[4208] | 1 | MODULE surface |
---|
[4210] | 2 | |
---|
| 3 | #include "use_logging.h" |
---|
| 4 | |
---|
[4208] | 5 | IMPLICIT NONE |
---|
| 6 | PRIVATE |
---|
| 7 | SAVE |
---|
| 8 | |
---|
| 9 | REAL, PARAMETER :: pi=2.*ASIN(1.) |
---|
| 10 | |
---|
| 11 | ! common variables |
---|
| 12 | REAL, PUBLIC :: I_mer,I_ter,Cd_mer,Cd_ter, & |
---|
| 13 | & alb_mer,alb_ter,emi_mer,emi_ter |
---|
| 14 | |
---|
[4228] | 15 | ! precomputed variables |
---|
[4229] | 16 | REAL :: lambda |
---|
[4242] | 17 | REAL, ALLOCATABLE :: dz1(:),dz2(:) |
---|
[4245] | 18 | !$OMP THREADPRIVATE(dz1,dz2) |
---|
[4242] | 19 | REAL, ALLOCATABLE :: rnatur(:), albedo(:),emissiv(:), z0(:), inertie(:) |
---|
| 20 | !$OMP THREADPRIVATE( rnatur, albedo, emissiv, z0, inertie) |
---|
[4208] | 21 | |
---|
[4242] | 22 | ! internal state, written to / read from disk at checkpoint / restart |
---|
[4245] | 23 | REAL, ALLOCATABLE :: tsurf(:), tsoil(:,:) |
---|
| 24 | !$OMP THREADPRIVATE(tsurf, tsoil) |
---|
| 25 | ! variables below should be temporary arrays, not persistent |
---|
| 26 | REAL, ALLOCATABLE :: zc(:,:),zd(:,:), capcal(:), fluxgrd(:) |
---|
| 27 | !$OMP THREADPRIVATE(zc,zd, capcal, fluxgrd) |
---|
[4208] | 28 | |
---|
[4245] | 29 | PUBLIC :: init_soil, & |
---|
| 30 | soil, soil_new, soil_forward, soil_backward, & |
---|
| 31 | zc, zd, & |
---|
[4242] | 32 | rnatur, albedo, emissiv, z0, inertie, & |
---|
| 33 | tsurf, tsoil, capcal, fluxgrd |
---|
[4228] | 34 | |
---|
[4208] | 35 | CONTAINS |
---|
| 36 | |
---|
[4245] | 37 | SUBROUTINE init_soil(nsoil) |
---|
| 38 | INTEGER, INTENT(IN) :: nsoil |
---|
[4233] | 39 | REAL :: min_period,dalph_soil, rk,fz1,rk1,rk2 |
---|
[4208] | 40 | INTEGER :: jk |
---|
| 41 | |
---|
| 42 | !----------------------------------------------------------------------- |
---|
[4229] | 43 | ! ground levels |
---|
| 44 | ! grnd=z/l where l is the skin depth of the diurnal cycle: |
---|
| 45 | ! -------------------------------------------------------- |
---|
| 46 | |
---|
[4245] | 47 | WRITELOG(*,*) 'nsoil,firstcall=',nsoil, .TRUE. |
---|
[4210] | 48 | |
---|
[4229] | 49 | ALLOCATE(dz1(nsoil),dz2(nsoil)) |
---|
| 50 | |
---|
| 51 | min_period=20000. |
---|
| 52 | dalph_soil=2. |
---|
| 53 | |
---|
| 54 | ! la premiere couche represente un dixieme de cycle diurne |
---|
| 55 | fz1=sqrt(min_period/pi) |
---|
| 56 | |
---|
| 57 | DO jk=1,nsoil |
---|
| 58 | rk1=jk |
---|
| 59 | rk2=jk-1 |
---|
| 60 | dz2(jk)=fz(rk1)-fz(rk2) |
---|
[4208] | 61 | ENDDO |
---|
[4229] | 62 | DO jk=1,nsoil-1 |
---|
| 63 | rk1=jk+.5 |
---|
| 64 | rk2=jk-.5 |
---|
| 65 | dz1(jk)=1./(fz(rk1)-fz(rk2)) |
---|
[4208] | 66 | ENDDO |
---|
[4229] | 67 | lambda=fz(.5)*dz1(1) |
---|
[4228] | 68 | |
---|
[4229] | 69 | WRITELOG(*,*) 'full layers, intermediate layers (secoonds)' |
---|
| 70 | DO jk=1,nsoil |
---|
| 71 | rk=jk |
---|
| 72 | rk1=jk+.5 |
---|
| 73 | rk2=jk-.5 |
---|
[4210] | 74 | WRITELOG(*,*) fz(rk1)*fz(rk2)*pi, & |
---|
[4229] | 75 | & fz(rk)*fz(rk)*pi |
---|
[4208] | 76 | ENDDO |
---|
[4210] | 77 | LOG_INFO('init_soil') |
---|
[4228] | 78 | |
---|
[4233] | 79 | CONTAINS |
---|
| 80 | |
---|
| 81 | FUNCTION fz(rk) RESULT(val) |
---|
| 82 | REAL :: val, rk |
---|
| 83 | val = fz1*(dalph_soil**rk-1.)/(dalph_soil-1.) |
---|
| 84 | END FUNCTION fz |
---|
| 85 | |
---|
[4208] | 86 | END SUBROUTINE init_soil |
---|
[4229] | 87 | |
---|
[4245] | 88 | PURE SUBROUTINE soil_backward(ngrid,nsoil, zc,zd, ptsrf,ptsoil) |
---|
| 89 | INTEGER, INTENT(IN) :: ngrid, nsoil ! number of columns, of soil layers |
---|
| 90 | REAL, INTENT(IN) :: zc(ngrid, nsoil), zd(ngrid, nsoil) ! LU factorization |
---|
| 91 | REAL, INTENT(IN) :: ptsrf(ngrid) ! new surface temperature |
---|
| 92 | REAL, INTENT(INOUT) :: ptsoil(ngrid,nsoil) ! soil temperature |
---|
| 93 | INTEGER :: ig, jk |
---|
| 94 | |
---|
| 95 | !----------------------------------------------------------------------- |
---|
| 96 | ! Computation of the soil temperatures using the Cgrd and Dgrd |
---|
| 97 | ! coefficient computed during the forward sweep |
---|
| 98 | ! ----------------------------------------------- |
---|
| 99 | |
---|
| 100 | ! surface temperature => temperature in first soil layer |
---|
| 101 | DO ig=1,ngrid |
---|
| 102 | ptsoil(ig,1)=(lambda*zc(ig,1)+ptsrf(ig))/ & |
---|
| 103 | & (lambda*(1.-zd(ig,1))+1.) |
---|
| 104 | ENDDO |
---|
| 105 | |
---|
| 106 | ! other temperatures |
---|
| 107 | DO jk=1,nsoil-1 |
---|
| 108 | DO ig=1,ngrid |
---|
| 109 | ptsoil(ig,jk+1)=zc(ig,jk)+zd(ig,jk)*ptsoil(ig,jk) |
---|
| 110 | ENDDO |
---|
| 111 | ENDDO |
---|
| 112 | END SUBROUTINE Soil_backward |
---|
| 113 | |
---|
| 114 | PURE SUBROUTINE soil_forward(ngrid, nsoil, ptimestep, ptherm_i, ptsrf, ptsoil, & |
---|
| 115 | & zc, zd, pcapcal, pfluxgrd) |
---|
| 116 | INTEGER, INTENT(IN) :: ngrid, nsoil ! number of columns, of soil layers |
---|
| 117 | REAL, INTENT(IN) :: ptimestep, & ! time step |
---|
| 118 | & ptherm_i(ngrid), & ! thermal inertia ?? |
---|
| 119 | & ptsrf(ngrid), & ! surface temperature before heat conduction |
---|
| 120 | & ptsoil(ngrid, nsoil) ! soil temperature before heat conduction |
---|
| 121 | REAL, INTENT(OUT) :: zc(ngrid,nsoil), & |
---|
| 122 | & zd(ngrid, nsoil), & ! LU factorization for backward sweep |
---|
| 123 | & pcapcal(ngrid), & ! effective calorific capacity |
---|
| 124 | & pfluxgrd(ngrid) ! conductive heat flux at the ground |
---|
| 125 | REAL :: z1, zdz2(ngrid) |
---|
| 126 | INTEGER :: jk, ig |
---|
| 127 | |
---|
| 128 | !----------------------------------------------------------------------- |
---|
| 129 | ! Computation of the Cgrd and Dgrd coefficients the backward sweep : |
---|
| 130 | ! --------------------------------------------------------------- |
---|
| 131 | |
---|
| 132 | DO jk=1,nsoil |
---|
| 133 | zdz2(jk)=dz2(jk)/ptimestep |
---|
| 134 | ENDDO |
---|
| 135 | |
---|
| 136 | DO ig=1,ngrid |
---|
| 137 | z1=zdz2(nsoil)+dz1(nsoil-1) |
---|
| 138 | zc(ig,nsoil-1)=zdz2(nsoil)*ptsoil(ig,nsoil)/z1 |
---|
| 139 | zd(ig,nsoil-1)=dz1(nsoil-1)/z1 |
---|
| 140 | ENDDO |
---|
| 141 | |
---|
| 142 | DO jk=nsoil-1,2,-1 |
---|
| 143 | DO ig=1,ngrid |
---|
| 144 | z1=1./(zdz2(jk)+dz1(jk-1)+dz1(jk)*(1.-zd(ig,jk))) |
---|
| 145 | zc(ig,jk-1)= & |
---|
| 146 | & (ptsoil(ig,jk)*zdz2(jk)+dz1(jk)*zc(ig,jk))*z1 |
---|
| 147 | zd(ig,jk-1)=dz1(jk-1)*z1 |
---|
| 148 | ENDDO |
---|
| 149 | ENDDO |
---|
| 150 | |
---|
| 151 | !----------------------------------------------------------------------- |
---|
| 152 | ! computation of the surface diffusive flux from ground and |
---|
| 153 | ! calorific capacity of the ground: |
---|
| 154 | ! --------------------------------- |
---|
| 155 | |
---|
| 156 | DO ig=1,ngrid |
---|
| 157 | pfluxgrd(ig)=ptherm_i(ig)*dz1(1)* & |
---|
| 158 | & (zc(ig,1)+(zd(ig,1)-1.)*ptsoil(ig,1)) |
---|
| 159 | z1=lambda*(1.-zd(ig,1))+1. |
---|
| 160 | pcapcal(ig)=ptherm_i(ig)* & |
---|
| 161 | & ptimestep*(zdz2(1)+(1.-zd(ig,1))*dz1(1))/z1 |
---|
| 162 | pfluxgrd(ig)=pfluxgrd(ig) & |
---|
| 163 | & +pcapcal(ig)*(ptsoil(ig,1)*z1-lambda*zc(ig,1)-ptsrf(ig)) & |
---|
| 164 | & /ptimestep |
---|
| 165 | ENDDO |
---|
| 166 | END SUBROUTINE soil_forward |
---|
| 167 | |
---|
| 168 | SUBROUTINE soil_new(ngrid,nsoil,ptimestep,ptherm_i, ptsrf,ptsoil, pcapcal,pfluxgrd) |
---|
| 169 | INTEGER, INTENT(IN) :: ngrid, nsoil ! number of columns, of soil layers |
---|
| 170 | REAL, INTENT(IN) :: ptimestep, & ! time step |
---|
| 171 | & ptherm_i(ngrid) ! thermal inertia ?? |
---|
| 172 | REAL, INTENT(INOUT) :: ptsrf(ngrid), & ! surface temperature |
---|
| 173 | & ptsoil(ngrid,nsoil) ! soil temperature |
---|
| 174 | REAL, INTENT(OUT) :: pcapcal(ngrid), & ! effective calorific capacity |
---|
| 175 | & pfluxgrd(ngrid) ! conductive heat flux at the ground |
---|
| 176 | CALL soil_backward(ngrid,nsoil, zc,zd, ptsrf,ptsoil) |
---|
| 177 | CALL soil_forward(ngrid, nsoil, ptimestep, ptherm_i, ptsrf, ptsoil, & |
---|
| 178 | & zc, zd, pcapcal, pfluxgrd) |
---|
| 179 | END SUBROUTINE soil_new |
---|
| 180 | |
---|
[4208] | 181 | SUBROUTINE soil(ngrid,nsoil,firstcall,ptherm_i, & |
---|
| 182 | & ptimestep,ptsrf,ptsoil, & |
---|
[4229] | 183 | & pcapcal,pfluxgrd) |
---|
| 184 | |
---|
[4208] | 185 | !======================================================================= |
---|
[4229] | 186 | ! |
---|
| 187 | ! Auteur: Frederic Hourdin 30/01/92 |
---|
| 188 | ! ------- |
---|
| 189 | ! |
---|
| 190 | ! objet: computation of : the soil temperature evolution |
---|
| 191 | ! ------ the surfacic heat capacity "Capcal" |
---|
| 192 | ! the surface conduction flux pcapcal |
---|
| 193 | ! |
---|
| 194 | ! |
---|
| 195 | ! Method: implicit time integration |
---|
| 196 | ! ------- |
---|
| 197 | ! Consecutive ground temperatures are related by: |
---|
| 198 | ! T(k+1) = C(k) + D(k)*T(k) (1) |
---|
| 199 | ! the coefficients C and D are computed at the t-dt time-step. |
---|
| 200 | ! Routine structure: |
---|
| 201 | ! 1)new temperatures are computed using (1) |
---|
| 202 | ! 2)C and D coefficients are computed from the new temperature |
---|
| 203 | ! profile for the t+dt time-step |
---|
| 204 | ! 3)the coefficients A and B are computed where the diffusive |
---|
| 205 | ! fluxes at the t+dt time-step is given by |
---|
| 206 | ! Fdiff = A + B Ts(t+dt) |
---|
| 207 | ! or Fdiff = F0 + Capcal (Ts(t+dt)-Ts(t))/dt |
---|
| 208 | ! with F0 = A + B (Ts(t)) |
---|
| 209 | ! Capcal = B*dt |
---|
| 210 | ! |
---|
| 211 | ! Interface: |
---|
| 212 | ! ---------- |
---|
| 213 | ! |
---|
| 214 | ! Arguments: |
---|
| 215 | ! ---------- |
---|
| 216 | ! ngrid number of grid-points |
---|
| 217 | ! ptimestep physical timestep (s) |
---|
| 218 | ! pto(ngrid,nsoil) temperature at time-step t (K) |
---|
| 219 | ! ptn(ngrid,nsoil) temperature at time step t+dt (K) |
---|
| 220 | ! pcapcal(ngrid) specific heat (W*m-2*s*K-1) |
---|
| 221 | ! pfluxgrd(ngrid) surface diffusive flux from ground (Wm-2) |
---|
| 222 | ! |
---|
[4208] | 223 | !======================================================================= |
---|
[4229] | 224 | ! declarations: |
---|
| 225 | ! ------------- |
---|
| 226 | |
---|
| 227 | |
---|
[4208] | 228 | !----------------------------------------------------------------------- |
---|
[4229] | 229 | ! arguments |
---|
| 230 | ! --------- |
---|
| 231 | |
---|
| 232 | INTEGER ngrid,nsoil |
---|
| 233 | REAL ptimestep |
---|
| 234 | REAL ptsrf(ngrid),ptsoil(ngrid,nsoil),ptherm_i(ngrid) |
---|
| 235 | REAL pcapcal(ngrid),pfluxgrd(ngrid) |
---|
| 236 | LOGICAL firstcall |
---|
| 237 | |
---|
| 238 | |
---|
[4208] | 239 | !----------------------------------------------------------------------- |
---|
[4229] | 240 | ! local arrays |
---|
| 241 | ! ------------ |
---|
| 242 | |
---|
| 243 | INTEGER ig,jk |
---|
| 244 | REAL zdz2(nsoil),z1(ngrid) |
---|
| 245 | |
---|
| 246 | IF (firstcall) THEN |
---|
[4245] | 247 | ! init_soil is now called by iniphyparam |
---|
| 248 | ! CALL init_soil(ngrid, nsoil) |
---|
[4208] | 249 | ELSE |
---|
[4245] | 250 | IF(.FALSE.) THEN |
---|
| 251 | !----------------------------------------------------------------------- |
---|
| 252 | ! Computation of the soil temperatures using the Cgrd and Dgrd |
---|
| 253 | ! coefficient computed at the previous time-step: |
---|
| 254 | ! ----------------------------------------------- |
---|
| 255 | |
---|
| 256 | ! surface temperature |
---|
| 257 | DO ig=1,ngrid |
---|
| 258 | ptsoil(ig,1)=(lambda*zc(ig,1)+ptsrf(ig))/ & |
---|
| 259 | & (lambda*(1.-zd(ig,1))+1.) |
---|
| 260 | ENDDO |
---|
| 261 | |
---|
| 262 | ! other temperatures |
---|
| 263 | DO jk=1,nsoil-1 |
---|
| 264 | DO ig=1,ngrid |
---|
| 265 | ptsoil(ig,jk+1)=zc(ig,jk)+zd(ig,jk)*ptsoil(ig,jk) |
---|
| 266 | ENDDO |
---|
| 267 | ENDDO |
---|
| 268 | ELSE |
---|
| 269 | CALL soil_backward(ngrid,nsoil, zc,zd, ptsrf,ptsoil) |
---|
| 270 | END IF |
---|
| 271 | |
---|
| 272 | ENDIF |
---|
| 273 | |
---|
| 274 | IF(.FALSE.) THEN |
---|
[4208] | 275 | !----------------------------------------------------------------------- |
---|
[4245] | 276 | ! Computation of the Cgrd and Dgrd coefficient for the next step: |
---|
| 277 | ! --------------------------------------------------------------- |
---|
| 278 | |
---|
| 279 | DO jk=1,nsoil |
---|
| 280 | zdz2(jk)=dz2(jk)/ptimestep |
---|
| 281 | ENDDO |
---|
| 282 | |
---|
[4229] | 283 | DO ig=1,ngrid |
---|
[4245] | 284 | z1(ig)=zdz2(nsoil)+dz1(nsoil-1) |
---|
| 285 | zc(ig,nsoil-1)=zdz2(nsoil)*ptsoil(ig,nsoil)/z1(ig) |
---|
| 286 | zd(ig,nsoil-1)=dz1(nsoil-1)/z1(ig) |
---|
[4208] | 287 | ENDDO |
---|
[4245] | 288 | |
---|
| 289 | DO jk=nsoil-1,2,-1 |
---|
[4229] | 290 | DO ig=1,ngrid |
---|
[4245] | 291 | z1(ig)=1./(zdz2(jk)+dz1(jk-1)+dz1(jk)*(1.-zd(ig,jk))) |
---|
| 292 | zc(ig,jk-1)= & |
---|
| 293 | & (ptsoil(ig,jk)*zdz2(jk)+dz1(jk)*zc(ig,jk))*z1(ig) |
---|
| 294 | zd(ig,jk-1)=dz1(jk-1)*z1(ig) |
---|
[4208] | 295 | ENDDO |
---|
| 296 | ENDDO |
---|
[4245] | 297 | |
---|
| 298 | !----------------------------------------------------------------------- |
---|
| 299 | ! computation of the surface diffusive flux from ground and |
---|
| 300 | ! calorific capacity of the ground: |
---|
| 301 | ! --------------------------------- |
---|
| 302 | |
---|
[4229] | 303 | DO ig=1,ngrid |
---|
[4245] | 304 | pfluxgrd(ig)=ptherm_i(ig)*dz1(1)* & |
---|
| 305 | & (zc(ig,1)+(zd(ig,1)-1.)*ptsoil(ig,1)) |
---|
| 306 | z1(ig)=lambda*(1.-zd(ig,1))+1. |
---|
| 307 | pcapcal(ig)=ptherm_i(ig)* & |
---|
| 308 | & ptimestep*(zdz2(1)+(1.-zd(ig,1))*dz1(1))/z1(ig) |
---|
| 309 | pfluxgrd(ig)=pfluxgrd(ig) & |
---|
| 310 | & +pcapcal(ig)*(ptsoil(ig,1)*z1(ig)-lambda*zc(ig,1)-ptsrf(ig)) & |
---|
| 311 | & /ptimestep |
---|
[4208] | 312 | ENDDO |
---|
[4245] | 313 | ELSE |
---|
| 314 | CALL soil_forward(ngrid, nsoil, ptimestep, ptherm_i, ptsrf, ptsoil, & |
---|
| 315 | & zc, zd, pcapcal, pfluxgrd) |
---|
| 316 | END IF |
---|
[4208] | 317 | END SUBROUTINE soil |
---|
[4245] | 318 | |
---|
| 319 | END MODULE surface |
---|
| 320 | |
---|