! $Id: wake.F90 2495 2016-04-14 14:20:44Z emillour $ SUBROUTINE wake(p, ph, pi, dtime, sigd_con, & te0, qe0, omgb, & dtdwn, dqdwn, amdwn, amup, dta, dqa, & wdtpbl, wdqpbl, udtpbl, udqpbl, & deltatw, deltaqw, dth, hw, sigmaw, wape, fip, gfl, & dtls, dqls, ktopw, omgbdth, dp_omgb, wdens, tu, qu, & dtke, dqke, dtpbl, dqpbl, omg, dp_deltomg, spread, cstar, & d_deltat_gw, d_deltatw2, d_deltaqw2) ! ************************************************************** ! * ! WAKE * ! retour a un Pupper fixe * ! * ! written by : GRANDPEIX Jean-Yves 09/03/2000 * ! modified by : ROEHRIG Romain 01/29/2007 * ! ************************************************************** USE ioipsl_getin_p_mod, ONLY : getin_p USE dimphy use mod_phys_lmdz_para USE print_control_mod, ONLY: prt_level IMPLICIT NONE ! ============================================================================ ! But : Decrire le comportement des poches froides apparaissant dans les ! grands systemes convectifs, et fournir l'energie disponible pour ! le declenchement de nouvelles colonnes convectives. ! Variables d'etat : deltatw : ecart de temperature wake-undisturbed ! area ! deltaqw : ecart d'humidite wake-undisturbed area ! sigmaw : fraction d'aire occupee par la poche. ! Variable de sortie : ! wape : WAke Potential Energy ! fip : Front Incident Power (W/m2) - ALP ! gfl : Gust Front Length per unit area (m-1) ! dtls : large scale temperature tendency due to wake ! dqls : large scale humidity tendency due to wake ! hw : hauteur de la poche ! dp_omgb : vertical gradient of large scale omega ! wdens : densite de poches ! omgbdth: flux of Delta_Theta transported by LS omega ! dtKE : differential heating (wake - unpertubed) ! dqKE : differential moistening (wake - unpertubed) ! omg : Delta_omg =vertical velocity diff. wake-undist. (Pa/s) ! dp_deltomg : vertical gradient of omg (s-1) ! spread : spreading term in dt_wake and dq_wake ! deltatw : updated temperature difference (T_w-T_u). ! deltaqw : updated humidity difference (q_w-q_u). ! sigmaw : updated wake fractional area. ! d_deltat_gw : delta T tendency due to GW ! Variables d'entree : ! aire : aire de la maille ! te0 : temperature dans l'environnement (K) ! qe0 : humidite dans l'environnement (kg/kg) ! omgb : vitesse verticale moyenne sur la maille (Pa/s) ! dtdwn: source de chaleur due aux descentes (K/s) ! dqdwn: source d'humidite due aux descentes (kg/kg/s) ! dta : source de chaleur due courants satures et detrain (K/s) ! dqa : source d'humidite due aux courants satures et detra (kg/kg/s) ! amdwn: flux de masse total des descentes, par unite de ! surface de la maille (kg/m2/s) ! amup : flux de masse total des ascendances, par unite de ! surface de la maille (kg/m2/s) ! p : pressions aux milieux des couches (Pa) ! ph : pressions aux interfaces (Pa) ! pi : (p/p_0)**kapa (adim) ! dtime: increment temporel (s) ! Variables internes : ! rhow : masse volumique de la poche froide ! rho : environment density at P levels ! rhoh : environment density at Ph levels ! te : environment temperature | may change within ! qe : environment humidity | sub-time-stepping ! the : environment potential temperature ! thu : potential temperature in undisturbed area ! tu : temperature in undisturbed area ! qu : humidity in undisturbed area ! dp_omgb: vertical gradient og LS omega ! omgbw : wake average vertical omega ! dp_omgbw: vertical gradient of omgbw ! omgbdq : flux of Delta_q transported by LS omega ! dth : potential temperature diff. wake-undist. ! th1 : first pot. temp. for vertical advection (=thu) ! th2 : second pot. temp. for vertical advection (=thw) ! q1 : first humidity for vertical advection ! q2 : second humidity for vertical advection ! d_deltatw : terme de redistribution pour deltatw ! d_deltaqw : terme de redistribution pour deltaqw ! deltatw0 : deltatw initial ! deltaqw0 : deltaqw initial ! hw0 : hw initial ! sigmaw0: sigmaw initial ! amflux : horizontal mass flux through wake boundary ! wdens_ref: initial number of wakes per unit area (3D) or per ! unit length (2D), at the beginning of each time step ! Tgw : 1 sur la période de onde de gravité ! Cgw : vitesse de propagation de onde de gravité ! LL : distance entre 2 poches ! ------------------------------------------------------------------------- ! Déclaration de variables ! ------------------------------------------------------------------------- include "YOMCST.h" include "cvthermo.h" ! Arguments en entree ! -------------------- REAL, DIMENSION (klon, klev), INTENT(IN) :: p, pi REAL, DIMENSION (klon, klev+1), INTENT(IN) :: ph, omgb REAL, INTENT(IN) :: dtime REAL, DIMENSION (klon, klev), INTENT(IN) :: te0, qe0 REAL, DIMENSION (klon, klev), INTENT(IN) :: dtdwn, dqdwn REAL, DIMENSION (klon, klev), INTENT(IN) :: wdtpbl, wdqpbl, udtpbl, udqpbl ! UNUSED REAL, DIMENSION (klon, klev), INTENT(IN) :: amdwn, amup REAL, DIMENSION (klon, klev), INTENT(IN) :: dta, dqa REAL, DIMENSION (klon), INTENT(IN) :: sigd_con ! ! Input/Output REAL, DIMENSION (klon, klev), INTENT(INOUT) :: deltatw, deltaqw REAL, DIMENSION (klon), INTENT(INOUT) :: sigmaw ! Sorties ! -------- REAL, DIMENSION (klon, klev), INTENT(OUT) :: dth REAL, DIMENSION (klon, klev), INTENT(OUT) :: tu, qu REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtls, dqls REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtke, dqke REAL, DIMENSION (klon, klev), INTENT(OUT) :: dtpbl, dqpbl REAL, DIMENSION (klon, klev), INTENT(OUT) :: spread REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltatw2, d_deltaqw2 REAL, DIMENSION (klon, klev+1), INTENT(OUT) :: omgbdth, omg REAL, DIMENSION (klon, klev), INTENT(OUT) :: dp_omgb, dp_deltomg REAL, DIMENSION (klon, klev), INTENT(OUT) :: d_deltat_gw REAL, DIMENSION (klon), INTENT(OUT) :: hw, wape, fip, gfl, cstar REAL, DIMENSION (klon), INTENT(OUT) :: wdens INTEGER, DIMENSION (klon), INTENT(OUT) :: ktopw ! Variables internes ! ------------------- ! Variables à fixer REAL alon LOGICAL, SAVE :: first = .TRUE. !$OMP THREADPRIVATE(first) REAL, SAVE :: stark, wdens_ref, coefgw, alpk, crep_upper, crep_sol !$OMP THREADPRIVATE(stark, wdens_ref, coefgw, alpk, crep_upper, crep_sol) REAL delta_t_min INTEGER nsub REAL dtimesub REAL sigmad, hwmin, wapecut REAL :: sigmaw_max REAL :: dens_rate REAL wdens0 ! IM 080208 LOGICAL, DIMENSION (klon) :: gwake ! Variables de sauvegarde REAL, DIMENSION (klon, klev) :: deltatw0 REAL, DIMENSION (klon, klev) :: deltaqw0 REAL, DIMENSION (klon, klev) :: te, qe REAL, DIMENSION (klon) :: sigmaw0, sigmaw1 ! Variables pour les GW REAL, DIMENSION (klon) :: ll REAL, DIMENSION (klon, klev) :: n2 REAL, DIMENSION (klon, klev) :: cgw REAL, DIMENSION (klon, klev) :: tgw ! Variables liées au calcul de hw REAL, DIMENSION (klon) :: ptop_provis, ptop, ptop_new REAL, DIMENSION (klon) :: sum_dth REAL, DIMENSION (klon) :: dthmin REAL, DIMENSION (klon) :: z, dz, hw0 INTEGER, DIMENSION (klon) :: ktop, kupper ! Sub-timestep tendencies and related variables REAL d_deltatw(klon, klev), d_deltaqw(klon, klev) REAL d_te(klon, klev), d_qe(klon, klev) REAL d_sigmaw(klon), alpha(klon) REAL q0_min(klon), q1_min(klon) LOGICAL wk_adv(klon), ok_qx_qw(klon) REAL epsilon DATA epsilon/1.E-15/ ! Autres variables internes INTEGER isubstep, k, i REAL, DIMENSION (klon) :: sum_thu, sum_tu, sum_qu, sum_thvu REAL, DIMENSION (klon) :: sum_dq, sum_rho REAL, DIMENSION (klon) :: sum_dtdwn, sum_dqdwn REAL, DIMENSION (klon) :: av_thu, av_tu, av_qu, av_thvu REAL, DIMENSION (klon) :: av_dth, av_dq, av_rho REAL, DIMENSION (klon) :: av_dtdwn, av_dqdwn REAL, DIMENSION (klon, klev) :: rho, rhow REAL, DIMENSION (klon, klev+1) :: rhoh REAL, DIMENSION (klon, klev) :: rhow_moyen REAL, DIMENSION (klon, klev) :: zh REAL, DIMENSION (klon, klev+1) :: zhh REAL, DIMENSION (klon, klev) :: epaisseur1, epaisseur2 REAL, DIMENSION (klon, klev) :: the, thu ! REAL, DIMENSION(klon,klev) :: d_deltatw, d_deltaqw REAL, DIMENSION (klon, klev+1) :: omgbw REAL, DIMENSION (klon) :: pupper REAL, DIMENSION (klon) :: omgtop REAL, DIMENSION (klon, klev) :: dp_omgbw REAL, DIMENSION (klon) :: ztop, dztop REAL, DIMENSION (klon, klev) :: alpha_up REAL, DIMENSION (klon) :: rre1, rre2 REAL :: rrd1, rrd2 REAL, DIMENSION (klon, klev) :: th1, th2, q1, q2 REAL, DIMENSION (klon, klev) :: d_th1, d_th2, d_dth REAL, DIMENSION (klon, klev) :: d_q1, d_q2, d_dq REAL, DIMENSION (klon, klev) :: omgbdq REAL, DIMENSION (klon) :: ff, gg REAL, DIMENSION (klon) :: wape2, cstar2, heff REAL, DIMENSION (klon, klev) :: crep REAL, DIMENSION (klon, klev) :: ppi ! cc nrlmd REAL, DIMENSION (klon) :: death_rate, nat_rate REAL, DIMENSION (klon, klev) :: entr REAL, DIMENSION (klon, klev) :: detr ! ------------------------------------------------------------------------- ! Initialisations ! ------------------------------------------------------------------------- ! print*, 'wake initialisations' ! Essais d'initialisation avec sigmaw = 0.02 et hw = 10. ! ------------------------------------------------------------------------- DATA wapecut, sigmad, hwmin/5., .02, 10./ ! cc nrlmd DATA sigmaw_max/0.4/ DATA dens_rate/0.1/ ! cc ! Longueur de maille (en m) ! ------------------------------------------------------------------------- ! ALON = 3.e5 alon = 1.E6 ! Configuration de coefgw,stark,wdens (22/02/06 by YU Jingmei) ! coefgw : Coefficient pour les ondes de gravité ! stark : Coefficient k dans Cstar=k*sqrt(2*WAPE) ! wdens : Densité de poche froide par maille ! ------------------------------------------------------------------------- ! cc nrlmd coefgw=10 ! coefgw=1 ! wdens0 = 1.0/(alon**2) ! cc nrlmd wdens = 1.0/(alon**2) ! cc nrlmd stark = 0.50 ! CRtest ! cc nrlmd alpk=0.1 ! alpk = 1.0 ! alpk = 0.5 ! alpk = 0.05 if (first) then crep_upper = 0.9 crep_sol = 1.0 ! cc nrlmd Lecture du fichier wake_param.data stark=0.33 CALL getin_p('stark',stark) alpk=0.25 CALL getin_p('alpk',alpk) wdens_ref=8.E-12 CALL getin_p('wdens_ref',wdens_ref) coefgw=4. CALL getin_p('coefgw',coefgw) WRITE(*,*) 'stark=', stark WRITE(*,*) 'alpk=', alpk WRITE(*,*) 'wdens_ref=', wdens_ref WRITE(*,*) 'coefgw=', coefgw first=.false. endif ! Initialisation de toutes des densites a wdens_ref. ! Les densites peuvent evoluer si les poches debordent ! (voir au tout debut de la boucle sur les substeps) wdens = wdens_ref ! print*,'stark',stark ! print*,'alpk',alpk ! print*,'wdens',wdens ! print*,'coefgw',coefgw ! cc ! Minimum value for |T_wake - T_undist|. Used for wake top definition ! ------------------------------------------------------------------------- delta_t_min = 0.2 ! 1. - Save initial values and initialize tendencies ! -------------------------------------------------- DO k = 1, klev DO i = 1, klon ppi(i, k) = pi(i, k) deltatw0(i, k) = deltatw(i, k) deltaqw0(i, k) = deltaqw(i, k) te(i, k) = te0(i, k) qe(i, k) = qe0(i, k) dtls(i, k) = 0. dqls(i, k) = 0. d_deltat_gw(i, k) = 0. d_te(i, k) = 0. d_qe(i, k) = 0. d_deltatw(i, k) = 0. d_deltaqw(i, k) = 0. ! IM 060508 beg d_deltatw2(i, k) = 0. d_deltaqw2(i, k) = 0. ! IM 060508 end END DO END DO ! sigmaw1=sigmaw ! IF (sigd_con.GT.sigmaw1) THEN ! print*, 'sigmaw,sigd_con', sigmaw, sigd_con ! ENDIF DO i = 1, klon ! c sigmaw(i) = amax1(sigmaw(i),sigd_con(i)) sigmaw(i) = amax1(sigmaw(i), sigmad) sigmaw(i) = amin1(sigmaw(i), 0.99) sigmaw0(i) = sigmaw(i) wape(i) = 0. wape2(i) = 0. d_sigmaw(i) = 0. ktopw(i) = 0 END DO ! 2. - Prognostic part ! -------------------- ! 2.1 - Undisturbed area and Wake integrals ! --------------------------------------------------------- DO i = 1, klon z(i) = 0. ktop(i) = 0 kupper(i) = 0 sum_thu(i) = 0. sum_tu(i) = 0. sum_qu(i) = 0. sum_thvu(i) = 0. sum_dth(i) = 0. sum_dq(i) = 0. sum_rho(i) = 0. sum_dtdwn(i) = 0. sum_dqdwn(i) = 0. av_thu(i) = 0. av_tu(i) = 0. av_qu(i) = 0. av_thvu(i) = 0. av_dth(i) = 0. av_dq(i) = 0. av_rho(i) = 0. av_dtdwn(i) = 0. av_dqdwn(i) = 0. END DO ! Distance between wakes DO i = 1, klon ll(i) = (1-sqrt(sigmaw(i)))/sqrt(wdens(i)) END DO ! Potential temperatures and humidity ! ---------------------------------------------------------- DO k = 1, klev DO i = 1, klon ! write(*,*)'wake 1',i,k,rd,te(i,k) rho(i, k) = p(i, k)/(rd*te(i,k)) ! write(*,*)'wake 2',rho(i,k) IF (k==1) THEN ! write(*,*)'wake 3',i,k,rd,te(i,k) rhoh(i, k) = ph(i, k)/(rd*te(i,k)) ! write(*,*)'wake 4',i,k,rd,te(i,k) zhh(i, k) = 0 ELSE ! write(*,*)'wake 5',rd,(te(i,k)+te(i,k-1)) rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) ! write(*,*)'wake 6',(-rhoh(i,k)*RG)+zhh(i,k-1) zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) END IF ! write(*,*)'wake 7',ppi(i,k) the(i, k) = te(i, k)/ppi(i, k) thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) ! write(*,*)'wake 8',(rd*(te(i,k)+deltatw(i,k))) rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) dth(i, k) = deltatw(i, k)/ppi(i, k) END DO END DO DO k = 1, klev - 1 DO i = 1, klon IF (k==1) THEN n2(i, k) = 0 ELSE n2(i, k) = amax1(0., -rg**2/the(i,k)*rho(i,k)*(the(i,k+1)-the(i, & k-1))/(p(i,k+1)-p(i,k-1))) END IF zh(i, k) = (zhh(i,k)+zhh(i,k+1))/2 cgw(i, k) = sqrt(n2(i,k))*zh(i, k) tgw(i, k) = coefgw*cgw(i, k)/ll(i) END DO END DO DO i = 1, klon n2(i, klev) = 0 zh(i, klev) = 0 cgw(i, klev) = 0 tgw(i, klev) = 0 END DO ! Calcul de la masse volumique moyenne de la colonne (bdlmd) ! ----------------------------------------------------------------- DO k = 1, klev DO i = 1, klon epaisseur1(i, k) = 0. epaisseur2(i, k) = 0. END DO END DO DO i = 1, klon epaisseur1(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. epaisseur2(i, 1) = -(ph(i,2)-ph(i,1))/(rho(i,1)*rg) + 1. rhow_moyen(i, 1) = rhow(i, 1) END DO DO k = 2, klev DO i = 1, klon epaisseur1(i, k) = -(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg) + 1. epaisseur2(i, k) = epaisseur2(i, k-1) + epaisseur1(i, k) rhow_moyen(i, k) = (rhow_moyen(i,k-1)*epaisseur2(i,k-1)+rhow(i,k)* & epaisseur1(i,k))/epaisseur2(i, k) END DO END DO ! Choose an integration bound well above wake top ! ----------------------------------------------------------------- ! Pupper = 50000. ! melting level ! Pupper = 60000. ! Pupper = 80000. ! essais pour case_e DO i = 1, klon pupper(i) = 0.6*ph(i, 1) pupper(i) = max(pupper(i), 45000.) ! cc Pupper(i) = 60000. END DO ! Determine Wake top pressure (Ptop) from buoyancy integral ! -------------------------------------------------------- ! -1/ Pressure of the level where dth becomes less than delta_t_min. DO i = 1, klon ptop_provis(i) = ph(i, 1) END DO DO k = 2, klev DO i = 1, klon ! IM v3JYG; ptop_provis(i).LT. ph(i,1) IF (dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min .AND. & ptop_provis(i)==ph(i,1)) THEN ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) END IF END DO END DO ! -2/ dth integral DO i = 1, klon sum_dth(i) = 0. dthmin(i) = -delta_t_min z(i) = 0. END DO DO k = 1, klev DO i = 1, klon dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) IF (dz(i)>0) THEN z(i) = z(i) + dz(i) sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) dthmin(i) = amin1(dthmin(i), dth(i,k)) END IF END DO END DO ! -3/ height of triangle with area= sum_dth and base = dthmin DO i = 1, klon hw0(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) hw0(i) = amax1(hwmin, hw0(i)) END DO ! -4/ now, get Ptop DO i = 1, klon z(i) = 0. ptop(i) = ph(i, 1) END DO DO k = 1, klev DO i = 1, klon dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw0(i)-z(i)) IF (dz(i)>0) THEN z(i) = z(i) + dz(i) ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) END IF END DO END DO ! -5/ Determination de ktop et kupper DO k = klev, 1, -1 DO i = 1, klon IF (ph(i,k+1)-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) END IF END DO END DO DO i = 1, klon ptop(i) = ptop_new(i) END DO DO k = klev, 1, -1 DO i = 1, klon IF (ph(i,k+1)=kupper(i)) THEN deltatw(i, k) = 0. deltaqw(i, k) = 0. END IF END DO END DO ! Vertical gradient of LS omega DO k = 1, klev DO i = 1, klon IF (k<=kupper(i)) THEN dp_omgb(i, k) = (omgb(i,k+1)-omgb(i,k))/(ph(i,k+1)-ph(i,k)) END IF END DO END DO ! Integrals (and wake top level number) ! -------------------------------------- ! Initialize sum_thvu to 1st level virt. pot. temp. DO i = 1, klon z(i) = 1. dz(i) = 1. sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) sum_dth(i) = 0. END DO DO k = 1, klev DO i = 1, klon dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) IF (dz(i)>0) THEN z(i) = z(i) + dz(i) sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) END IF END DO END DO DO i = 1, klon hw0(i) = z(i) END DO ! 2.1 - WAPE and mean forcing computation ! --------------------------------------- ! --------------------------------------- ! Means DO i = 1, klon av_thu(i) = sum_thu(i)/hw0(i) av_tu(i) = sum_tu(i)/hw0(i) av_qu(i) = sum_qu(i)/hw0(i) av_thvu(i) = sum_thvu(i)/hw0(i) ! av_thve = sum_thve/hw0 av_dth(i) = sum_dth(i)/hw0(i) av_dq(i) = sum_dq(i)/hw0(i) av_rho(i) = sum_rho(i)/hw0(i) av_dtdwn(i) = sum_dtdwn(i)/hw0(i) av_dqdwn(i) = sum_dqdwn(i)/hw0(i) wape(i) = -rg*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i)+av_dth(i)*av_qu(i & )+av_dth(i)*av_dq(i)))/av_thvu(i) END DO ! 2.2 Prognostic variable update ! ------------------------------ ! Filter out bad wakes DO k = 1, klev DO i = 1, klon IF (wape(i)<0.) THEN deltatw(i, k) = 0. deltaqw(i, k) = 0. dth(i, k) = 0. END IF END DO END DO DO i = 1, klon IF (wape(i)<0.) THEN wape(i) = 0. cstar(i) = 0. hw(i) = hwmin sigmaw(i) = amax1(sigmad, sigd_con(i)) fip(i) = 0. gwake(i) = .FALSE. ELSE cstar(i) = stark*sqrt(2.*wape(i)) gwake(i) = .TRUE. END IF END DO ! Check qx and qw positivity ! -------------------------- DO i = 1, klon q0_min(i) = min((qe(i,1)-sigmaw(i)*deltaqw(i,1)), (qe(i, & 1)+(1.-sigmaw(i))*deltaqw(i,1))) END DO DO k = 2, klev DO i = 1, klon q1_min(i) = min((qe(i,k)-sigmaw(i)*deltaqw(i,k)), (qe(i, & k)+(1.-sigmaw(i))*deltaqw(i,k))) IF (q1_min(i)<=q0_min(i)) THEN q0_min(i) = q1_min(i) END IF END DO END DO DO i = 1, klon ok_qx_qw(i) = q0_min(i) >= 0. alpha(i) = 1. END DO ! C ----------------------------------------------------------------- ! Sub-time-stepping ! ----------------- nsub = 10 dtimesub = dtime/nsub ! ------------------------------------------------------------ DO isubstep = 1, nsub ! ------------------------------------------------------------ ! wk_adv is the logical flag enabling wake evolution in the time advance ! loop DO i = 1, klon wk_adv(i) = ok_qx_qw(i) .AND. alpha(i) >= 1. END DO ! cc nrlmd Ajout d'un recalcul de wdens dans le cas d'un entrainement ! négatif de ktop à kupper -------- ! cc On calcule pour cela une densité wdens0 pour laquelle on ! aurait un entrainement nul --- DO i = 1, klon ! c print *,' isubstep,wk_adv(i),cstar(i),wape(i) ', ! c $ isubstep,wk_adv(i),cstar(i),wape(i) IF (wk_adv(i) .AND. cstar(i)>0.01) THEN omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) wdens0 = (sigmaw(i)/(4.*3.14))*((1.-sigmaw(i))*omg(i,kupper(i)+1)/(( & ph(i,1)-pupper(i))*cstar(i)))**(2) IF (wdens(i)<=wdens0*1.1) THEN wdens(i) = wdens0 END IF ! c print*,'omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i) ! c $ ,ph(i,1)-pupper(i)', ! c $ omg(i,kupper(i)+1),wdens0,wdens(i),cstar(i) ! c $ ,ph(i,1)-pupper(i) END IF END DO ! cc nrlmd DO i = 1, klon IF (wk_adv(i)) THEN gfl(i) = 2.*sqrt(3.14*wdens(i)*sigmaw(i)) sigmaw(i) = amin1(sigmaw(i), sigmaw_max) END IF END DO DO i = 1, klon IF (wk_adv(i)) THEN ! cc nrlmd Introduction du taux de mortalité des poches et ! test sur sigmaw_max=0.4 ! cc d_sigmaw(i) = gfl(i)*Cstar(i)*dtimesub IF (sigmaw(i)>=sigmaw_max) THEN death_rate(i) = gfl(i)*cstar(i)/sigmaw(i) ELSE death_rate(i) = 0. END IF d_sigmaw(i) = gfl(i)*cstar(i)*dtimesub - death_rate(i)*sigmaw(i)* & dtimesub ! $ - nat_rate(i)*sigmaw(i)*dtimesub ! c print*, 'd_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), ! c $ death_rate(i),ktop(i),kupper(i)', ! c $ d_sigmaw(i),sigmaw(i),gfl(i),Cstar(i),wape(i), ! c $ death_rate(i),ktop(i),kupper(i) ! sigmaw(i) =sigmaw(i) + gfl(i)*Cstar(i)*dtimesub ! sigmaw(i) =min(sigmaw(i),0.99) !!!!!!!! ! wdens = wdens0/(10.*sigmaw) ! sigmaw =max(sigmaw,sigd_con) ! sigmaw =max(sigmaw,sigmad) END IF END DO ! calcul de la difference de vitesse verticale poche - zone non perturbee ! IM 060208 differences par rapport au code initial; init. a 0 dp_deltomg ! IM 060208 et omg sur les niveaux de 1 a klev+1, alors que avant l'on ! definit ! IM 060208 au niveau k=1..? DO k = 1, klev DO i = 1, klon IF (wk_adv(i)) THEN !!! nrlmd dp_deltomg(i, k) = 0. END IF END DO END DO DO k = 1, klev + 1 DO i = 1, klon IF (wk_adv(i)) THEN !!! nrlmd omg(i, k) = 0. END IF END DO END DO DO i = 1, klon IF (wk_adv(i)) THEN z(i) = 0. omg(i, 1) = 0. dp_deltomg(i, 1) = -(gfl(i)*cstar(i))/(sigmaw(i)*(1-sigmaw(i))) END IF END DO DO k = 2, klev DO i = 1, klon IF (wk_adv(i) .AND. k<=ktop(i)) THEN dz(i) = -(ph(i,k)-ph(i,k-1))/(rho(i,k-1)*rg) z(i) = z(i) + dz(i) dp_deltomg(i, k) = dp_deltomg(i, 1) omg(i, k) = dp_deltomg(i, 1)*z(i) END IF END DO END DO DO i = 1, klon IF (wk_adv(i)) THEN dztop(i) = -(ptop(i)-ph(i,ktop(i)))/(rho(i,ktop(i))*rg) ztop(i) = z(i) + dztop(i) omgtop(i) = dp_deltomg(i, 1)*ztop(i) END IF END DO ! ----------------- ! From m/s to Pa/s ! ----------------- DO i = 1, klon IF (wk_adv(i)) THEN omgtop(i) = -rho(i, ktop(i))*rg*omgtop(i) dp_deltomg(i, 1) = omgtop(i)/(ptop(i)-ph(i,1)) END IF END DO DO k = 1, klev DO i = 1, klon IF (wk_adv(i) .AND. k<=ktop(i)) THEN omg(i, k) = -rho(i, k)*rg*omg(i, k) dp_deltomg(i, k) = dp_deltomg(i, 1) END IF END DO END DO ! raccordement lineaire de omg de ptop a pupper DO i = 1, klon IF (wk_adv(i) .AND. kupper(i)>ktop(i)) THEN omg(i, kupper(i)+1) = -rg*amdwn(i, kupper(i)+1)/sigmaw(i) + & rg*amup(i, kupper(i)+1)/(1.-sigmaw(i)) dp_deltomg(i, kupper(i)) = (omgtop(i)-omg(i,kupper(i)+1))/ & (ptop(i)-pupper(i)) END IF END DO ! c DO i=1,klon ! c print*,'Pente entre 0 et kupper (référence)' ! c $ ,omg(i,kupper(i)+1)/(pupper(i)-ph(i,1)) ! c print*,'Pente entre ktop et kupper' ! c $ ,(omg(i,kupper(i)+1)-omgtop(i))/(pupper(i)-ptop(i)) ! c ENDDO ! c DO k = 1, klev DO i = 1, klon IF (wk_adv(i) .AND. k>ktop(i) .AND. k<=kupper(i)) THEN dp_deltomg(i, k) = dp_deltomg(i, kupper(i)) omg(i, k) = omgtop(i) + (ph(i,k)-ptop(i))*dp_deltomg(i, kupper(i)) END IF END DO END DO ! cc nrlmd ! c DO i=1,klon ! c print*,'deltaw_ktop,deltaw_conv',omgtop(i),omg(i,kupper(i)+1) ! c END DO ! cc ! -- Compute wake average vertical velocity omgbw DO k = 1, klev + 1 DO i = 1, klon IF (wk_adv(i)) THEN omgbw(i, k) = omgb(i, k) + (1.-sigmaw(i))*omg(i, k) END IF END DO END DO ! -- and its vertical gradient dp_omgbw DO k = 1, klev DO i = 1, klon IF (wk_adv(i)) THEN dp_omgbw(i, k) = (omgbw(i,k+1)-omgbw(i,k))/(ph(i,k+1)-ph(i,k)) END IF END DO END DO ! -- Upstream coefficients for omgb velocity ! -- (alpha_up(k) is the coefficient of the value at level k) ! -- (1-alpha_up(k) is the coefficient of the value at level k-1) DO k = 1, klev DO i = 1, klon IF (wk_adv(i)) THEN alpha_up(i, k) = 0. IF (omgb(i,k)>0.) alpha_up(i, k) = 1. END IF END DO END DO ! Matrix expressing [The,deltatw] from [Th1,Th2] DO i = 1, klon IF (wk_adv(i)) THEN rre1(i) = 1. - sigmaw(i) rre2(i) = sigmaw(i) END IF END DO rrd1 = -1. rrd2 = 1. ! -- Get [Th1,Th2], dth and [q1,q2] DO k = 1, klev DO i = 1, klon IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN dth(i, k) = deltatw(i, k)/ppi(i, k) th1(i, k) = the(i, k) - sigmaw(i)*dth(i, k) ! undisturbed area th2(i, k) = the(i, k) + (1.-sigmaw(i))*dth(i, k) ! wake q1(i, k) = qe(i, k) - sigmaw(i)*deltaqw(i, k) ! undisturbed area q2(i, k) = qe(i, k) + (1.-sigmaw(i))*deltaqw(i, k) ! wake END IF END DO END DO DO i = 1, klon IF (wk_adv(i)) THEN !!! nrlmd d_th1(i, 1) = 0. d_th2(i, 1) = 0. d_dth(i, 1) = 0. d_q1(i, 1) = 0. d_q2(i, 1) = 0. d_dq(i, 1) = 0. END IF END DO DO k = 2, klev DO i = 1, klon IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN d_th1(i, k) = th1(i, k-1) - th1(i, k) d_th2(i, k) = th2(i, k-1) - th2(i, k) d_dth(i, k) = dth(i, k-1) - dth(i, k) d_q1(i, k) = q1(i, k-1) - q1(i, k) d_q2(i, k) = q2(i, k-1) - q2(i, k) d_dq(i, k) = deltaqw(i, k-1) - deltaqw(i, k) END IF END DO END DO DO i = 1, klon IF (wk_adv(i)) THEN omgbdth(i, 1) = 0. omgbdq(i, 1) = 0. END IF END DO DO k = 2, klev DO i = 1, klon IF (wk_adv(i) .AND. k<=kupper(i)+1) THEN ! loop on interfaces omgbdth(i, k) = omgb(i, k)*(dth(i,k-1)-dth(i,k)) omgbdq(i, k) = omgb(i, k)*(deltaqw(i,k-1)-deltaqw(i,k)) END IF END DO END DO ! ----------------------------------------------------------------- DO k = 1, klev DO i = 1, klon IF (wk_adv(i) .AND. k<=kupper(i)-1) THEN ! ----------------------------------------------------------------- ! Compute redistribution (advective) term d_deltatw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & (rrd1*omg(i,k)*sigmaw(i)*d_th1(i,k)-rrd2*omg(i,k+1)*(1.-sigmaw( & i))*d_th2(i,k+1)-(1.-alpha_up(i,k))*omgbdth(i,k)-alpha_up(i,k+1)* & omgbdth(i,k+1))*ppi(i, k) ! print*,'d_deltatw=',d_deltatw(i,k) d_deltaqw(i, k) = dtimesub/(ph(i,k)-ph(i,k+1))* & (rrd1*omg(i,k)*sigmaw(i)*d_q1(i,k)-rrd2*omg(i,k+1)*(1.-sigmaw( & i))*d_q2(i,k+1)-(1.-alpha_up(i,k))*omgbdq(i,k)-alpha_up(i,k+1)* & omgbdq(i,k+1)) ! print*,'d_deltaqw=',d_deltaqw(i,k) ! and increment large scale tendencies ! C ! ----------------------------------------------------------------- d_te(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i, & k)-rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_th2(i,k+1))/(ph(i,k)-ph(i, & k+1)) & ! cc nrlmd $ ! -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*dp_deltomg(i,k) -sigmaw(i)*(1.-sigmaw(i))*dth(i,k)*(omg(i,k)-omg(i,k+1))/(ph(i, & k)-ph(i,k+1)) & ! cc )*ppi(i, k) d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i, & k)-rre2(i)*omg(i,k+1)*(1.-sigmaw(i))*d_q2(i,k+1))/(ph(i,k)-ph(i, & k+1)) & ! cc nrlmd $ ! -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*dp_deltomg(i,k) -sigmaw(i)*(1.-sigmaw(i))*deltaqw(i,k)*(omg(i,k)-omg(i, & k+1))/(ph(i,k)-ph(i,k+1)) & ! cc ) ! cc nrlmd ELSE IF (wk_adv(i) .AND. k==kupper(i)) THEN d_te(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_th1(i, & k)/(ph(i,k)-ph(i,k+1))))*ppi(i, k) d_qe(i, k) = dtimesub*((rre1(i)*omg(i,k)*sigmaw(i)*d_q1(i, & k)/(ph(i,k)-ph(i,k+1)))) END IF ! cc END DO END DO ! ------------------------------------------------------------------ ! Increment state variables DO k = 1, klev DO i = 1, klon ! cc nrlmd IF( wk_adv(i) .AND. k .LE. kupper(i)-1) THEN IF (wk_adv(i) .AND. k<=kupper(i)) THEN ! cc ! Coefficient de répartition crep(i, k) = crep_sol*(ph(i,kupper(i))-ph(i,k))/ & (ph(i,kupper(i))-ph(i,1)) crep(i, k) = crep(i, k) + crep_upper*(ph(i,1)-ph(i,k))/(p(i,1)-ph(i & ,kupper(i))) ! Reintroduce compensating subsidence term. ! dtKE(k)=(dtdwn(k)*Crep(k))/sigmaw ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)) ! . /(1-sigmaw) ! dqKE(k)=(dqdwn(k)*Crep(k))/sigmaw ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)) ! . /(1-sigmaw) ! dtKE(k)=(dtdwn(k)*Crep(k)+(1-Crep(k))*dta(k))/sigmaw ! dtKE(k)=dtKE(k)-(dtdwn(k)*(1-Crep(k))+dta(k)*Crep(k)) ! . /(1-sigmaw) ! dqKE(k)=(dqdwn(k)*Crep(k)+(1-Crep(k))*dqa(k))/sigmaw ! dqKE(k)=dqKE(k)-(dqdwn(k)*(1-Crep(k))+dqa(k)*Crep(k)) ! . /(1-sigmaw) dtke(i, k) = (dtdwn(i,k)/sigmaw(i)-dta(i,k)/(1.-sigmaw(i))) dqke(i, k) = (dqdwn(i,k)/sigmaw(i)-dqa(i,k)/(1.-sigmaw(i))) ! print*,'dtKE= ',dtKE(i,k),' dqKE= ',dqKE(i,k) !jyg< !! !!--------------------------------------------------------------- !! The change of delta_T due to PBL (vertical diffusion plus thermal plumes) !! is accounted for by the PBL and the Thermals schemes. It is now set to zero !! within the Wake scheme. !!--------------------------------------------------------------- dtPBL(i,k) = 0. dqPBL(i,k) = 0. ! !! dtPBL(i,k)=wdtPBL(i,k) - udtPBL(i,k) !! dqPBL(i,k)=wdqPBL(i,k) - udqPBL(i,k) ! !! dtpbl(i, k) = (wdtpbl(i,k)/sigmaw(i)-udtpbl(i,k)/(1.-sigmaw(i))) !! dqpbl(i, k) = (wdqpbl(i,k)/sigmaw(i)-udqpbl(i,k)/(1.-sigmaw(i))) ! print*,'dtPBL= ',dtPBL(i,k),' dqPBL= ',dqPBL(i,k) !>jyg ! ! cc nrlmd Prise en compte du taux de mortalité ! cc Définitions de entr, detr detr(i, k) = 0. entr(i, k) = detr(i, k) + gfl(i)*cstar(i) + & sigmaw(i)*(1.-sigmaw(i))*dp_deltomg(i, k) spread(i, k) = (entr(i,k)-detr(i,k))/sigmaw(i) ! cc spread(i,k) = ! (1.-sigmaw(i))*dp_deltomg(i,k)+gfl(i)*Cstar(i)/ ! cc $ sigmaw(i) ! ajout d'un effet onde de gravité -Tgw(k)*deltatw(k) 03/02/06 YU ! Jingmei ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltat_gw(i,k), ! & Tgw(i,k),deltatw(i,k) d_deltat_gw(i, k) = d_deltat_gw(i, k) - tgw(i, k)*deltatw(i, k)* & dtimesub ! write(lunout,*)'wake.F ',i,k, dtimesub,d_deltatw(i,k) ff(i) = d_deltatw(i, k)/dtimesub ! Sans GW ! deltatw(k)=deltatw(k)+dtimesub*(ff+dtKE(k)-spread(k)*deltatw(k)) ! GW formule 1 ! deltatw(k) = deltatw(k)+dtimesub* ! $ (ff+dtKE(k) - spread(k)*deltatw(k)-Tgw(k)*deltatw(k)) ! GW formule 2 IF (dtimesub*tgw(i,k)<1.E-10) THEN d_deltatw(i, k) = dtimesub*(ff(i)+dtke(i,k)+dtpbl(i,k) & ! cc ! $ ! -spread(i,k)*deltatw(i,k) -entr(i,k)*deltatw(i,k)/sigmaw(i)-(death_rate(i)*sigmaw( & i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) & ! cc -tgw(i,k)*deltatw(i,k)) ELSE d_deltatw(i, k) = 1/tgw(i, k)*(1-exp(-dtimesub*tgw(i, & k)))*(ff(i)+dtke(i,k)+dtpbl(i,k) & ! cc $ ! -spread(i,k)*deltatw(i,k) -entr(i,k)*deltatw(i,k)/sigmaw(i)-(death_rate(i)*sigmaw( & i)+detr(i,k))*deltatw(i,k)/(1.-sigmaw(i)) & ! cc -tgw(i,k)*deltatw(i,k)) END IF dth(i, k) = deltatw(i, k)/ppi(i, k) gg(i) = d_deltaqw(i, k)/dtimesub d_deltaqw(i, k) = dtimesub*(gg(i)+dqke(i,k)+dqpbl(i,k) & ! cc $ ! -spread(i,k)*deltaqw(i,k)) -entr(i,k)*deltaqw(i,k)/sigmaw(i)-(death_rate(i)*sigmaw(i)+detr( & i,k))*deltaqw(i,k)/(1.-sigmaw(i))) ! cc ! cc nrlmd ! cc d_deltatw2(i,k)=d_deltatw2(i,k)+d_deltatw(i,k) ! cc d_deltaqw2(i,k)=d_deltaqw2(i,k)+d_deltaqw(i,k) ! cc END IF END DO END DO ! Scale tendencies so that water vapour remains positive in w and x. CALL wake_vec_modulation(klon, klev, wk_adv, epsilon, qe, d_qe, deltaqw, & d_deltaqw, sigmaw, d_sigmaw, alpha) ! cc nrlmd ! c print*,'alpha' ! c do i=1,klon ! c print*,alpha(i) ! c end do ! cc DO k = 1, klev DO i = 1, klon IF (wk_adv(i) .AND. k<=kupper(i)) THEN d_te(i, k) = alpha(i)*d_te(i, k) d_qe(i, k) = alpha(i)*d_qe(i, k) d_deltatw(i, k) = alpha(i)*d_deltatw(i, k) d_deltaqw(i, k) = alpha(i)*d_deltaqw(i, k) d_deltat_gw(i, k) = alpha(i)*d_deltat_gw(i, k) END IF END DO END DO DO i = 1, klon IF (wk_adv(i)) THEN d_sigmaw(i) = alpha(i)*d_sigmaw(i) END IF END DO ! Update large scale variables and wake variables ! IM 060208 manque DO i + remplace DO k=1,kupper(i) ! IM 060208 DO k = 1,kupper(i) DO k = 1, klev DO i = 1, klon IF (wk_adv(i) .AND. k<=kupper(i)) THEN dtls(i, k) = dtls(i, k) + d_te(i, k) dqls(i, k) = dqls(i, k) + d_qe(i, k) ! cc nrlmd d_deltatw2(i, k) = d_deltatw2(i, k) + d_deltatw(i, k) d_deltaqw2(i, k) = d_deltaqw2(i, k) + d_deltaqw(i, k) ! cc END IF END DO END DO DO k = 1, klev DO i = 1, klon IF (wk_adv(i) .AND. k<=kupper(i)) THEN te(i, k) = te0(i, k) + dtls(i, k) qe(i, k) = qe0(i, k) + dqls(i, k) the(i, k) = te(i, k)/ppi(i, k) deltatw(i, k) = deltatw(i, k) + d_deltatw(i, k) deltaqw(i, k) = deltaqw(i, k) + d_deltaqw(i, k) dth(i, k) = deltatw(i, k)/ppi(i, k) ! c print*,'k,qx,qw',k,qe(i,k)-sigmaw(i)*deltaqw(i,k) ! c $ ,qe(i,k)+(1-sigmaw(i))*deltaqw(i,k) END IF END DO END DO DO i = 1, klon IF (wk_adv(i)) THEN sigmaw(i) = sigmaw(i) + d_sigmaw(i) END IF END DO ! Determine Ptop from buoyancy integral ! --------------------------------------- ! - 1/ Pressure of the level where dth changes sign. DO i = 1, klon IF (wk_adv(i)) THEN ptop_provis(i) = ph(i, 1) END IF END DO DO k = 2, klev DO i = 1, klon IF (wk_adv(i) .AND. ptop_provis(i)==ph(i,1) .AND. & dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN ptop_provis(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) END IF END DO END DO ! - 2/ dth integral DO i = 1, klon IF (wk_adv(i)) THEN !!! nrlmd sum_dth(i) = 0. dthmin(i) = -delta_t_min z(i) = 0. END IF END DO DO k = 1, klev DO i = 1, klon IF (wk_adv(i)) THEN dz(i) = -(amax1(ph(i,k+1),ptop_provis(i))-ph(i,k))/(rho(i,k)*rg) IF (dz(i)>0) THEN z(i) = z(i) + dz(i) sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) dthmin(i) = amin1(dthmin(i), dth(i,k)) END IF END IF END DO END DO ! - 3/ height of triangle with area= sum_dth and base = dthmin DO i = 1, klon IF (wk_adv(i)) THEN hw(i) = 2.*sum_dth(i)/amin1(dthmin(i), -0.5) hw(i) = amax1(hwmin, hw(i)) END IF END DO ! - 4/ now, get Ptop DO i = 1, klon IF (wk_adv(i)) THEN !!! nrlmd ktop(i) = 0 z(i) = 0. END IF END DO DO k = 1, klev DO i = 1, klon IF (wk_adv(i)) THEN dz(i) = amin1(-(ph(i,k+1)-ph(i,k))/(rho(i,k)*rg), hw(i)-z(i)) IF (dz(i)>0) THEN z(i) = z(i) + dz(i) ptop(i) = ph(i, k) - rho(i, k)*rg*dz(i) ktop(i) = k END IF END IF END DO END DO ! 4.5/Correct ktop and ptop DO i = 1, klon IF (wk_adv(i)) THEN ptop_new(i) = ptop(i) END IF END DO DO k = klev, 2, -1 DO i = 1, klon ! IM v3JYG; IF (k .GE. ktop(i) IF (wk_adv(i) .AND. k<=ktop(i) .AND. ptop_new(i)==ptop(i) .AND. & dth(i,k)>-delta_t_min .AND. dth(i,k-1)<-delta_t_min) THEN ptop_new(i) = ((dth(i,k)+delta_t_min)*p(i,k-1)-(dth(i, & k-1)+delta_t_min)*p(i,k))/(dth(i,k)-dth(i,k-1)) END IF END DO END DO DO i = 1, klon IF (wk_adv(i)) THEN ptop(i) = ptop_new(i) END IF END DO DO k = klev, 1, -1 DO i = 1, klon IF (wk_adv(i)) THEN !!! nrlmd IF (ph(i,k+1)=kupper(i)) THEN deltatw(i, k) = 0. deltaqw(i, k) = 0. END IF END DO END DO ! -------------Cstar computation--------------------------------- DO i = 1, klon IF (wk_adv(i)) THEN !!! nrlmd sum_thu(i) = 0. sum_tu(i) = 0. sum_qu(i) = 0. sum_thvu(i) = 0. sum_dth(i) = 0. sum_dq(i) = 0. sum_rho(i) = 0. sum_dtdwn(i) = 0. sum_dqdwn(i) = 0. av_thu(i) = 0. av_tu(i) = 0. av_qu(i) = 0. av_thvu(i) = 0. av_dth(i) = 0. av_dq(i) = 0. av_rho(i) = 0. av_dtdwn(i) = 0. av_dqdwn(i) = 0. END IF END DO ! Integrals (and wake top level number) ! -------------------------------------- ! Initialize sum_thvu to 1st level virt. pot. temp. DO i = 1, klon IF (wk_adv(i)) THEN !!! nrlmd z(i) = 1. dz(i) = 1. sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) sum_dth(i) = 0. END IF END DO DO k = 1, klev DO i = 1, klon IF (wk_adv(i)) THEN !!! nrlmd dz(i) = -(max(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) IF (dz(i)>0) THEN z(i) = z(i) + dz(i) sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) END IF END IF END DO END DO DO i = 1, klon IF (wk_adv(i)) THEN !!! nrlmd hw0(i) = z(i) END IF END DO ! - WAPE and mean forcing computation ! --------------------------------------- ! --------------------------------------- ! Means DO i = 1, klon IF (wk_adv(i)) THEN !!! nrlmd av_thu(i) = sum_thu(i)/hw0(i) av_tu(i) = sum_tu(i)/hw0(i) av_qu(i) = sum_qu(i)/hw0(i) av_thvu(i) = sum_thvu(i)/hw0(i) av_dth(i) = sum_dth(i)/hw0(i) av_dq(i) = sum_dq(i)/hw0(i) av_rho(i) = sum_rho(i)/hw0(i) av_dtdwn(i) = sum_dtdwn(i)/hw0(i) av_dqdwn(i) = sum_dqdwn(i)/hw0(i) wape(i) = -rg*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i)+av_dth(i)* & av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) END IF END DO ! Filter out bad wakes DO k = 1, klev DO i = 1, klon IF (wk_adv(i)) THEN !!! nrlmd IF (wape(i)<0.) THEN deltatw(i, k) = 0. deltaqw(i, k) = 0. dth(i, k) = 0. END IF END IF END DO END DO DO i = 1, klon IF (wk_adv(i)) THEN !!! nrlmd IF (wape(i)<0.) THEN wape(i) = 0. cstar(i) = 0. hw(i) = hwmin sigmaw(i) = max(sigmad, sigd_con(i)) fip(i) = 0. gwake(i) = .FALSE. ELSE cstar(i) = stark*sqrt(2.*wape(i)) gwake(i) = .TRUE. END IF END IF END DO END DO ! end sub-timestep loop ! ----------------------------------------------------------------- ! Get back to tendencies per second DO k = 1, klev DO i = 1, klon ! cc nrlmd IF ( wk_adv(i) .AND. k .LE. kupper(i)) THEN IF (ok_qx_qw(i) .AND. k<=kupper(i)) THEN ! cc dtls(i, k) = dtls(i, k)/dtime dqls(i, k) = dqls(i, k)/dtime d_deltatw2(i, k) = d_deltatw2(i, k)/dtime d_deltaqw2(i, k) = d_deltaqw2(i, k)/dtime d_deltat_gw(i, k) = d_deltat_gw(i, k)/dtime ! c print*,'k,dqls,omg,entr,detr',k,dqls(i,k),omg(i,k),entr(i,k) ! c $ ,death_rate(i)*sigmaw(i) END IF END DO END DO ! ---------------------------------------------------------- ! Determine wake final state; recompute wape, cstar, ktop; ! filter out bad wakes. ! ---------------------------------------------------------- ! 2.1 - Undisturbed area and Wake integrals ! --------------------------------------------------------- DO i = 1, klon ! cc nrlmd if (wk_adv(i)) then !!! nrlmd IF (ok_qx_qw(i)) THEN ! cc z(i) = 0. sum_thu(i) = 0. sum_tu(i) = 0. sum_qu(i) = 0. sum_thvu(i) = 0. sum_dth(i) = 0. sum_dq(i) = 0. sum_rho(i) = 0. sum_dtdwn(i) = 0. sum_dqdwn(i) = 0. av_thu(i) = 0. av_tu(i) = 0. av_qu(i) = 0. av_thvu(i) = 0. av_dth(i) = 0. av_dq(i) = 0. av_rho(i) = 0. av_dtdwn(i) = 0. av_dqdwn(i) = 0. END IF END DO ! Potential temperatures and humidity ! ---------------------------------------------------------- DO k = 1, klev DO i = 1, klon ! cc nrlmd IF ( wk_adv(i)) THEN IF (ok_qx_qw(i)) THEN ! cc rho(i, k) = p(i, k)/(rd*te(i,k)) IF (k==1) THEN rhoh(i, k) = ph(i, k)/(rd*te(i,k)) zhh(i, k) = 0 ELSE rhoh(i, k) = ph(i, k)*2./(rd*(te(i,k)+te(i,k-1))) zhh(i, k) = (ph(i,k)-ph(i,k-1))/(-rhoh(i,k)*rg) + zhh(i, k-1) END IF the(i, k) = te(i, k)/ppi(i, k) thu(i, k) = (te(i,k)-deltatw(i,k)*sigmaw(i))/ppi(i, k) tu(i, k) = te(i, k) - deltatw(i, k)*sigmaw(i) qu(i, k) = qe(i, k) - deltaqw(i, k)*sigmaw(i) rhow(i, k) = p(i, k)/(rd*(te(i,k)+deltatw(i,k))) dth(i, k) = deltatw(i, k)/ppi(i, k) END IF END DO END DO ! Integrals (and wake top level number) ! ----------------------------------------------------------- ! Initialize sum_thvu to 1st level virt. pot. temp. DO i = 1, klon ! cc nrlmd IF ( wk_adv(i)) THEN IF (ok_qx_qw(i)) THEN ! cc z(i) = 1. dz(i) = 1. sum_thvu(i) = thu(i, 1)*(1.+epsim1*qu(i,1))*dz(i) sum_dth(i) = 0. END IF END DO DO k = 1, klev DO i = 1, klon ! cc nrlmd IF ( wk_adv(i)) THEN IF (ok_qx_qw(i)) THEN ! cc dz(i) = -(amax1(ph(i,k+1),ptop(i))-ph(i,k))/(rho(i,k)*rg) IF (dz(i)>0) THEN z(i) = z(i) + dz(i) sum_thu(i) = sum_thu(i) + thu(i, k)*dz(i) sum_tu(i) = sum_tu(i) + tu(i, k)*dz(i) sum_qu(i) = sum_qu(i) + qu(i, k)*dz(i) sum_thvu(i) = sum_thvu(i) + thu(i, k)*(1.+epsim1*qu(i,k))*dz(i) sum_dth(i) = sum_dth(i) + dth(i, k)*dz(i) sum_dq(i) = sum_dq(i) + deltaqw(i, k)*dz(i) sum_rho(i) = sum_rho(i) + rhow(i, k)*dz(i) sum_dtdwn(i) = sum_dtdwn(i) + dtdwn(i, k)*dz(i) sum_dqdwn(i) = sum_dqdwn(i) + dqdwn(i, k)*dz(i) END IF END IF END DO END DO DO i = 1, klon ! cc nrlmd IF ( wk_adv(i)) THEN IF (ok_qx_qw(i)) THEN ! cc hw0(i) = z(i) END IF END DO ! - WAPE and mean forcing computation ! ------------------------------------------------------------- ! Means DO i = 1, klon ! cc nrlmd IF ( wk_adv(i)) THEN IF (ok_qx_qw(i)) THEN ! cc av_thu(i) = sum_thu(i)/hw0(i) av_tu(i) = sum_tu(i)/hw0(i) av_qu(i) = sum_qu(i)/hw0(i) av_thvu(i) = sum_thvu(i)/hw0(i) av_dth(i) = sum_dth(i)/hw0(i) av_dq(i) = sum_dq(i)/hw0(i) av_rho(i) = sum_rho(i)/hw0(i) av_dtdwn(i) = sum_dtdwn(i)/hw0(i) av_dqdwn(i) = sum_dqdwn(i)/hw0(i) wape2(i) = -rg*hw0(i)*(av_dth(i)+epsim1*(av_thu(i)*av_dq(i)+av_dth(i)* & av_qu(i)+av_dth(i)*av_dq(i)))/av_thvu(i) END IF END DO ! Prognostic variable update ! ------------------------------------------------------------ ! Filter out bad wakes DO k = 1, klev DO i = 1, klon ! cc nrlmd IF ( wk_adv(i) .AND. wape2(i) .LT. 0.) THEN IF (ok_qx_qw(i) .AND. wape2(i)<0.) THEN ! cc deltatw(i, k) = 0. deltaqw(i, k) = 0. dth(i, k) = 0. END IF END DO END DO DO i = 1, klon ! cc nrlmd IF ( wk_adv(i)) THEN IF (ok_qx_qw(i)) THEN ! cc IF (wape2(i)<0.) THEN wape2(i) = 0. cstar2(i) = 0. hw(i) = hwmin sigmaw(i) = amax1(sigmad, sigd_con(i)) fip(i) = 0. gwake(i) = .FALSE. ELSE IF (prt_level>=10) PRINT *, 'wape2>0' cstar2(i) = stark*sqrt(2.*wape2(i)) gwake(i) = .TRUE. END IF END IF END DO DO i = 1, klon ! cc nrlmd IF ( wk_adv(i)) THEN IF (ok_qx_qw(i)) THEN ! cc ktopw(i) = ktop(i) END IF END DO DO i = 1, klon ! cc nrlmd IF ( wk_adv(i)) THEN IF (ok_qx_qw(i)) THEN ! cc IF (ktopw(i)>0 .AND. gwake(i)) THEN ! jyg1 Utilisation d'un h_efficace constant ( ~ feeding layer) ! cc heff = 600. ! Utilisation de la hauteur hw ! c heff = 0.7*hw heff(i) = hw(i) fip(i) = 0.5*rho(i, ktopw(i))*cstar2(i)**3*heff(i)*2* & sqrt(sigmaw(i)*wdens(i)*3.14) fip(i) = alpk*fip(i) ! jyg2 ELSE fip(i) = 0. END IF END IF END DO ! Limitation de sigmaw ! cc nrlmd ! DO i=1,klon ! IF (OK_qx_qw(i)) THEN ! IF (sigmaw(i).GE.sigmaw_max) sigmaw(i)=sigmaw_max ! ENDIF ! ENDDO ! cc DO k = 1, klev DO i = 1, klon ! cc nrlmd On maintient désormais constant sigmaw en régime ! permanent ! cc IF ((sigmaw(i).GT.sigmaw_max).or. IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=1.0)) .OR. (ktopw(i)<=2) .OR. & .NOT. ok_qx_qw(i)) THEN ! cc dtls(i, k) = 0. dqls(i, k) = 0. deltatw(i, k) = 0. deltaqw(i, k) = 0. END IF END DO END DO ! cc nrlmd On maintient désormais constant sigmaw en régime permanent DO i = 1, klon IF (((wape(i)>=wape2(i)) .AND. (wape2(i)<=1.0)) .OR. (ktopw(i)<=2) .OR. & .NOT. ok_qx_qw(i)) THEN wape(i) = 0. cstar(i) = 0. !!jyg Outside subroutine "Wake" hw and sigmaw are zero when there are no wakes !! hw(i) = hwmin !jyg !! sigmaw(i) = sigmad !jyg hw(i) = 0. !jyg sigmaw(i) = 0. !jyg fip(i) = 0. ELSE wape(i) = wape2(i) cstar(i) = cstar2(i) END IF ! c print*,'wape wape2 ktopw OK_qx_qw =', ! c $ wape(i),wape2(i),ktopw(i),OK_qx_qw(i) END DO RETURN END SUBROUTINE wake SUBROUTINE wake_vec_modulation(nlon, nl, wk_adv, epsilon, qe, d_qe, deltaqw, & d_deltaqw, sigmaw, d_sigmaw, alpha) ! ------------------------------------------------------ ! Dtermination du coefficient alpha tel que les tendances ! corriges alpha*d_G, pour toutes les grandeurs G, correspondent ! a une humidite positive dans la zone (x) et dans la zone (w). ! ------------------------------------------------------ IMPLICIT NONE ! Input REAL qe(nlon, nl), d_qe(nlon, nl) REAL deltaqw(nlon, nl), d_deltaqw(nlon, nl) REAL sigmaw(nlon), d_sigmaw(nlon) LOGICAL wk_adv(nlon) INTEGER nl, nlon ! Output REAL alpha(nlon) ! Internal variables REAL zeta(nlon, nl) REAL alpha1(nlon) REAL x, a, b, c, discrim REAL epsilon ! DATA epsilon/1.e-15/ INTEGER i,k DO k = 1, nl DO i = 1, nlon IF (wk_adv(i)) THEN IF ((deltaqw(i,k)+d_deltaqw(i,k))>=0.) THEN zeta(i, k) = 0. ELSE zeta(i, k) = 1. END IF END IF END DO DO i = 1, nlon IF (wk_adv(i)) THEN x = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + d_qe(i, k) + & (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - d_sigmaw(i)*(deltaqw(i,k)+ & d_deltaqw(i,k)) a = -d_sigmaw(i)*d_deltaqw(i, k) b = d_qe(i, k) + (zeta(i,k)-sigmaw(i))*d_deltaqw(i, k) - & deltaqw(i, k)*d_sigmaw(i) c = qe(i, k) + (zeta(i,k)-sigmaw(i))*deltaqw(i, k) + epsilon discrim = b*b - 4.*a*c ! print*, 'x, a, b, c, discrim', x, a, b, c, discrim IF (a+b>=0.) THEN !! Condition suffisante pour la positivité de ovap alpha1(i) = 1. ELSE IF (x>=0.) THEN alpha1(i) = 1. ELSE IF (a>0.) THEN alpha1(i) = 0.9*min((2.*c)/(-b+sqrt(discrim)), (-b+sqrt(discrim & ))/(2.*a)) ELSE IF (a==0.) THEN alpha1(i) = 0.9*(-c/b) ELSE ! print*,'a,b,c discrim',a,b,c discrim alpha1(i) = 0.9*max((2.*c)/(-b+sqrt(discrim)), (-b+sqrt(discrim & ))/(2.*a)) END IF END IF END IF alpha(i) = min(alpha(i), alpha1(i)) END IF END DO END DO RETURN END SUBROUTINE wake_vec_modulation