1 | #! /usr/bin/env python |
---|
2 | # JBM |
---|
3 | # 24/11/2016: Corrected altitude |
---|
4 | # 09/01/2017: Improved initialization of time axis |
---|
5 | from netCDF4 import Dataset as NetCDFFile |
---|
6 | from netCDF4 import num2date |
---|
7 | import numpy as np |
---|
8 | import matplotlib.pyplot as plt |
---|
9 | import matplotlib.dates as dates |
---|
10 | import datetime |
---|
11 | from matplotlib.dates import date2num |
---|
12 | import pandas |
---|
13 | from optparse import OptionParser |
---|
14 | from pylab import savefig |
---|
15 | import sys, getopt |
---|
16 | |
---|
17 | def main(argv): |
---|
18 | inputfile = '' |
---|
19 | outputdir = '' |
---|
20 | errmsg='Use: '+str(sys.argv[0])+' -i <inputfile> -o <outputdir>' |
---|
21 | try: |
---|
22 | opts, args = getopt.getopt(argv,"h:i:o:") |
---|
23 | except getopt.GetoptError: |
---|
24 | print(errmsg) |
---|
25 | sys.exit(2) |
---|
26 | for opt, arg in opts: |
---|
27 | if opt == '-h': |
---|
28 | print(errmsg) |
---|
29 | sys.exit() |
---|
30 | elif opt in ("-i"): |
---|
31 | inputfile = arg |
---|
32 | elif opt in ("-o"): |
---|
33 | outputdir = arg |
---|
34 | if len(inputfile) == 0 or len(outputdir) == 0: |
---|
35 | print('Please specify an input file and an output directory.') |
---|
36 | print(errmsg) |
---|
37 | sys.exit() |
---|
38 | print( 'Input file is ', inputfile) |
---|
39 | print('Output directory is ', outputdir) |
---|
40 | |
---|
41 | # MAIN PROGRAM |
---|
42 | # ----------------------------------------------------------------- |
---|
43 | |
---|
44 | ncfile=inputfile |
---|
45 | if len(ncfile.rsplit('/',1)) > 1: |
---|
46 | decomp=(ncfile.rsplit('/',1))[1].rsplit('_',5) |
---|
47 | else: |
---|
48 | decomp=ncfile.rsplit('_',5) |
---|
49 | short=decomp[0]+'_'+decomp[2]+'_'+decomp[3] |
---|
50 | # shortname=short.replace(".","-") |
---|
51 | shortname=short |
---|
52 | |
---|
53 | datapath='/thredds/ipsl/fabric/lmdz/AXE4/' |
---|
54 | |
---|
55 | # LOADING THE DATA |
---|
56 | # ----------------------------------------------------------------- |
---|
57 | |
---|
58 | # Read the files using the (very convenient) Pandas reader |
---|
59 | #data = pandas.read_csv('CR3000_Tour_PT100_30_Air_T.dat',sep=',', na_values=".") |
---|
60 | #data = pandas.read_csv('CR3000_Tour_PT100_30.dat',sep=',', na_values=".") |
---|
61 | #data = pandas.read_csv('temp10+_modified.dat',parse_dates='Date',sep=';', na_values=".") |
---|
62 | data = pandas.read_csv(datapath+'/'+'temp10+_modified.dat',sep=';', na_values=".") |
---|
63 | |
---|
64 | # Monthly mean |
---|
65 | # ------------ |
---|
66 | |
---|
67 | data.index = pandas.to_datetime(data['Date'], format='%Y-%m-%d %H:%M:%S') |
---|
68 | #IMorig datamth=data.resample('M', how='mean') |
---|
69 | datamth=data.resample('M').mean() |
---|
70 | levels_obs = [3.5, 10.9, 18.3, 25.6, 33., 42.2] |
---|
71 | |
---|
72 | # Full dataset |
---|
73 | # ------------ |
---|
74 | |
---|
75 | print(data.columns) |
---|
76 | |
---|
77 | # LOADING THE GCM RESULTS |
---|
78 | # ----------------------------------------------------------------- |
---|
79 | |
---|
80 | # FILE 1 |
---|
81 | nc = NetCDFFile(ncfile) |
---|
82 | time = nc.variables['time_counter'][:] |
---|
83 | temp = nc.variables['temp'][:] |
---|
84 | longi = nc.variables['lon'][:] |
---|
85 | lati = nc.variables['lat'][:] |
---|
86 | longi_user = 123. |
---|
87 | longi_id = np.abs(longi - longi_user).argmin() |
---|
88 | lati_user = -75. |
---|
89 | lati_id = np.abs(lati - lati_user).argmin() |
---|
90 | alti_id = range(4) |
---|
91 | alti_var = np.zeros(4) |
---|
92 | flabel = ['']*4 |
---|
93 | if str(nc.variables).find("geop") > -1 and \ |
---|
94 | str(nc.variables).find("phis") > -1: |
---|
95 | geop = nc.variables['geop'][:] |
---|
96 | phis = nc.variables['phis'][:] |
---|
97 | for ilev in range(4): |
---|
98 | alti_var[ilev] = np.mean(geop[:,alti_id[ilev],lati_id,longi_id] - \ |
---|
99 | phis[:,lati_id,longi_id])/9.8 |
---|
100 | flabel[ilev] = \ |
---|
101 | "LMDz (z="+str("%.1f" % alti_var[ilev])+"m)" |
---|
102 | else: |
---|
103 | flabel[0] = "LMDz (z=6m approx.)" |
---|
104 | flabel[1] = "LMDz (z=20m approx.)" |
---|
105 | flabel[2] = "LMDz (z=35m approx.)" |
---|
106 | flabel[3] = "LMDz (z=53m approx.)" |
---|
107 | print(longi[longi_id]) |
---|
108 | print(lati[lati_id]) |
---|
109 | |
---|
110 | if time[0] > 86400: |
---|
111 | # Time axis is in seconds |
---|
112 | date = num2date(time[:], units = 'seconds since 2010-01-01 00:00:00') |
---|
113 | elif time[0] > 1: |
---|
114 | # Time axis is in days |
---|
115 | date = num2date(time[:], units = 'days since 2010-01-01 00:00:00') |
---|
116 | else: |
---|
117 | # Time axis is in months |
---|
118 | date = num2date(time[:], units = 'months since 2010-01-01 00:00:00') |
---|
119 | |
---|
120 | # DISPLAYING THE RESULTS |
---|
121 | # ----------------------------------------------------------------- |
---|
122 | # We plot the figure |
---|
123 | fig = plt.figure() |
---|
124 | ax = fig.gca() |
---|
125 | ax.set_xticks(date) |
---|
126 | ax.set_xticklabels(date) |
---|
127 | ax.xaxis.set_major_locator(dates.MonthLocator()) |
---|
128 | ax.xaxis.set_major_formatter(dates.DateFormatter('%b')) |
---|
129 | ax.set_title(shortname) |
---|
130 | ax.set_ylabel("Air temperature (degC)") |
---|
131 | plt.grid() |
---|
132 | |
---|
133 | #plt.plot(codedate, uservar1) # DATA |
---|
134 | #plt.plot(codedate, uservar1,'0.8') # FULL full |
---|
135 | linegcm=plt.plot(date,temp[:,alti_id[0],lati_id,longi_id]-273.15,'k-o',linewidth=2,label=flabel[0]) # GCM |
---|
136 | lineobs=plt.plot(date,datamth['tm1'],'k--', \ |
---|
137 | linewidth=2,label='OBS '+str("%.1f" % levels_obs[0])+'m (2010)') # DATA monthly mean |
---|
138 | lineobs=plt.plot(date,datamth['tm2'],'k--', \ |
---|
139 | linewidth=2,label='OBS '+str("%.1f" % levels_obs[1])+'m (2010)') # DATA monthly mean |
---|
140 | linegcm=plt.plot(date,temp[:,alti_id[1],lati_id,longi_id]-273.15,'b-o',linewidth=2,label=flabel[1]) # GCM |
---|
141 | lineobs=plt.plot(date,datamth['tm3'],'b--', \ |
---|
142 | linewidth=2,label='OBS '+str("%.1f" % levels_obs[2])+'m (2010)') # DATA monthly mean |
---|
143 | lineobs=plt.plot(date,datamth['tm4'],'b--', \ |
---|
144 | linewidth=2,label='OBS '+str("%.1f" % levels_obs[3])+'m (2010)') # DATA monthly mean |
---|
145 | linegcm=plt.plot(date,temp[:,alti_id[2],lati_id,longi_id]-273.15,'r-o',linewidth=2,label=flabel[2]) # GCM |
---|
146 | lineobs=plt.plot(date,datamth['tm5'],'r--', \ |
---|
147 | linewidth=2,label='OBS '+str("%.1f" % levels_obs[4])+'m (2010)') # DATA monthly mean |
---|
148 | lineobs=plt.plot(date,datamth['tm6'],'r--', \ |
---|
149 | linewidth=2,label='OBS '+str("%.1f" % levels_obs[5])+'m (2010)') # DATA monthly mean |
---|
150 | # linegcm=plt.plot(date,temp[:,alti_id[3],lati_id,longi_id]-273.15,'g-o',linewidth=2,label=flabel[3]) # GCM |
---|
151 | #linegcm=plt.plot(date, temp2[:,alti_id,lati_id,longi_id]-273.15,'b-o',linewidth=2,label='NPv5.5 (1982-1989)') # GCM |
---|
152 | #plt.plot(date, t2m[:,lati_id,longi_id]-273.15,'ro') # GCM |
---|
153 | |
---|
154 | handles=[lineobs, linegcm] |
---|
155 | ax.legend(handles) |
---|
156 | plt.legend(loc=(1.03, 0.8)) |
---|
157 | #plt.legend(('pvap (bottom)', 'pvap (top)'), loc=(1.03, 0.8)) |
---|
158 | plt.xticks(rotation=30,ha='right') #plt.xticks(rotation='vertical') |
---|
159 | plt.subplots_adjust(bottom=0.2) |
---|
160 | plt.subplots_adjust(right=0.65) # keep room for legend e.g. 0.8 |
---|
161 | |
---|
162 | savefig(outputdir+'/'+'tempDC-'+shortname+'.png', bbox_inches='tight') |
---|
163 | #plt.show() |
---|
164 | |
---|
165 | # ----------------------------------------------------------------- |
---|
166 | # ----------------------------------------------------------------- |
---|
167 | # ----------------------------------------------------------------- |
---|
168 | |
---|
169 | # MAIN PROGRAM |
---|
170 | # Just calling the main function |
---|
171 | if __name__ == "__main__": |
---|
172 | main(sys.argv[1:]) |
---|
173 | |
---|
174 | #------------------------------------------------------------------ |
---|
175 | |
---|
176 | |
---|