## $Id: gcm.def 1403 2010-07-01 09:02:53Z fairhead $ ## nombre de pas par jour (multiple de iperiod) ( ici pour dt = 1 min ) day_step=480 ## periode pour le pas Matsuno (en pas) iperiod=5 ## periode de la dissipation (en pas) idissip=5 ## choix de l'operateur de dissipation (star ou non star ) lstardis=y ## nombre d'iterations de l'operateur de dissipation gradiv nitergdiv=1 ## nombre d'iterations de l'operateur de dissipation nxgradrot nitergrot=2 ## nombre d'iterations de l'operateur de dissipation divgrad niterh=2 ## temps de dissipation des plus petites long.d ondes pour u,v (gradiv) tetagdiv=10800. ## temps de dissipation des plus petites long.d ondes pour u,v(nxgradrot) tetagrot=20000. ## temps de dissipation des plus petites long.d ondes pour h ( divgrad) tetatemp=20000. ## coefficient pour gamdissip coefdis=0. ## choix du shema d'integration temporelle (Matsuno:y ou Matsuno-leapfrog:n) purmats=n ## avec ou sans physique ## 0: pas de physique (e.g. en mode Shallow Water) ## 1: avec physique (e.g. physique phylmd) ## 2: avec rappel newtonien dans la dynamique iflag_phys=201 ## avec ou sans fichiers de demarrage (start.nc, startphy.nc) ? ## (sans fichiers de demarrage, initialisation des champs par iniacademic ## dans la dynamique) read_start=n ## periode de la physique (en pas dynamiques, n'a de sens que si iflag_phys=1) iphysiq=20 ## longitude en degres du centre du zoom clon=0. ## latitude en degres du centre du zoom clat=45. ## facteur de grossissement du zoom,selon longitude grossismx=1.0 ## facteur de grossissement du zoom ,selon latitude grossismy=1.0 ## Fonction f(y) hyperbolique si = .true. , sinon sinusoidale fxyhypb=y ## extension en longitude de la zone du zoom ( fraction de la zone totale) dzoomx=0.15 ## extension en latitude de la zone du zoom ( fraction de la zone totale) dzoomy=0.15 ##raideur du zoom en X taux=3. ##raideur du zoom en Y tauy=3. ## Fonction f(y) avec y = Sin(latit.) si = .true. , sinon y = latit. ysinus=y