1 | SUBROUTINE soil(ngrid,nsoil,firstcall,ptherm_i, |
---|
2 | s ptimestep,ptsrf,ptsoil, |
---|
3 | s pcapcal,pfluxgrd) |
---|
4 | IMPLICIT NONE |
---|
5 | |
---|
6 | c======================================================================= |
---|
7 | c |
---|
8 | c Auteur: Frederic Hourdin 30/01/92 |
---|
9 | c ------- |
---|
10 | c |
---|
11 | c objet: computation of : the soil temperature evolution |
---|
12 | c ------ the surfacic heat capacity "Capcal" |
---|
13 | c the surface conduction flux pcapcal |
---|
14 | c |
---|
15 | c |
---|
16 | c Method: implicit time integration |
---|
17 | c ------- |
---|
18 | c Consecutive ground temperatures are related by: |
---|
19 | c T(k+1) = C(k) + D(k)*T(k) (1) |
---|
20 | c the coefficients C and D are computed at the t-dt time-step. |
---|
21 | c Routine structure: |
---|
22 | c 1)new temperatures are computed using (1) |
---|
23 | c 2)C and D coefficients are computed from the new temperature |
---|
24 | c profile for the t+dt time-step |
---|
25 | c 3)the coefficients A and B are computed where the diffusive |
---|
26 | c fluxes at the t+dt time-step is given by |
---|
27 | c Fdiff = A + B Ts(t+dt) |
---|
28 | c or Fdiff = F0 + Capcal (Ts(t+dt)-Ts(t))/dt |
---|
29 | c with F0 = A + B (Ts(t)) |
---|
30 | c Capcal = B*dt |
---|
31 | c |
---|
32 | c Interface: |
---|
33 | c ---------- |
---|
34 | c |
---|
35 | c Arguments: |
---|
36 | c ---------- |
---|
37 | c ngird number of grid-points |
---|
38 | c ptimestep physical timestep (s) |
---|
39 | c pto(ngrid,nsoil) temperature at time-step t (K) |
---|
40 | c ptn(ngrid,nsoil) temperature at time step t+dt (K) |
---|
41 | c pcapcal(ngrid) specific heat (W*m-2*s*K-1) |
---|
42 | c pfluxgrd(ngrid) surface diffusive flux from ground (Wm-2) |
---|
43 | c |
---|
44 | c======================================================================= |
---|
45 | c declarations: |
---|
46 | c ------------- |
---|
47 | |
---|
48 | |
---|
49 | c----------------------------------------------------------------------- |
---|
50 | c arguments |
---|
51 | c --------- |
---|
52 | |
---|
53 | INTEGER ngrid,nsoil |
---|
54 | REAL ptimestep |
---|
55 | REAL ptsrf(ngrid),ptsoil(ngrid,nsoil),ptherm_i(ngrid) |
---|
56 | REAL pcapcal(ngrid),pfluxgrd(ngrid) |
---|
57 | LOGICAL firstcall |
---|
58 | |
---|
59 | |
---|
60 | c----------------------------------------------------------------------- |
---|
61 | c local arrays |
---|
62 | c ------------ |
---|
63 | |
---|
64 | INTEGER ig,jk |
---|
65 | REAL za(ngrid),zb(ngrid) |
---|
66 | REAL zdz2(nsoil),z1(ngrid) |
---|
67 | REAL min_period,dalph_soil |
---|
68 | |
---|
69 | c local saved variables: |
---|
70 | c ---------------------- |
---|
71 | REAL,SAVE :: lambda |
---|
72 | REAL,ALLOCATABLE,SAVE :: dz1(:),dz2(:),zc(:,:),zd(:,:) |
---|
73 | !$OMP THREADPRIVATE(dz1,dz2,zc,zd,lambda) |
---|
74 | |
---|
75 | c----------------------------------------------------------------------- |
---|
76 | c Depthts: |
---|
77 | c -------- |
---|
78 | |
---|
79 | REAL fz,rk,fz1,rk1,rk2 |
---|
80 | fz(rk)=fz1*(dalph_soil**rk-1.)/(dalph_soil-1.) |
---|
81 | |
---|
82 | print*,'firstcall soil ',firstcall |
---|
83 | IF (firstcall) THEN |
---|
84 | |
---|
85 | c----------------------------------------------------------------------- |
---|
86 | c ground levels |
---|
87 | c grnd=z/l where l is the skin depth of the diurnal cycle: |
---|
88 | c -------------------------------------------------------- |
---|
89 | |
---|
90 | print*,'nsoil,ngrid,firstcall=',nsoil,ngrid,firstcall |
---|
91 | ALLOCATE(dz1(nsoil),dz2(nsoil)) |
---|
92 | ALLOCATE(zc(ngrid,nsoil),zd(ngrid,nsoil)) |
---|
93 | |
---|
94 | min_period=20000. |
---|
95 | dalph_soil=2. |
---|
96 | |
---|
97 | OPEN(99,file='soil.def',status='old',form='formatted',err=9999) |
---|
98 | READ(99,*) min_period |
---|
99 | READ(99,*) dalph_soil |
---|
100 | PRINT*,'Discretization for the soil model' |
---|
101 | PRINT*,'First level e-folding depth',min_period, |
---|
102 | s ' dalph',dalph_soil |
---|
103 | CLOSE(99) |
---|
104 | 9999 CONTINUE |
---|
105 | |
---|
106 | c la premiere couche represente un dixieme de cycle diurne |
---|
107 | fz1=sqrt(min_period/3.14) |
---|
108 | |
---|
109 | DO jk=1,nsoil |
---|
110 | rk1=jk |
---|
111 | rk2=jk-1 |
---|
112 | dz2(jk)=fz(rk1)-fz(rk2) |
---|
113 | ENDDO |
---|
114 | DO jk=1,nsoil-1 |
---|
115 | rk1=jk+.5 |
---|
116 | rk2=jk-.5 |
---|
117 | dz1(jk)=1./(fz(rk1)-fz(rk2)) |
---|
118 | ENDDO |
---|
119 | lambda=fz(.5)*dz1(1) |
---|
120 | PRINT*,'full layers, intermediate layers (secoonds)' |
---|
121 | DO jk=1,nsoil |
---|
122 | rk=jk |
---|
123 | rk1=jk+.5 |
---|
124 | rk2=jk-.5 |
---|
125 | PRINT*,fz(rk1)*fz(rk2)*3.14, |
---|
126 | s fz(rk)*fz(rk)*3.14 |
---|
127 | ENDDO |
---|
128 | |
---|
129 | c Initialisations: |
---|
130 | c ---------------- |
---|
131 | |
---|
132 | ELSE |
---|
133 | c----------------------------------------------------------------------- |
---|
134 | c Computation of the soil temperatures using the Cgrd and Dgrd |
---|
135 | c coefficient computed at the previous time-step: |
---|
136 | c ----------------------------------------------- |
---|
137 | |
---|
138 | c surface temperature |
---|
139 | DO ig=1,ngrid |
---|
140 | ptsoil(ig,1)=(lambda*zc(ig,1)+ptsrf(ig))/ |
---|
141 | s (lambda*(1.-zd(ig,1))+1.) |
---|
142 | ENDDO |
---|
143 | |
---|
144 | c other temperatures |
---|
145 | DO jk=1,nsoil-1 |
---|
146 | DO ig=1,ngrid |
---|
147 | ptsoil(ig,jk+1)=zc(ig,jk)+zd(ig,jk)*ptsoil(ig,jk) |
---|
148 | ENDDO |
---|
149 | ENDDO |
---|
150 | |
---|
151 | ENDIF |
---|
152 | c----------------------------------------------------------------------- |
---|
153 | c Computation of the Cgrd and Dgrd coefficient for the next step: |
---|
154 | c --------------------------------------------------------------- |
---|
155 | |
---|
156 | DO jk=1,nsoil |
---|
157 | zdz2(jk)=dz2(jk)/ptimestep |
---|
158 | ENDDO |
---|
159 | |
---|
160 | DO ig=1,ngrid |
---|
161 | z1(ig)=zdz2(nsoil)+dz1(nsoil-1) |
---|
162 | zc(ig,nsoil-1)=zdz2(nsoil)*ptsoil(ig,nsoil)/z1(ig) |
---|
163 | zd(ig,nsoil-1)=dz1(nsoil-1)/z1(ig) |
---|
164 | ENDDO |
---|
165 | |
---|
166 | DO jk=nsoil-1,2,-1 |
---|
167 | DO ig=1,ngrid |
---|
168 | z1(ig)=1./(zdz2(jk)+dz1(jk-1)+dz1(jk)*(1.-zd(ig,jk))) |
---|
169 | zc(ig,jk-1)= |
---|
170 | s (ptsoil(ig,jk)*zdz2(jk)+dz1(jk)*zc(ig,jk))*z1(ig) |
---|
171 | zd(ig,jk-1)=dz1(jk-1)*z1(ig) |
---|
172 | ENDDO |
---|
173 | ENDDO |
---|
174 | |
---|
175 | c----------------------------------------------------------------------- |
---|
176 | c computation of the surface diffusive flux from ground and |
---|
177 | c calorific capacity of the ground: |
---|
178 | c --------------------------------- |
---|
179 | |
---|
180 | DO ig=1,ngrid |
---|
181 | pfluxgrd(ig)=ptherm_i(ig)*dz1(1)* |
---|
182 | s (zc(ig,1)+(zd(ig,1)-1.)*ptsoil(ig,1)) |
---|
183 | pcapcal(ig)=ptherm_i(ig)* |
---|
184 | s (dz2(1)+ptimestep*(1.-zd(ig,1))*dz1(1)) |
---|
185 | z1(ig)=lambda*(1.-zd(ig,1))+1. |
---|
186 | pcapcal(ig)=pcapcal(ig)/z1(ig) |
---|
187 | pfluxgrd(ig)=pfluxgrd(ig) |
---|
188 | s +pcapcal(ig)*(ptsoil(ig,1)*z1(ig)-lambda*zc(ig,1)-ptsrf(ig)) |
---|
189 | s /ptimestep |
---|
190 | ENDDO |
---|
191 | |
---|
192 | RETURN |
---|
193 | END |
---|