SUBROUTINE concvl (iflag_con,iflag_clos, . dtime,paprs,pplay, . t,q,t_wake,q_wake,s_wake,u,v,tra,ntra, . ALE,ALP,work1,work2, . d_t,d_q,d_u,d_v,d_tra, . rain, snow, kbas, ktop, sigd, . cbmf,plcl,plfc,wbeff,upwd,dnwd,dnwdbis, . Ma,mip,Vprecip, . cape,cin,tvp,Tconv,iflag, . pbase,bbase,dtvpdt1,dtvpdq1,dplcldt,dplcldr, . qcondc,wd,pmflxr,pmflxs, ! RomP >>> !! . da,phi,mp,dd_t,dd_q,lalim_conv,wght_th) . da,phi,mp,phi2,d1a,dam,sij,clw,elij, ! RomP . dd_t,dd_q,lalim_conv,wght_th, ! RomP . evap, ep, epmlmMm,eplaMm, ! RomP . wdtrainA,wdtrainM) ! RomP ! RomP <<< *************************************************************** * * * CONCVL * * * * * * written by : Sandrine Bony-Lena, 17/05/2003, 11.16.04 * * modified by : * *************************************************************** * c USE dimphy USE infotrac, ONLY : nbtr IMPLICIT none c====================================================================== c Auteur(s): S. Bony-Lena (LMD/CNRS) date: ??? c Objet: schema de convection de Emanuel (1991) interface c====================================================================== c Arguments: c dtime--input-R-pas d'integration (s) c s-------input-R-la valeur "s" pour chaque couche c sigs----input-R-la valeur "sigma" de chaque couche c sig-----input-R-la valeur de "sigma" pour chaque niveau c psolpa--input-R-la pression au sol (en Pa) C pskapa--input-R-exponentiel kappa de psolpa c h-------input-R-enthalpie potentielle (Cp*T/P**kappa) c q-------input-R-vapeur d'eau (en kg/kg) c c work*: input et output: deux variables de travail, c on peut les mettre a 0 au debut c ALE-----input-R-energie disponible pour soulevement c ALP-----input-R-puissance disponible pour soulevement c C d_h-----output-R-increment de l'enthalpie potentielle (h) c d_q-----output-R-increment de la vapeur d'eau c rain----output-R-la pluie (mm/s) c snow----output-R-la neige (mm/s) c upwd----output-R-saturated updraft mass flux (kg/m**2/s) c dnwd----output-R-saturated downdraft mass flux (kg/m**2/s) c dnwd0---output-R-unsaturated downdraft mass flux (kg/m**2/s) c Ma------output-R-adiabatic ascent mass flux (kg/m2/s) c mip-----output-R-mass flux shed by adiabatic ascent (kg/m2/s) c Vprecip-output-R-vertical profile of precipitations (kg/m2/s) c Tconv---output-R-environment temperature seen by convective scheme (K) c Cape----output-R-CAPE (J/kg) c Cin ----output-R-CIN (J/kg) c Tvp-----output-R-Temperature virtuelle d'une parcelle soulevee c adiabatiquement a partir du niveau 1 (K) c deltapb-output-R-distance entre LCL et base de la colonne (<0 ; Pa) c Ice_flag-input-L-TRUE->prise en compte de la thermodynamique de la glace c dd_t-----output-R-increment de la temperature du aux descentes precipitantes c dd_q-----output-R-increment de la vapeur d'eau du aux desc precip c====================================================================== c #include "dimensions.h" c INTEGER iflag_con,iflag_clos c REAL dtime, paprs(klon,klev+1),pplay(klon,klev) REAL t(klon,klev),q(klon,klev),u(klon,klev),v(klon,klev) REAL t_wake(klon,klev),q_wake(klon,klev) Real s_wake(klon) REAL tra(klon,klev,nbtr) INTEGER ntra REAL work1(klon,klev),work2(klon,klev),ptop2(klon) REAL pmflxr(klon,klev+1),pmflxs(klon,klev+1) REAL ALE(klon),ALP(klon) c REAL d_t(klon,klev),d_q(klon,klev),d_u(klon,klev),d_v(klon,klev) REAL dd_t(klon,klev),dd_q(klon,klev) REAL d_tra(klon,klev,nbtr) REAL rain(klon),snow(klon) c INTEGER kbas(klon),ktop(klon) REAL em_ph(klon,klev+1),em_p(klon,klev) REAL upwd(klon,klev),dnwd(klon,klev),dnwdbis(klon,klev) !! REAL Ma(klon,klev), mip(klon,klev),Vprecip(klon,klev) !jyg REAL Ma(klon,klev), mip(klon,klev),Vprecip(klon,klev+1) !jyg real da(klon,klev),phi(klon,klev,klev),mp(klon,klev) ! RomP >>> real phi2(klon,klev,klev) real d1a(klon,klev),dam(klon,klev) real sij(klon,klev,klev),clw(klon,klev),elij(klon,klev,klev) REAL wdtrainA(klon,klev),wdtrainM(klon,klev) REAL evap(klon,klev),ep(klon,klev) REAL epmlmMm(klon,klev,klev),eplaMm(klon,klev) ! RomP <<< REAL cape(klon),cin(klon),tvp(klon,klev) REAL Tconv(klon,klev) c cCR:test: on passe lentr et alim_star des thermiques INTEGER lalim_conv(klon) REAL wght_th(klon,klev) REAL em_sig1feed ! sigma at lower bound of feeding layer REAL em_sig2feed ! sigma at upper bound of feeding layer REAL em_wght(klev) ! weight density determining the feeding mixture con enleve le save c SAVE em_sig1feed,em_sig2feed,em_wght c INTEGER iflag(klon) REAL rflag(klon) REAL pbase(klon),bbase(klon) REAL dtvpdt1(klon,klev),dtvpdq1(klon,klev) REAL dplcldt(klon),dplcldr(klon) REAL qcondc(klon,klev) REAL wd(klon) REAL Plim1(klon),Plim2(klon),asupmax(klon,klev) REAL supmax0(klon),asupmaxmin(klon) c REAL sigd(klon) REAL zx_t,zdelta,zx_qs,zcor c ! INTEGER iflag_mix ! SAVE iflag_mix INTEGER noff, minorig INTEGER i,k,itra REAL qs(klon,klev),qs_wake(klon,klev) REAL cbmf(klon),plcl(klon),plfc(klon),wbeff(klon) cLF SAVE cbmf cIM/JYG REAL, SAVE, ALLOCATABLE :: cbmf(:) ccc$OMP THREADPRIVATE(cbmf)! REAL cbmflast(klon) INTEGER ifrst SAVE ifrst DATA ifrst /0/ c$OMP THREADPRIVATE(ifrst) c C Variables supplementaires liees au bilan d'energie c Real paire(klon) cLF Real ql(klon,klev) c Save paire cLF Save ql cLF Real t1(klon,klev),q1(klon,klev) cLF Save t1,q1 c Data paire /1./ REAL, SAVE, ALLOCATABLE :: ql(:,:), q1(:,:), t1(:,:) c$OMP THREADPRIVATE(ql, q1, t1) c C Variables liees au bilan d'energie et d'enthalpi REAL ztsol(klon) REAL h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot $ , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot SAVE h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot $ , h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot c$OMP THREADPRIVATE(h_vcol_tot, h_dair_tot, h_qw_tot, h_ql_tot) c$OMP THREADPRIVATE(h_qs_tot, qw_tot, ql_tot, qs_tot , ec_tot) REAL d_h_vcol, d_h_dair, d_qt, d_qw, d_ql, d_qs, d_ec REAL d_h_vcol_phy REAL fs_bound, fq_bound SAVE d_h_vcol_phy c$OMP THREADPRIVATE(d_h_vcol_phy) REAL zero_v(klon) CHARACTER*15 ztit INTEGER ip_ebil ! PRINT level for energy conserv. diag. SAVE ip_ebil DATA ip_ebil/2/ c$OMP THREADPRIVATE(ip_ebil) INTEGER if_ebil ! level for energy conserv. dignostics SAVE if_ebil DATA if_ebil/2/ c$OMP THREADPRIVATE(if_ebil) c+jld ec_conser REAL d_t_ec(klon,klev) ! tendance du a la conersion Ec -> E thermique REAL ZRCPD c-jld ec_conser cLF INTEGER nloc logical, save :: first=.true. c$OMP THREADPRIVATE(first) INTEGER, SAVE :: itap, igout c$OMP THREADPRIVATE(itap, igout) c #include "YOMCST.h" #include "YOMCST2.h" #include "YOETHF.h" #include "FCTTRE.h" #include "iniprint.h" c if (first) then c Allocate some variables LF 04/2008 c cIM/JYG allocate(cbmf(klon)) allocate(ql(klon,klev)) allocate(t1(klon,klev)) allocate(q1(klon,klev)) itap=0 igout=klon/2+1/klon endif c Incrementer le compteur de la physique itap = itap + 1 c Copy T into Tconv DO k = 1,klev DO i = 1,klon Tconv(i,k) = T(i,k) ENDDO ENDDO c IF (if_ebil.ge.1) THEN DO i=1,klon ztsol(i) = t(i,1) zero_v(i)=0. Do k = 1,klev ql(i,k) = 0. ENDDO END DO END IF c cym snow(:)=0 c IF (ifrst .EQ. 0) THEN c ifrst = 1 if (first) then first=.false. c C=========================================================================== C READ IN PARAMETERS FOR THE CLOSURE AND THE MIXING DISTRIBUTION C=========================================================================== C if (iflag_con.eq.3) then c CALL cv3_inicp() CALL cv3_inip() endif c C=========================================================================== C READ IN PARAMETERS FOR CONVECTIVE INHIBITION BY TROPOS. DRYNESS C=========================================================================== C cc$$$ open (56,file='supcrit.data') cc$$$ read (56,*) Supcrit1, Supcrit2 cc$$$ close (56) c IF (prt_level .ge. 10) & WRITE(lunout,*) 'supcrit1, supcrit2' ,supcrit1, supcrit2 C C=========================================================================== C Initialisation pour les bilans d'eau et d'energie C=========================================================================== IF (if_ebil.ge.1) d_h_vcol_phy=0. c DO i = 1, klon cbmf(i) = 0. !! plcl(i) = 0. sigd(i) = 0. ENDDO ENDIF !(ifrst .EQ. 0) c Initialisation a chaque pas de temps plfc(:) = 0. wbeff(:) = 100. plcl(:) = 0. DO k = 1, klev+1 DO i=1,klon em_ph(i,k) = paprs(i,k) / 100.0 pmflxr(i,k)=0. pmflxs(i,k)=0. ENDDO ENDDO c DO k = 1, klev DO i=1,klon em_p(i,k) = pplay(i,k) / 100.0 ENDDO ENDDO c ! ! Feeding layer ! em_sig1feed = 1. em_sig2feed = 0.97 c em_sig2feed = 0.8 ! Relative Weight densities do k=1,klev em_wght(k)=1. end do cCRtest: couche alim des tehrmiques ponderee par a* c DO i = 1, klon c do k=1,lalim_conv(i) c em_wght(k)=wght_th(i,k) c print*,'em_wght=',em_wght(k),wght_th(i,k) c end do c END DO if (iflag_con .eq. 4) then DO k = 1, klev DO i = 1, klon zx_t = t(i,k) zdelta=MAX(0.,SIGN(1.,rtt-zx_t)) zx_qs= MIN(0.5 , r2es * FOEEW(zx_t,zdelta)/em_p(i,k)/100.0) zcor=1./(1.-retv*zx_qs) qs(i,k)=zx_qs*zcor ENDDO DO i = 1, klon zx_t = t_wake(i,k) zdelta=MAX(0.,SIGN(1.,rtt-zx_t)) zx_qs= MIN(0.5 , r2es * FOEEW(zx_t,zdelta)/em_p(i,k)/100.0) zcor=1./(1.-retv*zx_qs) qs_wake(i,k)=zx_qs*zcor ENDDO ENDDO else ! iflag_con=3 (modif de puristes qui fait la diffce pour la convergence numerique) DO k = 1, klev DO i = 1, klon zx_t = t(i,k) zdelta=MAX(0.,SIGN(1.,rtt-zx_t)) zx_qs= r2es * FOEEW(zx_t,zdelta)/em_p(i,k)/100.0 zx_qs= MIN(0.5,zx_qs) zcor=1./(1.-retv*zx_qs) zx_qs=zx_qs*zcor qs(i,k)=zx_qs ENDDO DO i = 1, klon zx_t = t_wake(i,k) zdelta=MAX(0.,SIGN(1.,rtt-zx_t)) zx_qs= r2es * FOEEW(zx_t,zdelta)/em_p(i,k)/100.0 zx_qs= MIN(0.5,zx_qs) zcor=1./(1.-retv*zx_qs) zx_qs=zx_qs*zcor qs_wake(i,k)=zx_qs ENDDO ENDDO endif ! iflag_con c C------------------------------------------------------------------ C Main driver for convection: C iflag_con=3 -> nvlle version de KE (JYG) C iflag_con = 30 -> equivalent to convect3 C iflag_con = 4 -> equivalent to convect1/2 c c if (iflag_con.eq.30) then print *, '-> cv_driver' !jyg CALL cv_driver(klon,klev,klevp1,ntra,iflag_con, : t,q,qs,u,v,tra, $ em_p,em_ph,iflag, $ d_t,d_q,d_u,d_v,d_tra,rain, $ Vprecip,cbmf,work1,work2, !jyg $ kbas,ktop, $ dtime,Ma,upwd,dnwd,dnwdbis,qcondc,wd,cape, $ da,phi,mp,phi2,d1a,dam,sij,clw,elij, !RomP $ evap,ep,epmlmMm,eplaMm, !RomP $ wdtrainA,wdtrainM) !RomP print *, 'cv_driver ->' !jyg c DO i = 1,klon cbmf(i) = Ma(i,kbas(i)) ENDDO c else cLF necessary for gathered fields nloc=klon CALL cva_driver(klon,klev,klev+1,ntra,nloc, $ iflag_con,iflag_mix,iflag_clos,dtime, : t,q,qs,t_wake,q_wake,qs_wake,s_wake,u,v,tra, $ em_p,em_ph, . ALE,ALP, . em_sig1feed,em_sig2feed,em_wght, . iflag,d_t,d_q,d_u,d_v,d_tra,rain,kbas,ktop, $ cbmf,plcl,plfc,wbeff,work1,work2,ptop2,sigd, $ Ma,mip,Vprecip,upwd,dnwd,dnwdbis,qcondc,wd, $ cape,cin,tvp, $ dd_t,dd_q,Plim1,Plim2,asupmax,supmax0, $ asupmaxmin,lalim_conv, !AC!+!RomP $ da,phi,mp,phi2,d1a,dam,sij,clw, ! RomP $ elij,evap,ep,wdtrainA,wdtrainM) ! RomP !AC!+!RomP endif C------------------------------------------------------------------ IF (prt_level .ge. 10) . WRITE(lunout,*) ' cva_driver -> cbmf,plcl,plfc,wbeff ', . cbmf(1),plcl(1),plfc(1),wbeff(1) DO i = 1,klon rain(i) = rain(i)/86400. rflag(i)=iflag(i) ENDDO DO k = 1, klev DO i = 1, klon d_t(i,k) = dtime*d_t(i,k) d_q(i,k) = dtime*d_q(i,k) d_u(i,k) = dtime*d_u(i,k) d_v(i,k) = dtime*d_v(i,k) ENDDO ENDDO c if (iflag_con.eq.30) then DO itra = 1,ntra DO k = 1, klev DO i = 1, klon d_tra(i,k,itra) =dtime*d_tra(i,k,itra) ENDDO ENDDO ENDDO endif c!AC! if (iflag_con.eq.3) then DO itra = 1,ntra DO k = 1, klev DO i = 1, klon d_tra(i,k,itra) =dtime*d_tra(i,k,itra) ENDDO ENDDO ENDDO endif c!AC! DO k = 1, klev DO i = 1, klon t1(i,k) = t(i,k)+ d_t(i,k) q1(i,k) = q(i,k)+ d_q(i,k) ENDDO ENDDO c !jyg c--Separation neige/pluie (pour diagnostics) !jyg DO k = 1, klev !jyg DO i = 1, klon !jyg IF (t1(i,k).LT.RTT) THEN !jyg pmflxs(i,k)=Vprecip(i,k) !jyg ELSE !jyg pmflxr(i,k)=Vprecip(i,k) !jyg ENDIF !jyg ENDDO !jyg ENDDO !jyg c cc IF (if_ebil.ge.2) THEN cc ztit='after convect' cc CALL diagetpq(paire,ztit,ip_ebil,2,2,dtime cc e , t1,q1,ql,qs,u,v,paprs,pplay cc s , d_h_vcol, d_qt, d_qw, d_ql, d_qs, d_ec) cc call diagphy(paire,ztit,ip_ebil cc e , zero_v, zero_v, zero_v, zero_v, zero_v cc e , zero_v, rain, zero_v, ztsol cc e , d_h_vcol, d_qt, d_ec cc s , fs_bound, fq_bound ) cc END IF C c c les traceurs ne sont pas mis dans cette version de convect4: if (iflag_con.eq.4) then DO itra = 1,ntra DO k = 1, klev DO i = 1, klon d_tra(i,k,itra) = 0. ENDDO ENDDO ENDDO endif c print*, 'concvl->: dd_t,dd_q ',dd_t(1,1),dd_q(1,1) DO k = 1, klev DO i = 1, klon dtvpdt1(i,k) = 0. dtvpdq1(i,k) = 0. ENDDO ENDDO DO i = 1, klon dplcldt(i) = 0. dplcldr(i) = 0. ENDDO c if(prt_level.GE.20) THEN DO k=1,klev ! print*,'physiq apres_add_con i k it d_u d_v d_t d_q qdl0',igout ! .,k,itap,d_u_con(igout,k) ,d_v_con(igout,k), d_t_con(igout,k), ! .d_q_con(igout,k),dql0(igout,k) ! print*,'phys apres_add_con itap Ma cin ALE ALP wak t q undi t q' ! .,itap,Ma(igout,k),cin(igout),ALE(igout), ALP(igout), ! . t_wake(igout,k),q_wake(igout,k),t_undi(igout,k),q_undi(igout,k) ! print*,'phy apres_add_con itap CON rain snow EMA wk1 wk2 Vpp mip' ! .,itap,rain_con(igout),snow_con(igout),ema_work1(igout,k), ! .ema_work2(igout,k),Vprecip(igout,k), mip(igout,k) ! print*,'phy apres_add_con itap upwd dnwd dnwd0 cape tvp Tconv ' ! .,itap,upwd(igout,k),dnwd(igout,k),dnwd0(igout,k),cape(igout), ! .tvp(igout,k),Tconv(igout,k) ! print*,'phy apres_add_con itap dtvpdt dtvdq dplcl dplcldr qcondc' ! .,itap,dtvpdt1(igout,k),dtvpdq1(igout,k),dplcldt(igout), ! .dplcldr(igout),qcondc(igout,k) ! print*,'phy apres_add_con itap wd pmflxr Kpmflxr Kp1 Kpmflxs Kp1' ! .,itap,wd(igout),pmflxr(igout,k),pmflxr(igout,k+1),pmflxs(igout,k) ! .,pmflxs(igout,k+1) ! print*,'phy apres_add_con itap da phi mp ftd fqd lalim wgth', ! .itap,da(igout,k),phi(igout,k,k),mp(igout,k),ftd(igout,k), ! . fqd(igout,k),lalim_conv(igout),wght_th(igout,k) ENDDO endif !(prt_level.EQ.20) THEN c RETURN END