1 Integer Output iflag on latitude strip |
---|
| 82 | C delt Real Input time step |
---|
| 83 | C cpd Integer Input See description below |
---|
| 84 | C cpv Integer Input See description below |
---|
| 85 | C cl Integer Input See description below |
---|
| 86 | C rv Integer Input See description below |
---|
| 87 | C rd Integer Input See description below |
---|
| 88 | C lv0 Integer Input See description below |
---|
| 89 | C g Integer Input See description below |
---|
| 90 | C sigs Integer Input See description below |
---|
| 91 | C sigd Integer Input See description below |
---|
| 92 | C elcrit Integer Input See description below |
---|
| 93 | C tlcrit Integer Input See description below |
---|
| 94 | C omtsnow Integer Input See description below |
---|
| 95 | C dtmax Integer Input See description below |
---|
| 96 | C damp Integer Input See description below |
---|
| 97 | C alpha Integer Input See description below |
---|
| 98 | C ent Integer Input See description below |
---|
| 99 | C coeffs Integer Input See description below |
---|
| 100 | C coeffr Integer Input See description below |
---|
| 101 | C omtrain Integer Input See description below |
---|
| 102 | C cu Integer Input See description below |
---|
| 103 | C |
---|
| 104 | C COMMON BLOCKS: |
---|
| 105 | C Block Name Type Usage Notes |
---|
| 106 | C -------- -------- ---- ------ ------------------------ |
---|
| 107 | C |
---|
| 108 | C FILES: None |
---|
| 109 | C |
---|
| 110 | C DATA BASES: None |
---|
| 111 | C |
---|
| 112 | C NON-FILE INPUT/OUTPUT: None |
---|
| 113 | C |
---|
| 114 | C ERROR CONDITIONS: None |
---|
| 115 | C |
---|
| 116 | C ADDITIONAL COMMENTS: None |
---|
| 117 | C |
---|
| 118 | C.................MAINTENANCE SECTION................................ |
---|
| 119 | C |
---|
| 120 | C MODULES CALLED: |
---|
| 121 | C Name Description |
---|
| 122 | C zilch Zero out an array |
---|
| 123 | C ------- ---------------------- |
---|
| 124 | C LOCAL VARIABLES AND |
---|
| 125 | C STRUCTURES: |
---|
| 126 | C Name Type Description |
---|
| 127 | C ------- ------ ----------- |
---|
| 128 | C See Comments Below |
---|
| 129 | C |
---|
| 130 | C i Integer loop index |
---|
| 131 | C k Integer loop index |
---|
| 132 | c |
---|
| 133 | C METHOD: |
---|
| 134 | C |
---|
| 135 | C See Emanuel, K. and M. Zivkovic-Rothman, 2000: Development and evaluation of a |
---|
| 136 | C convective scheme for use in climate models. |
---|
| 137 | C |
---|
| 138 | C FILES: None |
---|
| 139 | C |
---|
| 140 | C INCLUDE FILES: None |
---|
| 141 | C |
---|
| 142 | C MAKEFILE: /a/ops/met/nogaps/src/sub/fcst/fcst159lib.mak |
---|
| 143 | C |
---|
| 144 | C..............................END PROLOGUE............................. |
---|
| 145 | c |
---|
| 146 | c |
---|
| 147 | implicit none |
---|
| 148 | c |
---|
| 149 | #include "dimensions.h" |
---|
| 150 | #include "dimphy.h" |
---|
| 151 | c |
---|
| 152 | integer kmax2,imax2,kmin2,imin2 |
---|
| 153 | real ftmax2,ftmin2 |
---|
| 154 | integer kmax,imax,kmin,imin |
---|
| 155 | real ftmax,ftmin |
---|
| 156 | c |
---|
| 157 | integer ncum |
---|
| 158 | integer idcum(len) |
---|
| 159 | integer len |
---|
| 160 | integer nd |
---|
| 161 | integer ndp1 |
---|
| 162 | integer nl |
---|
| 163 | integer minorig |
---|
| 164 | integer nk1(len) |
---|
| 165 | integer icb1(len) |
---|
| 166 | real t1(len,nd) |
---|
| 167 | real q1(len,nd) |
---|
| 168 | real qs1(len,nd) |
---|
| 169 | real u1(len,nd) |
---|
| 170 | real v1(len,nd) |
---|
| 171 | real gz1(len,nd) |
---|
| 172 | real tv1(len,nd) |
---|
| 173 | real tp1(len,nd) |
---|
| 174 | real tvp1(len,nd) |
---|
| 175 | real clw1(len,nd) |
---|
| 176 | real h1(len,nd) |
---|
| 177 | real lv1(len,nd) |
---|
| 178 | real cpn1(len,nd) |
---|
| 179 | real p1(len,nd) |
---|
| 180 | real ph1(len,ndp1) |
---|
| 181 | real ft1(len,nd) |
---|
| 182 | real fq1(len,nd) |
---|
| 183 | real fu1(len,nd) |
---|
| 184 | real fv1(len,nd) |
---|
| 185 | real tnk1(len) |
---|
| 186 | real qnk1(len) |
---|
| 187 | real gznk1(len) |
---|
| 188 | real precip1(len) |
---|
| 189 | real cbmf1(len) |
---|
| 190 | real plcl1(len) |
---|
| 191 | integer iflag1(len) |
---|
| 192 | real delt |
---|
| 193 | real cpd |
---|
| 194 | real cpv |
---|
| 195 | real cl |
---|
| 196 | real rv |
---|
| 197 | real rd |
---|
| 198 | real lv0 |
---|
| 199 | real g |
---|
| 200 | real sigs ! SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE |
---|
| 201 | real sigd ! SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT |
---|
| 202 | real elcrit ! ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) |
---|
| 203 | real tlcrit ! TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- |
---|
| 204 | c CONVERSION THRESHOLD IS ASSUMED TO BE ZERO |
---|
| 205 | real omtsnow ! OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW |
---|
| 206 | real dtmax ! DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION |
---|
| 207 | c A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC. |
---|
| 208 | real damp |
---|
| 209 | real alpha |
---|
| 210 | real entp ! ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT FORMULATION |
---|
| 211 | real coeffs ! COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION OF SNOW |
---|
| 212 | real coeffr ! COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION OF RAIN |
---|
| 213 | real omtrain ! OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN |
---|
| 214 | real cu ! CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM TRANSPORT |
---|
| 215 | c |
---|
| 216 | real Ma(len,nd) |
---|
| 217 | c |
---|
| 218 | C |
---|
| 219 | C *** ELCRIT IS THE AUTOCONVERSION THERSHOLD WATER CONTENT (gm/gm) *** |
---|
| 220 | C *** TLCRIT IS CRITICAL TEMPERATURE BELOW WHICH THE AUTO- *** |
---|
| 221 | C *** CONVERSION THRESHOLD IS ASSUMED TO BE ZERO *** |
---|
| 222 | C *** (THE AUTOCONVERSION THRESHOLD VARIES LINEARLY *** |
---|
| 223 | C *** BETWEEN 0 C AND TLCRIT) *** |
---|
| 224 | C *** ENTP IS THE COEFFICIENT OF MIXING IN THE ENTRAINMENT *** |
---|
| 225 | C *** FORMULATION *** |
---|
| 226 | C *** SIGD IS THE FRACTIONAL AREA COVERED BY UNSATURATED DNDRAFT *** |
---|
| 227 | C *** SIGS IS THE FRACTION OF PRECIPITATION FALLING OUTSIDE *** |
---|
| 228 | C *** OF CLOUD *** |
---|
| 229 | C *** OMTRAIN IS THE ASSUMED FALL SPEED (P/s) OF RAIN *** |
---|
| 230 | C *** OMTSNOW IS THE ASSUMED FALL SPEED (P/s) OF SNOW *** |
---|
| 231 | C *** COEFFR IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
| 232 | C *** OF RAIN *** |
---|
| 233 | C *** COEFFS IS A COEFFICIENT GOVERNING THE RATE OF EVAPORATION *** |
---|
| 234 | C *** OF SNOW *** |
---|
| 235 | C *** CU IS THE COEFFICIENT GOVERNING CONVECTIVE MOMENTUM *** |
---|
| 236 | C *** TRANSPORT *** |
---|
| 237 | C *** DTMAX IS THE MAXIMUM NEGATIVE TEMPERATURE PERTURBATION *** |
---|
| 238 | C *** A LIFTED PARCEL IS ALLOWED TO HAVE BELOW ITS LFC *** |
---|
| 239 | C *** ALPHA AND DAMP ARE PARAMETERS THAT CONTROL THE RATE OF *** |
---|
| 240 | C *** APPROACH TO QUASI-EQUILIBRIUM *** |
---|
| 241 | C *** (THEIR STANDARD VALUES ARE 0.20 AND 0.1, RESPECTIVELY) *** |
---|
| 242 | C *** (DAMP MUST BE LESS THAN 1) *** |
---|
| 243 | c |
---|
| 244 | c Local arrays. |
---|
| 245 | c |
---|
| 246 | real work(ncum) |
---|
| 247 | real t(ncum,klev) |
---|
| 248 | real q(ncum,klev) |
---|
| 249 | real qs(ncum,klev) |
---|
| 250 | real u(ncum,klev) |
---|
| 251 | real v(ncum,klev) |
---|
| 252 | real gz(ncum,klev) |
---|
| 253 | real h(ncum,klev) |
---|
| 254 | real lv(ncum,klev) |
---|
| 255 | real cpn(ncum,klev) |
---|
| 256 | real p(ncum,klev) |
---|
| 257 | real ph(ncum,klev) |
---|
| 258 | real ft(ncum,klev) |
---|
| 259 | real fq(ncum,klev) |
---|
| 260 | real fu(ncum,klev) |
---|
| 261 | real fv(ncum,klev) |
---|
| 262 | real precip(ncum) |
---|
| 263 | real cbmf(ncum) |
---|
| 264 | real plcl(ncum) |
---|
| 265 | real tnk(ncum) |
---|
| 266 | real qnk(ncum) |
---|
| 267 | real gznk(ncum) |
---|
| 268 | real tv(ncum,klev) |
---|
| 269 | real tp(ncum,klev) |
---|
| 270 | real tvp(ncum,klev) |
---|
| 271 | real clw(ncum,klev) |
---|
| 272 | c real det(ncum,klev) |
---|
| 273 | real dph(ncum,klev) |
---|
| 274 | c real wd(ncum) |
---|
| 275 | c real tprime(ncum) |
---|
| 276 | c real qprime(ncum) |
---|
| 277 | real ah0(ncum) |
---|
| 278 | real ep(ncum,klev) |
---|
| 279 | real sigp(ncum,klev) |
---|
| 280 | integer nent(ncum,klev) |
---|
| 281 | real water(ncum,klev) |
---|
| 282 | real evap(ncum,klev) |
---|
| 283 | real mp(ncum,klev) |
---|
| 284 | real m(ncum,klev) |
---|
| 285 | real qti |
---|
| 286 | real wt(ncum,klev) |
---|
| 287 | real hp(ncum,klev) |
---|
| 288 | real lvcp(ncum,klev) |
---|
| 289 | real elij(ncum,klev,klev) |
---|
| 290 | real ment(ncum,klev,klev) |
---|
| 291 | real sij(ncum,klev,klev) |
---|
| 292 | real qent(ncum,klev,klev) |
---|
| 293 | real uent(ncum,klev,klev) |
---|
| 294 | real vent(ncum,klev,klev) |
---|
| 295 | real qp(ncum,klev) |
---|
| 296 | real up(ncum,klev) |
---|
| 297 | real vp(ncum,klev) |
---|
| 298 | real cape(ncum) |
---|
| 299 | real capem(ncum) |
---|
| 300 | real frac(ncum) |
---|
| 301 | real dtpbl(ncum) |
---|
| 302 | real tvpplcl(ncum) |
---|
| 303 | real tvaplcl(ncum) |
---|
| 304 | real dtmin(ncum) |
---|
| 305 | real w3d(ncum,klev) |
---|
| 306 | real am(ncum) |
---|
| 307 | real ents(ncum) |
---|
| 308 | real uav(ncum) |
---|
| 309 | real vav(ncum) |
---|
| 310 | c |
---|
| 311 | integer iflag(ncum) |
---|
| 312 | integer nk(ncum) |
---|
| 313 | integer icb(ncum) |
---|
| 314 | integer inb(ncum) |
---|
| 315 | integer inb1(ncum) |
---|
| 316 | integer jtt(ncum) |
---|
| 317 | c |
---|
| 318 | integer nn,i,k,n,icbmax,nlp,j |
---|
| 319 | integer ij |
---|
| 320 | integer nn2,nn3 |
---|
| 321 | real clmcpv |
---|
| 322 | real clmcpd |
---|
| 323 | real cpdmcp |
---|
| 324 | real cpvmcpd |
---|
| 325 | real eps |
---|
| 326 | real epsi |
---|
| 327 | real epsim1 |
---|
| 328 | real tg,qg,s,alv,tc,ahg,denom,es,rg,ginv,rowl |
---|
| 329 | real delti |
---|
| 330 | real tca,elacrit |
---|
| 331 | real by,defrac |
---|
| 332 | c real byp |
---|
| 333 | real byp(ncum) |
---|
| 334 | logical lcape(ncum) |
---|
| 335 | real dbo |
---|
| 336 | real bf2,anum,dei,altem,cwat,stemp |
---|
| 337 | real alt,qp1,smid,sjmax,sjmin |
---|
| 338 | real delp,delm |
---|
| 339 | real awat,coeff,afac,revap,dhdp,fac,qstm,rat |
---|
| 340 | real qsm,sigt,b6,c6 |
---|
| 341 | real dpinv,cpinv |
---|
| 342 | real fqold,ftold,fuold,fvold |
---|
| 343 | real wdtrain(ncum),xxx |
---|
| 344 | real bsum(ncum,klev) |
---|
| 345 | real asij(ncum) |
---|
| 346 | real smin(ncum) |
---|
| 347 | real scrit(ncum) |
---|
| 348 | c real amp1,ad |
---|
| 349 | real amp1(ncum),ad(ncum) |
---|
| 350 | logical lwork(ncum) |
---|
| 351 | integer num1,num2 |
---|
| 352 | c |
---|
| 353 | c print*,'cpd en entree de convect2 ',cpd |
---|
| 354 | nlp=nl+1 |
---|
| 355 | c |
---|
| 356 | rowl=1000.0 |
---|
| 357 | ginv=1.0/g |
---|
| 358 | delti=1.0/delt |
---|
| 359 | c |
---|
| 360 | c Define some thermodynamic variables. |
---|
| 361 | c |
---|
| 362 | clmcpv=cl-cpv |
---|
| 363 | clmcpd=cl-cpd |
---|
| 364 | cpdmcp=cpd-cpv |
---|
| 365 | cpvmcpd=cpv-cpd |
---|
| 366 | eps=rd/rv |
---|
| 367 | epsi=1.0/eps |
---|
| 368 | epsim1=epsi-1.0 |
---|
| 369 | c |
---|
| 370 | c Compress the fields. |
---|
| 371 | c |
---|
| 372 | do 110 k=1,nl+1 |
---|
| 373 | nn=0 |
---|
| 374 | do 100 i=1,len |
---|
| 375 | if(iflag1(i).eq.0)then |
---|
| 376 | nn=nn+1 |
---|
| 377 | t(nn,k)=t1(i,k) |
---|
| 378 | q(nn,k)=q1(i,k) |
---|
| 379 | qs(nn,k)=qs1(i,k) |
---|
| 380 | u(nn,k)=u1(i,k) |
---|
| 381 | v(nn,k)=v1(i,k) |
---|
| 382 | gz(nn,k)=gz1(i,k) |
---|
| 383 | h(nn,k)=h1(i,k) |
---|
| 384 | lv(nn,k)=lv1(i,k) |
---|
| 385 | cpn(nn,k)=cpn1(i,k) |
---|
| 386 | p(nn,k)=p1(i,k) |
---|
| 387 | ph(nn,k)=ph1(i,k) |
---|
| 388 | tv(nn,k)=tv1(i,k) |
---|
| 389 | tp(nn,k)=tp1(i,k) |
---|
| 390 | tvp(nn,k)=tvp1(i,k) |
---|
| 391 | clw(nn,k)=clw1(i,k) |
---|
| 392 | endif |
---|
| 393 | 100 continue |
---|
| 394 | c print*,'100 ncum,nn',ncum,nn |
---|
| 395 | 110 continue |
---|
| 396 | nn=0 |
---|
| 397 | do 150 i=1,len |
---|
| 398 | if(iflag1(i).eq.0)then |
---|
| 399 | nn=nn+1 |
---|
| 400 | cbmf(nn)=cbmf1(i) |
---|
| 401 | plcl(nn)=plcl1(i) |
---|
| 402 | tnk(nn)=tnk1(i) |
---|
| 403 | qnk(nn)=qnk1(i) |
---|
| 404 | gznk(nn)=gznk1(i) |
---|
| 405 | nk(nn)=nk1(i) |
---|
| 406 | icb(nn)=icb1(i) |
---|
| 407 | iflag(nn)=iflag1(i) |
---|
| 408 | endif |
---|
| 409 | 150 continue |
---|
| 410 | c print*,'150 ncum,nn',ncum,nn |
---|
| 411 | c |
---|
| 412 | c Initialize the tendencies, det, wd, tprime, qprime. |
---|
| 413 | c |
---|
| 414 | do 170 k=1,nl |
---|
| 415 | do 160 i=1,ncum |
---|
| 416 | c det(i,k)=0.0 |
---|
| 417 | ft(i,k)=0.0 |
---|
| 418 | fu(i,k)=0.0 |
---|
| 419 | fv(i,k)=0.0 |
---|
| 420 | fq(i,k)=0.0 |
---|
| 421 | dph(i,k)=ph(i,k)-ph(i,k+1) |
---|
| 422 | ep(i,k)=0.0 |
---|
| 423 | sigp(i,k)=sigs |
---|
| 424 | 160 continue |
---|
| 425 | 170 continue |
---|
| 426 | do 180 i=1,ncum |
---|
| 427 | c wd(i)=0.0 |
---|
| 428 | c tprime(i)=0.0 |
---|
| 429 | c qprime(i)=0.0 |
---|
| 430 | precip(i)=0.0 |
---|
| 431 | ft(i,nl+1)=0.0 |
---|
| 432 | fu(i,nl+1)=0.0 |
---|
| 433 | fv(i,nl+1)=0.0 |
---|
| 434 | fq(i,nl+1)=0.0 |
---|
| 435 | 180 continue |
---|
| 436 | c |
---|
| 437 | c Compute icbmax. |
---|
| 438 | c |
---|
| 439 | icbmax=2 |
---|
| 440 | do 230 i=1,ncum |
---|
| 441 | icbmax=max(icbmax,icb(i)) |
---|
| 442 | 230 continue |
---|
| 443 | c |
---|
| 444 | c |
---|
| 445 | !===================================================================== |
---|
| 446 | ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES |
---|
| 447 | !===================================================================== |
---|
| 448 | c |
---|
| 449 | c --- The procedure is to solve the equation. |
---|
| 450 | c cp*tp+L*qp+phi=cp*tnk+L*qnk+gznk. |
---|
| 451 | c |
---|
| 452 | c *** Calculate certain parcel quantities, including static energy *** |
---|
| 453 | c |
---|
| 454 | c |
---|
| 455 | do 240 i=1,ncum |
---|
| 456 | ah0(i)=(cpd*(1.-qnk(i))+cl*qnk(i))*tnk(i) |
---|
| 457 | & +qnk(i)*(lv0-clmcpv*(tnk(i)-273.15))+gznk(i) |
---|
| 458 | 240 continue |
---|
| 459 | c |
---|
| 460 | c |
---|
| 461 | c *** Find lifted parcel quantities above cloud base *** |
---|
| 462 | c |
---|
| 463 | c |
---|
| 464 | do 300 k=minorig+1,nl |
---|
| 465 | do 290 i=1,ncum |
---|
| 466 | if(k.ge.(icb(i)+1))then |
---|
| 467 | tg=t(i,k) |
---|
| 468 | qg=qs(i,k) |
---|
| 469 | alv=lv0-clmcpv*(t(i,k)-273.15) |
---|
| 470 | c |
---|
| 471 | c First iteration. |
---|
| 472 | c |
---|
| 473 | s=cpd+alv*alv*qg/(rv*t(i,k)*t(i,k)) |
---|
| 474 | s=1./s |
---|
| 475 | ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
| 476 | tg=tg+s*(ah0(i)-ahg) |
---|
| 477 | tg=max(tg,35.0) |
---|
| 478 | tc=tg-273.15 |
---|
| 479 | denom=243.5+tc |
---|
| 480 | if(tc.ge.0.0)then |
---|
| 481 | es=6.112*exp(17.67*tc/denom) |
---|
| 482 | else |
---|
| 483 | es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 484 | endif |
---|
| 485 | qg=eps*es/(p(i,k)-es*(1.-eps)) |
---|
| 486 | c |
---|
| 487 | c Second iteration. |
---|
| 488 | c |
---|
| 489 | s=cpd+alv*alv*qg/(rv*t(i,k)*t(i,k)) |
---|
| 490 | s=1./s |
---|
| 491 | ahg=cpd*tg+(cl-cpd)*qnk(i)*t(i,k)+alv*qg+gz(i,k) |
---|
| 492 | tg=tg+s*(ah0(i)-ahg) |
---|
| 493 | tg=max(tg,35.0) |
---|
| 494 | tc=tg-273.15 |
---|
| 495 | denom=243.5+tc |
---|
| 496 | if(tc.ge.0.0)then |
---|
| 497 | es=6.112*exp(17.67*tc/denom) |
---|
| 498 | else |
---|
| 499 | es=exp(23.33086-6111.72784/tg+0.15215*log(tg)) |
---|
| 500 | endif |
---|
| 501 | qg=eps*es/(p(i,k)-es*(1.-eps)) |
---|
| 502 | c |
---|
| 503 | alv=lv0-clmcpv*(t(i,k)-273.15) |
---|
| 504 | c print*,'cpd dans convect2 ',cpd |
---|
| 505 | c print*,'tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd' |
---|
| 506 | c print*,tp(i,k),ah0(i),cl,cpd,qnk(i),t(i,k),gz(i,k),alv,qg,cpd |
---|
| 507 | tp(i,k)=(ah0(i)-(cl-cpd)*qnk(i)*t(i,k)-gz(i,k)-alv*qg) |
---|
| 508 | & /cpd |
---|
| 509 | c if (.not.cpd.gt.1000.) then |
---|
| 510 | c print*,'CPD=',cpd |
---|
| 511 | c stop |
---|
| 512 | c endif |
---|
| 513 | clw(i,k)=qnk(i)-qg |
---|
| 514 | clw(i,k)=max(0.0,clw(i,k)) |
---|
| 515 | rg=qg/(1.-qnk(i)) |
---|
| 516 | tvp(i,k)=tp(i,k)*(1.+rg*epsi) |
---|
| 517 | endif |
---|
| 518 | 290 continue |
---|
| 519 | 300 continue |
---|
| 520 | c |
---|
| 521 | !===================================================================== |
---|
| 522 | ! --- SET THE PRECIPITATION EFFICIENCIES AND THE FRACTION OF |
---|
| 523 | ! --- PRECIPITATION FALLING OUTSIDE OF CLOUD |
---|
| 524 | ! --- THESE MAY BE FUNCTIONS OF TP(I), P(I) AND CLW(I) |
---|
| 525 | !===================================================================== |
---|
| 526 | c |
---|
| 527 | do 320 k=minorig+1,nl |
---|
| 528 | do 310 i=1,ncum |
---|
| 529 | if(k.ge.(nk(i)+1))then |
---|
| 530 | tca=tp(i,k)-273.15 |
---|
| 531 | if(tca.ge.0.0)then |
---|
| 532 | elacrit=elcrit |
---|
| 533 | else |
---|
| 534 | elacrit=elcrit*(1.0-tca/tlcrit) |
---|
| 535 | endif |
---|
| 536 | elacrit=max(elacrit,0.0) |
---|
| 537 | ep(i,k)=1.0-elacrit/max(clw(i,k),1.0e-8) |
---|
| 538 | ep(i,k)=max(ep(i,k),0.0 ) |
---|
| 539 | ep(i,k)=min(ep(i,k),1.0 ) |
---|
| 540 | sigp(i,k)=sigs |
---|
| 541 | endif |
---|
| 542 | 310 continue |
---|
| 543 | 320 continue |
---|
| 544 | c |
---|
| 545 | !===================================================================== |
---|
| 546 | ! --- CALCULATE VIRTUAL TEMPERATURE AND LIFTED PARCEL |
---|
| 547 | ! --- VIRTUAL TEMPERATURE |
---|
| 548 | !===================================================================== |
---|
| 549 | c |
---|
| 550 | do 340 k=minorig+1,nl |
---|
| 551 | do 330 i=1,ncum |
---|
| 552 | if(k.ge.(icb(i)+1))then |
---|
| 553 | tvp(i,k)=tvp(i,k)*(1.0-qnk(i)+ep(i,k)*clw(i,k)) |
---|
| 554 | c print*,'i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k)' |
---|
| 555 | c print*, i,k,tvp(i,k),qnk(i),ep(i,k),clw(i,k) |
---|
| 556 | endif |
---|
| 557 | 330 continue |
---|
| 558 | 340 continue |
---|
| 559 | do 350 i=1,ncum |
---|
| 560 | tvp(i,nlp)=tvp(i,nl)-(gz(i,nlp)-gz(i,nl))/cpd |
---|
| 561 | 350 continue |
---|
| 562 | c |
---|
| 563 | c |
---|
| 564 | c===================================================================== |
---|
| 565 | c --- NOW INITIALIZE VARIOUS ARRAYS USED IN THE COMPUTATIONS |
---|
| 566 | c===================================================================== |
---|
| 567 | c |
---|
| 568 | do 360 i=1,ncum*nlp |
---|
| 569 | nent(i,1)=0 |
---|
| 570 | water(i,1)=0.0 |
---|
| 571 | evap(i,1)=0.0 |
---|
| 572 | mp(i,1)=0.0 |
---|
| 573 | m(i,1)=0.0 |
---|
| 574 | wt(i,1)=omtsnow |
---|
| 575 | hp(i,1)=h(i,1) |
---|
| 576 | c if(.not.cpn(i,1).gt.900.) then |
---|
| 577 | c print*,'i,lv(i,1),cpn(i,1)' |
---|
| 578 | c print*, i,lv(i,1),cpn(i,1) |
---|
| 579 | c k=(i-1)/ncum+1 |
---|
| 580 | c print*,'i,k',mod(i,ncum),k,' cpn',cpn(mod(i,ncum),k) |
---|
| 581 | c stop |
---|
| 582 | c endif |
---|
| 583 | lvcp(i,1)=lv(i,1)/cpn(i,1) |
---|
| 584 | 360 continue |
---|
| 585 | c |
---|
| 586 | do 380 i=1,ncum*nlp*nlp |
---|
| 587 | elij(i,1,1)=0.0 |
---|
| 588 | ment(i,1,1)=0.0 |
---|
| 589 | sij(i,1,1)=0.0 |
---|
| 590 | 380 continue |
---|
| 591 | c |
---|
| 592 | do 400 k=1,nlp |
---|
| 593 | do 390 j=1,nlp |
---|
| 594 | do 385 i=1,ncum |
---|
| 595 | qent(i,k,j)=q(i,j) |
---|
| 596 | uent(i,k,j)=u(i,j) |
---|
| 597 | vent(i,k,j)=v(i,j) |
---|
| 598 | 385 continue |
---|
| 599 | 390 continue |
---|
| 600 | 400 continue |
---|
| 601 | c |
---|
| 602 | do 420 i=1,ncum |
---|
| 603 | qp(i,1)=q(i,1) |
---|
| 604 | up(i,1)=u(i,1) |
---|
| 605 | vp(i,1)=v(i,1) |
---|
| 606 | 420 continue |
---|
| 607 | do 440 k=2,nlp |
---|
| 608 | do 430 i=1,ncum |
---|
| 609 | qp(i,k)=q(i,k-1) |
---|
| 610 | up(i,k)=u(i,k-1) |
---|
| 611 | vp(i,k)=v(i,k-1) |
---|
| 612 | 430 continue |
---|
| 613 | 440 continue |
---|
| 614 | c |
---|
| 615 | c===================================================================== |
---|
| 616 | c --- FIND THE FIRST MODEL LEVEL (INB1) ABOVE THE PARCEL'S |
---|
| 617 | c --- HIGHEST LEVEL OF NEUTRAL BUOYANCY |
---|
| 618 | c --- AND THE HIGHEST LEVEL OF POSITIVE CAPE (INB) |
---|
| 619 | c===================================================================== |
---|
| 620 | c |
---|
| 621 | do 510 i=1,ncum |
---|
| 622 | cape(i)=0.0 |
---|
| 623 | capem(i)=0.0 |
---|
| 624 | inb(i)=icb(i)+1 |
---|
| 625 | inb1(i)=inb(i) |
---|
| 626 | 510 continue |
---|
| 627 | c |
---|
| 628 | c Originial Code |
---|
| 629 | c |
---|
| 630 | c do 530 k=minorig+1,nl-1 |
---|
| 631 | c do 520 i=1,ncum |
---|
| 632 | c if(k.ge.(icb(i)+1))then |
---|
| 633 | c by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 634 | c byp=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 635 | c cape(i)=cape(i)+by |
---|
| 636 | c if(by.ge.0.0)inb1(i)=k+1 |
---|
| 637 | c if(cape(i).gt.0.0)then |
---|
| 638 | c inb(i)=k+1 |
---|
| 639 | c capem(i)=cape(i) |
---|
| 640 | c endif |
---|
| 641 | c endif |
---|
| 642 | c520 continue |
---|
| 643 | c530 continue |
---|
| 644 | c do 540 i=1,ncum |
---|
| 645 | c byp=(tvp(i,nl)-tv(i,nl))*dph(i,nl)/p(i,nl) |
---|
| 646 | c cape(i)=capem(i)+byp |
---|
| 647 | c defrac=capem(i)-cape(i) |
---|
| 648 | c defrac=max(defrac,0.001) |
---|
| 649 | c frac(i)=-cape(i)/defrac |
---|
| 650 | c frac(i)=min(frac(i),1.0) |
---|
| 651 | c frac(i)=max(frac(i),0.0) |
---|
| 652 | c540 continue |
---|
| 653 | c |
---|
| 654 | c K Emanuel fix |
---|
| 655 | c |
---|
| 656 | c call zilch(byp,ncum) |
---|
| 657 | c do 530 k=minorig+1,nl-1 |
---|
| 658 | c do 520 i=1,ncum |
---|
| 659 | c if(k.ge.(icb(i)+1))then |
---|
| 660 | c by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 661 | c cape(i)=cape(i)+by |
---|
| 662 | c if(by.ge.0.0)inb1(i)=k+1 |
---|
| 663 | c if(cape(i).gt.0.0)then |
---|
| 664 | c inb(i)=k+1 |
---|
| 665 | c capem(i)=cape(i) |
---|
| 666 | c byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 667 | c endif |
---|
| 668 | c endif |
---|
| 669 | c520 continue |
---|
| 670 | c530 continue |
---|
| 671 | c do 540 i=1,ncum |
---|
| 672 | c inb(i)=max(inb(i),inb1(i)) |
---|
| 673 | c cape(i)=capem(i)+byp(i) |
---|
| 674 | c defrac=capem(i)-cape(i) |
---|
| 675 | c defrac=max(defrac,0.001) |
---|
| 676 | c frac(i)=-cape(i)/defrac |
---|
| 677 | c frac(i)=min(frac(i),1.0) |
---|
| 678 | c frac(i)=max(frac(i),0.0) |
---|
| 679 | c540 continue |
---|
| 680 | c |
---|
| 681 | c J Teixeira fix |
---|
| 682 | c |
---|
| 683 | call zilch(byp,ncum) |
---|
| 684 | do 515 i=1,ncum |
---|
| 685 | lcape(i)=.true. |
---|
| 686 | 515 continue |
---|
| 687 | do 530 k=minorig+1,nl-1 |
---|
| 688 | do 520 i=1,ncum |
---|
| 689 | if(cape(i).lt.0.0)lcape(i)=.false. |
---|
| 690 | if((k.ge.(icb(i)+1)).and.lcape(i))then |
---|
| 691 | by=(tvp(i,k)-tv(i,k))*dph(i,k)/p(i,k) |
---|
| 692 | byp(i)=(tvp(i,k+1)-tv(i,k+1))*dph(i,k+1)/p(i,k+1) |
---|
| 693 | cape(i)=cape(i)+by |
---|
| 694 | if(by.ge.0.0)inb1(i)=k+1 |
---|
| 695 | if(cape(i).gt.0.0)then |
---|
| 696 | inb(i)=k+1 |
---|
| 697 | capem(i)=cape(i) |
---|
| 698 | endif |
---|
| 699 | endif |
---|
| 700 | 520 continue |
---|
| 701 | 530 continue |
---|
| 702 | do 540 i=1,ncum |
---|
| 703 | cape(i)=capem(i)+byp(i) |
---|
| 704 | defrac=capem(i)-cape(i) |
---|
| 705 | defrac=max(defrac,0.001) |
---|
| 706 | frac(i)=-cape(i)/defrac |
---|
| 707 | frac(i)=min(frac(i),1.0) |
---|
| 708 | frac(i)=max(frac(i),0.0) |
---|
| 709 | 540 continue |
---|
| 710 | c |
---|
| 711 | c===================================================================== |
---|
| 712 | c --- CALCULATE LIQUID WATER STATIC ENERGY OF LIFTED PARCEL |
---|
| 713 | c===================================================================== |
---|
| 714 | c |
---|
| 715 | do 600 k=minorig+1,nl |
---|
| 716 | do 590 i=1,ncum |
---|
| 717 | if((k.ge.icb(i)).and.(k.le.inb(i)))then |
---|
| 718 | hp(i,k)=h(i,nk(i))+(lv(i,k)+(cpd-cpv)*t(i,k))*ep(i,k)*clw(i,k) |
---|
| 719 | endif |
---|
| 720 | 590 continue |
---|
| 721 | 600 continue |
---|
| 722 | c |
---|
| 723 | c===================================================================== |
---|
| 724 | c --- CALCULATE CLOUD BASE MASS FLUX AND RATES OF MIXING, M(I), |
---|
| 725 | c --- AT EACH MODEL LEVEL |
---|
| 726 | c===================================================================== |
---|
| 727 | c |
---|
| 728 | c tvpplcl = parcel temperature lifted adiabatically from level |
---|
| 729 | c icb-1 to the LCL. |
---|
| 730 | c tvaplcl = virtual temperature at the LCL. |
---|
| 731 | c |
---|
| 732 | do 610 i=1,ncum |
---|
| 733 | dtpbl(i)=0.0 |
---|
| 734 | tvpplcl(i)=tvp(i,icb(i)-1) |
---|
| 735 | & -rd*tvp(i,icb(i)-1)*(p(i,icb(i)-1)-plcl(i)) |
---|
| 736 | & /(cpn(i,icb(i)-1)*p(i,icb(i)-1)) |
---|
| 737 | tvaplcl(i)=tv(i,icb(i)) |
---|
| 738 | & +(tvp(i,icb(i))-tvp(i,icb(i)+1))*(plcl(i)-p(i,icb(i))) |
---|
| 739 | & /(p(i,icb(i))-p(i,icb(i)+1)) |
---|
| 740 | 610 continue |
---|
| 741 | c |
---|
| 742 | c------------------------------------------------------------------- |
---|
| 743 | c --- Interpolate difference between lifted parcel and |
---|
| 744 | c --- environmental temperatures to lifted condensation level |
---|
| 745 | c------------------------------------------------------------------- |
---|
| 746 | c |
---|
| 747 | c dtpbl = average of tvp-tv in the PBL (k=nk to icb-1). |
---|
| 748 | c |
---|
| 749 | do 630 k=minorig,icbmax |
---|
| 750 | do 620 i=1,ncum |
---|
| 751 | if((k.ge.nk(i)).and.(k.le.(icb(i)-1)))then |
---|
| 752 | dtpbl(i)=dtpbl(i)+(tvp(i,k)-tv(i,k))*dph(i,k) |
---|
| 753 | endif |
---|
| 754 | 620 continue |
---|
| 755 | 630 continue |
---|
| 756 | do 640 i=1,ncum |
---|
| 757 | dtpbl(i)=dtpbl(i)/(ph(i,nk(i))-ph(i,icb(i))) |
---|
| 758 | dtmin(i)=tvpplcl(i)-tvaplcl(i)+dtmax+dtpbl(i) |
---|
| 759 | 640 continue |
---|
| 760 | c |
---|
| 761 | c------------------------------------------------------------------- |
---|
| 762 | c --- Adjust cloud base mass flux |
---|
| 763 | c------------------------------------------------------------------- |
---|
| 764 | c |
---|
| 765 | do 650 i=1,ncum |
---|
| 766 | work(i)=cbmf(i) |
---|
| 767 | cbmf(i)=max(0.0,(1.0-damp)*cbmf(i)+0.1*alpha*dtmin(i)) |
---|
| 768 | if((work(i).eq.0.0).and.(cbmf(i).eq.0.0))then |
---|
| 769 | iflag(i)=3 |
---|
| 770 | endif |
---|
| 771 | 650 continue |
---|
| 772 | c |
---|
| 773 | c------------------------------------------------------------------- |
---|
| 774 | c --- Calculate rates of mixing, m(i) |
---|
| 775 | c------------------------------------------------------------------- |
---|
| 776 | c |
---|
| 777 | call zilch(work,ncum) |
---|
| 778 | c |
---|
| 779 | do 670 j=minorig+1,nl |
---|
| 780 | do 660 i=1,ncum |
---|
| 781 | if((j.ge.(icb(i)+1)).and.(j.le.inb(i)))then |
---|
| 782 | k=min(j,inb1(i)) |
---|
| 783 | dbo=abs(tv(i,k+1)-tvp(i,k+1)-tv(i,k-1)+tvp(i,k-1)) |
---|
| 784 | & +entp*0.04*(ph(i,k)-ph(i,k+1)) |
---|
| 785 | work(i)=work(i)+dbo |
---|
| 786 | m(i,j)=cbmf(i)*dbo |
---|
| 787 | endif |
---|
| 788 | 660 continue |
---|
| 789 | 670 continue |
---|
| 790 | do 690 k=minorig+1,nl |
---|
| 791 | do 680 i=1,ncum |
---|
| 792 | if((k.ge.(icb(i)+1)).and.(k.le.inb(i)))then |
---|
| 793 | m(i,k)=m(i,k)/work(i) |
---|
| 794 | endif |
---|
| 795 | 680 continue |
---|
| 796 | 690 continue |
---|
| 797 | c |
---|
| 798 | c |
---|
| 799 | c===================================================================== |
---|
| 800 | c --- CALCULATE ENTRAINED AIR MASS FLUX (ment), TOTAL WATER MIXING |
---|
| 801 | c --- RATIO (QENT), TOTAL CONDENSED WATER (elij), AND MIXING |
---|
| 802 | c --- FRACTION (sij) |
---|
| 803 | c===================================================================== |
---|
| 804 | c |
---|
| 805 | c |
---|
| 806 | do 750 i=minorig+1,nl |
---|
| 807 | do 710 j=minorig+1,nl |
---|
| 808 | do 700 ij=1,ncum |
---|
| 809 | if((i.ge.(icb(ij)+1)).and.(j.ge.icb(ij)) |
---|
| 810 | & .and.(i.le.inb(ij)).and.(j.le.inb(ij)))then |
---|
| 811 | qti=qnk(ij)-ep(ij,i)*clw(ij,i) |
---|
| 812 | bf2=1.+lv(ij,j)*lv(ij,j)*qs(ij,j) |
---|
| 813 | & /(rv*t(ij,j)*t(ij,j)*cpd) |
---|
| 814 | anum=h(ij,j)-hp(ij,i)+(cpv-cpd)*t(ij,j)*(qti-q(ij,j)) |
---|
| 815 | denom=h(ij,i)-hp(ij,i)+(cpd-cpv)*(q(ij,i)-qti)*t(ij,j) |
---|
| 816 | dei=denom |
---|
| 817 | if(abs(dei).lt.0.01)dei=0.01 |
---|
| 818 | sij(ij,i,j)=anum/dei |
---|
| 819 | sij(ij,i,i)=1.0 |
---|
| 820 | altem=sij(ij,i,j)*q(ij,i)+(1.-sij(ij,i,j))*qti-qs(ij,j) |
---|
| 821 | altem=altem/bf2 |
---|
| 822 | cwat=clw(ij,j)*(1.-ep(ij,j)) |
---|
| 823 | stemp=sij(ij,i,j) |
---|
| 824 | if((stemp.lt.0.0.or.stemp.gt.1.0.or. |
---|
| 825 | 1 altem.gt.cwat).and.j.gt.i)then |
---|
| 826 | anum=anum-lv(ij,j)*(qti-qs(ij,j)-cwat*bf2) |
---|
| 827 | denom=denom+lv(ij,j)*(q(ij,i)-qti) |
---|
| 828 | if(abs(denom).lt.0.01)denom=0.01 |
---|
| 829 | sij(ij,i,j)=anum/denom |
---|
| 830 | altem=sij(ij,i,j)*q(ij,i)+(1.-sij(ij,i,j))*qti-qs(ij,j) |
---|
| 831 | altem=altem-(bf2-1.)*cwat |
---|
| 832 | endif |
---|
| 833 | if(sij(ij,i,j).gt.0.0.and.sij(ij,i,j).lt.0.9)then |
---|
| 834 | qent(ij,i,j)=sij(ij,i,j)*q(ij,i) |
---|
| 835 | & +(1.-sij(ij,i,j))*qti |
---|
| 836 | uent(ij,i,j)=sij(ij,i,j)*u(ij,i) |
---|
| 837 | & +(1.-sij(ij,i,j))*u(ij,nk(ij)) |
---|
| 838 | vent(ij,i,j)=sij(ij,i,j)*v(ij,i) |
---|
| 839 | & +(1.-sij(ij,i,j))*v(ij,nk(ij)) |
---|
| 840 | elij(ij,i,j)=altem |
---|
| 841 | elij(ij,i,j)=max(0.0,elij(ij,i,j)) |
---|
| 842 | ment(ij,i,j)=m(ij,i)/(1.-sij(ij,i,j)) |
---|
| 843 | nent(ij,i)=nent(ij,i)+1 |
---|
| 844 | endif |
---|
| 845 | sij(ij,i,j)=max(0.0,sij(ij,i,j)) |
---|
| 846 | sij(ij,i,j)=min(1.0,sij(ij,i,j)) |
---|
| 847 | endif |
---|
| 848 | 700 continue |
---|
| 849 | 710 continue |
---|
| 850 | c |
---|
| 851 | c *** If no air can entrain at level i assume that updraft detrains *** |
---|
| 852 | c *** at that level and calculate detrained air flux and properties *** |
---|
| 853 | c |
---|
| 854 | do 740 ij=1,ncum |
---|
| 855 | if((i.ge.(icb(ij)+1)).and.(i.le.inb(ij)) |
---|
| 856 | & .and.(nent(ij,i).eq.0))then |
---|
| 857 | ment(ij,i,i)=m(ij,i) |
---|
| 858 | qent(ij,i,i)=q(ij,nk(ij))-ep(ij,i)*clw(ij,i) |
---|
| 859 | uent(ij,i,i)=u(ij,nk(ij)) |
---|
| 860 | vent(ij,i,i)=v(ij,nk(ij)) |
---|
| 861 | elij(ij,i,i)=clw(ij,i) |
---|
| 862 | sij(ij,i,i)=1.0 |
---|
| 863 | endif |
---|
| 864 | 740 continue |
---|
| 865 | 750 continue |
---|
| 866 | c |
---|
| 867 | do 770 i=1,ncum |
---|
| 868 | sij(i,inb(i),inb(i))=1.0 |
---|
| 869 | 770 continue |
---|
| 870 | c |
---|
| 871 | c===================================================================== |
---|
| 872 | c --- NORMALIZE ENTRAINED AIR MASS FLUXES |
---|
| 873 | c --- TO REPRESENT EQUAL PROBABILITIES OF MIXING |
---|
| 874 | c===================================================================== |
---|
| 875 | c |
---|
| 876 | c |
---|
| 877 | call zilch(bsum,ncum*nlp) |
---|
| 878 | do 780 ij=1,ncum |
---|
| 879 | lwork(ij)=.false. |
---|
| 880 | 780 continue |
---|
| 881 | do 789 i=minorig+1,nl |
---|
| 882 | c |
---|
| 883 | num1=0 |
---|
| 884 | do 779 ij=1,ncum |
---|
| 885 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)))num1=num1+1 |
---|
| 886 | 779 continue |
---|
| 887 | if(num1.le.0)go to 789 |
---|
| 888 | c |
---|
| 889 | do 781 ij=1,ncum |
---|
| 890 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)))then |
---|
| 891 | lwork(ij)=(nent(ij,i).ne.0) |
---|
| 892 | qp1=q(ij,nk(ij))-ep(ij,i)*clw(ij,i) |
---|
| 893 | anum=h(ij,i)-hp(ij,i)-lv(ij,i)*(qp1-qs(ij,i)) |
---|
| 894 | denom=h(ij,i)-hp(ij,i)+lv(ij,i)*(q(ij,i)-qp1) |
---|
| 895 | if(abs(denom).lt.0.01)denom=0.01 |
---|
| 896 | scrit(ij)=anum/denom |
---|
| 897 | alt=qp1-qs(ij,i)+scrit(ij)*(q(ij,i)-qp1) |
---|
| 898 | if(scrit(ij).lt.0.0.or.alt.lt.0.0)scrit(ij)=1.0 |
---|
| 899 | asij(ij)=0.0 |
---|
| 900 | smin(ij)=1.0 |
---|
| 901 | endif |
---|
| 902 | 781 continue |
---|
| 903 | do 783 j=minorig,nl |
---|
| 904 | c |
---|
| 905 | num2=0 |
---|
| 906 | do 778 ij=1,ncum |
---|
| 907 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)) |
---|
| 908 | & .and.(j.ge.icb(ij)).and.(j.le.inb(ij)) |
---|
| 909 | & .and.lwork(ij))num2=num2+1 |
---|
| 910 | 778 continue |
---|
| 911 | if(num2.le.0)go to 783 |
---|
| 912 | c |
---|
| 913 | do 782 ij=1,ncum |
---|
| 914 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)) |
---|
| 915 | & .and.(j.ge.icb(ij)).and.(j.le.inb(ij)).and.lwork(ij))then |
---|
| 916 | if(sij(ij,i,j).gt.0.0.and.sij(ij,i,j).lt.0.9)then |
---|
| 917 | if(j.gt.i)then |
---|
| 918 | smid=min(sij(ij,i,j),scrit(ij)) |
---|
| 919 | sjmax=smid |
---|
| 920 | sjmin=smid |
---|
| 921 | if(smid.lt.smin(ij) |
---|
| 922 | & .and.sij(ij,i,j+1).lt.smid)then |
---|
| 923 | smin(ij)=smid |
---|
| 924 | sjmax=min(sij(ij,i,j+1),sij(ij,i,j),scrit(ij)) |
---|
| 925 | sjmin=max(sij(ij,i,j-1),sij(ij,i,j)) |
---|
| 926 | sjmin=min(sjmin,scrit(ij)) |
---|
| 927 | endif |
---|
| 928 | else |
---|
| 929 | sjmax=max(sij(ij,i,j+1),scrit(ij)) |
---|
| 930 | smid=max(sij(ij,i,j),scrit(ij)) |
---|
| 931 | sjmin=0.0 |
---|
| 932 | if(j.gt.1)sjmin=sij(ij,i,j-1) |
---|
| 933 | sjmin=max(sjmin,scrit(ij)) |
---|
| 934 | endif |
---|
| 935 | delp=abs(sjmax-smid) |
---|
| 936 | delm=abs(sjmin-smid) |
---|
| 937 | asij(ij)=asij(ij)+(delp+delm) |
---|
| 938 | & *(ph(ij,j)-ph(ij,j+1)) |
---|
| 939 | ment(ij,i,j)=ment(ij,i,j)*(delp+delm) |
---|
| 940 | & *(ph(ij,j)-ph(ij,j+1)) |
---|
| 941 | endif |
---|
| 942 | endif |
---|
| 943 | 782 continue |
---|
| 944 | 783 continue |
---|
| 945 | do 784 ij=1,ncum |
---|
| 946 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)).and.lwork(ij))then |
---|
| 947 | asij(ij)=max(1.0e-21,asij(ij)) |
---|
| 948 | asij(ij)=1.0/asij(ij) |
---|
| 949 | bsum(ij,i)=0.0 |
---|
| 950 | endif |
---|
| 951 | 784 continue |
---|
| 952 | do 786 j=minorig,nl+1 |
---|
| 953 | do 785 ij=1,ncum |
---|
| 954 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)) |
---|
| 955 | & .and.(j.ge.icb(ij)).and.(j.le.inb(ij)) |
---|
| 956 | & .and.lwork(ij))then |
---|
| 957 | ment(ij,i,j)=ment(ij,i,j)*asij(ij) |
---|
| 958 | bsum(ij,i)=bsum(ij,i)+ment(ij,i,j) |
---|
| 959 | endif |
---|
| 960 | 785 continue |
---|
| 961 | 786 continue |
---|
| 962 | do 787 ij=1,ncum |
---|
| 963 | if((i.ge.icb(ij)+1).and.(i.le.inb(ij)) |
---|
| 964 | & .and.(bsum(ij,i).lt.1.0e-18).and.lwork(ij))then |
---|
| 965 | nent(ij,i)=0 |
---|
| 966 | ment(ij,i,i)=m(ij,i) |
---|
| 967 | qent(ij,i,i)=q(ij,nk(ij))-ep(ij,i)*clw(ij,i) |
---|
| 968 | uent(ij,i,i)=u(ij,nk(ij)) |
---|
| 969 | vent(ij,i,i)=v(ij,nk(ij)) |
---|
| 970 | elij(ij,i,i)=clw(ij,i) |
---|
| 971 | sij(ij,i,i)=1.0 |
---|
| 972 | endif |
---|
| 973 | 787 continue |
---|
| 974 | 789 continue |
---|
| 975 | c |
---|
| 976 | c===================================================================== |
---|
| 977 | c --- PRECIPITATING DOWNDRAFT CALCULATION |
---|
| 978 | c===================================================================== |
---|
| 979 | c |
---|
| 980 | c *** Check whether ep(inb)=0, if so, skip precipitating *** |
---|
| 981 | c *** downdraft calculation *** |
---|
| 982 | c |
---|
| 983 | c |
---|
| 984 | c *** Integrate liquid water equation to find condensed water *** |
---|
| 985 | c *** and condensed water flux *** |
---|
| 986 | c |
---|
| 987 | c |
---|
| 988 | do 890 i=1,ncum |
---|
| 989 | jtt(i)=2 |
---|
| 990 | if(ep(i,inb(i)).le.0.0001)iflag(i)=2 |
---|
| 991 | if(iflag(i).eq.0)then |
---|
| 992 | lwork(i)=.true. |
---|
| 993 | else |
---|
| 994 | lwork(i)=.false. |
---|
| 995 | endif |
---|
| 996 | 890 continue |
---|
| 997 | c |
---|
| 998 | c *** Begin downdraft loop *** |
---|
| 999 | c |
---|
| 1000 | c |
---|
| 1001 | call zilch(wdtrain,ncum) |
---|
| 1002 | do 899 i=nl+1,1,-1 |
---|
| 1003 | c |
---|
| 1004 | num1=0 |
---|
| 1005 | do 879 ij=1,ncum |
---|
| 1006 | if((i.le.inb(ij)).and.lwork(ij))num1=num1+1 |
---|
| 1007 | 879 continue |
---|
| 1008 | if(num1.le.0)go to 899 |
---|
| 1009 | c |
---|
| 1010 | c |
---|
| 1011 | c *** Calculate detrained precipitation *** |
---|
| 1012 | c |
---|
| 1013 | do 891 ij=1,ncum |
---|
| 1014 | if((i.le.inb(ij)).and.(lwork(ij)))then |
---|
| 1015 | wdtrain(ij)=g*ep(ij,i)*m(ij,i)*clw(ij,i) |
---|
| 1016 | endif |
---|
| 1017 | 891 continue |
---|
| 1018 | c |
---|
| 1019 | if(i.gt.1)then |
---|
| 1020 | do 893 j=1,i-1 |
---|
| 1021 | do 892 ij=1,ncum |
---|
| 1022 | if((i.le.inb(ij)).and.(lwork(ij)))then |
---|
| 1023 | awat=elij(ij,j,i)-(1.-ep(ij,i))*clw(ij,i) |
---|
| 1024 | awat=max(0.0,awat) |
---|
| 1025 | wdtrain(ij)=wdtrain(ij)+g*awat*ment(ij,j,i) |
---|
| 1026 | endif |
---|
| 1027 | 892 continue |
---|
| 1028 | 893 continue |
---|
| 1029 | endif |
---|
| 1030 | c |
---|
| 1031 | c *** Find rain water and evaporation using provisional *** |
---|
| 1032 | c *** estimates of qp(i)and qp(i-1) *** |
---|
| 1033 | c |
---|
| 1034 | c |
---|
| 1035 | c *** Value of terminal velocity and coeffecient of evaporation for snow *** |
---|
| 1036 | c |
---|
| 1037 | do 894 ij=1,ncum |
---|
| 1038 | if((i.le.inb(ij)).and.(lwork(ij)))then |
---|
| 1039 | coeff=coeffs |
---|
| 1040 | wt(ij,i)=omtsnow |
---|
| 1041 | c |
---|
| 1042 | c *** Value of terminal velocity and coeffecient of evaporation for rain *** |
---|
| 1043 | c |
---|
| 1044 | if(t(ij,i).gt.273.0)then |
---|
| 1045 | coeff=coeffr |
---|
| 1046 | wt(ij,i)=omtrain |
---|
| 1047 | endif |
---|
| 1048 | qsm=0.5*(q(ij,i)+qp(ij,i+1)) |
---|
| 1049 | afac=coeff*ph(ij,i)*(qs(ij,i)-qsm) |
---|
| 1050 | & /(1.0e4+2.0e3*ph(ij,i)*qs(ij,i)) |
---|
| 1051 | afac=max(afac,0.0) |
---|
| 1052 | sigt=sigp(ij,i) |
---|
| 1053 | sigt=max(0.0,sigt) |
---|
| 1054 | sigt=min(1.0,sigt) |
---|
| 1055 | b6=100.*(ph(ij,i)-ph(ij,i+1))*sigt*afac/wt(ij,i) |
---|
| 1056 | c6=(water(ij,i+1)*wt(ij,i+1)+wdtrain(ij)/sigd)/wt(ij,i) |
---|
| 1057 | revap=0.5*(-b6+sqrt(b6*b6+4.*c6)) |
---|
| 1058 | evap(ij,i)=sigt*afac*revap |
---|
| 1059 | water(ij,i)=revap*revap |
---|
| 1060 | c |
---|
| 1061 | c *** Calculate precipitating downdraft mass flux under *** |
---|
| 1062 | c *** hydrostatic approximation *** |
---|
| 1063 | c |
---|
| 1064 | if(i.gt.1)then |
---|
| 1065 | dhdp=(h(ij,i)-h(ij,i-1))/(p(ij,i-1)-p(ij,i)) |
---|
| 1066 | dhdp=max(dhdp,10.0) |
---|
| 1067 | mp(ij,i)=100.*ginv*lv(ij,i)*sigd*evap(ij,i)/dhdp |
---|
| 1068 | mp(ij,i)=max(mp(ij,i),0.0) |
---|
| 1069 | c |
---|
| 1070 | c *** Add small amount of inertia to downdraft *** |
---|
| 1071 | c |
---|
| 1072 | fac=20.0/(ph(ij,i-1)-ph(ij,i)) |
---|
| 1073 | mp(ij,i)=(fac*mp(ij,i+1)+mp(ij,i))/(1.+fac) |
---|
| 1074 | c |
---|
| 1075 | c *** Force mp to decrease linearly to zero *** |
---|
| 1076 | c *** between about 950 mb and the surface *** |
---|
| 1077 | c |
---|
| 1078 | if(p(ij,i).gt.(0.949*p(ij,1)))then |
---|
| 1079 | jtt(ij)=max(jtt(ij),i) |
---|
| 1080 | mp(ij,i)=mp(ij,jtt(ij))*(p(ij,1)-p(ij,i)) |
---|
| 1081 | & /(p(ij,1)-p(ij,jtt(ij))) |
---|
| 1082 | endif |
---|
| 1083 | endif |
---|
| 1084 | c |
---|
| 1085 | c *** Find mixing ratio of precipitating downdraft *** |
---|
| 1086 | c |
---|
| 1087 | if(i.ne.inb(ij))then |
---|
| 1088 | if(i.eq.1)then |
---|
| 1089 | qstm=qs(ij,1) |
---|
| 1090 | else |
---|
| 1091 | qstm=qs(ij,i-1) |
---|
| 1092 | endif |
---|
| 1093 | if(mp(ij,i).gt.mp(ij,i+1))then |
---|
| 1094 | rat=mp(ij,i+1)/mp(ij,i) |
---|
| 1095 | qp(ij,i)=qp(ij,i+1)*rat+q(ij,i)*(1.0-rat)+100.*ginv* |
---|
| 1096 | & sigd*(ph(ij,i)-ph(ij,i+1))*(evap(ij,i)/mp(ij,i)) |
---|
| 1097 | up(ij,i)=up(ij,i+1)*rat+u(ij,i)*(1.-rat) |
---|
| 1098 | vp(ij,i)=vp(ij,i+1)*rat+v(ij,i)*(1.-rat) |
---|
| 1099 | else |
---|
| 1100 | if(mp(ij,i+1).gt.0.0)then |
---|
| 1101 | qp(ij,i)=(gz(ij,i+1)-gz(ij,i) |
---|
| 1102 | & +qp(ij,i+1)*(lv(ij,i+1)+t(ij,i+1) |
---|
| 1103 | & *(cl-cpd))+cpd*(t(ij,i+1)-t(ij,i))) |
---|
| 1104 | & /(lv(ij,i)+t(ij,i)*(cl-cpd)) |
---|
| 1105 | up(ij,i)=up(ij,i+1) |
---|
| 1106 | vp(ij,i)=vp(ij,i+1) |
---|
| 1107 | endif |
---|
| 1108 | endif |
---|
| 1109 | qp(ij,i)=min(qp(ij,i),qstm) |
---|
| 1110 | qp(ij,i)=max(qp(ij,i),0.0) |
---|
| 1111 | endif |
---|
| 1112 | endif |
---|
| 1113 | 894 continue |
---|
| 1114 | 899 continue |
---|
| 1115 | c |
---|
| 1116 | c *** Calculate surface precipitation in mm/day *** |
---|
| 1117 | c |
---|
| 1118 | do 1190 i=1,ncum |
---|
| 1119 | if(iflag(i).le.1)then |
---|
| 1120 | cc precip(i)=precip(i)+wt(i,1)*sigd*water(i,1)*3600.*24000. |
---|
| 1121 | cc & /(rowl*g) |
---|
| 1122 | cc precip(i)=precip(i)*delt/86400. |
---|
| 1123 | precip(i) = wt(i,1)*sigd*water(i,1)*86400/g |
---|
| 1124 | endif |
---|
| 1125 | 1190 continue |
---|
| 1126 | c |
---|
| 1127 | c |
---|
| 1128 | c *** Calculate downdraft velocity scale and surface temperature and *** |
---|
| 1129 | c *** water vapor fluctuations *** |
---|
| 1130 | c |
---|
| 1131 | c wd=beta*abs(mp(icb))*0.01*rd*t(icb)/(sigd*p(icb)) |
---|
| 1132 | c qprime=0.5*(qp(1)-q(1)) |
---|
| 1133 | c tprime=lv0*qprime/cpd |
---|
| 1134 | c |
---|
| 1135 | c *** Calculate tendencies of lowest level potential temperature *** |
---|
| 1136 | c *** and mixing ratio *** |
---|
| 1137 | c |
---|
| 1138 | do 1200 i=1,ncum |
---|
| 1139 | work(i)=0.01/(ph(i,1)-ph(i,2)) |
---|
| 1140 | am(i)=0.0 |
---|
| 1141 | 1200 continue |
---|
| 1142 | do 1220 k=2,nl |
---|
| 1143 | do 1210 i=1,ncum |
---|
| 1144 | if((nk(i).eq.1).and.(k.le.inb(i)).and.(nk(i).eq.1))then |
---|
| 1145 | am(i)=am(i)+m(i,k) |
---|
| 1146 | endif |
---|
| 1147 | 1210 continue |
---|
| 1148 | 1220 continue |
---|
| 1149 | do 1240 i=1,ncum |
---|
| 1150 | if((g*work(i)*am(i)).ge.delti)iflag(i)=1 |
---|
| 1151 | ft(i,1)=ft(i,1)+g*work(i)*am(i)*(t(i,2)-t(i,1) |
---|
| 1152 | & +(gz(i,2)-gz(i,1))/cpn(i,1)) |
---|
| 1153 | ft(i,1)=ft(i,1)-lvcp(i,1)*sigd*evap(i,1) |
---|
| 1154 | ft(i,1)=ft(i,1)+sigd*wt(i,2)*(cl-cpd)*water(i,2)*(t(i,2) |
---|
| 1155 | & -t(i,1))*work(i)/cpn(i,1) |
---|
| 1156 | fq(i,1)=fq(i,1)+g*mp(i,2)*(qp(i,2)-q(i,1))* |
---|
| 1157 | & work(i)+sigd*evap(i,1) |
---|
| 1158 | fq(i,1)=fq(i,1)+g*am(i)*(q(i,2)-q(i,1))*work(i) |
---|
| 1159 | fu(i,1)=fu(i,1)+g*work(i)*(mp(i,2)*(up(i,2)-u(i,1)) |
---|
| 1160 | & +am(i)*(u(i,2)-u(i,1))) |
---|
| 1161 | fv(i,1)=fv(i,1)+g*work(i)*(mp(i,2)*(vp(i,2)-v(i,1)) |
---|
| 1162 | & +am(i)*(v(i,2)-v(i,1))) |
---|
| 1163 | 1240 continue |
---|
| 1164 | do 1260 j=2,nl |
---|
| 1165 | do 1250 i=1,ncum |
---|
| 1166 | if(j.le.inb(i))then |
---|
| 1167 | fq(i,1)=fq(i,1) |
---|
| 1168 | & +g*work(i)*ment(i,j,1)*(qent(i,j,1)-q(i,1)) |
---|
| 1169 | fu(i,1)=fu(i,1) |
---|
| 1170 | & +g*work(i)*ment(i,j,1)*(uent(i,j,1)-u(i,1)) |
---|
| 1171 | fv(i,1)=fv(i,1) |
---|
| 1172 | & +g*work(i)*ment(i,j,1)*(vent(i,j,1)-v(i,1)) |
---|
| 1173 | endif |
---|
| 1174 | 1250 continue |
---|
| 1175 | 1260 continue |
---|
| 1176 | c |
---|
| 1177 | c *** Calculate tendencies of potential temperature and mixing ratio *** |
---|
| 1178 | c *** at levels above the lowest level *** |
---|
| 1179 | c |
---|
| 1180 | c *** First find the net saturated updraft and downdraft mass fluxes *** |
---|
| 1181 | c *** through each level *** |
---|
| 1182 | c |
---|
| 1183 | do 1500 i=2,nl+1 |
---|
| 1184 | c |
---|
| 1185 | num1=0 |
---|
| 1186 | do 1265 ij=1,ncum |
---|
| 1187 | if(i.le.inb(ij))num1=num1+1 |
---|
| 1188 | 1265 continue |
---|
| 1189 | if(num1.le.0)go to 1500 |
---|
| 1190 | c |
---|
| 1191 | call zilch(amp1,ncum) |
---|
| 1192 | call zilch(ad,ncum) |
---|
| 1193 | c |
---|
| 1194 | do 1280 k=i+1,nl+1 |
---|
| 1195 | do 1270 ij=1,ncum |
---|
| 1196 | if((i.ge.nk(ij)).and.(i.le.inb(ij)) |
---|
| 1197 | & .and.(k.le.(inb(ij)+1)))then |
---|
| 1198 | amp1(ij)=amp1(ij)+m(ij,k) |
---|
| 1199 | endif |
---|
| 1200 | 1270 continue |
---|
| 1201 | 1280 continue |
---|
| 1202 | c |
---|
| 1203 | do 1310 k=1,i |
---|
| 1204 | do 1300 j=i+1,nl+1 |
---|
| 1205 | do 1290 ij=1,ncum |
---|
| 1206 | if((j.le.(inb(ij)+1)).and.(i.le.inb(ij)))then |
---|
| 1207 | amp1(ij)=amp1(ij)+ment(ij,k,j) |
---|
| 1208 | endif |
---|
| 1209 | 1290 continue |
---|
| 1210 | 1300 continue |
---|
| 1211 | 1310 continue |
---|
| 1212 | do 1340 k=1,i-1 |
---|
| 1213 | do 1330 j=i,nl+1 |
---|
| 1214 | do 1320 ij=1,ncum |
---|
| 1215 | if((i.le.inb(ij)).and.(j.le.inb(ij)))then |
---|
| 1216 | ad(ij)=ad(ij)+ment(ij,j,k) |
---|
| 1217 | endif |
---|
| 1218 | 1320 continue |
---|
| 1219 | 1330 continue |
---|
| 1220 | 1340 continue |
---|
| 1221 | c |
---|
| 1222 | do 1350 ij=1,ncum |
---|
| 1223 | if(i.le.inb(ij))then |
---|
| 1224 | dpinv=0.01/(ph(ij,i)-ph(ij,i+1)) |
---|
| 1225 | cpinv=1.0/cpn(ij,i) |
---|
| 1226 | c |
---|
| 1227 | ft(ij,i)=ft(ij,i) |
---|
| 1228 | & +g*dpinv*(amp1(ij)*(t(ij,i+1)-t(ij,i) |
---|
| 1229 | & +(gz(ij,i+1)-gz(ij,i))*cpinv) |
---|
| 1230 | & -ad(ij)*(t(ij,i)-t(ij,i-1)+(gz(ij,i)-gz(ij,i-1))*cpinv)) |
---|
| 1231 | & -sigd*lvcp(ij,i)*evap(ij,i) |
---|
| 1232 | ft(ij,i)=ft(ij,i)+g*dpinv*ment(ij,i,i)*(hp(ij,i)-h(ij,i)+ |
---|
| 1233 | & t(ij,i)*(cpv-cpd)*(q(ij,i)-qent(ij,i,i)))*cpinv |
---|
| 1234 | ft(ij,i)=ft(ij,i)+sigd*wt(ij,i+1)*(cl-cpd)*water(ij,i+1)* |
---|
| 1235 | & (t(ij,i+1)-t(ij,i))*dpinv*cpinv |
---|
| 1236 | fq(ij,i)=fq(ij,i)+g*dpinv*(amp1(ij)*(q(ij,i+1)-q(ij,i))- |
---|
| 1237 | & ad(ij)*(q(ij,i)-q(ij,i-1))) |
---|
| 1238 | fu(ij,i)=fu(ij,i)+g*dpinv*(amp1(ij)*(u(ij,i+1)-u(ij,i))- |
---|
| 1239 | & ad(ij)*(u(ij,i)-u(ij,i-1))) |
---|
| 1240 | fv(ij,i)=fv(ij,i)+g*dpinv*(amp1(ij)*(v(ij,i+1)-v(ij,i))- |
---|
| 1241 | & ad(ij)*(v(ij,i)-v(ij,i-1))) |
---|
| 1242 | endif |
---|
| 1243 | 1350 continue |
---|
| 1244 | do 1370 k=1,i-1 |
---|
| 1245 | do 1360 ij=1,ncum |
---|
| 1246 | if(i.le.inb(ij))then |
---|
| 1247 | awat=elij(ij,k,i)-(1.-ep(ij,i))*clw(ij,i) |
---|
| 1248 | awat=max(awat,0.0) |
---|
| 1249 | fq(ij,i)=fq(ij,i) |
---|
| 1250 | & +g*dpinv*ment(ij,k,i)*(qent(ij,k,i)-awat-q(ij,i)) |
---|
| 1251 | fu(ij,i)=fu(ij,i) |
---|
| 1252 | & +g*dpinv*ment(ij,k,i)*(uent(ij,k,i)-u(ij,i)) |
---|
| 1253 | fv(ij,i)=fv(ij,i) |
---|
| 1254 | & +g*dpinv*ment(ij,k,i)*(vent(ij,k,i)-v(ij,i)) |
---|
| 1255 | endif |
---|
| 1256 | 1360 continue |
---|
| 1257 | 1370 continue |
---|
| 1258 | do 1390 k=i,nl+1 |
---|
| 1259 | do 1380 ij=1,ncum |
---|
| 1260 | if((i.le.inb(ij)).and.(k.le.inb(ij)))then |
---|
| 1261 | fq(ij,i)=fq(ij,i) |
---|
| 1262 | & +g*dpinv*ment(ij,k,i)*(qent(ij,k,i)-q(ij,i)) |
---|
| 1263 | fu(ij,i)=fu(ij,i) |
---|
| 1264 | & +g*dpinv*ment(ij,k,i)*(uent(ij,k,i)-u(ij,i)) |
---|
| 1265 | fv(ij,i)=fv(ij,i) |
---|
| 1266 | & +g*dpinv*ment(ij,k,i)*(vent(ij,k,i)-v(ij,i)) |
---|
| 1267 | endif |
---|
| 1268 | 1380 continue |
---|
| 1269 | 1390 continue |
---|
| 1270 | do 1400 ij=1,ncum |
---|
| 1271 | if(i.le.inb(ij))then |
---|
| 1272 | fq(ij,i)=fq(ij,i) |
---|
| 1273 | & +sigd*evap(ij,i)+g*(mp(ij,i+1)* |
---|
| 1274 | & (qp(ij,i+1)-q(ij,i)) |
---|
| 1275 | & -mp(ij,i)*(qp(ij,i)-q(ij,i-1)))*dpinv |
---|
| 1276 | fu(ij,i)=fu(ij,i) |
---|
| 1277 | & +g*(mp(ij,i+1)*(up(ij,i+1)-u(ij,i))-mp(ij,i)* |
---|
| 1278 | & (up(ij,i)-u(ij,i-1)))*dpinv |
---|
| 1279 | fv(ij,i)=fv(ij,i) |
---|
| 1280 | & +g*(mp(ij,i+1)*(vp(ij,i+1)-v(ij,i))-mp(ij,i)* |
---|
| 1281 | & (vp(ij,i)-v(ij,i-1)))*dpinv |
---|
| 1282 | endif |
---|
| 1283 | 1400 continue |
---|
| 1284 | 1500 continue |
---|
| 1285 | c |
---|
| 1286 | c *** Adjust tendencies at top of convection layer to reflect *** |
---|
| 1287 | c *** actual position of the level zero cape *** |
---|
| 1288 | c |
---|
| 1289 | do 503 ij=1,ncum |
---|
| 1290 | fqold=fq(ij,inb(ij)) |
---|
| 1291 | fq(ij,inb(ij))=fq(ij,inb(ij))*(1.-frac(ij)) |
---|
| 1292 | fq(ij,inb(ij)-1)=fq(ij,inb(ij)-1) |
---|
| 1293 | & +frac(ij)*fqold*((ph(ij,inb(ij))-ph(ij,inb(ij)+1))/ |
---|
| 1294 | 1 (ph(ij,inb(ij)-1)-ph(ij,inb(ij))))*lv(ij,inb(ij)) |
---|
| 1295 | & /lv(ij,inb(ij)-1) |
---|
| 1296 | ftold=ft(ij,inb(ij)) |
---|
| 1297 | ft(ij,inb(ij))=ft(ij,inb(ij))*(1.-frac(ij)) |
---|
| 1298 | ft(ij,inb(ij)-1)=ft(ij,inb(ij)-1) |
---|
| 1299 | & +frac(ij)*ftold*((ph(ij,inb(ij))-ph(ij,inb(ij)+1))/ |
---|
| 1300 | 1 (ph(ij,inb(ij)-1)-ph(ij,inb(ij))))*cpn(ij,inb(ij)) |
---|
| 1301 | & /cpn(ij,inb(ij)-1) |
---|
| 1302 | fuold=fu(ij,inb(ij)) |
---|
| 1303 | fu(ij,inb(ij))=fu(ij,inb(ij))*(1.-frac(ij)) |
---|
| 1304 | fu(ij,inb(ij)-1)=fu(ij,inb(ij)-1) |
---|
| 1305 | & +frac(ij)*fuold*((ph(ij,inb(ij))-ph(ij,inb(ij)+1))/ |
---|
| 1306 | 1 (ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) |
---|
| 1307 | fvold=fv(ij,inb(ij)) |
---|
| 1308 | fv(ij,inb(ij))=fv(ij,inb(ij))*(1.-frac(ij)) |
---|
| 1309 | fv(ij,inb(ij)-1)=fv(ij,inb(ij)-1) |
---|
| 1310 | & +frac(ij)*fvold*((ph(ij,inb(ij))-ph(ij,inb(ij)+1))/ |
---|
| 1311 | 1 (ph(ij,inb(ij)-1)-ph(ij,inb(ij)))) |
---|
| 1312 | 503 continue |
---|
| 1313 | c |
---|
| 1314 | c *** Very slightly adjust tendencies to force exact *** |
---|
| 1315 | c *** enthalpy, momentum and tracer conservation *** |
---|
| 1316 | c |
---|
| 1317 | do 682 ij=1,ncum |
---|
| 1318 | ents(ij)=0.0 |
---|
| 1319 | uav(ij)=0.0 |
---|
| 1320 | vav(ij)=0.0 |
---|
| 1321 | do 681 i=1,inb(ij) |
---|
| 1322 | ents(ij)=ents(ij) |
---|
| 1323 | & +(cpn(ij,i)*ft(ij,i)+lv(ij,i)*fq(ij,i))*(ph(ij,i)-ph(ij,i+1)) |
---|
| 1324 | uav(ij)=uav(ij)+fu(ij,i)*(ph(ij,i)-ph(ij,i+1)) |
---|
| 1325 | vav(ij)=vav(ij)+fv(ij,i)*(ph(ij,i)-ph(ij,i+1)) |
---|
| 1326 | 681 continue |
---|
| 1327 | 682 continue |
---|
| 1328 | do 683 ij=1,ncum |
---|
| 1329 | ents(ij)=ents(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
| 1330 | uav(ij)=uav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
| 1331 | vav(ij)=vav(ij)/(ph(ij,1)-ph(ij,inb(ij)+1)) |
---|
| 1332 | 683 continue |
---|
| 1333 | do 642 ij=1,ncum |
---|
| 1334 | do 641 i=1,inb(ij) |
---|
| 1335 | ft(ij,i)=ft(ij,i)-ents(ij)/cpn(ij,i) |
---|
| 1336 | fu(ij,i)=(1.-cu)*(fu(ij,i)-uav(ij)) |
---|
| 1337 | fv(ij,i)=(1.-cu)*(fv(ij,i)-vav(ij)) |
---|
| 1338 | 641 continue |
---|
| 1339 | 642 continue |
---|
| 1340 | c |
---|
| 1341 | do 1810 k=1,nl+1 |
---|
| 1342 | do 1800 i=1,ncum |
---|
| 1343 | if((q(i,k)+delt*fq(i,k)).lt.0.0)iflag(i)=10 |
---|
| 1344 | 1800 continue |
---|
| 1345 | 1810 continue |
---|
| 1346 | c |
---|
| 1347 | c |
---|
| 1348 | do 1900 i=1,ncum |
---|
| 1349 | if(iflag(i).gt.2)then |
---|
| 1350 | precip(i)=0.0 |
---|
| 1351 | cbmf(i)=0.0 |
---|
| 1352 | endif |
---|
| 1353 | 1900 continue |
---|
| 1354 | do 1920 k=1,nl |
---|
| 1355 | do 1910 i=1,ncum |
---|
| 1356 | if(iflag(i).gt.2)then |
---|
| 1357 | ft(i,k)=0.0 |
---|
| 1358 | fq(i,k)=0.0 |
---|
| 1359 | fu(i,k)=0.0 |
---|
| 1360 | fv(i,k)=0.0 |
---|
| 1361 | endif |
---|
| 1362 | 1910 continue |
---|
| 1363 | 1920 continue |
---|
| 1364 | do 2000 i=1,ncum |
---|
| 1365 | precip1(idcum(i))=precip(i) |
---|
| 1366 | cbmf1(idcum(i))=cbmf(i) |
---|
| 1367 | iflag1(idcum(i))=iflag(i) |
---|
| 1368 | 2000 continue |
---|
| 1369 | do 2020 k=1,nl |
---|
| 1370 | do 2010 i=1,ncum |
---|
| 1371 | ft1(idcum(i),k)=ft(i,k) |
---|
| 1372 | fq1(idcum(i),k)=fq(i,k) |
---|
| 1373 | fu1(idcum(i),k)=fu(i,k) |
---|
| 1374 | fv1(idcum(i),k)=fv(i,k) |
---|
| 1375 | 2010 continue |
---|
| 1376 | 2020 continue |
---|
| 1377 | c |
---|
| 1378 | DO k=1,nd |
---|
| 1379 | DO i=1,len |
---|
| 1380 | Ma(i,k) = 0. |
---|
| 1381 | ENDDO |
---|
| 1382 | ENDDO |
---|
| 1383 | DO k=nl,1,-1 |
---|
| 1384 | DO i=1,ncum |
---|
| 1385 | Ma(i,k) = Ma(i,k+1)+m(i,k) |
---|
| 1386 | ENDDO |
---|
| 1387 | ENDDO |
---|
| 1388 | c |
---|
| 1389 | return |
---|
| 1390 | end |
---|
| 1391 | |
---|