Changeset 2986 for LMDZ5/trunk
- Timestamp:
- Sep 15, 2017, 3:28:36 PM (7 years ago)
- File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
LMDZ5/trunk/DefLists/CMIP6_ping_atmos.xml
r2985 r2986 1 1 <!-- $Id$ --> 2 <!-- Ping files generated by dr2xml 0.1 2 using Data Request 01.00.11-->2 <!-- Ping files generated by dr2xml 0.18 using Data Request 01.00.15 --> 3 3 <!-- lrealms= ['atmos'] --> 4 4 <!-- exact= False --> 5 <!-- listof_home_vars : None 6 tierMax : 3 7 max_priority : 3 8 mips : set(['CORDEX', 'GMMIP', 'RFMIP', 'AerChemMIP', 'CMIP6', 'OMIP', 'GeoMIP', 'C4MIP', 'PDRMIP', 'DCPP', 'DECK', 'LUMIP', 'CMIP5', 'CFMIP', 'ScenarioMIP', 'DAMIP', 'CCMI', 'SolarMIP', 'VIACSAB', 'SIMIP', 'CMIP', 'ISMIP6', 'VolMIP', 'PMIP', 'FAFMIP', 'HighResMIP', 'LS3MIP', 'SPECS', 'DynVar']) 9 excluded_vars : [] 10 realms_per_context : {'lmdz': ['atmos', 'atmos land'], 'nemo': ['seaIce', 'ocean', 'ocean seaIce', 'ocnBgchem', 'seaIce ocean'], 'orchidee': ['land', 'landIce land', 'land landIce', 'landIce']} 11 path_extra_tables : None 12 excluded_vars_file : None 13 ping_variables_prefix : CMIP6_ 14 path_special_defs : None 15 orphan_variables : {} 16 --> 17 5 18 <context id="atmos"> 6 19 <field_definition> 7 20 <!-- for variables which realm equals one of _atmos--> 8 <field id="CMIP6_H2p" field_ref="dummy_XY" /> <!-- P1 () H2p: Roche - LSCE -->9 <field id="CMIP6_H2s" field_ref="dummy_XY" /> <!-- P1 () H2s: Roche - LSCE -->10 <field id="CMIP6_H2wv" field_ref="dummy_XYA" /> <!-- P1 () H2wv: Roche - LSCE -->11 <field id="CMIP6_O17p" field_ref="dummy_XY" /> <!-- P1 () O17p: Roche - LSCE -->12 <field id="CMIP6_O17s" field_ref="dummy_XY" /> <!-- P1 () O17s: Roche - LSCE -->13 <field id="CMIP6_O17wv" field_ref="dummy_XYA" /> <!-- P1 () O17wv: Roche - LSCE -->14 <field id="CMIP6_O18p" field_ref="dummy_XY" /> <!-- P1 () O18p: Roche - LSCE -->15 <field id="CMIP6_O18s" field_ref="dummy_XY" /> <!-- P1 () O18s: Roche - LSCE -->16 <field id="CMIP6_O18wv" field_ref="dummy_XYA" /> <!-- P1 () O18wv: Roche - LSCE -->17 <field id="CMIP6_aerasymbnd" field_ref="dummy_XYA" /> <!-- P1 (1) aerasymbnd: Aerosol level asymmetry parameter for each band -->21 <field id="CMIP6_H2p" field_ref="dummy_XY" /> <!-- P1 () missing : Roche - LSCE --> 22 <field id="CMIP6_H2s" field_ref="dummy_XY" /> <!-- P1 () missing : Roche - LSCE --> 23 <field id="CMIP6_H2wv" field_ref="dummy_XYA" /> <!-- P1 () missing : Roche - LSCE --> 24 <field id="CMIP6_O17p" field_ref="dummy_XY" /> <!-- P1 () missing : Roche - LSCE --> 25 <field id="CMIP6_O17s" field_ref="dummy_XY" /> <!-- P1 () missing : Roche - LSCE --> 26 <field id="CMIP6_O17wv" field_ref="dummy_XYA" /> <!-- P1 () missing : Roche - LSCE --> 27 <field id="CMIP6_O18p" field_ref="dummy_XY" /> <!-- P1 () missing : Roche - LSCE --> 28 <field id="CMIP6_O18s" field_ref="dummy_XY" /> <!-- P1 () missing : Roche - LSCE --> 29 <field id="CMIP6_O18wv" field_ref="dummy_XYA" /> <!-- P1 () missing : Roche - LSCE --> 30 <field id="CMIP6_aerasymbnd" field_ref="dummy_XYA" /> <!-- P1 (1) band_aerosol_asymmetry_parameter : Aerosol level asymmetry parameter for each band --> 18 31 <field id="CMIP6_aeroptbnd" field_ref="dummy_XYA" /> <!-- P1 (1) atmosphere_absorption_optical_thickness_due_to_ambient_aerosol_particles : Aerosol level extinction optical depth for each band --> 19 32 <field id="CMIP6_aerssabnd" field_ref="dummy_XYA" /> <!-- P1 (1) single_scattering_albedo_in_air_due_to_ambient_aerosol_particles : Aerosol level single-scattering albedo for each band --> 20 <field id="CMIP6_albdiffbnd" field_ref="dummy_XY" /> <!-- P1 (1.0) albdiffbnd: Diffuse surface albedo for each band -->21 <field id="CMIP6_albdirbnd" field_ref="dummy_XY" /> <!-- P1 (1.0) albdirbnd: Direct surface albedo for each band -->33 <field id="CMIP6_albdiffbnd" field_ref="dummy_XY" /> <!-- P1 (1.0) band_diffuse_albedo : Diffuse surface albedo for each band --> 34 <field id="CMIP6_albdirbnd" field_ref="dummy_XY" /> <!-- P1 (1.0) band_direct_albedo : Direct surface albedo for each band --> 22 35 <field id="CMIP6_albisccp" field_ref="albisccp" /> <!-- P1 (1.0) cloud_albedo : ISCCP Mean Cloud Albedo. Time-means are weighted by the ISCCP Total Cloud Fraction {:cltisccp} - see http://cfmip.metoffice.com/COSP.html --> 23 <field id="CMIP6_aod550volso4" field_ref="dummy_XY" /> <!-- P1 (1e-09) a od550volso4: aerosol optical depth at 550 nm due to stratospheric volcanic aerosols -->36 <field id="CMIP6_aod550volso4" field_ref="dummy_XY" /> <!-- P1 (1e-09) aerosol_optical_depth_due_to_stratospheric_volcanic_aerosols : aerosol optical depth at 550 nm due to stratospheric volcanic aerosols --> 24 37 <field id="CMIP6_areacella" field_ref="aire" /> <!-- P1 (m2) cell_area : For atmospheres with more than 1 mesh (e.g., staggered grids), report areas that apply to surface vertical fluxes of energy. --> 25 38 <field id="CMIP6_ccb" field_ref="pbase" /> <!-- P1 (Pa) air_pressure_at_convective_cloud_base : Where convective cloud is present in the grid cell, the instantaneous cloud base altitude should be that of the bottom of the lowest level containing convective cloud. Missing data should be reported in the absence of convective cloud. The time mean should be calculated from these quantities averaging over occasions when convective cloud is present only, and should contain missing data for occasions when no convective cloud is present during the meaning period. --> 26 <field id="CMIP6_ccldncl" field_ref="dummy_XY" /> <!-- P1 (m-3) ccldncl: Droplets are liquid only. Report concentration 'as seen from space' over convective liquid cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, it is better to sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean. -->39 <field id="CMIP6_ccldncl" field_ref="dummy_XY" /> <!-- P1 (m-3) number_concentration_of_convective_cloud_liquid_water_particles_in_air_at_liquid_water_cloud_top : Droplets are liquid only. Report concentration 'as seen from space' over convective liquid cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, it is better to sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean. --> 27 40 <field id="CMIP6_cct" field_ref="ptop" /> <!-- P1 (Pa) air_pressure_at_convective_cloud_top : Where convective cloud is present in the grid cell, the instantaneous cloud top altitude should be that of the top of the highest level containing convective cloud. Missing data should be reported in the absence of convective cloud. The time mean should be calculated from these quantities averaging over occasions when convective cloud is present only, and should contain missing data for occasions when no convective cloud is present during the meaning period. --> 28 41 <field id="CMIP6_cfadDbze94" field_ref="cfadDbze94" /> <!-- P1 (1.0) histogram_of_equivalent_reflectivity_factor_over_height_above_reference_ellipsoid : CFAD (Cloud Frequency Altitude Diagrams) are frequency distributions of radar reflectivity (or lidar scattering ratio) as a function of altitude. The variable cfadDbze94 is defined as the simulated relative frequency of occurrence of radar reflectivity in sampling volumes defined by altitude bins. The radar is observing at a frequency of 94GHz. --> 29 42 <field id="CMIP6_cfadLidarsr532" field_ref="cfad_lidarsr532" /> <!-- P1 (1.0) histogram_of_backscattering_ratio_over_height_above_reference_ellipsoid : CFAD (Cloud Frequency Altitude Diagrams) are frequency distributions of radar reflectivity (or lidar scattering ratio) as a function of altitude. The variable cfadLidarsr532 is defined as the simulated relative frequency of lidar scattering ratio in sampling volumes defined by altitude bins. The lidar is observing at a wavelength of 532nm. --> 30 <field field_ref="dummy_na" id="CMIP6_cfc113global"/> <!-- P1 (1e-12) mole_fraction_of_cfc113_in_air : unset -->31 <field field_ref="dummy_na" id="CMIP6_cfc11global"/> <!-- P1 (1e-12) mole_fraction_of_cfc11_in_air : unset -->32 <field field_ref="dummy_na" id="CMIP6_cfc12global" /><!-- P1 (1e-12) mole_fraction_of_cfc12_in_air : unset -->43 <field id="CMIP6_cfc113global" field_ref="dummy_0d" /> <!-- P1 (1e-12) mole_fraction_of_cfc113_in_air : unset --> 44 <field id="CMIP6_cfc11global" field_ref="dummy_0d" /> <!-- P1 (1e-12) mole_fraction_of_cfc11_in_air : unset --> 45 <field id="CMIP6_cfc12global" field_ref="dummy_0d" /> <!-- P1 (1e-12) mole_fraction_of_cfc12_in_air : unset --> 33 46 <field id="CMIP6_ch4" field_ref="dummy_XYA" /> <!-- P1 (mol mol-1) mole_fraction_of_methane_in_air : CH4 volume mixing ratio --> 34 <field id="CMIP6_ch4Clim" field_ref="dummy_XYA" /> <!-- P1 (mol mol-1) mole_fraction_of_methane_in_air : CH4 volume mixing ratio --> 35 <field field_ref="dummy_na" id="CMIP6_ch4global" /> <!-- P1 (1e-09) mole_fraction_of_methane_in_air : Global Mean Mole Fraction of CH4 --> 36 <field id="CMIP6_ch4globalClim" field_ref="dummy_0d" /> <!-- P1 (1e-09) mole_fraction_of_methane_in_air : Global Mean Mole Fraction of CH4 --> 47 <field id="CMIP6_ch4global" field_ref="dummy_0d" /> <!-- P1 (1e-09) mole_fraction_of_methane_in_air : Global Mean Mole Fraction of CH4 --> 37 48 <field id="CMIP6_ci" field_ref="ftime_con" /> <!-- P1 (1.0) convection_time_fraction : Fraction of time that convection occurs in the grid cell. --> 38 49 <field id="CMIP6_cl" field_ref="rneb" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover, including both large-scale and convective cloud. --> 39 <field id="CMIP6_clayfrac" field_ref="dummy_XYSo" /> <!-- P1 (1.0) clayfrac : Clay Fraction -->40 50 <field id="CMIP6_clc" field_ref="rnebcon" /> <!-- P1 (%) convective_cloud_area_fraction_in_atmosphere_layer : Include only convective cloud. --> 41 51 <field id="CMIP6_clcalipso" field_ref="clcalipso" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover at CALIPSO standard heights. --> 42 52 <field id="CMIP6_clcalipso2" field_ref="clcalipso2" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Clouds detected by CALIPSO but below the detectability threshold of CloudSat --> 43 53 <field id="CMIP6_clcalipsoice" field_ref="clcalipsoice" /> <!-- P1 (%) ice_cloud_area_fraction_in_atmosphere_layer : CALIPSO ice cloud Fraction --> 44 <field id="CMIP6_clcalipsoliq" field_ref="clcalipsoice" /> <!-- P1 (%) clcalipsoliq: CALIPSO liquid cloud Fraction -->45 <field id="CMIP6_cldicemxrat 27"field_ref="dummy_XYA" /> <!-- P3 (1.0) cloud_ice_mixing_ratio : Cloud ice mixing ratio -->54 <field id="CMIP6_clcalipsoliq" field_ref="clcalipsoice" /> <!-- P1 (%) liquid_cloud_area_fraction_in_atmosphere_layer : CALIPSO liquid cloud Fraction --> 55 <field id="CMIP6_cldicemxrat" field_ref="dummy_XYA" /> <!-- P3 (1.0) cloud_ice_mixing_ratio : Cloud ice mixing ratio --> 46 56 <field id="CMIP6_cldnci" field_ref="dummy_XY" /> <!-- P1 (m-3) number_concentration_of_ice_crystals_in_air_at_ice_cloud_top : Concentration 'as seen from space' over ice-cloud portion of grid cell. This is the value from uppermost model layer with ice cloud or, if available, it is the sum over all ice cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total ice cloud top fraction (as seen from TOA) of each time sample when computing monthly mean. --> 47 57 <field id="CMIP6_cldncl" field_ref="dummy_XY" /> <!-- P1 (m-3) number_concentration_of_cloud_liquid_water_particles_in_air_at_liquid_water_cloud_top : Droplets are liquid only. Report concentration 'as seen from space' over liquid cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, it is better to sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean. --> 48 58 <field id="CMIP6_cldnvi" field_ref="dummy_XY" /> <!-- P1 (m-2) atmosphere_number_content_of_cloud_droplets : Droplets are liquid only. Values are weighted by liquid cloud fraction in each layer when vertically integrating, and for monthly means the samples are weighted by total liquid cloud fraction (as seen from TOA). --> 49 <field id="CMIP6_cldwatmxrat 27"field_ref="dummy_XYA" /> <!-- P2 (1.0) cloud_liquid_water_mixing_ratio : Cloud water mixing ratio -->59 <field id="CMIP6_cldwatmxrat" field_ref="dummy_XYA" /> <!-- P2 (1.0) cloud_liquid_water_mixing_ratio : Cloud water mixing ratio --> 50 60 <field id="CMIP6_clhcalipso" field_ref="clhcalipso" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in layer centred on 220hPa --> 51 61 <field id="CMIP6_cli" field_ref="iwcon" /> <!-- P1 (kg kg-1) mass_fraction_of_cloud_ice_in_air : Includes both large-scale and convective cloud. This is calculated as the mass of cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. It includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> … … 54 64 <field id="CMIP6_clis" field_ref="dummy_XYA" /> <!-- P2 (1.0) mass_fraction_of_stratiform_cloud_ice_in_air : Calculated as the mass of stratiform cloud ice in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 55 65 <field id="CMIP6_clisccp" field_ref="clisccp2" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in optical depth categories. --> 56 <field id="CMIP6_clivi" field_ref="iwp" /> <!-- P 2(kg m-2) atmosphere_cloud_ice_content : mass of ice water in the column divided by the area of the column (not just the area of the cloudy portion of the column). Includes precipitating frozen hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model. -->57 <field id="CMIP6_clivic" field_ref="dummy_XY" /> <!-- P1 (kg m-2) clivic: calculate mass of convective ice water in the column divided by the area of the column (not just the area of the cloudy portion of the column). This includes precipitating frozen hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. -->66 <field id="CMIP6_clivi" field_ref="iwp" /> <!-- P1 (kg m-2) atmosphere_cloud_ice_content : mass of ice water in the column divided by the area of the column (not just the area of the cloudy portion of the column). Includes precipitating frozen hydrometeors ONLY if the precipitating hydrometeor affects the calculation of radiative transfer in model. --> 67 <field id="CMIP6_clivic" field_ref="dummy_XY" /> <!-- P1 (kg m-2) atmosphere_convective_cloud_ice_content : calculate mass of convective ice water in the column divided by the area of the column (not just the area of the cloudy portion of the column). This includes precipitating frozen hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 58 68 <field id="CMIP6_cllcalipso" field_ref="cllcalipso" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in layer centred on 840hPa --> 59 69 <field id="CMIP6_clmcalipso" field_ref="clmcalipso" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : Percentage cloud cover in layer centred on 560hPa --> … … 66 76 <field id="CMIP6_clw" field_ref="lwcon" /> <!-- P1 (kg kg-1) mass_fraction_of_cloud_liquid_water_in_air : Includes both large-scale and convective cloud. Calculate as the mass of cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cells. Precipitating hydrometeors are included ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 67 77 <field id="CMIP6_clwc" field_ref="lcc3dcon" /> <!-- P2 (1.0) mass_fraction_of_convective_cloud_liquid_water_in_air : Calculated as the mass of convective cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 68 <field id="CMIP6_clwmodis" field_ref="clwmodis" /> <!-- P1 (%) clwmodis: MODIS Liquid Cloud Fraction -->78 <field id="CMIP6_clwmodis" field_ref="clwmodis" /> <!-- P1 (%) liquid_water_cloud_area_fraction : MODIS Liquid Cloud Fraction --> 69 79 <field id="CMIP6_clws" field_ref="lcc3dstra" /> <!-- P2 (1.0) mass_fraction_of_stratiform_cloud_liquid_water_in_air : Calculated as the mass of stratiform cloud liquid water in the grid cell divided by the mass of air (including the water in all phases) in the grid cell. This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 70 80 <field id="CMIP6_clwvi" field_ref="lwp" /> <!-- P1 (kg m-2) atmosphere_cloud_condensed_water_content : Mass of condensed (liquid + ice) water in the column divided by the area of the column (not just the area of the cloudy portion of the column). Includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 71 81 <field id="CMIP6_clwvic" field_ref="dummy_XY" /> <!-- P1 (kg m-2) atmosphere_convective_cloud_condensed_water_content : calculate mass of convective condensed (liquid + ice) water in the column divided by the area of the column (not just the area of the cloudy portion of the column). This includes precipitating hydrometeors ONLY if the precipitating hydrometeors affect the calculation of radiative transfer in model. --> 72 82 <field id="CMIP6_co2" field_ref="dummy_XYA" /> <!-- P1 (mol mol-1) mole_fraction_of_carbon_dioxide_in_air : CO2 volume mixing ratio --> 73 <field id="CMIP6_co23D" field_ref="dummy_XYA" /> <!-- P2 (kg kg-1) co23D : report 3D field of model simulated atmospheric CO2 mass mixing ration on model levels --> 74 <field id="CMIP6_co2Clim" field_ref="dummy_XYA" /> <!-- P1 (mol mol-1) mole_fraction_of_carbon_dioxide_in_air : CO2 volume mixing ratio --> 75 <field field_ref="dummy_na" id="CMIP6_co2mass" /> <!-- P1 (kg) atmosphere_mass_of_carbon_dioxide : Total atmospheric mass of Carbon Dioxide --> 76 <field id="CMIP6_co2massClim" field_ref="dummy_0d" /> <!-- P1 (kg) atmosphere_mass_of_carbon_dioxide : Total atmospheric mass of Carbon Dioxide --> 83 <field id="CMIP6_co23D" field_ref="dummy_XYA" /> <!-- P2 (kg kg-1) CO2_3D_tracer : report 3D field of model simulated atmospheric CO2 mass mixing ration on model levels --> 84 <field id="CMIP6_co2mass" field_ref="dummy_0d" /> <!-- P1 (kg) atmosphere_mass_of_carbon_dioxide : Total atmospheric mass of Carbon Dioxide --> 77 85 <field id="CMIP6_co2s" field_ref="dummy_XY" /> <!-- P2 (1e-06) mole_fraction_of_carbon_dioxide_in_air : As co2, but only at the surface --> 78 <field id="CMIP6_co2totalmass" field_ref="dummy_0d" /> <!-- P1 (kg) co2totalmass : globally integrated mass of carbon as CO2 in atmsophere. Report as a single number for all emissions-driven runs -->86 <field id="CMIP6_co2totalmass" field_ref="dummy_0d" /> <!-- P1 (kg) CO2_total_mass_in_atmos : globally integrated mass of carbon as CO2 in atmosphere. Report as a single number for all emissions-driven runs --> 79 87 <field id="CMIP6_columnmassflux" field_ref="dummy_XY" /> <!-- P2 (kg m-2 s-1) atmosphere_net_upward_convective_mass_flux : Column integral of (mcu-mcd) --> 80 88 <field id="CMIP6_conccmcn" field_ref="dummy_XYA" /> <!-- P1 (m-3) number_concentration_of_coarse_mode_ambient_aerosol_in_air : includes all particles with diameter larger than 1 micron --> … … 82 90 <field id="CMIP6_concdust" field_ref="dummy_XYA" /> <!-- P1 (kg m-3) mass_concentration_of_dust_dry_aerosol_in_air : unset --> 83 91 <field id="CMIP6_concnmcn" field_ref="dummy_XYA" /> <!-- P1 (m-3) number_concentration_of_nucleation_mode_ambient_aerosol_in_air : includes all particles with diameter smaller than 3 nm --> 84 <field id="CMIP6_depdust" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) depdust : Balkanski - LSCE --> 85 <field id="CMIP6_diabdrag" field_ref="dummy_XYA" /> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_numerical_artefacts : Other sub-grid scale/numerical zonal drag excluding that already provided for the parameterized orographic and non-ororgraphic gravity waves. This would be used to calculate the total 'diabatic drag'. Contributions to this additional drag such Rayleigh friction and diffusion that can be calculated from the monthly mean wind fields should not be included, but details (e.g. coefficients) of the friction and/or diffusion used in the model should be provided separately. --> 92 <field id="CMIP6_demc" field_ref="dummy_XYA" /> <!-- P2 (1.0) convective_cloud_longwave_emissivity : This is the in-cloud emissivity obtained by considering only the cloudy portion of the grid cell. --> 93 <field id="CMIP6_dems" field_ref="dummy_XYA" /> <!-- P2 (1.0) stratiform_cloud_longwave_emissivity : This is the in-cloud emissivity obtained by considering only the cloudy portion of the grid cell. --> 94 <field id="CMIP6_depdust" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) tendency_of_atmosphere_mass_content_of_dust_dry_aerosol_particles_due_to_total_deposition : Balkanski - LSCE --> 95 <field id="CMIP6_diabdrag" field_ref="dummy_XYA" /> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_numerical_artefacts : Other sub-grid scale/numerical zonal drag excluding that already provided for the parameterized orographic and non-orographic gravity waves. This would be used to calculate the total 'diabatic drag'. Contributions to this additional drag such Rayleigh friction and diffusion that can be calculated from the monthly mean wind fields should not be included, but details (e.g. coefficients) of the friction and/or diffusion used in the model should be provided separately. --> 86 96 <field id="CMIP6_dmc" field_ref="upwd" /> <!-- P2 (kg m-2 s-1) atmosphere_net_upward_deep_convective_mass_flux : The net mass flux represents the difference between the updraft and downdraft components. This is calculated as the convective mass flux divided by the area of the whole grid cell (not just the area of the cloud). --> 87 97 <field id="CMIP6_dtauc" field_ref="dummy_XYA" /> <!-- P3 (1.0) atmosphere_optical_thickness_due_to_convective_cloud : This is the in-cloud optical depth obtained by considering only the cloudy portion of the grid cell --> 88 98 <field id="CMIP6_dtaus" field_ref="dummy_XYA" /> <!-- P3 (1.0) atmosphere_optical_thickness_due_to_stratiform_cloud : This is the in-cloud optical depth obtained by considering only the cloudy portion of the grid cell. --> 89 99 <field id="CMIP6_edt" field_ref="Kz" /> <!-- P1 (m2 s-1) atmosphere_heat_diffusivity : Vertical diffusion coefficient for temperature due to parametrised eddies --> 90 <field id="CMIP6_epfy" field_ref="dummy_ lat-P"/> <!-- P1 (m3 s-2) northward_eliassen_palm_flux_in_air : Transformed Eulerian Mean Diagnostics Meridional component Fy of Eliassen-Palm (EP) flux (Fy, Fz) derived from 6hr or higher frequency fields (use daily fields or 12 hr fields if the 6 hr are not available). Please use the definitions given by equation 3.5.3a of Andrews, Holton and Leovy text book, but scaled by density to have units m3 s-2. -->91 <field id="CMIP6_epfz" field_ref="dummy_ lat-P"/> <!-- P1 (m3 s-2) upward_eliassen_palm_flux_in_air : Transformed Eulerian Mean Diagnostics Meridional component Fz of the Eliassen-Palm (EP) flux (Fy, Fz) derived from 6hr or higher frequency fields (use daily fields or 12 hr fields if the 6 hr are not available). Please use the definitions given by equation 3.5.3b of Andrews, Holton and Leovy text book, but scaled by density to have units m3 s-2. -->100 <field id="CMIP6_epfy" field_ref="dummy_XYA" /> <!-- P1 (m3 s-2) northward_eliassen_palm_flux_in_air : Transformed Eulerian Mean Diagnostics Meridional component Fy of Eliassen-Palm (EP) flux (Fy, Fz) derived from 6hr or higher frequency fields (use daily fields or 12 hr fields if the 6 hr are not available). Please use the definitions given by equation 3.5.3a of Andrews, Holton and Leovy text book, but scaled by density to have units m3 s-2. --> 101 <field id="CMIP6_epfz" field_ref="dummy_XYA" /> <!-- P1 (m3 s-2) upward_eliassen_palm_flux_in_air : Transformed Eulerian Mean Diagnostics Meridional component Fz of the Eliassen-Palm (EP) flux (Fy, Fz) derived from 6hr or higher frequency fields (use daily fields or 12 hr fields if the 6 hr are not available). Please use the definitions given by equation 3.5.3b of Andrews, Holton and Leovy text book, but scaled by density to have units m3 s-2. --> 92 102 <field id="CMIP6_evspsbl" field_ref="evap" /> <!-- P1 (kg m-2 s-1) water_evaporation_flux : Evaporation at surface: flux of water into the atmosphere due to conversion of both liquid and solid phases to vapor (from underlying surface and vegetation) --> 93 103 <field id="CMIP6_evu" field_ref="evu" /> <!-- P1 (m2 s-1) atmosphere_momentum_diffusivity : Vertical diffusion coefficient for momentum due to parametrised eddies --> … … 95 105 <field id="CMIP6_fco2fos" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) tendency_of_atmosphere_mass_content_of_carbon_dioxide_expressed_as_carbon_due_to_emission_from_fossil_fuel_combustion : This is the prescribed anthropogenic CO2 flux from fossil fuel use, including cement production, and flaring (but not from land-use changes, agricultural burning, forest regrowth, etc.) --> 96 106 <field id="CMIP6_fco2nat" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) surface_upward_mass_flux_of_carbon_dioxide_expressed_as_carbon_due_to_emission_from_natural_sources : This is what the atmosphere sees (on its own grid). This field should be equivalent to the combined natural fluxes of carbon that account for natural exchanges between the atmosphere and land (nep) or ocean (fgco2) reservoirs. --> 97 <field id="CMIP6_grplmxrat27" field_ref="dummy_XYA" /> <!-- P3 (1.0) mass_fraction_of_graupel_in_air : Graupel mixing ratio --> 98 <field field_ref="dummy_na" id="CMIP6_hcfc22global" /> <!-- P1 (1e-12) mole_fraction_of_hcfc22_in_air : unset --> 107 <field id="CMIP6_grpllsprof" field_ref="dummy_XYA" /> <!-- P2 (kg m-2 s-1) large_scale_graupel_flux : unset --> 108 <field id="CMIP6_grplmxrat" field_ref="dummy_XYA" /> <!-- P2 (1.0) mass_fraction_of_graupel_in_air : Graupel mixing ratio --> 109 <field id="CMIP6_h2o" field_ref="dummy_XYA" /> <!-- P2 (1.0) mass_fraction_of_water_in_air : includes all phases of water --> 110 <field id="CMIP6_hcfc22global" field_ref="dummy_0d" /> <!-- P1 (1e-12) mole_fraction_of_hcfc22_in_air : unset --> 99 111 <field id="CMIP6_hfdsl" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_downward_heat_flux_in_air : Downward Heat Flux at Land Surface --> 100 <field id="CMIP6_hfdsnb" field_ref="dummy_XY" /> <!-- P1 (W m-2) hfdsnb: Heat flux from snow into the ice or land under the snow. -->112 <field id="CMIP6_hfdsnb" field_ref="dummy_XY" /> <!-- P1 (W m-2) missing : Heat flux from snow into the ice or land under the snow. --> 101 113 <field id="CMIP6_hfls" field_ref="flat" /> <!-- P1 (W m-2) surface_upward_latent_heat_flux : Surface Upward Latent Heat Flux --> 102 <field id="CMIP6_hfls_land" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_upward_latent_heat_flux : Surface Upward Latent Heat Flux -->103 114 <field id="CMIP6_hfmlt" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_snow_and_ice_melt_heat_flux : Energy consumed or released during liquid/solid phase changes. --> 104 <field id="CMIP6_hfrs" field_ref="dummy_XY" /> <!-- P1 (W m-2) hfrs: Heat transferred to a snow cover by rain.. -->105 <field id="CMIP6_hfsbl" field_ref="dummy_XY" /> <!-- P1 (W m-2) hfsbl: Energy consumed or released during vapor/solid phase changes. -->115 <field id="CMIP6_hfrs" field_ref="dummy_XY" /> <!-- P1 (W m-2) temperature_flux_due_to_rainfall_expressed_as_heat_flux_onto_snow_and_ice : Heat transferred to a snow cover by rain.. --> 116 <field id="CMIP6_hfsbl" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_snow_and_ice_sublimation_heat_flux : Energy consumed or released during vapor/solid phase changes. --> 106 117 <field id="CMIP6_hfss" field_ref="sens" /> <!-- P1 (W m-2) surface_upward_sensible_heat_flux : Surface Upward Sensible Heat Flux --> 107 <field id="CMIP6_hfss_land" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_upward_sensible_heat_flux : Surface Upward Sensible Heat Flux -->108 118 <field id="CMIP6_hur" field_ref="hur" /> <!-- P1 (%) relative_humidity : The relative humidity with respect to liquid water for T> 0 C, and with respect to ice for T<0 C. --> 109 119 <field id="CMIP6_hurs" field_ref="rh2m" /> <!-- P1 (%) relative_humidity : The relative humidity with respect to liquid water for T> 0 C, and with respect to ice for T<0 C. --> 110 <field field_ref="CMIP6_hurs" freq_op="1d" id="CMIP6_hursmax"operation="maximum"> @this </field> <!-- P1 (%) relative_humidity : Daily Maximum Near-Surface Relative Humidity -->120 <field id="CMIP6_hursmax" field_ref="CMIP6_hurs" freq_op="1d" operation="maximum"> @this </field> <!-- P1 (%) relative_humidity : Daily Maximum Near-Surface Relative Humidity --> 111 121 <field id="CMIP6_hursmin" field_ref="dummy_XY" /> <!-- P1 (%) relative_humidity : Daily Minimum Near-Surface Relative Humidity --> 112 122 <field id="CMIP6_hursminCrop" field_ref="dummy_XY" /> <!-- P1 (%) relative_humidity : minimum near-surface (usually, 2 meter) relative humidity (add cell_method attribute "time: min") --> 113 123 <field id="CMIP6_hus" field_ref="hus" /> <!-- P1 (1.0) specific_humidity : Specific Humidity --> 114 <field id="CMIP6_hus27" field_ref="dummy_XYA" /> <!-- P2 (1.0) specific_humidity : Specific Humidity -->115 <field id="CMIP6_hus4" field_ref="dummy_XYA" /> <!-- P1 (1.0) specific_humidity : Specific Humidity -->116 <field id="CMIP6_hus7h" field_ref="dummy_XYA" /> <!-- P2 (1.0) specific_humidity : Specific Humidity -->117 <field field_ref="CMIP6_hus" grid_ref="CMIP6_p850" id="CMIP6_hus850" /> <!-- P1 (1.0) specific_humidity : unset -->118 124 <field id="CMIP6_huss" field_ref="q2m" /> <!-- P1 (1.0) specific_humidity : Near-surface (usually, 2 meter) specific humidity. --> 119 <field field_ref="dummy_na" id="CMIP6_iareafl"/> <!-- P3 (m2) floating_ice_shelf_area : Total area of the floating ice shelves (the component of ice sheet that flows over ocean) -->120 <field field_ref="dummy_na" id="CMIP6_iareagr"/> <!-- P3 (m2) grounded_ice_sheet_area : Total area of the grounded ice sheets (the component of ice sheet resting over bedrock) -->121 <field id="CMIP6_intuadse" field_ref="dummy_XY" /> <!-- P1 (1.e6 J m-1 s-1) intuadse : Used in PMIP2-->122 <field id="CMIP6_intuaw" field_ref="dummy_XY" /> <!-- P1 (kg m-1 s-1) intuaw: Used in PMIP2 -->123 <field id="CMIP6_intvadse" field_ref="dummy_XY" /> <!-- P1 (1.e6 J m-1 s-1) intvadse: Used in PMIP2 -->124 <field id="CMIP6_intvaw" field_ref="dummy_XY" /> <!-- P1 (kg m-1 s-1) intvaw: Used in PMIP2 -->125 <field id="CMIP6_jo2" field_ref="dummy_ lat-P" /> <!-- P1 (s-1) jo2 : rate of o2 -> o1d+o-->126 <field id="CMIP6_jo3" field_ref="dummy_ lat-P" /> <!-- P1 (s-1) jo3: sum of rates o3 -> o1d+o2 and o3 -> o+o2 -->125 <field id="CMIP6_iareafl" field_ref="dummy_0d" /> <!-- P3 (m2) floating_ice_shelf_area : Total area of the floating ice shelves (the component of ice sheet that flows over ocean) --> 126 <field id="CMIP6_iareagr" field_ref="dummy_0d" /> <!-- P3 (m2) grounded_ice_sheet_area : Total area of the grounded ice sheets (the component of ice sheet resting over bedrock) --> 127 <field id="CMIP6_intuadse" field_ref="dummy_XY" /> <!-- P1 (1.e6 J m-1 s-1) vertical_integral_eastward_wind_by_dry_static_energy : Mass weighted vertical integral of the product of northward wind by dry static energy per unit mass: (cp.T +zg).u --> 128 <field id="CMIP6_intuaw" field_ref="dummy_XY" /> <!-- P1 (kg m-1 s-1) vertical_integral_eastward_wind_by_total_water : Used in PMIP2 --> 129 <field id="CMIP6_intvadse" field_ref="dummy_XY" /> <!-- P1 (1.e6 J m-1 s-1) vertical_integral_northward_wind_by_dry_static_energy : Used in PMIP2 --> 130 <field id="CMIP6_intvaw" field_ref="dummy_XY" /> <!-- P1 (kg m-1 s-1) vertical_integral_northward_wind_by_total_water : Used in PMIP2 --> 131 <field id="CMIP6_jo2" field_ref="dummy_XYA" /> <!-- P1 (s-1) photolysis_rate_of_molecular_oxygen : Rate of photolysis of molecular oxygen to atomic oxygen (o2 -> o1d+o) --> 132 <field id="CMIP6_jo3" field_ref="dummy_XYA" /> <!-- P1 (s-1) photolysis_rate_of_ozone : sum of rates o3 -> o1d+o2 and o3 -> o+o2 --> 127 133 <field id="CMIP6_jpdftaureicemodis" field_ref="crimodis" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : MODIS Optical Thickness-Particle Size joint distribution, ice --> 128 134 <field id="CMIP6_jpdftaureliqmodis" field_ref="crlmodis" /> <!-- P1 (%) cloud_area_fraction_in_atmosphere_layer : MODIS Optical Thickness-Particle Size joint distribution, liquid --> 129 135 <field id="CMIP6_latitude" field_ref="dummy_XY" /> <!-- P1 (degrees_north) latitude : latitude --> 130 <field field_ref="dummy_na" id="CMIP6_lim" /> <!-- P2 (kg) lim: The ice sheet mass is computed as the volume times density -->131 <field field_ref="dummy_na" id="CMIP6_limnsw" /> <!-- P2 (kg) limnsw: The ice sheet mass is computed as the volume above flotation times density. Changes in land_ice_mass_not_displacing_sea_water will always result in a change in sea level, unlike changes in land_ice_mass which may not result in sea level change (such as melting of the floating ice shelves, or portion of ice that sits on bedrock below sea level) -->136 <field id="CMIP6_lim" field_ref="dummy_0d" /> <!-- P2 (kg) land_ice_mass : The ice sheet mass is computed as the volume times density --> 137 <field id="CMIP6_limnsw" field_ref="dummy_0d" /> <!-- P2 (kg) land_ice_mass_not_displacing_sea_water : The ice sheet mass is computed as the volume above flotation times density. Changes in land_ice_mass_not_displacing_sea_water will always result in a change in sea level, unlike changes in land_ice_mass which may not result in sea level change (such as melting of the floating ice shelves, or portion of ice that sits on bedrock below sea level) --> 132 138 <field id="CMIP6_loadbc" field_ref="dummy_XY" /> <!-- P1 (kg m-2) atmosphere_mass_content_of_black_carbon_dry_aerosol : unset --> 133 139 <field id="CMIP6_loaddust" field_ref="dummy_XY" /> <!-- P1 (kg m-2) atmosphere_mass_content_of_dust_dry_aerosol : unset --> … … 139 145 <field id="CMIP6_loadsoa" field_ref="dummy_XY" /> <!-- P1 (kg m-2) atmosphere_mass_content_of_secondary_particulate_organic_matter_dry_aerosol : unset --> 140 146 <field id="CMIP6_loadss" field_ref="dummy_XY" /> <!-- P1 (kg m-2) atmosphere_mass_content_of_seasalt_dry_aerosol : unset --> 141 <field id="CMIP6_longitude" field_ref="dummy_XY" /> <!-- P1 (degrees_east) longitude : longitude -->142 <field id="CMIP6_lwsffluxaero" field_ref="dummy_XY" /> <!-- P2 (W m-2) l wsffluxaero: downwelling longwave flux due to volcanic aerosols at the surface to be diagnosed through double radiation call -->143 <field id="CMIP6_lwsrfasdust" field_ref="dummy_XY" /> <!-- P1 (W m-2) lwsrfasdust: Balkanski - LSCE -->144 <field id="CMIP6_lwsrfcsdust" field_ref="dummy_XY" /> <!-- P1 (W m-2) lwsrfcsdust: Balkanski - LSCE -->147 <field id="CMIP6_longitude" field_ref="dummy_XY" /> <!-- P1 (degrees_east) longitude : Longitude --> 148 <field id="CMIP6_lwsffluxaero" field_ref="dummy_XY" /> <!-- P2 (W m-2) longwave__flux__due_to_volcanic_aerosols_at_the_surface : downwelling longwave flux due to volcanic aerosols at the surface to be diagnosed through double radiation call --> 149 <field id="CMIP6_lwsrfasdust" field_ref="dummy_XY" /> <!-- P1 (W m-2) tendency_of_all_sky_surface_longwave_flux_to_dust_ambient_aerosol_particles : Balkanski - LSCE --> 150 <field id="CMIP6_lwsrfcsdust" field_ref="dummy_XY" /> <!-- P1 (W m-2) tendency_of_clear_sky_surface_longwave_flux_to_dust_ambient_aerosol_particles : Balkanski - LSCE --> 145 151 <field id="CMIP6_lwtoaasdust" field_ref="dummy_XY" /> <!-- P1 (W m-2) toa_instantaneous_longwave_forcing : proposed name: toa_instantaneous_longwave_forcing_due_to_dust_ambient_aerosol --> 146 <field id="CMIP6_lwtoacs" field_ref="dummy_XY" /> <!-- P1 (W m-2) lwtoacs : Balkanski - LSCE -->152 <field id="CMIP6_lwtoacs" field_ref="dummy_XY" /> <!-- P1 (W m-2) tendency_of_clear_sky_top_of_atmosphere_longwave_flux_to_dust_ambient_aerosol_particles___2D_field_radiative_properties : Balkanski - LSCE --> 147 153 <field id="CMIP6_lwtoacsaer" field_ref="dummy_XY" /> <!-- P1 (W m-2) toa_instantaneous_longwave_forcing : proposed name: toa_instantaneous_longwave_forcing_due_to_ambient_aerosol_assuming_clear_sky --> 148 <field id="CMIP6_lwtoafluxaerocs" field_ref="dummy_XY" /> <!-- P1 (W m-2) l wtoafluxaerocs: downwelling longwave flux due to volcanic aerosols at TOA under clear sky to be diagnosed through double radiation call -->154 <field id="CMIP6_lwtoafluxaerocs" field_ref="dummy_XY" /> <!-- P1 (W m-2) longwave_flux_due_to_volcanic_aerosols_at_TOA_under_clear_sky : downwelling longwave flux due to volcanic aerosols at TOA under clear sky to be diagnosed through double radiation call --> 149 155 <field id="CMIP6_mc" field_ref="mc" /> <!-- P3 (kg m-2 s-1) atmosphere_net_upward_convective_mass_flux : The net mass flux should represent the difference between the updraft and downdraft components. The flux is computed as the mass divided by the area of the grid cell. --> 150 156 <field id="CMIP6_mcd" field_ref="dummy_XYA" /> <!-- P2 (kg m-2 s-1) atmosphere_downdraft_convective_mass_flux : Calculated as the convective mass flux divided by the area of the whole grid cell (not just the area of the cloud). --> … … 154 160 <field id="CMIP6_mrroLi" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) land_ice_runoff_flux : Runoff flux over land ice is the difference between any available liquid water in the snowpack less any refreezing. Computed as the sum of rainfall and melt of snow or ice less any refreezing or water retained in the snowpack --> 155 161 <field id="CMIP6_n2o" field_ref="dummy_XYA" /> <!-- P1 (mol mol-1) mole_fraction_of_nitrous_oxide_in_air : N2O volume mixing ratio --> 156 <field id="CMIP6_n2oClim" field_ref="dummy_XYA" /> <!-- P1 (mol mol-1) mole_fraction_of_nitrous_oxide_in_air : N2O volume mixing ratio --> 157 <field field_ref="dummy_na" id="CMIP6_n2oglobal" /> <!-- P1 (1e-09) mole_fraction_of_nitrous_oxide_in_air : Global mean Nitrous Oxide (N2O) --> 158 <field id="CMIP6_n2oglobalClim" field_ref="dummy_0d" /> <!-- P1 (1e-09) mole_fraction_of_nitrous_oxide_in_air : Global mean Nitrous Oxide (N2O) --> 162 <field id="CMIP6_n2oglobal" field_ref="dummy_0d" /> <!-- P1 (1e-09) mole_fraction_of_nitrous_oxide_in_air : Global mean Nitrous Oxide (N2O) --> 159 163 <field id="CMIP6_o3" field_ref="dummy_XYA" /> <!-- P1 (mol mol-1) mole_fraction_of_ozone_in_air : Ozone volume mixing ratio --> 160 <field id="CMIP6_o3Clim" field_ref="dummy_XYA" /> <!-- P1 (mol mol-1) mole_fraction_of_ozone_in_air : Ozone volume mixing ratio -->161 164 <field id="CMIP6_od443dust" field_ref="dummy_XY" /> <!-- P1 (1.0) atmosphere_optical_thickness_due_to_dust_ambient_aerosol_particles : Balkanski - LSCE --> 162 <field id="CMIP6_od550aerso" field_ref="dummy_XY" /> <!-- P1 (1.0) od550aerso : Balkanski - LSCE --> 163 <field id="CMIP6_od550aerstrat" field_ref="dummy_XY" /> <!-- P1 (1.0) od550aerstrat : From tropopause to stratopause as defined by the model --> 164 <field id="CMIP6_od550so4so" field_ref="dummy_XY" /> <!-- P1 (1.0) od550so4so : Balkanski - LSCE --> 165 <field id="CMIP6_od550aerso" field_ref="dummy_XY" /> <!-- P1 (1.0) strat_aerosol_optical_depth : From tropopause to stratopause as defined by the model --> 166 <field id="CMIP6_od550so4so" field_ref="dummy_XY" /> <!-- P1 (1.0) missing : Balkanski - LSCE --> 165 167 <field id="CMIP6_od865dust" field_ref="dummy_XY" /> <!-- P1 (1.0) atmosphere_optical_thickness_due_to_dust_ambient_aerosol_particles : Balkanski - LSCE --> 166 <field id="CMIP6_parasolRefl" field_ref="parasol_refl" /> <!-- P1 (1.0) toa_bidirectional_reflectance : Simulated reflectance from PARASOL as seen at the top of the atmosphere for 5 solar zenith angles. Valid only over ocean and for one viewing direction (viewing zenith angle of 30 degrees and relative azimuth angle 320 degrees). -->167 168 <field id="CMIP6_parasolRefl_sea" field_ref="dummy_XY" /> <!-- P1 (1.0) toa_bidirectional_reflectance : Simulated reflectance from PARASOL as seen at the top of the atmosphere for 5 solar zenith angles. Valid only over ocean and for one viewing direction (viewing zenith angle of 30 degrees and relative azimuth angle 320 degrees). --> 168 169 <field id="CMIP6_pctisccp" field_ref="ctpisccp" /> <!-- P1 (Pa) air_pressure_at_cloud_top : ISCCP Mean Cloud Top Pressure. Time-means are weighted by the ISCCP Total Cloud Fraction {:cltisccp} - see http://cfmip.metoffice.com/COSP.html --> 169 170 <field id="CMIP6_pfull" field_ref="pres" /> <!-- P1 (Pa) air_pressure : Air pressure on model levels --> 170 171 <field id="CMIP6_phalf" field_ref="paprs" /> <!-- P1 (Pa) air_pressure : Air pressure on model half-levels --> 171 <field id="CMIP6_pmlev" field_ref="dummy_XYA" /> <!-- P1 (Pa) air_pressure : The atmospheric pressure at the model layer midpoints for all times and levels in the associated output variables -->172 172 <field id="CMIP6_pr" field_ref="precip" /> <!-- P1 (kg m-2 s-1) precipitation_flux : includes both liquid and solid phases --> 173 173 <field id="CMIP6_prCrop" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) precipitation_flux : includes both liquid and solid phases --> 174 174 <field id="CMIP6_prc" field_ref="pluc" /> <!-- P1 (kg m-2 s-1) convective_precipitation_flux : Convective precipitation at surface; includes both liquid and solid phases. --> 175 <field id="CMIP6_prcsh" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) prcsh : Convection precipitation from shallow convection --> 175 <field id="CMIP6_prcprof" field_ref="dummy_XYA" /> <!-- P2 (kg m-2 s-1) convective_rainfall_flux : unset --> 176 <field id="CMIP6_prcsh" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) shallow_convective_precipitation_flux : Convection precipitation from shallow convection --> 176 177 <field id="CMIP6_prhmax" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) precipitation_flux : Maximum Hourly Precipitation Rate --> 177 <field id="CMIP6_pr ra" field_ref="dummy_XY" /> <!-- P2 (kg m-2 s-1) rainfall_flux : Rainfall rate-->178 <field id="CMIP6_pr ra_ifs" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) rainfall_flux : Rainfall rate-->179 <field id="CMIP6_prra _land" field_ref="dummy_XY" /> <!-- P2(kg m-2 s-1) rainfall_flux : Rainfall rate -->178 <field id="CMIP6_prlsns" field_ref="dummy_XYA" /> <!-- P2 (kg m-2 s-1) large_scale_snowfall_flux : large-scale precipitation of all forms of water in the solid phase. --> 179 <field id="CMIP6_prlsprof" field_ref="dummy_XYA" /> <!-- P2 (kg m-2 s-1) large_scale_rainfall_flux : unset --> 180 <field id="CMIP6_prra" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) rainfall_flux : Rainfall rate --> 180 181 <field id="CMIP6_prrc" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) convective_rainfall_flux : Convective Rainfall rate --> 181 <field id="CMIP6_prrc_land" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) convective_rainfall_flux : Convective Rainfall rate --> 182 <field id="CMIP6_prrsn" field_ref="dummy_XY" /> <!-- P1 (1) prrsn : The fraction of the grid averaged rainfall which falls on the snow pack --> 182 <field id="CMIP6_prrsn" field_ref="dummy_XY" /> <!-- P1 (1) mass_fraction_of_rainfall_onto_snow : The fraction of the grid averaged rainfall which falls on the snow pack --> 183 183 <field id="CMIP6_prsn" field_ref="snow" /> <!-- P1 (kg m-2 s-1) snowfall_flux : at surface; includes precipitation of all forms of water in the solid phase --> 184 <field id="CMIP6_prsn_ifs" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) snowfall_flux : at surface; includes precipitation of all forms of water in the solid phase -->185 184 <field id="CMIP6_prsnc" field_ref="pr_con_i" /> <!-- P2 (kg m-2 s-1) convective_snowfall_flux : convective precipitation of all forms of water in the solid phase. --> 186 <field id="CMIP6_prsnc_land" field_ref="dummy_XYA" /> <!-- P2 (kg m-2 s-1) convective_snowfall_flux : convective precipitation of all forms of water in the solid phase. --> 187 <field id="CMIP6_prsnsn" field_ref="dummy_XY" /> <!-- P1 (1) prsnsn : The fraction of the snowfall which falls on the snow pack --> 185 <field id="CMIP6_prsnsn" field_ref="dummy_XY" /> <!-- P1 (1) mass_fraction_of_snowfall_onto_snow : The fraction of the snowfall which falls on the snow pack --> 188 186 <field id="CMIP6_prw" field_ref="prw" /> <!-- P1 (kg m-2) atmosphere_water_vapor_content : vertically integrated through the atmospheric column --> 189 187 <field id="CMIP6_ps" field_ref="psol" /> <!-- P1 (Pa) surface_air_pressure : surface pressure (not mean sea-level pressure), 2-D field to calculate the 3-D pressure field from hybrid coordinates --> 190 <field id="CMIP6_psitem" field_ref="dummy_lat-P" /> <!-- P1 (kg s^-1) psitem: Residual mass streamfunction, computed from vstar and integrated from the top of the atmosphere (on the native model grid). Reference: Andrews et al (1987): Middle Atmospheric Dynamics. Accademic Press. -->188 <field id="CMIP6_psitem" field_ref="dummy_lat-P" /> <!-- P1 (kg s^-1) meridional_streamfunction_transformed_eulerian_mean : Residual mass streamfunction, computed from vstar and integrated from the top of the atmosphere (on the native model grid). Reference: Andrews et al (1987): Middle Atmospheric Dynamics. Accademic Press. --> 191 189 <field id="CMIP6_psl" field_ref="slp" /> <!-- P1 (Pa) air_pressure_at_sea_level : Sea Level Pressure --> 192 <field id="CMIP6_rainmxrat 27"field_ref="dummy_XYA" /> <!-- P2 (1.0) mass_fraction_of_rain_in_air : Rain mixing ratio -->193 <field id="CMIP6_reffcclwtop" field_ref="dummy_XY" /> <!-- P1 (m) reffcclwtop : Droplets are liquid only. This is the effective radius "as seen from space" over convective liquid cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, or for some models it is the sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Reported values are weighted by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean.daily data, separated to large-scale clouds, convective clouds. If any of the cloud is from more than one process (i.e. shallow convection), please provide them separately.-->194 <field id="CMIP6_reffclic" field_ref="dummy_XYA" /> <!-- P2 (m) effective_radius_of_convective_cloud_ice_particle : This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell). -->190 <field id="CMIP6_rainmxrat" field_ref="dummy_XYA" /> <!-- P2 (1.0) mass_fraction_of_rain_in_air : Rain mixing ratio --> 191 <field id="CMIP6_reffcclwtop" field_ref="dummy_XY" /> <!-- P1 (m) effective_radius_of_convective_cloud_liquid_water_particle_at_liquid_water_cloud_top : Droplets are liquid only. This is the effective radius "as seen from space" over convective liquid cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, or for some models it is the sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Reported values are weighted by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean.daily data, separated to large-scale clouds, convective clouds. If any of the cloud is from more than one process (i.e. shallow convection), please provide them separately. --> 192 <field id="CMIP6_reffclic" field_ref="dummy_XYA" /> <!-- P2 (m) effective_radius_of_convective_cloud_ice_particle : This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell). --> 195 193 <field id="CMIP6_reffclis" field_ref="ref_ice" /> <!-- P2 (m) effective_radius_of_stratiform_cloud_ice_particle : This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell). --> 196 194 <field id="CMIP6_reffclwc" field_ref="dummy_XYA" /> <!-- P2 (m) effective_radius_of_convective_cloud_liquid_water_particle : Droplets are liquid. The effective radius is defined as the ratio of the third moment over the second moment of the particle size distribution and the time-mean should be calculated, weighting the individual samples by the cloudy fraction of the grid cell. --> 197 195 <field id="CMIP6_reffclws" field_ref="dummy_XYA" /> <!-- P2 (m) effective_radius_of_stratiform_cloud_liquid_water_particle : Droplets are liquid. The effective radius is defined as the ratio of the third moment over the second moment of the particle size distribution and the time-mean should be calculated, weighting the individual samples by the cloudy fraction of the grid cell. --> 198 <field id="CMIP6_reffsclwtop" field_ref="dummy_XY" /> <!-- P1 (m) reffsclwtop : Droplets are liquid only. This is the effective radius "as seen from space" over liquid stratiform cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, or for some models it is the sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Reported values are weighted by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean.daily data, separated to large-scale clouds, convective clouds. If any of the cloud is from more than one process (i.e. shallow convection), please provide them separately. --> 196 <field id="CMIP6_reffgrpls" field_ref="dummy_XYA" /> <!-- P2 (m) effective_radius_of_stratiform_cloud_graupel_particle : This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell). --> 197 <field id="CMIP6_reffrainc" field_ref="dummy_XYA" /> <!-- P2 (m) effective_radius_of_convective_cloud_rain_particle : This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell). --> 198 <field id="CMIP6_reffrains" field_ref="dummy_XYA" /> <!-- P2 (m) effective_radius_of_stratiform_cloud_rain_particle : This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell). --> 199 <field id="CMIP6_reffsclwtop" field_ref="dummy_XY" /> <!-- P1 (m) effective_radius_of_stratiform_cloud_liquid_water_particle_at_liquid_water_cloud_top : Droplets are liquid only. This is the effective radius "as seen from space" over liquid stratiform cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, or for some models it is the sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Reported values are weighted by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean.daily data, separated to large-scale clouds, convective clouds. If any of the cloud is from more than one process (i.e. shallow convection), please provide them separately. --> 200 <field id="CMIP6_reffsnowc" field_ref="dummy_XYA" /> <!-- P2 (m) effective_radius_of_convective_cloud_snow_particle : This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell). --> 201 <field id="CMIP6_reffsnows" field_ref="dummy_XYA" /> <!-- P2 (m) effective_radius_of_stratiform_cloud_snow_particle : This is defined as the in-cloud ratio of the third moment over the second moment of the particle size distribution (obtained by considering only the cloudy portion of the grid cell). --> 199 202 <field id="CMIP6_rld" field_ref="rld" /> <!-- P1 (W m-2) downwelling_longwave_flux_in_air : Downwelling Longwave Radiation (includes the fluxes at the surface and TOA) --> 200 <field id="CMIP6_rld4co2" field_ref="rld4co2" /> <!-- P1 (W m-2) downwelling_longwave_flux_in_air : Downwelling longwave radiation calculated using carbon dioxide concentrations increased fourfold (includes the fluxes at the surface and TOA) -->203 <field id="CMIP6_rld4co2" field_ref="rld4co2" /> <!-- P1 (W m-2) downwelling_longwave_flux_in_air : Downwelling longwave radiation calculated using carbon dioxide concentrations increased fourfold (includes the fluxes at the surface and TOA) --> 201 204 <field id="CMIP6_rldcs" field_ref="rldcs" /> <!-- P1 (W m-2) downwelling_longwave_flux_in_air_assuming_clear_sky : Downwelling clear-sky longwave radiation (includes the fluxes at the surface and TOA) --> 202 205 <field id="CMIP6_rldcs4co2" field_ref="rldcs4co2" /> <!-- P1 (W m-2) downwelling_longwave_flux_in_air_assuming_clear_sky : Downwelling clear-sky longwave radiation calculated using carbon dioxide concentrations increased fourfold (includes the fluxes at the surface and TOA) --> 203 206 <field id="CMIP6_rlds" field_ref="LWdnSFC" /> <!-- P1 (W m-2) surface_downwelling_longwave_flux_in_air : Surface Downwelling Longwave Radiation --> 204 207 <field id="CMIP6_rldscs" field_ref="LWdnSFCclr" /> <!-- P1 (W m-2) surface_downwelling_longwave_flux_in_air_assuming_clear_sky : Surface downwelling clear-sky longwave radiation --> 205 <field id="CMIP6_rls" field_ref="soll" /> <!-- P1 (W m-2) surface_net_downward_longwave_flux : Net longwave surface radiation --> 206 <field id="CMIP6_rls_land" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_net_downward_longwave_flux : Net longwave surface radiation --> 208 <field id="CMIP6_rls" field_ref="soll" /> <!-- P1 (W m-2) surface_net_downward_longwave_flux : Net longwave surface radiation --> 207 209 <field id="CMIP6_rlu" field_ref="rlu" /> <!-- P1 (W m-2) upwelling_longwave_flux_in_air : Upwelling longwave radiation (includes the fluxes at the surface and TOA) --> 208 <field id="CMIP6_rlu4co2" field_ref="rlu4co2" /> <!-- P1 (W m-2) upwelling_longwave_flux_in_air : Upwelling longwave radiation calculated using carbon dioxide concentrations increased fourfold (includes the fluxes at the surface and TOA) -->210 <field id="CMIP6_rlu4co2" field_ref="rlu4co2" /> <!-- P1 (W m-2) upwelling_longwave_flux_in_air : Upwelling longwave radiation calculated using carbon dioxide concentrations increased fourfold (includes the fluxes at the surface and TOA) --> 209 211 <field id="CMIP6_rlucs" field_ref="rlucs" /> <!-- P1 (W m-2) upwelling_longwave_flux_in_air_assuming_clear_sky : Upwelling clear-sky longwave radiation (includes the fluxes at the surface and TOA) --> 210 212 <field id="CMIP6_rlucs4co2" field_ref="rlucs4co2" /> <!-- P1 (W m-2) upwelling_longwave_flux_in_air_assuming_clear_sky : Upwelling clear-sky longwave radiation calculated using carbon dioxide concentrations increased fourfold (includes the fluxes at the surface and TOA) --> … … 213 215 <field id="CMIP6_rlut4co2" field_ref="rlut4co2" /> <!-- P1 (W m-2) toa_outgoing_longwave_flux : Top-of-atmosphere outgoing longwave radiation calculated using carbon dioxide concentrations increased fourfold --> 214 216 <field id="CMIP6_rlutcs" field_ref="topl0" /> <!-- P1 (W m-2) toa_outgoing_longwave_flux_assuming_clear_sky : TOA Outgoing Clear-sky Longwave Radiation --> 215 <field id="CMIP6_rlutcs4co2" field_ref="rlutcs4co2" 217 <field id="CMIP6_rlutcs4co2" field_ref="rlutcs4co2" /> <!-- P1 (W m-2) toa_outgoing_longwave_flux_assuming_clear_sky : Top-of-atmosphere outgoing clear-sky longwave radiation calculated using carbon dioxide concentrations increased fourfold --> 216 218 <field id="CMIP6_rsd" field_ref="rsd" /> <!-- P1 (W m-2) downwelling_shortwave_flux_in_air : Downwelling shortwave radiation (includes the fluxes at the surface and top-of-atmosphere) --> 217 <field id="CMIP6_rsd4co2" field_ref="rsd4co2" /> <!-- P1 (W m-2) downwelling_shortwave_flux_in_air : Downwelling shortwave radiation calculated using carbon dioxide concentrations increased fourfold -->219 <field id="CMIP6_rsd4co2" field_ref="rsd4co2" /> <!-- P1 (W m-2) downwelling_shortwave_flux_in_air : Downwelling shortwave radiation calculated using carbon dioxide concentrations increased fourfold --> 218 220 <field id="CMIP6_rsdcs" field_ref="rsdcs" /> <!-- P1 (W m-2) downwelling_shortwave_flux_in_air_assuming_clear_sky : Downwelling clear-sky shortwave radiation (includes the fluxes at the surface and top-of-atmosphere) --> 219 221 <field id="CMIP6_rsdcs4co2" field_ref="rsdcs4co2" /> <!-- P1 (W m-2) downwelling_shortwave_flux_in_air_assuming_clear_sky : Downwelling clear-sky shortwave radiation calculated using carbon dioxide concentrations increased fourfold --> 220 <field id="CMIP6_rsdcsaf" field_ref="dummy_XYA" /> <!-- P1 (W m-2) rsdcsaf: Calculated in the absence of aerosols and clouds (following Ghan). This requires a double-call in the radiation code with precisely the same meteorology. -->221 <field id="CMIP6_rsdcsafbnd" field_ref="dummy_XYA" /> <!-- P1 (W m-2) rsdcsafbnd: Calculated in the absence of aerosols and clouds (following Ghan). This requires a double-call in the radiation code with precisely the same meteorology. -->222 <field id="CMIP6_rsdcsbnd" field_ref="dummy_XYA" /> <!-- P1 (W m-2) rsdcsbnd: Calculated with aerosols but without clouds. This is a standard clear-sky calculation -->222 <field id="CMIP6_rsdcsaf" field_ref="dummy_XYA" /> <!-- P1 (W m-2) downwelling_shortwave_flux_assuming_clean_clear_sky : Calculated in the absence of aerosols and clouds (following Ghan). This requires a double-call in the radiation code with precisely the same meteorology. --> 223 <field id="CMIP6_rsdcsafbnd" field_ref="dummy_XYA" /> <!-- P1 (W m-2) band_downwelling_shortwave_flux_assuming_clean_clear_sky : Calculated in the absence of aerosols and clouds (following Ghan). This requires a double-call in the radiation code with precisely the same meteorology. --> 224 <field id="CMIP6_rsdcsbnd" field_ref="dummy_XYA" /> <!-- P1 (W m-2) band_downwelling_shortwave_flux_assuming_clear_sky : Calculated with aerosols but without clouds. This is a standard clear-sky calculation --> 223 225 <field id="CMIP6_rsds" field_ref="SWdnSFC" /> <!-- P1 (W m-2) surface_downwelling_shortwave_flux_in_air : surface solar irradiance for UV calculations --> 224 226 <field id="CMIP6_rsdscs" field_ref="SWdnSFCclr" /> <!-- P1 (W m-2) surface_downwelling_shortwave_flux_in_air_assuming_clear_sky : surface solar irradiance clear sky for UV calculations --> 225 <field id="CMIP6_rsdscsaf" field_ref="dummy_XY" /> <!-- P1 (W m-2) rsdscsaf: Calculated in the absence of aerosols and clouds. -->226 <field id="CMIP6_rsdscsafbnd" field_ref="dummy_XY" /> <!-- P1 (W m-2) rsdscsafbnd: Calculated in the absence of aerosols and clouds, following Ghan (2013, ACP). This requires a double-call in the radiation code with precisely the same meteorology. -->227 <field id="CMIP6_rsdscsaf" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_downwelling_shortwave_flux_in_air_assuming_clean_clear_sky : Calculated in the absence of aerosols and clouds. --> 228 <field id="CMIP6_rsdscsafbnd" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_downwelling_shortwave_flux_in_air_assuming_clean_clear_sky : Calculated in the absence of aerosols and clouds, following Ghan (2013, ACP). This requires a double-call in the radiation code with precisely the same meteorology. --> 227 229 <field id="CMIP6_rsdscsbnd" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_downwelling_shortwave_flux_in_air_assuming_clear_sky : Calculated with aerosols but without clouds. This is a standard clear-sky calculation --> 228 230 <field id="CMIP6_rsdscsdiff" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_diffuse_downwelling_shortwave_flux_in_air_assuming_clear_sky : unset --> 229 231 <field id="CMIP6_rsdsdiff" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_diffuse_downwelling_shortwave_flux_in_air : unset --> 230 232 <field id="CMIP6_rsdt" field_ref="SWdnTOA" /> <!-- P1 (W m-2) toa_incoming_shortwave_flux : Shortwave radiation incident at the top of the atmosphere --> 231 <field id="CMIP6_rss" field_ref="sols" /> <!-- P1 (W m-2) surface_net_downward_shortwave_flux : Net downward shortwave radiation at the surface --> 232 <field id="CMIP6_rss_land" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_net_downward_shortwave_flux : Net downward shortwave radiation at the surface --> 233 <field id="CMIP6_rss" field_ref="sols" /> <!-- P1 (W m-2) surface_net_downward_shortwave_flux : Net downward shortwave radiation at the surface --> 233 234 <field id="CMIP6_rsu" field_ref="rsu" /> <!-- P1 (W m-2) upwelling_shortwave_flux_in_air : Upwelling shortwave radiation (includes also the fluxes at the surface and top of atmosphere) --> 234 <field id="CMIP6_rsu4co2" field_ref="rsu4co2" /> <!-- P1 (W m-2) upwelling_shortwave_flux_in_air : Upwelling Shortwave Radiation calculated using carbon dioxide concentrations increased fourfold -->235 <field id="CMIP6_rsu4co2" field_ref="rsu4co2" /> <!-- P1 (W m-2) upwelling_shortwave_flux_in_air : Upwelling Shortwave Radiation calculated using carbon dioxide concentrations increased fourfold --> 235 236 <field id="CMIP6_rsucs" field_ref="rsucs" /> <!-- P1 (W m-2) upwelling_shortwave_flux_in_air_assuming_clear_sky : Upwelling clear-sky shortwave radiation (includes the fluxes at the surface and TOA) --> 236 237 <field id="CMIP6_rsucs4co2" field_ref="rsucs4co2" /> <!-- P1 (W m-2) upwelling_shortwave_flux_in_air_assuming_clear_sky : Upwelling clear-sky shortwave radiation calculated using carbon dioxide concentrations increased fourfold --> 237 <field id="CMIP6_rsucsaf" field_ref="dummy_XYA" /> <!-- P1 (W m-2) rsucsaf: Calculated in the absence of aerosols and clouds (following Ghan). This requires a double-call in the radiation code with precisely the same meteorology. -->238 <field id="CMIP6_rsucsafbnd" field_ref="dummy_XYA" /> <!-- P1 (W m-2) rsucsafbnd: Calculated in the absence of aerosols and clouds (following Ghan). This requires a double-call in the radiation code with precisely the same meteorology. -->239 <field id="CMIP6_rsucsbnd" field_ref="dummy_XYA" /> <!-- P1 (W m-2) rsucsbnd: Calculated with aerosols but without clouds. This is a standard clear-sky calculation -->238 <field id="CMIP6_rsucsaf" field_ref="dummy_XYA" /> <!-- P1 (W m-2) upwelling_shortwave_flux_assuming_clean_clear_sky : Calculated in the absence of aerosols and clouds (following Ghan). This requires a double-call in the radiation code with precisely the same meteorology. --> 239 <field id="CMIP6_rsucsafbnd" field_ref="dummy_XYA" /> <!-- P1 (W m-2) band_upwelling_shortwave_flux_assuming_clean_clear_sky : Calculated in the absence of aerosols and clouds (following Ghan). This requires a double-call in the radiation code with precisely the same meteorology. --> 240 <field id="CMIP6_rsucsbnd" field_ref="dummy_XYA" /> <!-- P1 (W m-2) band_upwelling_shortwave_flux_assuming_clear_sky : Calculated with aerosols but without clouds. This is a standard clear-sky calculation --> 240 241 <field id="CMIP6_rsus" field_ref="SWupSFC" /> <!-- P1 (W m-2) surface_upwelling_shortwave_flux_in_air : Surface Upwelling Shortwave Radiation --> 241 242 <field id="CMIP6_rsuscs" field_ref="SWupSFCclr" /> <!-- P1 (W m-2) surface_upwelling_shortwave_flux_in_air_assuming_clear_sky : Surface Upwelling Clear-sky Shortwave Radiation --> 242 <field id="CMIP6_rsuscsaf" field_ref="dummy_XY" /> <!-- P1 (W m-2) rsuscsaf: Surface Upwelling Clear-sky, Aerosol Free Shortwave Radiation -->243 <field id="CMIP6_rsuscsafbnd" field_ref="dummy_XY" /> <!-- P1 (W m-2) rsuscsafbnd: Calculated in the absence of aerosols and clouds, following Ghan (ACP, 2013). This requires a double-call in the radiation code with precisely the same meteorology. -->243 <field id="CMIP6_rsuscsaf" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_upwelling_shortwave_flux_in_air_assuming_clean_clear_sky : Surface Upwelling Clear-sky, Aerosol Free Shortwave Radiation --> 244 <field id="CMIP6_rsuscsafbnd" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_upwelling_shortwave_flux_in_air_assuming_clean_clear_sky : Calculated in the absence of aerosols and clouds, following Ghan (ACP, 2013). This requires a double-call in the radiation code with precisely the same meteorology. --> 244 245 <field id="CMIP6_rsuscsbnd" field_ref="dummy_XY" /> <!-- P1 (W m-2) surface_upwelling_shortwave_flux_in_air_assuming_clear_sky : Calculated with aerosols but without clouds. This is a standard clear-sky calculation --> 245 246 <field id="CMIP6_rsut" field_ref="SWupTOA" /> <!-- P1 (W m-2) toa_outgoing_shortwave_flux : at the top of the atmosphere --> … … 247 248 <field id="CMIP6_rsutcs" field_ref="SWupTOAclr" /> <!-- P1 (W m-2) toa_outgoing_shortwave_flux_assuming_clear_sky : Calculated in the absence of clouds. --> 248 249 <field id="CMIP6_rsutcs4co2" field_ref="rsutcs4co2" /> <!-- P1 (W m-2) toa_outgoing_shortwave_flux_assuming_clear_sky : TOA Outgoing Clear-Sky Shortwave Radiation calculated using carbon dioxide concentrations increased fourfold --> 249 <field id="CMIP6_rsutcsafbnd" field_ref="dummy_XY" /> <!-- P1 (W m-2) rsutcsafbnd: Calculated in the absence of aerosols and clouds, following Ghan (2013, ACP). This requires a double-call in the radiation code with precisely the same meteorology. -->250 <field id="CMIP6_rsutcsafbnd" field_ref="dummy_XY" /> <!-- P1 (W m-2) band_toa_outgoing_shortwave_flux_assuming_clean_clear_sky : Calculated in the absence of aerosols and clouds, following Ghan (2013, ACP). This requires a double-call in the radiation code with precisely the same meteorology. --> 250 251 <field id="CMIP6_rsutcsbnd" field_ref="dummy_XY" /> <!-- P1 (W m-2) toa_outgoing_shortwave_flux_assuming_clear_sky : Calculated with aerosols but without clouds. This is a standard clear-sky calculation --> 251 252 <field id="CMIP6_rtmt" field_ref="nettop" /> <!-- P1 (W m-2) net_downward_radiative_flux_at_top_of_atmosphere_model : Net Downward Radiative Flux at Top of Model : I.e., at the top of that portion of the atmosphere where dynamics are explicitly treated by the model. This is reported only if it differs from the net downward radiative flux at the top of the atmosphere. --> 252 <field field_ref="CMIP6_rv" grid_ref="CMIP6_p850" id="CMIP6_rv850" /> <!-- P1 (s-1) atmosphere_relative_vorticity : Relative Vorticity at 850 hPa --> 253 <field id="CMIP6_sandfrac" field_ref="dummy_XYSo" /> <!-- P1 (1.0) sandfrac : Sand Fraction --> 253 <field id="CMIP6_rv" field_ref="dummy_XY" /> <!-- P1 (s-1) atmosphere_relative_vorticity : Relative Vorticity at 850 hPa --> 254 254 <field id="CMIP6_sci" field_ref="ftime_th" /> <!-- P1 (1.0) shallow_convection_time_fraction : Fraction of time that shallow convection occurs in the grid cell. --> 255 <field id="CMIP6_scldncl" field_ref="dummy_XY" /> <!-- P1 (m-3) scldncl: Droplets are liquid only. Report concentration "as seen from space" over stratiform liquid cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, it is better to sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean. -->255 <field id="CMIP6_scldncl" field_ref="dummy_XY" /> <!-- P1 (m-3) number_concentration_of_stratiform_cloud_liquid_water_particles_in_air_at_liquid_water_cloud_top : Droplets are liquid only. Report concentration "as seen from space" over stratiform liquid cloudy portion of grid cell. This is the value from uppermost model layer with liquid cloud or, if available, it is better to sum over all liquid cloud tops, no matter where they occur, as long as they are seen from the top of the atmosphere. Weight by total liquid cloud top fraction of (as seen from TOA) each time sample when computing monthly mean. --> 256 256 <field id="CMIP6_sconcdust" field_ref="sconcdust" /> <!-- P1 (kg m-3) mass_concentration_of_dust_dry_aerosol_in_air : mass concentration of dust dry aerosol in air in model lowest layer --> 257 257 <field id="CMIP6_sconcso4" field_ref="sconcso4" /> <!-- P1 (kg m-3) mass_concentration_of_sulfate_dry_aerosol_in_air : mass concentration of sulfate dry aerosol in air in model lowest layer. --> 258 258 <field id="CMIP6_sconcss" field_ref="sconcss" /> <!-- P1 (kg m-3) mass_concentration_of_seasalt_dry_aerosol_in_air : mass concentration of seasalt dry aerosol in air in model lowest layer --> 259 <field id="CMIP6_sedustCI" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) sedustCI: Balkanski - LSCE -->259 <field id="CMIP6_sedustCI" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) tendency_of_atmosphere_mass_content_of_dust_dry_aerosol_particles_due_to_sedimentation : Balkanski - LSCE --> 260 260 <field id="CMIP6_sfcWind" field_ref="wind10m" /> <!-- P1 (m s-1) wind_speed : near-surface (usually, 10 meters) wind speed. --> 261 <field field_ref="CMIP6_sfcWind" freq_op="1d" id="CMIP6_sfcWindmax"operation="maximum"> @this </field> <!-- P1 (m s-1) wind_speed : Daily maximum near-surface (usually, 10 meters) wind speed. -->261 <field id="CMIP6_sfcWindmax" field_ref="CMIP6_sfcWind" freq_op="1d" operation="maximum"> @this </field> <!-- P1 (m s-1) wind_speed : Daily maximum near-surface (usually, 10 meters) wind speed. --> 262 262 <field id="CMIP6_sftlf" field_ref="fract_ter" /> <!-- P1 (%) land_area_fraction : Please express "X_area_fraction" as the percentage of horizontal area occupied by X. --> 263 <field id="CMIP6_siltfrac" field_ref="dummy_XYSo" /> <!-- P1 (1.0) siltfrac: Silt Fraction -->264 <field id="CMIP6_slbnosn" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) s lbnosn: Sublimation of the snow free area -->263 <field id="CMIP6_siltfrac" field_ref="dummy_XYSo" /> <!-- P1 (1.0) missing : Silt Fraction --> 264 <field id="CMIP6_slbnosn" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) sublimation_amount_assuming_no_snow : Sublimation of the snow free area --> 265 265 <field id="CMIP6_smc" field_ref="f_th" /> <!-- P2 (kg m-2 s-1) atmosphere_net_upward_shallow_convective_mass_flux : The net mass flux represents the difference between the updraft and downdraft components. For models with a distinct shallow convection scheme, this is calculated as convective mass flux divided by the area of the whole grid cell (not just the area of the cloud). --> 266 <field id="CMIP6_snmsl" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) s nmsl: Water flowing out of snowpack -->267 <field id="CMIP6_snowmxrat 27"field_ref="dummy_XYA" /> <!-- P3 (1.0) mass_fraction_of_snow_in_air : Snow mixing ratio -->266 <field id="CMIP6_snmsl" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) surface_snow_melt_flux_into_soil_layer : Water flowing out of snowpack --> 267 <field id="CMIP6_snowmxrat" field_ref="dummy_XYA" /> <!-- P3 (1.0) mass_fraction_of_snow_in_air : Snow mixing ratio --> 268 268 <field id="CMIP6_snrefr" field_ref="dummy_XY" /> <!-- P1 (kg m-2 s-1) surface_snow_and_ice_refreezing_flux : Re-freezing of water in the snow --> 269 <field id="CMIP6_snwc" field_ref="dummy_XY" /> <!-- P1 (kg m-2) snwc: Total water mass of the snowpack (liquid or frozen), averaged over a grid cell and interecepted by the canopy. -->270 <field id="CMIP6_solbnd" field_ref="dummy_XY" /> <!-- P1 (W m-2) solbnd: Top-of-Atmosphere Solar Insolation for each band -->271 <field id="CMIP6_swsffluxaero" field_ref="dummy_XY" /> <!-- P2 (W m-2) s wsffluxaero: shortwave heating rate due to volcanic aerosols to be diagnosed through double radiation call, zonal average values required -->272 <field id="CMIP6_swsrfasdust" field_ref="dummy_XY" /> <!-- P1 (W m-2) swsrfasdust: Balkanski - LSCE -->273 <field id="CMIP6_swsrfcsdust" field_ref="dummy_XY" /> <!-- P1 (W m-2) swsrfcsdust: Balkanski - LSCE -->269 <field id="CMIP6_snwc" field_ref="dummy_XY" /> <!-- P1 (kg m-2) canopy_snow_amount : Total water mass of the snowpack (liquid or frozen), averaged over a grid cell and interecepted by the canopy. --> 270 <field id="CMIP6_solbnd" field_ref="dummy_XY" /> <!-- P1 (W m-2) band_solar_insolation : Top-of-Atmosphere Solar Insolation for each band --> 271 <field id="CMIP6_swsffluxaero" field_ref="dummy_XY" /> <!-- P2 (W m-2) shortwave__flux_due_to_volcanic_aerosols_at__the_surface : shortwave heating rate due to volcanic aerosols to be diagnosed through double radiation call, zonal average values required --> 272 <field id="CMIP6_swsrfasdust" field_ref="dummy_XY" /> <!-- P1 (W m-2) tendency_of_all_sky_surface_shortwave_flux_due_to_dust_ambient_aerosol_particles : Balkanski - LSCE --> 273 <field id="CMIP6_swsrfcsdust" field_ref="dummy_XY" /> <!-- P1 (W m-2) tendency_of_clear_sky_surface_shortwave_flux_due_to_dust_ambient_aerosol_particles : Balkanski - LSCE --> 274 274 <field id="CMIP6_swtoaasdust" field_ref="dummy_XY" /> <!-- P1 (W m-2) toa_instantaneous_shortwave_forcing : proposed name: toa_instantaneous_shortwave_forcing_due_to_dust_ambient_aerosol --> 275 275 <field id="CMIP6_swtoacsdust" field_ref="dummy_XY" /> <!-- P1 (W m-2) toa_instantaneous_shortwave_forcing : proposed name: toa_instantaneous_shortwave_forcing_due_to_dust_ambient_aerosol_assuming_clear_sky --> 276 <field id="CMIP6_swtoafluxaerocs" field_ref="dummy_XY" /> <!-- P1 (W m-2) s wtoafluxaerocs: downwelling shortwave flux due to volcanic aerosols at TOA under clear sky to be diagnosed through double radiation call -->276 <field id="CMIP6_swtoafluxaerocs" field_ref="dummy_XY" /> <!-- P1 (W m-2) shortwave_flux_due_to_volcanic_aerosols_at_TOA_under_clear_sky : downwelling shortwave flux due to volcanic aerosols at TOA under clear sky to be diagnosed through double radiation call --> 277 277 <field id="CMIP6_sza" field_ref="dummy_XY" /> <!-- P1 (degree) solar_zenith_angle : The angle between the line of sight to the sun and the local vertical --> 278 278 <field id="CMIP6_t2" field_ref="dummy_XYA" /> <!-- P2 (K2) square_of_air_temperature : Air temperature squared --> 279 279 <field id="CMIP6_ta" field_ref="ta" /> <!-- P3 (K) air_temperature : Air Temperature --> 280 <field id="CMIP6_ta27" field_ref="dummy_XYA" /> <!-- P3 (K) air_temperature : Air Temperature -->281 <field field_ref="CMIP6_ta" grid_ref="CMIP6_p500" id="CMIP6_ta500" /> <!-- P1 (K) air_temperature : Temperature on the 500 hPa surface -->282 <field field_ref="CMIP6_ta" grid_ref="CMIP6_p700" id="CMIP6_ta700" /> <!-- P1 (K) air_temperature : Air temperature at 700hPa -->283 <field id="CMIP6_ta7h" field_ref="dummy_XYA" /> <!-- P2 (K) air_temperature : Air Temperature -->284 <field field_ref="CMIP6_ta" grid_ref="CMIP6_p850" id="CMIP6_ta850" /> <!-- P1 (K) air_temperature : Air temperature at 850hPa -->285 280 <field id="CMIP6_tas" field_ref="t2m" /> <!-- P1 (K) air_temperature : near-surface (usually, 2 meter) air temperature --> 286 <field field_ref="CMIP6_tas" freq_op="1d" id="CMIP6_tasmax"operation="maximum"> @this </field> <!-- P1 (K) air_temperature : maximum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: max") -->281 <field id="CMIP6_tasmax" field_ref="CMIP6_tas" freq_op="1d" operation="maximum"> @this </field> <!-- P1 (K) air_temperature : maximum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: max") --> 287 282 <field id="CMIP6_tasmaxCrop" field_ref="dummy_XY" /> <!-- P1 (K) air_temperature : maximum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: max") --> 288 <field field_ref="CMIP6_tas" freq_op="1d" id="CMIP6_tasmin" operation="minimum"> @this </field> <!-- P1 (K) air_temperature : minimum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: min") -->283 <field id="CMIP6_tasmin" field_ref="CMIP6_tas" freq_op="1d" operation="minimum"> @this </field> <!-- P1 (K) air_temperature : minimum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: min") --> 289 284 <field id="CMIP6_tasminCrop" field_ref="dummy_XY" /> <!-- P1 (K) air_temperature : minimum near-surface (usually, 2 meter) air temperature (add cell_method attribute "time: min") --> 290 <field id="CMIP6_tau" field_ref="dummy_XY" /> <!-- P1 (N m-2) tau: module of the momentum lost by the atmosphere to the surface. -->285 <field id="CMIP6_tau" field_ref="dummy_XY" /> <!-- P1 (N m-2) surface_downward_stress : module of the momentum lost by the atmosphere to the surface. --> 291 286 <field id="CMIP6_tauu" field_ref="taux" /> <!-- P1 (Pa) surface_downward_eastward_stress : Downward eastward wind stress at the surface --> 292 <field id="CMIP6_tauupbl" field_ref="dummy_XY" /> <!-- P1 (Pa) tauupbl: The downward eastward stress associated with the models parameterization of the plantary boundary layer. (This request is related to a WGNE effort to understand how models parameterize the surface stresses.) -->287 <field id="CMIP6_tauupbl" field_ref="dummy_XY" /> <!-- P1 (Pa) surface_downward_eastward_stress_due_to_planetary_boundary_layer : The downward eastward stress associated with the models parameterization of the plantary boundary layer. (This request is related to a WGNE effort to understand how models parameterize the surface stresses.) --> 293 288 <field id="CMIP6_tauv" field_ref="tauy" /> <!-- P1 (Pa) surface_downward_northward_stress : Downward northward wind stress at the surface --> 294 <field id="CMIP6_tauvpbl" field_ref="dummy_XY" /> <!-- P1 (Pa) tauvpbl: The downward northward stress associated with the models parameterization of the plantary boundary layer. (This request is related to a WGNE effort to understand how models parameterize the surface stresses.) -->289 <field id="CMIP6_tauvpbl" field_ref="dummy_XY" /> <!-- P1 (Pa) surface_downward_northward_stress_due_to_planetary_boundary_layer : The downward northward stress associated with the models parameterization of the plantary boundary layer. (This request is related to a WGNE effort to understand how models parameterize the surface stresses.) --> 295 290 <field id="CMIP6_tdps" field_ref="dummy_XY" /> <!-- P2 (K) dew_point_temperature : unset --> 296 <field field_ref="dummy_na" id="CMIP6_tendacabf" /> <!-- P3 (kg s-1) tendacabf: The total surface mass balance flux over land ice is a spatial integration of the surface mass balance flux -->297 <field field_ref="dummy_na" id="CMIP6_tendlibmassbf" /><!-- P3 (kg s-1) tendency_of_land_ice_mass_due_to_basal_mass_balance : The total basal mass balance flux over land ice is a spatial integration of the basal mass balance flux -->298 <field field_ref="dummy_na" id="CMIP6_tendlicalvf"/> <!-- P3 (kg s-1) tendency_of_land_ice_mass_due_to_calving : The total calving flux over land ice is a spatial integration of the calving flux -->291 <field id="CMIP6_tendacabf" field_ref="dummy_0d" /> <!-- P3 (kg s-1) tendency_of_land_ice_mass_due_to_surface_mass_balance : The total surface mass balance flux over land ice is a spatial integration of the surface mass balance flux --> 292 <field id="CMIP6_tendlibmassbf" field_ref="dummy_0d" /> <!-- P3 (kg s-1) tendency_of_land_ice_mass_due_to_basal_mass_balance : The total basal mass balance flux over land ice is a spatial integration of the basal mass balance flux --> 293 <field id="CMIP6_tendlicalvf" field_ref="dummy_0d" /> <!-- P3 (kg s-1) tendency_of_land_ice_mass_due_to_calving : The total calving flux over land ice is a spatial integration of the calving flux --> 299 294 <field id="CMIP6_tnhus" field_ref="tnhus" /> <!-- P1 (s-1) tendency_of_specific_humidity : Tendency of Specific Humidity --> 300 295 <field id="CMIP6_tnhusa" field_ref="dqdyn" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_advection : Tendency of Specific Humidity due to Advection --> … … 302 297 <field id="CMIP6_tnhusd" field_ref="dqvdf" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_diffusion : Tendency of specific humidity due to numerical diffusion.This includes any horizontal or vertical numerical moisture diffusion not associated with the parametrized moist physics or the resolved dynamics. For example, any vertical diffusion which is part of the boundary layer mixing scheme should be excluded, as should any diffusion which is included in the terms from the resolved dynamics. This term is required to check the closure of the moisture budget. --> 303 298 <field id="CMIP6_tnhusmp" field_ref="dqphy" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_model_physics : Tendency of specific humidity due to model physics. This includes sources and sinks from parametrized moist physics (e.g. convection, boundary layer, stratiform condensation/evaporation, etc.) and excludes sources and sinks from resolved dynamics or from horizontal or vertical numerical diffusion not associated with model physicsl. For example any diffusive mixing by the boundary layer scheme would be included. --> 304 <field id="CMIP6_tnhuspbl" field_ref="dummy_XYA" /> <!-- P1 (s-1) t nhuspbl: Includes all boundary layer terms including diffusive terms. -->305 <field id="CMIP6_tnhusscp" field_ref="dummy_XYA" /> <!-- P1 (s-1) t nhusscp: Tendency of Specific Humidity Due to Stratiform Clouds and Precipitation -->299 <field id="CMIP6_tnhuspbl" field_ref="dummy_XYA" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_boundary_layer_mixing : Includes all boundary layer terms including diffusive terms. --> 300 <field id="CMIP6_tnhusscp" field_ref="dummy_XYA" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_stratiform_clouds_and_precipitation : Tendency of Specific Humidity Due to Stratiform Clouds and Precipitation --> 306 301 <field id="CMIP6_tnhusscpbl" field_ref="tnhusscpbl" /> <!-- P1 (s-1) tendency_of_specific_humidity_due_to_stratiform_cloud_and_precipitation_and_boundary_layer_mixing : Tendency of Specific Humidity Due to Stratiform Cloud and Precipitation and Boundary Layer Mixing (to be specified only in models which do not separate budget terms for stratiform cloud, precipitation and boundary layer schemes. Includes all bounday layer terms including and diffusive terms.) --> 307 302 <field id="CMIP6_tnt" field_ref="tnt" /> <!-- P1 (K s-1) tendency_of_air_temperature : Tendency of Air Temperature --> 308 303 <field id="CMIP6_tnta" field_ref="dtdyn" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_advection : Tendency of Air Temperature due to Advection --> 309 304 <field id="CMIP6_tntc" field_ref="tntc" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_convection : Tendencies from cumulus convection scheme. --> 310 <field id="CMIP6_tntd" field_ref="dummy_XYA" /> <!-- P1 (K s-1) t ntd: This includes any horizontal or vertical numerical temperature diffusion not associated with the parametrized moist physics or the resolved dynamics. For example, any vertical diffusion which is part of the boundary layer mixing scheme should be excluded, as should any diffusion which is included in the terms from the resolved dynamics. This term is required to check the closure of the temperature budget. -->305 <field id="CMIP6_tntd" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_numerical_diffusion : This includes any horizontal or vertical numerical temperature diffusion not associated with the parametrized moist physics or the resolved dynamics. For example, any vertical diffusion which is part of the boundary layer mixing scheme should be excluded, as should any diffusion which is included in the terms from the resolved dynamics. This term is required to check the closure of the temperature budget. --> 311 306 <field id="CMIP6_tntmp" field_ref="dtphy" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_model_physics : Tendency of air temperature due to model physics. This includes sources and sinks from parametrized physics (e.g. radiation, convection, boundary layer, stratiform condensation/evaporation, etc.). It excludes sources and sinks from resolved dynamics and numerical diffusion not associated with parametrized physics. For example, any vertical diffusion which is part of the boundary layer mixing scheme should be included, while numerical diffusion applied in addition to physics or resolved dynamics should be excluded. This term is required to check the closure of the heat budget. --> 312 <field id="CMIP6_tntmp27" field_ref="dummy_XYA" /> <!-- P2 (K s-1) tendency_of_air_temperature_due_to_model_physics : Tendency of air temperature due to model physics. This includes sources and sinks from parametrized physics (e.g. radiation, convection, boundary layer, stratiform condensation/evaporation, etc.). It excludes sources and sinks from resolved dynamics and numerical diffusion not associated with parametrized physics. For example, any vertical diffusion which is part of the boundary layer mixing scheme should be included, while numerical diffusion applied in addition to physics or resolved dynamics should be excluded. This term is required to check the closure of the heat budget. --> 313 <field id="CMIP6_tntnogw" field_ref="dummy_lat-P" /> <!-- P2 (K s-1) tntnogw : Temperature tendency due to dissipation of parameterized nonorographic gravity waves. --> 314 <field id="CMIP6_tntogw" field_ref="dummy_lat-P" /> <!-- P2 (K s-1) tntogw : Temperature tendency due to dissipation of parameterized orographic gravity waves. --> 315 <field id="CMIP6_tntpbl" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tntpbl : Includes all boundary layer terms including diffusive terms. --> 307 <field id="CMIP6_tntnogw" field_ref="dummy_XYA" /> <!-- P2 (K s-1) temperature_tendency_due_to_dissipation_nonorographic_gravity_wave_drag : Temperature tendency due to dissipation of parameterized nonorographic gravity waves. --> 308 <field id="CMIP6_tntogw" field_ref="dummy_XYA" /> <!-- P2 (K s-1) temperature_tendency_due_to_dissipation_orographic_gravity_wave_drag : Temperature tendency due to dissipation of parameterized orographic gravity waves. --> 309 <field id="CMIP6_tntpbl" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_boundary_layer_mixing : Includes all boundary layer terms including diffusive terms. --> 316 310 <field id="CMIP6_tntr" field_ref="tntr" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_radiative_heating : Tendency of Air Temperature due to Radiative Heating --> 317 <field id="CMIP6_tntr27" field_ref="dummy_XYA" /> <!-- P3 (K s-1) tendency_of_air_temperature_due_to_radiative_heating : Tendency of Air Temperature due to Radiative Heating -->318 311 <field id="CMIP6_tntrlcs" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_longwave_heating_assuming_clear_sky : Tendency of Air Temperature due to Clear Sky Longwave Radiative Heating --> 319 312 <field id="CMIP6_tntrscs" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_shortwave_heating_assuming_clear_sky : Tendency of Air Temperature due to Clear Sky Shortwave Radiative Heating --> 320 <field id="CMIP6_tntscp" field_ref="dummy_XYA" /> <!-- P1 (K s-1) t ntscp: Tendency of Air Temperature Due to Stratiform Clouds and Precipitation -->313 <field id="CMIP6_tntscp" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_stratiform_clouds_and_precipitation : Tendency of Air Temperature Due to Stratiform Clouds and Precipitation --> 321 314 <field id="CMIP6_tntscpbl" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_stratiform_cloud_and_precipitation_and_boundary_layer_mixing : Tendency of Air Temperature Due to Stratiform Cloud and Precipitation and Boundary Layer Mixing (to be specified only in models which do not separate cloud, precipitation and boundary layer terms. Includes all boundary layer terms including diffusive ones.) --> 322 315 <field id="CMIP6_tr" field_ref="dummy_XY" /> <!-- P1 (K) surface_temperature : Effective radiative surface temperature, averaged over the grid cell --> … … 326 319 <field id="CMIP6_u2" field_ref="dummy_XYA" /> <!-- P2 (m2 s-2) square_of_eastward_wind : u*u --> 327 320 <field id="CMIP6_ua" field_ref="ua" /> <!-- P1 (m s-1) eastward_wind : Eastward Wind --> 328 <field field_ref="CMIP6_ua" grid_ref="CMIP6_p200" id="CMIP6_ua200" /> <!-- P1 (m s-1) eastward_wind : Zonal wind (positive eastwards) at 200hPa -->329 <field id="CMIP6_ua27" field_ref="dummy_XYA" /> <!-- P3 (m s-1) eastward_wind : Eastward Wind -->330 <field id="CMIP6_ua7h" field_ref="dummy_XYA" /> <!-- P1 (m s-1) eastward_wind : Eastward Wind -->331 <field field_ref="CMIP6_ua" grid_ref="CMIP6_p850" id="CMIP6_ua850" /> <!-- P1 (m s-1) eastward_wind : Zonal wind on the 850 hPa surface -->332 321 <field id="CMIP6_uas" field_ref="u10m" /> <!-- P1 (m s-1) eastward_wind : Eastward component of the near-surface (usually, 10 meters) wind --> 333 322 <field id="CMIP6_uqint" field_ref="dummy_XY" /> <!-- P1 (m2 s-1) integral_of_product_of_eastward_wind_and_specific_humidity_wrt_height : Column integrated eastward wind times specific humidity --> 334 323 <field id="CMIP6_ut" field_ref="dummy_XYA" /> <!-- P2 (K m s-1) product_of_eastward_wind_and_air_temperature : Product of air temperature and eastward wind --> 335 <field id="CMIP6_utendepfd" field_ref="dummy_ lat-P"/> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_eliassen_palm_flux_divergence : Tendency of the zonal mean zonal wind due to the divergence of the Eliassen-Palm flux. -->324 <field id="CMIP6_utendepfd" field_ref="dummy_XYA" /> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_eliassen_palm_flux_divergence : Tendency of the zonal mean zonal wind due to the divergence of the Eliassen-Palm flux. --> 336 325 <field id="CMIP6_utendnogw" field_ref="dummy_XYA" /> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_nonorographic_gravity_wave_drag : Tendency of the eastward wind by parameterized nonorographic gravity waves. --> 337 <field id="CMIP6_utendnogw27" field_ref="dummy_XYA" /> <!-- P3 (m s-2) tendency_of_eastward_wind_due_to_nonorographic_gravity_wave_drag : Tendency of the eastward wind by parameterized nonorographic gravity waves. -->338 326 <field id="CMIP6_utendogw" field_ref="dummy_XYA" /> <!-- P1 (m s-2) tendency_of_eastward_wind_due_to_orographic_gravity_wave_drag : Tendency of the eastward wind by parameterized orographic gravity waves. --> 339 <field id="CMIP6_utendvtem" field_ref="dummy_ lat-P" /> <!-- P1 (m s-1 d-1) utendvtem : Tendency of zonally averaged eastward wind, by the residual upward wind advection (on the native model grid). Reference: Andrews et al (1987): Middle Atmospheric Dynamics. Accademic Press. -->340 <field id="CMIP6_utendwtem" field_ref="dummy_ lat-P" /> <!-- P1 (m s-1 d-1) utendwtem : Tendency of zonally averaged eastward wind, by the residual northward wind advection (on the native model grid). Reference: Andrews et al (1987): Middle Atmospheric Dynamics. Accademic Press. -->327 <field id="CMIP6_utendvtem" field_ref="dummy_XYA" /> <!-- P1 (m s-1 d-1) u-tendency_by_wstar_advection : Tendency of zonally averaged eastward wind, by the residual upward wind advection (on the native model grid). Reference: Andrews et al (1987): Middle Atmospheric Dynamics. Academic Press. --> 328 <field id="CMIP6_utendwtem" field_ref="dummy_XYA" /> <!-- P1 (m s-1 d-1) u-tendency_by_vstar_advection : Tendency of zonally averaged eastward wind, by the residual northward wind advection (on the native model grid). Reference: Andrews et al (1987): Middle Atmospheric Dynamics. Academic Press. --> 341 329 <field id="CMIP6_uv" field_ref="dummy_XYA" /> <!-- P2 (m2 s-2) product_of_eastward_wind_and_northward_wind : u*v --> 342 330 <field id="CMIP6_uwap" field_ref="dummy_XYA" /> <!-- P2 (Pa m s-2) product_of_eastward_wind_and_omega : u*omega --> 343 331 <field id="CMIP6_v2" field_ref="dummy_XYA" /> <!-- P2 (m2 s-2) square_of_northward_wind : v*v --> 344 <field id="CMIP6_va" field_ref="va" /> <!-- P1 (m s-1) northward_wind : Northward Wind --> 345 <field field_ref="CMIP6_va" grid_ref="CMIP6_p200" id="CMIP6_va200" /> <!-- P1 (m s-1) northward_wind : Northward component of the wind --> 346 <field id="CMIP6_va27" field_ref="dummy_XYA" /> <!-- P3 (m s-1) northward_wind : Northward Wind --> 347 <field id="CMIP6_va7h" field_ref="dummy_XYA" /> <!-- P2 (m s-1) northward_wind : Northward Wind --> 348 <field field_ref="CMIP6_va" grid_ref="CMIP6_p850" id="CMIP6_va850" /> <!-- P1 (m s-1) northward_wind : Northward component of the wind at 850hPa --> 332 <field id="CMIP6_va" field_ref="va" /> <!-- P1 (m s-1) northward_wind : Northward component of the wind at 850hPa --> 349 333 <field id="CMIP6_vas" field_ref="v10m" /> <!-- P1 (m s-1) northward_wind : Northward component of the near surface wind --> 350 334 <field id="CMIP6_vortmean" field_ref="dummy_XY" /> <!-- P1 (s-1) atmosphere_relative_vorticity : Mean vorticity over 850,700,600 hPa --> 351 335 <field id="CMIP6_vqint" field_ref="dummy_XY" /> <!-- P1 (m2 s-1) integral_of_product_of_northward_wind_and_specific_humidity_wrt_height : Column integrated northward wind times specific humidity --> 352 336 <field id="CMIP6_vt" field_ref="dummy_XYA" /> <!-- P2 (K m s-1) product_of_northward_wind_and_air_temperature : Product of air temperature and northward wind --> 353 <field id="CMIP6_vtem" field_ref="dummy_lat-P" /> <!-- P1 (m s-1) northward_transformed_eulerian_mean_air_velocity : Transformed Eulerian Mean Diagnostics v*, meridional component of the residual meridional circulation (v*, w*) derived from 6 hr or higher frequency data fields (use instantaneous daily fields or 12 hr fields if the 6 hr data are not available). --> 354 <field id="CMIP6_vtendnogw" field_ref="dummy_XYA" /> <!-- P2 (m s-2) vtendnogw : Tendency of the northward wind by parameterized nonorographic gravity waves. (Note that CF name tables only have a general northward tendency for all gravity waves, and we need it separated by type.) --> 355 <field id="CMIP6_vtendnogw27" field_ref="dummy_XYA" /> <!-- P3 (m s-2) vtendnogw : Tendency of the northward wind by parameterized nonorographic gravity waves. (Note that CF name tables only have a general northward tendency for all gravity waves, and we need it separated by type.) --> 356 <field id="CMIP6_vtendogw" field_ref="dummy_XYA" /> <!-- P2 (m s-2) vtendogw : Tendency of the northward wind by parameterized orographic gravity waves. (Note that CF name tables only have a general northward tendency for all gravity waves, and we need it separated by type.) --> 337 <field id="CMIP6_vtem" field_ref="dummy_XYA" /> <!-- P1 (m s-1) northward_transformed_eulerian_mean_air_velocity : Transformed Eulerian Mean Diagnostics v*, meridional component of the residual meridional circulation (v*, w*) derived from 6 hr or higher frequency data fields (use instantaneous daily fields or 12 hr fields if the 6 hr data are not available). --> 338 <field id="CMIP6_vtendnogw" field_ref="dummy_XYA" /> <!-- P2 (m s-2) tendency_of_northward_wind_due_to_nonorographic_gravity_wave_drag : Tendency of the northward wind by parameterized nonorographic gravity waves. (Note that CF name tables only have a general northward tendency for all gravity waves, and we need it separated by type.) --> 339 <field id="CMIP6_vtendogw" field_ref="dummy_XYA" /> <!-- P2 (m s-2) tendency_of_northward_wind_due_to_orographic_gravity_wave_drag : Tendency of the northward wind by parameterized orographic gravity waves. (Note that CF name tables only have a general northward tendency for all gravity waves, and we need it separated by type.) --> 357 340 <field id="CMIP6_vwap" field_ref="dummy_XYA" /> <!-- P2 (Pa m s-2) product_of_northward_wind_and_omega : v*omega --> 358 341 <field id="CMIP6_wap" field_ref="wap" /> <!-- P1 (Pa s-1) lagrangian_tendency_of_air_pressure : Omega (vertical velocity in pressure coordinates, positive downwards) --> 359 342 <field id="CMIP6_wap2" field_ref="dummy_XYA" /> <!-- P2 (Pa2 s-2) square_of_lagrangian_tendency_of_air_pressure : omega*omega --> 360 <field id="CMIP6_wap27" field_ref="dummy_XYA" /> <!-- P3 (Pa s-1) lagrangian_tendency_of_air_pressure : Omega (vertical velocity in pressure coordinates, positive downwards) --> 361 <field id="CMIP6_wap4" field_ref="dummy_XYA" /> <!-- P1 (Pa s-1) lagrangian_tendency_of_air_pressure : Omega (vertical velocity in pressure coordinates, positive downwards) --> 362 <field field_ref="CMIP6_wap" grid_ref="CMIP6_p500" id="CMIP6_wap500" /> <!-- P1 (Pa s-1) lagrangian_tendency_of_air_pressure : Omega (vertical velocity in pressure coordinates, positive downwards) at 500 hPa level; --> 363 <field id="CMIP6_wap7h" field_ref="dummy_XYA" /> <!-- P2 (Pa s-1) lagrangian_tendency_of_air_pressure : Omega (vertical velocity in pressure coordinates, positive downwards) --> 364 <field id="CMIP6_wbptemp7h" field_ref="dummy_XYA" /> <!-- P1 (K) wet_bulb_potential_temperature : Wet bulb potential temperature --> 365 <field id="CMIP6_wtem" field_ref="dummy_lat-P" /> <!-- P1 (m s-1) wtem : Transformed Eulerian Mean Diagnostics w*, meridional component of the residual meridional circulation (v*, w*) derived from 6 hr or higher frequency data fields (use instantaneous daily fields or 12 hr fields if the 6 hr data are not available). Scale height: 6950 m --> 343 <field id="CMIP6_wbptemp" field_ref="dummy_XYA" /> <!-- P1 (K) wet_bulb_potential_temperature : Wet bulb potential temperature --> 344 <field id="CMIP6_wtem" field_ref="dummy_XYA" /> <!-- P1 (m s-1) unset : Transformed Eulerian Mean Diagnostics w*, meridional component of the residual meridional circulation (v*, w*) derived from 6 hr or higher frequency data fields (use instantaneous daily fields or 12 hr fields if the 6 hr data are not available). Scale height: 6950 m --> 366 345 <field id="CMIP6_xgwdparam" field_ref="dummy_XYA" /> <!-- P2 (Pa) atmosphere_eastward_stress_due_to_gravity_wave_drag : Parameterised x-component of gravity wave drag --> 367 346 <field id="CMIP6_ygwdparam" field_ref="dummy_XYA" /> <!-- P2 (Pa) atmosphere_northward_stress_due_to_gravity_wave_drag : Parameterised y- component of gravity wave drag --> 368 347 <field id="CMIP6_zfull" field_ref="dummy_XYA" /> <!-- P2 (m) height_above_reference_ellipsoid : Altitude of Model Full-Levels --> 369 <field id="CMIP6_zg" field_ref="zg" /> <!-- P1 (m) geopotential_height : Geopotential Height --> 370 <field field_ref="CMIP6_zg" grid_ref="CMIP6_p1000" id="CMIP6_zg1000" /> <!-- P1 (m) geopotential_height : Geopotential height on the 1000 hPa surface --> 371 <field id="CMIP6_zg27" field_ref="dummy_XYA" /> <!-- P3 (m) geopotential_height : Geopotential Height --> 372 <field id="CMIP6_zg7h" field_ref="dummy_XYA" /> <!-- P1 (m) geopotential_height : Geopotential Height --> 348 <field id="CMIP6_zg" field_ref="zg" /> <!-- P1 (m) geopotential_height : Geopotential height on the 1000 hPa surface --> 373 349 <field id="CMIP6_zhalf" field_ref="dummy_XYA" /> <!-- P2 (m) height_above_reference_ellipsoid : Altitude of Model Half-Levels --> 374 350 <field id="CMIP6_zmla" field_ref="dummy_XY" /> <!-- P1 (m) atmosphere_boundary_layer_thickness : Height of Boundary Layer --> 375 <field id="CMIP6_zmlwaero" field_ref="dummy_lat-A" /> <!-- P1 (K s-1) zmlwaero : longwave heating rate due to volcanic aerosols to be diagnosed through double radiation call, zonal average values required --> 376 <field id="CMIP6_zmswaero" field_ref="dummy_lat-A" /> <!-- P1 (K s-1) zmswaero : shortwave heating rate due to volcanic aerosols to be diagnosed through double radiation call, zonal average values required --> 377 <field id="CMIP6_zmtnt" field_ref="dummy_lat-P" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_diabatic_processes : The diabatic heating rates due to all the processes that may change potential temperature --> 351 <field id="CMIP6_zmlwaero" field_ref="dummy_XYA" /> <!-- P1 (K s-1) longwave_heating_rate_due_to_volcanic_aerosols : longwave heating rate due to volcanic aerosols to be diagnosed through double radiation call, zonal average values required --> 352 <field id="CMIP6_zmswaero" field_ref="dummy_XYA" /> <!-- P1 (K s-1) shortwave_heating_rate_due_to_volcanic_aerosols : shortwave heating rate due to volcanic aerosols to be diagnosed through double radiation call, zonal average values required --> 353 <field id="CMIP6_zmtnt" field_ref="dummy_XYA" /> <!-- P1 (K s-1) tendency_of_air_temperature_due_to_diabatic_processes : The diabatic heating rates due to all the processes that may change potential temperature --> 354 <field id="CMIP6_ap" field_ref="dummy_hyb" /><!-- One of the hybrid coordinate arrays --> 355 <field id="CMIP6_ap_bnds" field_ref="dummy_hyb" /><!-- One of the hybrid coordinate arrays --> 356 <field id="CMIP6_b" field_ref="dummy_hyb" /><!-- One of the hybrid coordinate arrays --> 357 <field id="CMIP6_b_bnds" field_ref="dummy_hyb" /><!-- One of the hybrid coordinate arrays --> 378 358 </field_definition> 379 380 <axis_definition>381 382 <axis id="CMIP6_alev" name="alev" axis_ref="dummy_axisatm" > </axis>383 <!-- must instantiate the level index representing the lowest atmospheric level -->384 <axis id="CMIP6_alev1" name="alev" axis_ref="CMIP6_alev" > <zoom_axis begin="90" n="1"/> </axis>385 <axis id="CMIP6_alevhalf" name="alevhalf" axis_ref="dummy_axisatm" > </axis>386 <axis id="CMIP6_dbze" name="dbze" axis_ref="dummy_axisatm" value="(0,14) [ -47.5 -42.5 -37.5 -32.5 -27.5 -22.5 -17.5 -12.5 -7.5 -2.5 2.5 7.5 12.5 17.5 22.5"> </axis>387 <axis id="CMIP6_effectRadIc" name="effectRadIc" axis_ref="dummy_axisatm" > </axis>388 <axis id="CMIP6_effectRadLi" name="effectRadLi" axis_ref="dummy_axisatm" > </axis>389 <axis id="CMIP6_height100m" name="height" axis_ref="dummy_axisatm" value="(0,0) [ 100. ]"> </axis>390 <axis id="CMIP6_height10m" name="height" axis_ref="dummy_axisatm" value="(0,0) [ 10. ]"> </axis>391 <axis id="CMIP6_height2m" name="height" axis_ref="dummy_axisatm" value="(0,0) [ 2. ]"> </axis>392 <axis id="CMIP6_landUse" name="landUse" axis_ref="dummy_axisatm" > </axis>393 <axis id="CMIP6_location" name="location" axis_ref="dummy_axisatm" > </axis>394 <axis id="CMIP6_misrBands" name="misrBands" axis_ref="dummy_axisatm" > </axis>395 <axis id="CMIP6_scatratio" name="scatratio" axis_ref="dummy_axisatm" > </axis>396 <axis id="CMIP6_site" name="site" axis_ref="dummy_axisatm" > </axis>397 <axis id="CMIP6_spectband" name="spectband" axis_ref="dummy_axisatm" > </axis>398 <axis id="CMIP6_sza5" name="sza5" axis_ref="dummy_axisatm" > </axis>399 <axis id="CMIP6_tau" name="tau" axis_ref="dummy_axisatm" > </axis>400 <axis id="CMIP6_vegtype" name="vegtype" axis_ref="dummy_axisatm" > </axis>401 <axis id="CMIP6_sdepth" name="sdepth" axis_ref="dummy_axis_srf" > </axis>402 <axis id="CMIP6_sdepth1" name="sdepth1" axis_ref="dummy_axis_srf" value="(0,0) [ 0.05 ]"> </axis>403 404 </axis_definition>405 406 <grid_definition>407 <grid id="COSP_sites_grid">408 <domain id="COSP_sites_domain" ni_glo="256" nj_glo="128" type="rectilinear" prec="8">409 <generate_rectilinear_domain/>410 <interpolate_domain order="1" renormalize="true" write_weight="true" mode="read_or_compute"/>411 </domain>412 <!-- <domain id="COSP_sites_domain" data_dim="1" type="unstructured" -->413 <!-- ni_glo="1" latvalue_1d="(0,0)[ 45. ]" lonvalue_1d="(0,0)[ 0. ]" -->414 <!-- nvertex="4" -->415 <!-- bounds_lat_1d="(0,3)x(0,0)[ 45.01 45.01 44.99 44.99 ]" -->416 <!-- bounds_lon_1d="(0,3)x(0,0)[ -0.01 0.01 0.01 - 0.01 ]" > -->417 <!-- <generate_rectilinear_domain/> -->418 <!-- </domain> -->419 </grid>420 421 <grid id="CMIP6_p1000" >422 <domain domain_ref="domain_atm"/>423 <axis id="CMIP6_axis_p1000" positive="up" n_glo="1" value="(0,0) [100000.]">424 <interpolate_axis type="polynomial" order="1" coordinate="CMIP6_pfull"/>425 </axis>426 </grid>427 428 <grid id="CMIP6_p850">429 <domain domain_ref="domain_atm"/>430 <axis id="CMIP6_axis_p850" positive="up" n_glo="1" value="(0,0) [85000.]">" >431 <interpolate_axis type="polynomial" order="1" coordinate="CMIP6_pfull"/>432 </axis>433 </grid>434 435 <grid id="CMIP6_p840">436 <domain domain_ref="domain_atm"/>437 <axis id="CMIP6_axis_p840" positive="up" n_glo="1" value="(0,0) [84000.]">438 <interpolate_axis type="polynomial" order="1" coordinate="CMIP6_pfull"/>439 </axis>440 </grid>441 442 <grid id="CMIP6_p700">443 <domain domain_ref="domain_atm"/>444 <axis id="CMIP6_axis_p700" positive="up" n_glo="1" value="(0,0) [70000.]">445 <interpolate_axis type="polynomial" order="1" coordinate="CMIP6_pfull"/>446 </axis>447 </grid>448 449 <grid id="CMIP6_p560">450 <domain domain_ref="domain_atm"/>451 <axis id="CMIP6_axis_p560" positive="up" n_glo="1" value="(0,0) [56000.]">452 <interpolate_axis type="polynomial" order="1" coordinate="CMIP6_pfull"/>453 </axis>454 </grid>455 456 <grid id="CMIP6_p500">457 <domain domain_ref="domain_atm"/>458 <axis id="CMIP6_axis_p500" positive="up" n_glo="1" value="(0,0) [50000.]">459 <interpolate_axis type="polynomial" order="1" coordinate="CMIP6_pfull"/>460 </axis>461 </grid>462 463 <grid id="CMIP6_p220">464 <domain domain_ref="domain_atm"/>465 <axis id="CMIP6_axis_p220" positive="up" n_glo="1" value="(0,0) [22000.]">466 <interpolate_axis type="polynomial" order="1" coordinate="CMIP6_pfull"/>467 </axis>468 </grid>469 470 <grid id="CMIP6_p200">471 <domain domain_ref="domain_atm"/>472 <axis id="CMIP6_axis_p200" positive="up" n_glo="1" value="(0,0) [20000.]">473 <interpolate_axis type="polynomial" order="1" coordinate="CMIP6_pfull"/>474 </axis>475 </grid>476 477 <grid id="CMIP6_p10">478 <domain domain_ref="domain_atm"/>479 <axis id="CMIP6_axis_p10" positive="up" n_glo="1" value="(0,0) [1000.]">480 <interpolate_axis type="polynomial" order="1" coordinate="CMIP6_pfull"/>481 </axis>482 </grid>483 484 </grid_definition>485 359 </context>
Note: See TracChangeset
for help on using the changeset viewer.