1 | MODULE soil_mod |
---|
2 | |
---|
3 | #include "use_logging.h" |
---|
4 | |
---|
5 | IMPLICIT NONE |
---|
6 | PRIVATE |
---|
7 | SAVE |
---|
8 | |
---|
9 | REAL, PARAMETER :: pi=2.*ASIN(1.) |
---|
10 | |
---|
11 | ! common variables |
---|
12 | REAL, PUBLIC :: I_mer,I_ter,Cd_mer,Cd_ter, & |
---|
13 | & alb_mer,alb_ter,emi_mer,emi_ter |
---|
14 | |
---|
15 | ! precomputed variables |
---|
16 | REAL :: lambda |
---|
17 | REAL, ALLOCATABLE :: dz1(:),dz2(:) |
---|
18 | !$OMP THREADPRIVATE(dz1,dz2) |
---|
19 | REAL, ALLOCATABLE :: rnatur(:), albedo(:),emissiv(:), z0(:), inertie(:) |
---|
20 | !$OMP THREADPRIVATE( rnatur, albedo, emissiv, z0, inertie) |
---|
21 | |
---|
22 | ! internal state, written to / read from disk at checkpoint / restart |
---|
23 | REAL, ALLOCATABLE :: tsurf(:), tsoil(:,:) |
---|
24 | !$OMP THREADPRIVATE(tsurf, tsoil) |
---|
25 | |
---|
26 | PUBLIC :: init_soil, soil_forward, soil_backward, & |
---|
27 | rnatur, albedo, emissiv, z0, inertie, & |
---|
28 | tsurf, tsoil |
---|
29 | |
---|
30 | CONTAINS |
---|
31 | |
---|
32 | SUBROUTINE init_soil(nsoil) |
---|
33 | INTEGER, INTENT(IN) :: nsoil |
---|
34 | REAL :: min_period,dalph_soil, rk,fz1,rk1,rk2 |
---|
35 | INTEGER :: jk |
---|
36 | |
---|
37 | !----------------------------------------------------------------------- |
---|
38 | ! ground levels |
---|
39 | ! grnd=z/l where l is the skin depth of the diurnal cycle: |
---|
40 | ! -------------------------------------------------------- |
---|
41 | |
---|
42 | WRITELOG(*,*) 'nsoil,firstcall=',nsoil, .TRUE. |
---|
43 | |
---|
44 | ALLOCATE(dz1(nsoil),dz2(nsoil)) |
---|
45 | |
---|
46 | min_period=20000. |
---|
47 | dalph_soil=2. |
---|
48 | |
---|
49 | ! la premiere couche represente un dixieme de cycle diurne |
---|
50 | fz1=sqrt(min_period/pi) |
---|
51 | |
---|
52 | DO jk=1,nsoil |
---|
53 | rk1=jk |
---|
54 | rk2=jk-1 |
---|
55 | dz2(jk)=fz(rk1)-fz(rk2) |
---|
56 | ENDDO |
---|
57 | DO jk=1,nsoil-1 |
---|
58 | rk1=jk+.5 |
---|
59 | rk2=jk-.5 |
---|
60 | dz1(jk)=1./(fz(rk1)-fz(rk2)) |
---|
61 | ENDDO |
---|
62 | lambda=fz(.5)*dz1(1) |
---|
63 | |
---|
64 | WRITELOG(*,*) 'full layers, intermediate layers (secoonds)' |
---|
65 | DO jk=1,nsoil |
---|
66 | rk=jk |
---|
67 | rk1=jk+.5 |
---|
68 | rk2=jk-.5 |
---|
69 | WRITELOG(*,*) fz(rk1)*fz(rk2)*pi, & |
---|
70 | & fz(rk)*fz(rk)*pi |
---|
71 | ENDDO |
---|
72 | LOG_INFO('init_soil') |
---|
73 | |
---|
74 | CONTAINS |
---|
75 | |
---|
76 | FUNCTION fz(rk) RESULT(val) |
---|
77 | REAL :: val, rk |
---|
78 | val = fz1*(dalph_soil**rk-1.)/(dalph_soil-1.) |
---|
79 | END FUNCTION fz |
---|
80 | |
---|
81 | END SUBROUTINE init_soil |
---|
82 | |
---|
83 | !======================================================================= |
---|
84 | ! |
---|
85 | ! Auteur: Frederic Hourdin 30/01/92 |
---|
86 | ! ------- |
---|
87 | ! |
---|
88 | ! objet: computation of : the soil temperature evolution |
---|
89 | ! ------ the surfacic heat capacity "Capcal" |
---|
90 | ! the surface conduction flux pcapcal |
---|
91 | ! |
---|
92 | ! |
---|
93 | ! Method: implicit time integration |
---|
94 | ! ------- |
---|
95 | ! Consecutive ground temperatures are related by: |
---|
96 | ! T(k+1) = C(k) + D(k)*T(k) (1) |
---|
97 | ! the coefficients C and D are computed at the t-dt time-step. |
---|
98 | ! Routine structure: |
---|
99 | ! 1)new temperatures are computed using (1) |
---|
100 | ! 2)C and D coefficients are computed from the new temperature |
---|
101 | ! profile for the t+dt time-step |
---|
102 | ! 3)the coefficients A and B are computed where the diffusive |
---|
103 | ! fluxes at the t+dt time-step is given by |
---|
104 | ! Fdiff = A + B Ts(t+dt) |
---|
105 | ! or Fdiff = F0 + Capcal (Ts(t+dt)-Ts(t))/dt |
---|
106 | ! with F0 = A + B (Ts(t)) |
---|
107 | ! Capcal = B*dt |
---|
108 | ! |
---|
109 | |
---|
110 | PURE SUBROUTINE soil_backward(ngrid,nsoil, zc,zd, ptsrf,ptsoil) |
---|
111 | INTEGER, INTENT(IN) :: ngrid, nsoil ! number of columns, of soil layers |
---|
112 | REAL, INTENT(IN) :: zc(ngrid, nsoil), zd(ngrid, nsoil) ! LU factorization |
---|
113 | REAL, INTENT(IN) :: ptsrf(ngrid) ! new surface temperature |
---|
114 | REAL, INTENT(INOUT) :: ptsoil(ngrid,nsoil) ! soil temperature |
---|
115 | INTEGER :: ig, jk |
---|
116 | |
---|
117 | !----------------------------------------------------------------------- |
---|
118 | ! Computation of the soil temperatures using the Cgrd and Dgrd |
---|
119 | ! coefficient computed during the forward sweep |
---|
120 | ! ----------------------------------------------- |
---|
121 | |
---|
122 | ! surface temperature => temperature in first soil layer |
---|
123 | DO ig=1,ngrid |
---|
124 | ptsoil(ig,1)=(lambda*zc(ig,1)+ptsrf(ig))/ & |
---|
125 | & (lambda*(1.-zd(ig,1))+1.) |
---|
126 | ENDDO |
---|
127 | |
---|
128 | ! other temperatures |
---|
129 | DO jk=1,nsoil-1 |
---|
130 | DO ig=1,ngrid |
---|
131 | ptsoil(ig,jk+1)=zc(ig,jk)+zd(ig,jk)*ptsoil(ig,jk) |
---|
132 | ENDDO |
---|
133 | ENDDO |
---|
134 | END SUBROUTINE Soil_backward |
---|
135 | |
---|
136 | PURE SUBROUTINE soil_forward(ngrid, nsoil, ptimestep, ptherm_i, ptsrf, ptsoil, & |
---|
137 | & zc, zd, pcapcal, pfluxgrd) |
---|
138 | INTEGER, INTENT(IN) :: ngrid, nsoil ! number of columns, of soil layers |
---|
139 | REAL, INTENT(IN) :: ptimestep, & ! time step |
---|
140 | & ptherm_i(ngrid), & ! thermal inertia ?? |
---|
141 | & ptsrf(ngrid), & ! surface temperature before heat conduction |
---|
142 | & ptsoil(ngrid, nsoil) ! soil temperature before heat conduction |
---|
143 | REAL, INTENT(OUT) :: zc(ngrid,nsoil), & |
---|
144 | & zd(ngrid, nsoil), & ! LU factorization for backward sweep |
---|
145 | & pcapcal(ngrid), & ! effective calorific capacity |
---|
146 | & pfluxgrd(ngrid) ! conductive heat flux at the ground |
---|
147 | REAL :: z1, zdz2(ngrid) |
---|
148 | INTEGER :: jk, ig |
---|
149 | |
---|
150 | !----------------------------------------------------------------------- |
---|
151 | ! Computation of the Cgrd and Dgrd coefficients the backward sweep : |
---|
152 | ! --------------------------------------------------------------- |
---|
153 | |
---|
154 | DO jk=1,nsoil |
---|
155 | zdz2(jk)=dz2(jk)/ptimestep |
---|
156 | ENDDO |
---|
157 | |
---|
158 | DO ig=1,ngrid |
---|
159 | z1=zdz2(nsoil)+dz1(nsoil-1) |
---|
160 | zc(ig,nsoil-1)=zdz2(nsoil)*ptsoil(ig,nsoil)/z1 |
---|
161 | zd(ig,nsoil-1)=dz1(nsoil-1)/z1 |
---|
162 | ENDDO |
---|
163 | |
---|
164 | DO jk=nsoil-1,2,-1 |
---|
165 | DO ig=1,ngrid |
---|
166 | z1=1./(zdz2(jk)+dz1(jk-1)+dz1(jk)*(1.-zd(ig,jk))) |
---|
167 | zc(ig,jk-1)= & |
---|
168 | & (ptsoil(ig,jk)*zdz2(jk)+dz1(jk)*zc(ig,jk))*z1 |
---|
169 | zd(ig,jk-1)=dz1(jk-1)*z1 |
---|
170 | ENDDO |
---|
171 | ENDDO |
---|
172 | |
---|
173 | !----------------------------------------------------------------------- |
---|
174 | ! computation of the surface diffusive flux from ground and |
---|
175 | ! calorific capacity of the ground: |
---|
176 | ! --------------------------------- |
---|
177 | |
---|
178 | DO ig=1,ngrid |
---|
179 | pfluxgrd(ig)=ptherm_i(ig)*dz1(1)* & |
---|
180 | & (zc(ig,1)+(zd(ig,1)-1.)*ptsoil(ig,1)) |
---|
181 | z1=lambda*(1.-zd(ig,1))+1. |
---|
182 | pcapcal(ig)=ptherm_i(ig)* & |
---|
183 | & ptimestep*(zdz2(1)+(1.-zd(ig,1))*dz1(1))/z1 |
---|
184 | pfluxgrd(ig)=pfluxgrd(ig) & |
---|
185 | & +pcapcal(ig)*(ptsoil(ig,1)*z1-lambda*zc(ig,1)-ptsrf(ig)) & |
---|
186 | & /ptimestep |
---|
187 | ENDDO |
---|
188 | END SUBROUTINE soil_forward |
---|
189 | |
---|
190 | END MODULE soil_mod |
---|