1 | SUBROUTINE thermcell_2002(ngrid, nlay, ptimestep, iflag_thermals, pplay, & |
---|
2 | pplev, pphi, pu, pv, pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0, & |
---|
3 | fraca, wa_moy, r_aspect, l_mix, w2di, tho) |
---|
4 | |
---|
5 | USE dimphy |
---|
6 | USE write_field_phy |
---|
7 | IMPLICIT NONE |
---|
8 | |
---|
9 | ! ======================================================================= |
---|
10 | |
---|
11 | ! Calcul du transport verticale dans la couche limite en presence |
---|
12 | ! de "thermiques" explicitement representes |
---|
13 | |
---|
14 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
15 | |
---|
16 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
17 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
18 | ! mélange |
---|
19 | |
---|
20 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
21 | ! en compte: |
---|
22 | ! 1. un flux de masse montant |
---|
23 | ! 2. un flux de masse descendant |
---|
24 | ! 3. un entrainement |
---|
25 | ! 4. un detrainement |
---|
26 | |
---|
27 | ! ======================================================================= |
---|
28 | |
---|
29 | ! ----------------------------------------------------------------------- |
---|
30 | ! declarations: |
---|
31 | ! ------------- |
---|
32 | |
---|
33 | include "dimensions.h" |
---|
34 | include "YOMCST.h" |
---|
35 | |
---|
36 | ! arguments: |
---|
37 | ! ---------- |
---|
38 | |
---|
39 | INTEGER ngrid, nlay, w2di, iflag_thermals |
---|
40 | REAL tho |
---|
41 | REAL ptimestep, l_mix, r_aspect |
---|
42 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
43 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
44 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
45 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
46 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
47 | REAL pphi(ngrid, nlay) |
---|
48 | REAL fraca(ngrid, nlay+1), zw2(ngrid, nlay+1) |
---|
49 | |
---|
50 | INTEGER, SAVE :: idetr = 3, lev_out = 1 |
---|
51 | !$OMP THREADPRIVATE(idetr,lev_out) |
---|
52 | |
---|
53 | ! local: |
---|
54 | ! ------ |
---|
55 | |
---|
56 | INTEGER, SAVE :: dvdq = 0, flagdq = 0, dqimpl = 1 |
---|
57 | LOGICAL, SAVE :: debut = .TRUE. |
---|
58 | !$OMP THREADPRIVATE(dvdq,flagdq,debut,dqimpl) |
---|
59 | |
---|
60 | INTEGER ig, k, l, lmax(klon, klev+1), lmaxa(klon), lmix(klon) |
---|
61 | REAL zmax(klon), zw, zz, ztva(klon, klev), zzz |
---|
62 | |
---|
63 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
64 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
65 | REAL ztv(klon, klev) |
---|
66 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
67 | REAL wh(klon, klev+1) |
---|
68 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
69 | REAL zla(klon, klev+1) |
---|
70 | REAL zwa(klon, klev+1) |
---|
71 | REAL zld(klon, klev+1) |
---|
72 | REAL zwd(klon, klev+1) |
---|
73 | REAL zsortie(klon, klev) |
---|
74 | REAL zva(klon, klev) |
---|
75 | REAL zua(klon, klev) |
---|
76 | REAL zoa(klon, klev) |
---|
77 | |
---|
78 | REAL zha(klon, klev) |
---|
79 | REAL wa_moy(klon, klev+1) |
---|
80 | REAL fracc(klon, klev+1) |
---|
81 | REAL zf, zf2 |
---|
82 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
83 | ! common/comtherm/thetath2,wth2 |
---|
84 | |
---|
85 | REAL count_time |
---|
86 | |
---|
87 | LOGICAL sorties |
---|
88 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
89 | REAL zpspsk(klon, klev) |
---|
90 | |
---|
91 | REAL wmax(klon, klev), wmaxa(klon) |
---|
92 | |
---|
93 | REAL wa(klon, klev, klev+1) |
---|
94 | REAL wd(klon, klev+1) |
---|
95 | REAL larg_part(klon, klev, klev+1) |
---|
96 | REAL fracd(klon, klev+1) |
---|
97 | REAL xxx(klon, klev+1) |
---|
98 | REAL larg_cons(klon, klev+1) |
---|
99 | REAL larg_detr(klon, klev+1) |
---|
100 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
101 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
102 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
103 | REAL fmc(klon, klev+1) |
---|
104 | |
---|
105 | CHARACTER (LEN=2) :: str2 |
---|
106 | CHARACTER (LEN=10) :: str10 |
---|
107 | |
---|
108 | CHARACTER (LEN=20) :: modname = 'thermcell2002' |
---|
109 | CHARACTER (LEN=80) :: abort_message |
---|
110 | |
---|
111 | LOGICAL vtest(klon), down |
---|
112 | |
---|
113 | EXTERNAL scopy |
---|
114 | |
---|
115 | INTEGER ncorrec, ll |
---|
116 | SAVE ncorrec |
---|
117 | DATA ncorrec/0/ |
---|
118 | !$OMP THREADPRIVATE(ncorrec) |
---|
119 | |
---|
120 | |
---|
121 | ! ----------------------------------------------------------------------- |
---|
122 | ! initialisation: |
---|
123 | ! --------------- |
---|
124 | |
---|
125 | sorties = .TRUE. |
---|
126 | IF (ngrid/=klon) THEN |
---|
127 | PRINT * |
---|
128 | PRINT *, 'STOP dans convadj' |
---|
129 | PRINT *, 'ngrid =', ngrid |
---|
130 | PRINT *, 'klon =', klon |
---|
131 | END IF |
---|
132 | |
---|
133 | ! ----------------------------------------------------------------------- |
---|
134 | ! incrementation eventuelle de tendances precedentes: |
---|
135 | ! --------------------------------------------------- |
---|
136 | |
---|
137 | ! print*,'0 OK convect8' |
---|
138 | |
---|
139 | DO l = 1, nlay |
---|
140 | DO ig = 1, ngrid |
---|
141 | zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
---|
142 | zh(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
143 | zu(ig, l) = pu(ig, l) |
---|
144 | zv(ig, l) = pv(ig, l) |
---|
145 | zo(ig, l) = po(ig, l) |
---|
146 | ztv(ig, l) = zh(ig, l)*(1.+0.61*zo(ig,l)) |
---|
147 | END DO |
---|
148 | END DO |
---|
149 | |
---|
150 | ! print*,'1 OK convect8' |
---|
151 | ! -------------------- |
---|
152 | |
---|
153 | |
---|
154 | ! + + + + + + + + + + + |
---|
155 | |
---|
156 | |
---|
157 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
158 | ! wh,wt,wo ... |
---|
159 | |
---|
160 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
161 | |
---|
162 | |
---|
163 | ! -------------------- zlev(1) |
---|
164 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
165 | |
---|
166 | |
---|
167 | |
---|
168 | ! ----------------------------------------------------------------------- |
---|
169 | ! Calcul des altitudes des couches |
---|
170 | ! ----------------------------------------------------------------------- |
---|
171 | |
---|
172 | IF (debut) THEN |
---|
173 | flagdq = (iflag_thermals-1000)/100 |
---|
174 | dvdq = (iflag_thermals-(1000+flagdq*100))/10 |
---|
175 | IF (flagdq==2) dqimpl = -1 |
---|
176 | IF (flagdq==3) dqimpl = 1 |
---|
177 | debut = .FALSE. |
---|
178 | END IF |
---|
179 | PRINT *, 'TH flag th ', iflag_thermals, flagdq, dvdq, dqimpl |
---|
180 | |
---|
181 | DO l = 2, nlay |
---|
182 | DO ig = 1, ngrid |
---|
183 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
184 | END DO |
---|
185 | END DO |
---|
186 | DO ig = 1, ngrid |
---|
187 | zlev(ig, 1) = 0. |
---|
188 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
189 | END DO |
---|
190 | DO l = 1, nlay |
---|
191 | DO ig = 1, ngrid |
---|
192 | zlay(ig, l) = pphi(ig, l)/rg |
---|
193 | END DO |
---|
194 | END DO |
---|
195 | |
---|
196 | ! print*,'2 OK convect8' |
---|
197 | ! ----------------------------------------------------------------------- |
---|
198 | ! Calcul des densites |
---|
199 | ! ----------------------------------------------------------------------- |
---|
200 | |
---|
201 | DO l = 1, nlay |
---|
202 | DO ig = 1, ngrid |
---|
203 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*zh(ig,l)) |
---|
204 | END DO |
---|
205 | END DO |
---|
206 | |
---|
207 | DO l = 2, nlay |
---|
208 | DO ig = 1, ngrid |
---|
209 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
210 | END DO |
---|
211 | END DO |
---|
212 | |
---|
213 | DO k = 1, nlay |
---|
214 | DO l = 1, nlay + 1 |
---|
215 | DO ig = 1, ngrid |
---|
216 | wa(ig, k, l) = 0. |
---|
217 | END DO |
---|
218 | END DO |
---|
219 | END DO |
---|
220 | |
---|
221 | ! print*,'3 OK convect8' |
---|
222 | ! ------------------------------------------------------------------ |
---|
223 | ! Calcul de w2, quarre de w a partir de la cape |
---|
224 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
225 | |
---|
226 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
227 | ! w2 est stoke dans wa |
---|
228 | |
---|
229 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
230 | ! independants par couches que pour calculer l'entrainement |
---|
231 | ! a la base et la hauteur max de l'ascendance. |
---|
232 | |
---|
233 | ! Indicages: |
---|
234 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
235 | ! une vitesse wa(k,l). |
---|
236 | |
---|
237 | ! -------------------- |
---|
238 | |
---|
239 | ! + + + + + + + + + + |
---|
240 | |
---|
241 | ! wa(k,l) ---- -------------------- l |
---|
242 | ! /\ |
---|
243 | ! /||\ + + + + + + + + + + |
---|
244 | ! || |
---|
245 | ! || -------------------- |
---|
246 | ! || |
---|
247 | ! || + + + + + + + + + + |
---|
248 | ! || |
---|
249 | ! || -------------------- |
---|
250 | ! ||__ |
---|
251 | ! |___ + + + + + + + + + + k |
---|
252 | |
---|
253 | ! -------------------- |
---|
254 | |
---|
255 | |
---|
256 | |
---|
257 | ! ------------------------------------------------------------------ |
---|
258 | |
---|
259 | |
---|
260 | DO k = 1, nlay - 1 |
---|
261 | DO ig = 1, ngrid |
---|
262 | wa(ig, k, k) = 0. |
---|
263 | wa(ig, k, k+1) = 2.*rg*(ztv(ig,k)-ztv(ig,k+1))/ztv(ig, k+1)* & |
---|
264 | (zlev(ig,k+1)-zlev(ig,k)) |
---|
265 | END DO |
---|
266 | DO l = k + 1, nlay - 1 |
---|
267 | DO ig = 1, ngrid |
---|
268 | wa(ig, k, l+1) = wa(ig, k, l) + 2.*rg*(ztv(ig,k)-ztv(ig,l))/ztv(ig, l & |
---|
269 | )*(zlev(ig,l+1)-zlev(ig,l)) |
---|
270 | END DO |
---|
271 | END DO |
---|
272 | DO ig = 1, ngrid |
---|
273 | wa(ig, k, nlay+1) = 0. |
---|
274 | END DO |
---|
275 | END DO |
---|
276 | |
---|
277 | ! print*,'4 OK convect8' |
---|
278 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
279 | DO k = 1, nlay - 1 |
---|
280 | DO ig = 1, ngrid |
---|
281 | lmax(ig, k) = k |
---|
282 | END DO |
---|
283 | DO l = nlay, k + 1, -1 |
---|
284 | DO ig = 1, ngrid |
---|
285 | IF (wa(ig,k,l)<=1.E-10) lmax(ig, k) = l - 1 |
---|
286 | END DO |
---|
287 | END DO |
---|
288 | END DO |
---|
289 | |
---|
290 | ! print*,'5 OK convect8' |
---|
291 | ! Calcule du w max du thermique |
---|
292 | DO k = 1, nlay |
---|
293 | DO ig = 1, ngrid |
---|
294 | wmax(ig, k) = 0. |
---|
295 | END DO |
---|
296 | END DO |
---|
297 | |
---|
298 | DO k = 1, nlay - 1 |
---|
299 | DO l = k, nlay |
---|
300 | DO ig = 1, ngrid |
---|
301 | IF (l<=lmax(ig,k)) THEN |
---|
302 | wa(ig, k, l) = sqrt(wa(ig,k,l)) |
---|
303 | wmax(ig, k) = max(wmax(ig,k), wa(ig,k,l)) |
---|
304 | ELSE |
---|
305 | wa(ig, k, l) = 0. |
---|
306 | END IF |
---|
307 | END DO |
---|
308 | END DO |
---|
309 | END DO |
---|
310 | |
---|
311 | DO k = 1, nlay - 1 |
---|
312 | DO ig = 1, ngrid |
---|
313 | pu_therm(ig, k) = sqrt(wmax(ig,k)) |
---|
314 | pv_therm(ig, k) = sqrt(wmax(ig,k)) |
---|
315 | END DO |
---|
316 | END DO |
---|
317 | |
---|
318 | ! print*,'6 OK convect8' |
---|
319 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
320 | DO ig = 1, ngrid |
---|
321 | zmax(ig) = 500. |
---|
322 | END DO |
---|
323 | ! print*,'LMAX LMAX LMAX ' |
---|
324 | DO k = 1, nlay - 1 |
---|
325 | DO ig = 1, ngrid |
---|
326 | zmax(ig) = max(zmax(ig), zlev(ig,lmax(ig,k))-zlev(ig,k)) |
---|
327 | END DO |
---|
328 | ! print*,k,lmax(1,k) |
---|
329 | END DO |
---|
330 | ! print*,'ZMAX ZMAX ZMAX ',zmax |
---|
331 | ! call dump2d(iim,jjm-1,zmax(2:ngrid-1),'ZMAX ') |
---|
332 | |
---|
333 | ! print*,'OKl336' |
---|
334 | ! Calcul de l'entrainement. |
---|
335 | ! Le rapport d'aspect relie la largeur de l'ascendance a l'epaisseur |
---|
336 | ! de la couche d'alimentation en partant du principe que la vitesse |
---|
337 | ! maximum dans l'ascendance est la vitesse d'entrainement horizontale. |
---|
338 | DO k = 1, nlay |
---|
339 | DO ig = 1, ngrid |
---|
340 | zzz = rho(ig, k)*wmax(ig, k)*(zlev(ig,k+1)-zlev(ig,k))/ & |
---|
341 | (zmax(ig)*r_aspect) |
---|
342 | IF (w2di==2) THEN |
---|
343 | entr(ig, k) = entr(ig, k) + ptimestep*(zzz-entr(ig,k))/tho |
---|
344 | ELSE |
---|
345 | entr(ig, k) = zzz |
---|
346 | END IF |
---|
347 | ztva(ig, k) = ztv(ig, k) |
---|
348 | END DO |
---|
349 | END DO |
---|
350 | |
---|
351 | |
---|
352 | ! print*,'7 OK convect8' |
---|
353 | DO k = 1, klev + 1 |
---|
354 | DO ig = 1, ngrid |
---|
355 | zw2(ig, k) = 0. |
---|
356 | fmc(ig, k) = 0. |
---|
357 | larg_cons(ig, k) = 0. |
---|
358 | larg_detr(ig, k) = 0. |
---|
359 | wa_moy(ig, k) = 0. |
---|
360 | END DO |
---|
361 | END DO |
---|
362 | |
---|
363 | ! print*,'8 OK convect8' |
---|
364 | DO ig = 1, ngrid |
---|
365 | lmaxa(ig) = 1 |
---|
366 | lmix(ig) = 1 |
---|
367 | wmaxa(ig) = 0. |
---|
368 | END DO |
---|
369 | |
---|
370 | |
---|
371 | ! print*,'OKl372' |
---|
372 | DO l = 1, nlay - 2 |
---|
373 | DO ig = 1, ngrid |
---|
374 | ! if (zw2(ig,l).lt.1.e-10.and.ztv(ig,l).gt.ztv(ig,l+1)) then |
---|
375 | ! print*,'COUCOU ',l,zw2(ig,l),ztv(ig,l),ztv(ig,l+1) |
---|
376 | IF (zw2(ig,l)<1.E-10 .AND. ztv(ig,l)>ztv(ig,l+1) .AND. & |
---|
377 | entr(ig,l)>1.E-10) THEN |
---|
378 | ! print*,'COUCOU cas 1' |
---|
379 | ! Initialisation de l'ascendance |
---|
380 | ! lmix(ig)=1 |
---|
381 | ztva(ig, l) = ztv(ig, l) |
---|
382 | fmc(ig, l) = 0. |
---|
383 | fmc(ig, l+1) = entr(ig, l) |
---|
384 | zw2(ig, l) = 0. |
---|
385 | ! if (.not.ztv(ig,l+1).gt.150.) then |
---|
386 | ! print*,'ig,l+1,ztv(ig,l+1)' |
---|
387 | ! print*, ig,l+1,ztv(ig,l+1) |
---|
388 | ! endif |
---|
389 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
390 | (zlev(ig,l+1)-zlev(ig,l)) |
---|
391 | larg_detr(ig, l) = 0. |
---|
392 | ELSE IF (zw2(ig,l)>=1.E-10 .AND. fmc(ig,l)+entr(ig,l)>1.E-10) THEN |
---|
393 | ! Incrementation... |
---|
394 | fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
---|
395 | ! if (.not.fmc(ig,l+1).gt.1.e-15) then |
---|
396 | ! print*,'ig,l+1,fmc(ig,l+1)' |
---|
397 | ! print*, ig,l+1,fmc(ig,l+1) |
---|
398 | ! print*,'Fmc ',(fmc(ig,ll),ll=1,klev+1) |
---|
399 | ! print*,'W2 ',(zw2(ig,ll),ll=1,klev+1) |
---|
400 | ! print*,'Tv ',(ztv(ig,ll),ll=1,klev) |
---|
401 | ! print*,'Entr ',(entr(ig,ll),ll=1,klev) |
---|
402 | ! endif |
---|
403 | ztva(ig, l) = (fmc(ig,l)*ztva(ig,l-1)+entr(ig,l)*ztv(ig,l))/ & |
---|
404 | fmc(ig, l+1) |
---|
405 | ! mise a jour de la vitesse ascendante (l'air entraine de la couche |
---|
406 | ! consideree commence avec une vitesse nulle). |
---|
407 | zw2(ig, l+1) = zw2(ig, l)*(fmc(ig,l)/fmc(ig,l+1))**2 + & |
---|
408 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
409 | END IF |
---|
410 | IF (zw2(ig,l+1)<0.) THEN |
---|
411 | zw2(ig, l+1) = 0. |
---|
412 | lmaxa(ig) = l |
---|
413 | ELSE |
---|
414 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
415 | END IF |
---|
416 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
417 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
418 | lmix(ig) = l + 1 |
---|
419 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
420 | END IF |
---|
421 | ! print*,'COUCOU cas 2 LMIX=',lmix(ig),wa_moy(ig,l+1),wmaxa(ig) |
---|
422 | END DO |
---|
423 | END DO |
---|
424 | |
---|
425 | ! print*,'9 OK convect8' |
---|
426 | ! print*,'WA1 ',wa_moy |
---|
427 | |
---|
428 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
429 | |
---|
430 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
431 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
432 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
433 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
434 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
435 | |
---|
436 | ! print*,'OKl439' |
---|
437 | DO l = 2, nlay |
---|
438 | DO ig = 1, ngrid |
---|
439 | IF (l<=lmaxa(ig)) THEN |
---|
440 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
441 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
442 | END IF |
---|
443 | END DO |
---|
444 | END DO |
---|
445 | |
---|
446 | DO l = 2, nlay |
---|
447 | DO ig = 1, ngrid |
---|
448 | IF (l<=lmaxa(ig)) THEN |
---|
449 | ! if (idetr.eq.0) then |
---|
450 | ! cette option est finalement en dur. |
---|
451 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
452 | ! else if (idetr.eq.1) then |
---|
453 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
454 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
455 | ! else if (idetr.eq.2) then |
---|
456 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
457 | ! s *sqrt(wa_moy(ig,l)) |
---|
458 | ! else if (idetr.eq.4) then |
---|
459 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
460 | ! s *wa_moy(ig,l) |
---|
461 | ! endif |
---|
462 | END IF |
---|
463 | END DO |
---|
464 | END DO |
---|
465 | |
---|
466 | ! print*,'10 OK convect8' |
---|
467 | ! print*,'WA2 ',wa_moy |
---|
468 | ! calcul de la fraction de la maille concernée par l'ascendance en tenant |
---|
469 | ! compte de l'epluchage du thermique. |
---|
470 | |
---|
471 | DO l = 2, nlay |
---|
472 | DO ig = 1, ngrid |
---|
473 | IF (larg_cons(ig,l)>1.) THEN |
---|
474 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
475 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
476 | IF (l>lmix(ig)) THEN |
---|
477 | xxx(ig, l) = (lmaxa(ig)+1.-l)/(lmaxa(ig)+1.-lmix(ig)) |
---|
478 | IF (idetr==0) THEN |
---|
479 | fraca(ig, l) = fraca(ig, lmix(ig)) |
---|
480 | ELSE IF (idetr==1) THEN |
---|
481 | fraca(ig, l) = fraca(ig, lmix(ig))*xxx(ig, l) |
---|
482 | ELSE IF (idetr==2) THEN |
---|
483 | fraca(ig, l) = fraca(ig, lmix(ig))*(1.-(1.-xxx(ig,l))**2) |
---|
484 | ELSE |
---|
485 | fraca(ig, l) = fraca(ig, lmix(ig))*xxx(ig, l)**2 |
---|
486 | END IF |
---|
487 | END IF |
---|
488 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
489 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
490 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
491 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
492 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
493 | ELSE |
---|
494 | ! wa_moy(ig,l)=0. |
---|
495 | fraca(ig, l) = 0. |
---|
496 | fracc(ig, l) = 0. |
---|
497 | fracd(ig, l) = 1. |
---|
498 | END IF |
---|
499 | END DO |
---|
500 | END DO |
---|
501 | |
---|
502 | ! print*,'11 OK convect8' |
---|
503 | ! print*,'Ea3 ',wa_moy |
---|
504 | ! ------------------------------------------------------------------ |
---|
505 | ! Calcul de fracd, wd |
---|
506 | ! somme wa - wd = 0 |
---|
507 | ! ------------------------------------------------------------------ |
---|
508 | |
---|
509 | |
---|
510 | DO ig = 1, ngrid |
---|
511 | fm(ig, 1) = 0. |
---|
512 | fm(ig, nlay+1) = 0. |
---|
513 | END DO |
---|
514 | |
---|
515 | DO l = 2, nlay |
---|
516 | DO ig = 1, ngrid |
---|
517 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
518 | END DO |
---|
519 | DO ig = 1, ngrid |
---|
520 | IF (fracd(ig,l)<0.1) THEN |
---|
521 | abort_message = 'fracd trop petit' |
---|
522 | CALL abort_physic(modname, abort_message, 1) |
---|
523 | ELSE |
---|
524 | ! vitesse descendante "diagnostique" |
---|
525 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
526 | END IF |
---|
527 | END DO |
---|
528 | END DO |
---|
529 | |
---|
530 | DO l = 1, nlay |
---|
531 | DO ig = 1, ngrid |
---|
532 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
533 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
534 | END DO |
---|
535 | END DO |
---|
536 | |
---|
537 | ! print*,'12 OK convect8' |
---|
538 | ! print*,'WA4 ',wa_moy |
---|
539 | ! c------------------------------------------------------------------ |
---|
540 | ! calcul du transport vertical |
---|
541 | ! ------------------------------------------------------------------ |
---|
542 | |
---|
543 | GO TO 4444 |
---|
544 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
545 | DO l = 2, nlay - 1 |
---|
546 | DO ig = 1, ngrid |
---|
547 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
548 | ig,l+1)) THEN |
---|
549 | ! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
550 | ! s ,fm(ig,l+1)*ptimestep |
---|
551 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
552 | END IF |
---|
553 | END DO |
---|
554 | END DO |
---|
555 | |
---|
556 | DO l = 1, nlay |
---|
557 | DO ig = 1, ngrid |
---|
558 | IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
---|
559 | ! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
560 | ! s ,entr(ig,l)*ptimestep |
---|
561 | ! s ,' M=',masse(ig,l) |
---|
562 | END IF |
---|
563 | END DO |
---|
564 | END DO |
---|
565 | |
---|
566 | DO l = 1, nlay |
---|
567 | DO ig = 1, ngrid |
---|
568 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
569 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
570 | ! s ,' FM=',fm(ig,l) |
---|
571 | END IF |
---|
572 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
573 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
574 | ! s ,' M=',masse(ig,l) |
---|
575 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
576 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
577 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
578 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
579 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
580 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
581 | END IF |
---|
582 | IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
---|
583 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
584 | ! s ,' E=',entr(ig,l) |
---|
585 | END IF |
---|
586 | END DO |
---|
587 | END DO |
---|
588 | |
---|
589 | 4444 CONTINUE |
---|
590 | ! print*,'OK 444 ' |
---|
591 | |
---|
592 | IF (w2di==1) THEN |
---|
593 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
594 | entr0 = entr0 + ptimestep*(entr-entr0)/tho |
---|
595 | ELSE |
---|
596 | fm0 = fm |
---|
597 | entr0 = entr |
---|
598 | END IF |
---|
599 | |
---|
600 | IF (flagdq==0) THEN |
---|
601 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
---|
602 | zha) |
---|
603 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
---|
604 | zoa) |
---|
605 | PRINT *, 'THERMALS OPT 1' |
---|
606 | ELSE IF (flagdq==1) THEN |
---|
607 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
608 | zdhadj, zha) |
---|
609 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
610 | pdoadj, zoa) |
---|
611 | PRINT *, 'THERMALS OPT 2' |
---|
612 | ELSE |
---|
613 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zh, & |
---|
614 | zdhadj, zha, lev_out) |
---|
615 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zo, & |
---|
616 | pdoadj, zoa, lev_out) |
---|
617 | PRINT *, 'THERMALS OPT 3', dqimpl |
---|
618 | END IF |
---|
619 | |
---|
620 | PRINT *, 'TH VENT ', dvdq |
---|
621 | IF (dvdq==0) THEN |
---|
622 | ! print*,'TH VENT OK ',dvdq |
---|
623 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
624 | zua) |
---|
625 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
626 | zva) |
---|
627 | ELSE IF (dvdq==1) THEN |
---|
628 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
629 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
630 | ELSE IF (dvdq==2) THEN |
---|
631 | CALL thermcell_dv2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, & |
---|
632 | zmax, zu, zv, pduadj, pdvadj, zua, zva, lev_out) |
---|
633 | ELSE IF (dvdq==3) THEN |
---|
634 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zu, & |
---|
635 | pduadj, zua, lev_out) |
---|
636 | CALL thermcell_dq(ngrid, nlay, dqimpl, ptimestep, fm0, entr0, masse, zv, & |
---|
637 | pdvadj, zva, lev_out) |
---|
638 | END IF |
---|
639 | |
---|
640 | ! CALL writefield_phy('duadj',pduadj,klev) |
---|
641 | |
---|
642 | DO l = 1, nlay |
---|
643 | DO ig = 1, ngrid |
---|
644 | zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
645 | zf2 = zf/(1.-zf) |
---|
646 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
647 | wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
648 | END DO |
---|
649 | END DO |
---|
650 | |
---|
651 | |
---|
652 | |
---|
653 | ! print*,'13 OK convect8' |
---|
654 | ! print*,'WA5 ',wa_moy |
---|
655 | DO l = 1, nlay |
---|
656 | DO ig = 1, ngrid |
---|
657 | pdtadj(ig, l) = zdhadj(ig, l)*zpspsk(ig, l) |
---|
658 | END DO |
---|
659 | END DO |
---|
660 | |
---|
661 | |
---|
662 | ! do l=1,nlay |
---|
663 | ! do ig=1,ngrid |
---|
664 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
665 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
666 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
667 | ! endif |
---|
668 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
669 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
670 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
671 | ! endif |
---|
672 | ! enddo |
---|
673 | ! enddo |
---|
674 | |
---|
675 | ! print*,'14 OK convect8' |
---|
676 | ! ------------------------------------------------------------------ |
---|
677 | ! Calculs pour les sorties |
---|
678 | ! ------------------------------------------------------------------ |
---|
679 | |
---|
680 | IF (sorties) THEN |
---|
681 | DO l = 1, nlay |
---|
682 | DO ig = 1, ngrid |
---|
683 | zla(ig, l) = (1.-fracd(ig,l))*zmax(ig) |
---|
684 | zld(ig, l) = fracd(ig, l)*zmax(ig) |
---|
685 | IF (1.-fracd(ig,l)>1.E-10) zwa(ig, l) = wd(ig, l)*fracd(ig, l)/ & |
---|
686 | (1.-fracd(ig,l)) |
---|
687 | END DO |
---|
688 | END DO |
---|
689 | |
---|
690 | DO l = 1, nlay |
---|
691 | DO ig = 1, ngrid |
---|
692 | detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l+1) |
---|
693 | IF (detr(ig,l)<0.) THEN |
---|
694 | entr(ig, l) = entr(ig, l) - detr(ig, l) |
---|
695 | detr(ig, l) = 0. |
---|
696 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
697 | END IF |
---|
698 | END DO |
---|
699 | END DO |
---|
700 | END IF |
---|
701 | |
---|
702 | ! print*,'15 OK convect8' |
---|
703 | |
---|
704 | |
---|
705 | ! if(wa_moy(1,4).gt.1.e-10) stop |
---|
706 | |
---|
707 | ! print*,'19 OK convect8' |
---|
708 | RETURN |
---|
709 | END SUBROUTINE thermcell_2002 |
---|
710 | |
---|
711 | SUBROUTINE thermcell_cld(ngrid, nlay, ptimestep, pplay, pplev, pphi, zlev, & |
---|
712 | debut, pu, pv, pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0, zqla, & |
---|
713 | lmax, zmax_sec, wmax_sec, zw_sec, lmix_sec, ratqscth, ratqsdiff & ! s |
---|
714 | ! ,pu_therm,pv_therm |
---|
715 | , r_aspect, l_mix, w2di, tho) |
---|
716 | |
---|
717 | USE dimphy |
---|
718 | IMPLICIT NONE |
---|
719 | |
---|
720 | ! ======================================================================= |
---|
721 | |
---|
722 | ! Calcul du transport verticale dans la couche limite en presence |
---|
723 | ! de "thermiques" explicitement representes |
---|
724 | |
---|
725 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
726 | |
---|
727 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
728 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
729 | ! mélange |
---|
730 | |
---|
731 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
732 | ! en compte: |
---|
733 | ! 1. un flux de masse montant |
---|
734 | ! 2. un flux de masse descendant |
---|
735 | ! 3. un entrainement |
---|
736 | ! 4. un detrainement |
---|
737 | |
---|
738 | ! ======================================================================= |
---|
739 | |
---|
740 | ! ----------------------------------------------------------------------- |
---|
741 | ! declarations: |
---|
742 | ! ------------- |
---|
743 | |
---|
744 | include "dimensions.h" |
---|
745 | ! ccc#include "dimphy.h" |
---|
746 | include "YOMCST.h" |
---|
747 | include "YOETHF.h" |
---|
748 | include "FCTTRE.h" |
---|
749 | |
---|
750 | ! arguments: |
---|
751 | ! ---------- |
---|
752 | |
---|
753 | INTEGER ngrid, nlay, w2di |
---|
754 | REAL tho |
---|
755 | REAL ptimestep, l_mix, r_aspect |
---|
756 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
757 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
758 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
759 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
760 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
761 | REAL pphi(ngrid, nlay) |
---|
762 | |
---|
763 | INTEGER idetr |
---|
764 | SAVE idetr |
---|
765 | DATA idetr/3/ |
---|
766 | !$OMP THREADPRIVATE(idetr) |
---|
767 | |
---|
768 | ! local: |
---|
769 | ! ------ |
---|
770 | |
---|
771 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
772 | REAL zsortie1d(klon) |
---|
773 | ! CR: on remplace lmax(klon,klev+1) |
---|
774 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
775 | REAL linter(klon) |
---|
776 | REAL zmix(klon), fracazmix(klon) |
---|
777 | REAL alpha |
---|
778 | SAVE alpha |
---|
779 | DATA alpha/1./ |
---|
780 | !$OMP THREADPRIVATE(alpha) |
---|
781 | |
---|
782 | ! RC |
---|
783 | REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
---|
784 | REAL zmax_sec(klon) |
---|
785 | REAL zmax_sec2(klon) |
---|
786 | REAL zw_sec(klon, klev+1) |
---|
787 | INTEGER lmix_sec(klon) |
---|
788 | REAL w_est(klon, klev+1) |
---|
789 | ! on garde le zmax du pas de temps precedent |
---|
790 | ! real zmax0(klon) |
---|
791 | ! save zmax0 |
---|
792 | ! real zmix0(klon) |
---|
793 | ! save zmix0 |
---|
794 | REAL, SAVE, ALLOCATABLE :: zmax0(:), zmix0(:) |
---|
795 | !$OMP THREADPRIVATE(zmax0, zmix0) |
---|
796 | |
---|
797 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
798 | REAL deltaz(klon, klev) |
---|
799 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
800 | REAL zthl(klon, klev), zdthladj(klon, klev) |
---|
801 | REAL ztv(klon, klev) |
---|
802 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
803 | REAL zl(klon, klev) |
---|
804 | REAL wh(klon, klev+1) |
---|
805 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
806 | REAL zla(klon, klev+1) |
---|
807 | REAL zwa(klon, klev+1) |
---|
808 | REAL zld(klon, klev+1) |
---|
809 | REAL zwd(klon, klev+1) |
---|
810 | REAL zsortie(klon, klev) |
---|
811 | REAL zva(klon, klev) |
---|
812 | REAL zua(klon, klev) |
---|
813 | REAL zoa(klon, klev) |
---|
814 | |
---|
815 | REAL zta(klon, klev) |
---|
816 | REAL zha(klon, klev) |
---|
817 | REAL wa_moy(klon, klev+1) |
---|
818 | REAL fraca(klon, klev+1) |
---|
819 | REAL fracc(klon, klev+1) |
---|
820 | REAL zf, zf2 |
---|
821 | REAL thetath2(klon, klev), wth2(klon, klev), wth3(klon, klev) |
---|
822 | REAL q2(klon, klev) |
---|
823 | REAL dtheta(klon, klev) |
---|
824 | ! common/comtherm/thetath2,wth2 |
---|
825 | |
---|
826 | REAL ratqscth(klon, klev) |
---|
827 | REAL sum |
---|
828 | REAL sumdiff |
---|
829 | REAL ratqsdiff(klon, klev) |
---|
830 | REAL count_time |
---|
831 | INTEGER ialt |
---|
832 | |
---|
833 | LOGICAL sorties |
---|
834 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
835 | REAL zpspsk(klon, klev) |
---|
836 | |
---|
837 | ! real wmax(klon,klev),wmaxa(klon) |
---|
838 | REAL wmax(klon), wmaxa(klon) |
---|
839 | REAL wmax_sec(klon) |
---|
840 | REAL wmax_sec2(klon) |
---|
841 | REAL wa(klon, klev, klev+1) |
---|
842 | REAL wd(klon, klev+1) |
---|
843 | REAL larg_part(klon, klev, klev+1) |
---|
844 | REAL fracd(klon, klev+1) |
---|
845 | REAL xxx(klon, klev+1) |
---|
846 | REAL larg_cons(klon, klev+1) |
---|
847 | REAL larg_detr(klon, klev+1) |
---|
848 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
849 | REAL massetot(klon, klev) |
---|
850 | REAL detr0(klon, klev) |
---|
851 | REAL alim0(klon, klev) |
---|
852 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
853 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
854 | REAL fmc(klon, klev+1) |
---|
855 | |
---|
856 | REAL zcor, zdelta, zcvm5, qlbef |
---|
857 | REAL tbef(klon), qsatbef(klon) |
---|
858 | REAL dqsat_dt, dt, num, denom |
---|
859 | REAL reps, rlvcp, ddt0 |
---|
860 | REAL ztla(klon, klev), zqla(klon, klev), zqta(klon, klev) |
---|
861 | ! CR niveau de condensation |
---|
862 | REAL nivcon(klon) |
---|
863 | REAL zcon(klon) |
---|
864 | REAL zqsat(klon, klev) |
---|
865 | REAL zqsatth(klon, klev) |
---|
866 | PARAMETER (ddt0=.01) |
---|
867 | |
---|
868 | |
---|
869 | ! CR:nouvelles variables |
---|
870 | REAL f_star(klon, klev+1), entr_star(klon, klev) |
---|
871 | REAL detr_star(klon, klev) |
---|
872 | REAL alim_star_tot(klon), alim_star2(klon) |
---|
873 | REAL entr_star_tot(klon) |
---|
874 | REAL detr_star_tot(klon) |
---|
875 | REAL alim_star(klon, klev) |
---|
876 | REAL alim(klon, klev) |
---|
877 | REAL nu(klon, klev) |
---|
878 | REAL nu_e(klon, klev) |
---|
879 | REAL nu_min |
---|
880 | REAL nu_max |
---|
881 | REAL nu_r |
---|
882 | REAL f(klon) |
---|
883 | ! real f(klon), f0(klon) |
---|
884 | ! save f0 |
---|
885 | REAL, SAVE, ALLOCATABLE :: f0(:) |
---|
886 | !$OMP THREADPRIVATE(f0) |
---|
887 | |
---|
888 | REAL f_old |
---|
889 | REAL zlevinter(klon) |
---|
890 | LOGICAL, SAVE :: first = .TRUE. |
---|
891 | !$OMP THREADPRIVATE(first) |
---|
892 | ! data first /.false./ |
---|
893 | ! save first |
---|
894 | LOGICAL nuage |
---|
895 | ! save nuage |
---|
896 | LOGICAL boucle |
---|
897 | LOGICAL therm |
---|
898 | LOGICAL debut |
---|
899 | LOGICAL rale |
---|
900 | INTEGER test(klon) |
---|
901 | INTEGER signe_zw2 |
---|
902 | ! RC |
---|
903 | |
---|
904 | CHARACTER *2 str2 |
---|
905 | CHARACTER *10 str10 |
---|
906 | |
---|
907 | CHARACTER (LEN=20) :: modname = 'thermcell_cld' |
---|
908 | CHARACTER (LEN=80) :: abort_message |
---|
909 | |
---|
910 | LOGICAL vtest(klon), down |
---|
911 | LOGICAL zsat(klon) |
---|
912 | |
---|
913 | EXTERNAL scopy |
---|
914 | |
---|
915 | INTEGER ncorrec, ll |
---|
916 | SAVE ncorrec |
---|
917 | DATA ncorrec/0/ |
---|
918 | !$OMP THREADPRIVATE(ncorrec) |
---|
919 | |
---|
920 | |
---|
921 | |
---|
922 | ! ----------------------------------------------------------------------- |
---|
923 | ! initialisation: |
---|
924 | ! --------------- |
---|
925 | |
---|
926 | IF (first) THEN |
---|
927 | ALLOCATE (zmix0(klon)) |
---|
928 | ALLOCATE (zmax0(klon)) |
---|
929 | ALLOCATE (f0(klon)) |
---|
930 | first = .FALSE. |
---|
931 | END IF |
---|
932 | |
---|
933 | sorties = .FALSE. |
---|
934 | ! print*,'NOUVEAU DETR PLUIE ' |
---|
935 | IF (ngrid/=klon) THEN |
---|
936 | PRINT * |
---|
937 | PRINT *, 'STOP dans convadj' |
---|
938 | PRINT *, 'ngrid =', ngrid |
---|
939 | PRINT *, 'klon =', klon |
---|
940 | END IF |
---|
941 | |
---|
942 | ! Initialisation |
---|
943 | rlvcp = rlvtt/rcpd |
---|
944 | reps = rd/rv |
---|
945 | ! initialisations de zqsat |
---|
946 | DO ll = 1, nlay |
---|
947 | DO ig = 1, ngrid |
---|
948 | zqsat(ig, ll) = 0. |
---|
949 | zqsatth(ig, ll) = 0. |
---|
950 | END DO |
---|
951 | END DO |
---|
952 | |
---|
953 | ! on met le first a true pour le premier passage de la journée |
---|
954 | DO ig = 1, klon |
---|
955 | test(ig) = 0 |
---|
956 | END DO |
---|
957 | IF (debut) THEN |
---|
958 | DO ig = 1, klon |
---|
959 | test(ig) = 1 |
---|
960 | f0(ig) = 0. |
---|
961 | zmax0(ig) = 0. |
---|
962 | END DO |
---|
963 | END IF |
---|
964 | DO ig = 1, klon |
---|
965 | IF ((.NOT. debut) .AND. (f0(ig)<1.E-10)) THEN |
---|
966 | test(ig) = 1 |
---|
967 | END IF |
---|
968 | END DO |
---|
969 | ! do ig=1,klon |
---|
970 | ! print*,'test(ig)',test(ig),zmax0(ig) |
---|
971 | ! enddo |
---|
972 | nuage = .FALSE. |
---|
973 | ! ----------------------------------------------------------------------- |
---|
974 | ! AM Calcul de T,q,ql a partir de Tl et qT |
---|
975 | ! --------------------------------------------------- |
---|
976 | |
---|
977 | ! Pr Tprec=Tl calcul de qsat |
---|
978 | ! Si qsat>qT T=Tl, q=qT |
---|
979 | ! Sinon DDT=(-Tprec+Tl+RLVCP (qT-qsat(T')) / (1+RLVCP dqsat/dt) |
---|
980 | ! On cherche DDT < DDT0 |
---|
981 | |
---|
982 | ! defaut |
---|
983 | DO ll = 1, nlay |
---|
984 | DO ig = 1, ngrid |
---|
985 | zo(ig, ll) = po(ig, ll) |
---|
986 | zl(ig, ll) = 0. |
---|
987 | zh(ig, ll) = pt(ig, ll) |
---|
988 | END DO |
---|
989 | END DO |
---|
990 | DO ig = 1, ngrid |
---|
991 | zsat(ig) = .FALSE. |
---|
992 | END DO |
---|
993 | |
---|
994 | |
---|
995 | DO ll = 1, nlay |
---|
996 | ! les points insatures sont definitifs |
---|
997 | DO ig = 1, ngrid |
---|
998 | tbef(ig) = pt(ig, ll) |
---|
999 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
1000 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
---|
1001 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
1002 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
1003 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
1004 | zsat(ig) = (max(0.,po(ig,ll)-qsatbef(ig))>1.E-10) |
---|
1005 | END DO |
---|
1006 | |
---|
1007 | DO ig = 1, ngrid |
---|
1008 | IF (zsat(ig) .AND. (1==1)) THEN |
---|
1009 | qlbef = max(0., po(ig,ll)-qsatbef(ig)) |
---|
1010 | ! si sature: ql est surestime, d'ou la sous-relax |
---|
1011 | dt = 0.5*rlvcp*qlbef |
---|
1012 | ! write(18,*),'DT0=',DT |
---|
1013 | ! on pourra enchainer 2 ou 3 calculs sans Do while |
---|
1014 | DO WHILE (abs(dt)>ddt0) |
---|
1015 | ! il faut verifier si c,a conserve quand on repasse en insature ... |
---|
1016 | tbef(ig) = tbef(ig) + dt |
---|
1017 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
1018 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
---|
1019 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
1020 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
1021 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
1022 | ! on veut le signe de qlbef |
---|
1023 | qlbef = po(ig, ll) - qsatbef(ig) |
---|
1024 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
1025 | zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
---|
1026 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
1027 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
1028 | num = -tbef(ig) + pt(ig, ll) + rlvcp*qlbef |
---|
1029 | denom = 1. + rlvcp*dqsat_dt |
---|
1030 | IF (denom<1.E-10) THEN |
---|
1031 | PRINT *, 'pb denom' |
---|
1032 | END IF |
---|
1033 | dt = num/denom |
---|
1034 | END DO |
---|
1035 | ! on ecrit de maniere conservative (sat ou non) |
---|
1036 | zl(ig, ll) = max(0., qlbef) |
---|
1037 | ! T = Tl +Lv/Cp ql |
---|
1038 | zh(ig, ll) = pt(ig, ll) + rlvcp*zl(ig, ll) |
---|
1039 | zo(ig, ll) = po(ig, ll) - zl(ig, ll) |
---|
1040 | END IF |
---|
1041 | ! on ecrit zqsat |
---|
1042 | zqsat(ig, ll) = qsatbef(ig) |
---|
1043 | END DO |
---|
1044 | END DO |
---|
1045 | ! AM fin |
---|
1046 | |
---|
1047 | ! ----------------------------------------------------------------------- |
---|
1048 | ! incrementation eventuelle de tendances precedentes: |
---|
1049 | ! --------------------------------------------------- |
---|
1050 | |
---|
1051 | ! print*,'0 OK convect8' |
---|
1052 | |
---|
1053 | DO l = 1, nlay |
---|
1054 | DO ig = 1, ngrid |
---|
1055 | zpspsk(ig, l) = (pplay(ig,l)/100000.)**rkappa |
---|
1056 | ! zpspsk(ig,l)=(pplay(ig,l)/pplev(ig,1))**RKAPPA |
---|
1057 | ! zh(ig,l)=pt(ig,l)/zpspsk(ig,l) |
---|
1058 | zu(ig, l) = pu(ig, l) |
---|
1059 | zv(ig, l) = pv(ig, l) |
---|
1060 | ! zo(ig,l)=po(ig,l) |
---|
1061 | ! ztv(ig,l)=zh(ig,l)*(1.+0.61*zo(ig,l)) |
---|
1062 | ! AM attention zh est maintenant le profil de T et plus le profil de |
---|
1063 | ! theta ! |
---|
1064 | |
---|
1065 | ! T-> Theta |
---|
1066 | ztv(ig, l) = zh(ig, l)/zpspsk(ig, l) |
---|
1067 | ! AM Theta_v |
---|
1068 | ztv(ig, l) = ztv(ig, l)*(1.+retv*(zo(ig,l))-zl(ig,l)) |
---|
1069 | ! AM Thetal |
---|
1070 | zthl(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
1071 | |
---|
1072 | END DO |
---|
1073 | END DO |
---|
1074 | |
---|
1075 | ! print*,'1 OK convect8' |
---|
1076 | ! -------------------- |
---|
1077 | |
---|
1078 | |
---|
1079 | ! + + + + + + + + + + + |
---|
1080 | |
---|
1081 | |
---|
1082 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
1083 | ! wh,wt,wo ... |
---|
1084 | |
---|
1085 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
1086 | |
---|
1087 | |
---|
1088 | ! -------------------- zlev(1) |
---|
1089 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
1090 | |
---|
1091 | |
---|
1092 | |
---|
1093 | ! ----------------------------------------------------------------------- |
---|
1094 | ! Calcul des altitudes des couches |
---|
1095 | ! ----------------------------------------------------------------------- |
---|
1096 | |
---|
1097 | DO l = 2, nlay |
---|
1098 | DO ig = 1, ngrid |
---|
1099 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
1100 | END DO |
---|
1101 | END DO |
---|
1102 | DO ig = 1, ngrid |
---|
1103 | zlev(ig, 1) = 0. |
---|
1104 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
1105 | END DO |
---|
1106 | DO l = 1, nlay |
---|
1107 | DO ig = 1, ngrid |
---|
1108 | zlay(ig, l) = pphi(ig, l)/rg |
---|
1109 | END DO |
---|
1110 | END DO |
---|
1111 | ! calcul de deltaz |
---|
1112 | DO l = 1, nlay |
---|
1113 | DO ig = 1, ngrid |
---|
1114 | deltaz(ig, l) = zlev(ig, l+1) - zlev(ig, l) |
---|
1115 | END DO |
---|
1116 | END DO |
---|
1117 | |
---|
1118 | ! print*,'2 OK convect8' |
---|
1119 | ! ----------------------------------------------------------------------- |
---|
1120 | ! Calcul des densites |
---|
1121 | ! ----------------------------------------------------------------------- |
---|
1122 | |
---|
1123 | DO l = 1, nlay |
---|
1124 | DO ig = 1, ngrid |
---|
1125 | ! rho(ig,l)=pplay(ig,l)/(zpspsk(ig,l)*RD*zh(ig,l)) |
---|
1126 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*ztv(ig,l)) |
---|
1127 | END DO |
---|
1128 | END DO |
---|
1129 | |
---|
1130 | DO l = 2, nlay |
---|
1131 | DO ig = 1, ngrid |
---|
1132 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
1133 | END DO |
---|
1134 | END DO |
---|
1135 | |
---|
1136 | DO k = 1, nlay |
---|
1137 | DO l = 1, nlay + 1 |
---|
1138 | DO ig = 1, ngrid |
---|
1139 | wa(ig, k, l) = 0. |
---|
1140 | END DO |
---|
1141 | END DO |
---|
1142 | END DO |
---|
1143 | ! Cr:ajout:calcul de la masse |
---|
1144 | DO l = 1, nlay |
---|
1145 | DO ig = 1, ngrid |
---|
1146 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
1147 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
1148 | END DO |
---|
1149 | END DO |
---|
1150 | ! print*,'3 OK convect8' |
---|
1151 | ! ------------------------------------------------------------------ |
---|
1152 | ! Calcul de w2, quarre de w a partir de la cape |
---|
1153 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
1154 | |
---|
1155 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
1156 | ! w2 est stoke dans wa |
---|
1157 | |
---|
1158 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
1159 | ! independants par couches que pour calculer l'entrainement |
---|
1160 | ! a la base et la hauteur max de l'ascendance. |
---|
1161 | |
---|
1162 | ! Indicages: |
---|
1163 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
1164 | ! une vitesse wa(k,l). |
---|
1165 | |
---|
1166 | ! -------------------- |
---|
1167 | |
---|
1168 | ! + + + + + + + + + + |
---|
1169 | |
---|
1170 | ! wa(k,l) ---- -------------------- l |
---|
1171 | ! /\ |
---|
1172 | ! /||\ + + + + + + + + + + |
---|
1173 | ! || |
---|
1174 | ! || -------------------- |
---|
1175 | ! || |
---|
1176 | ! || + + + + + + + + + + |
---|
1177 | ! || |
---|
1178 | ! || -------------------- |
---|
1179 | ! ||__ |
---|
1180 | ! |___ + + + + + + + + + + k |
---|
1181 | |
---|
1182 | ! -------------------- |
---|
1183 | |
---|
1184 | |
---|
1185 | |
---|
1186 | ! ------------------------------------------------------------------ |
---|
1187 | |
---|
1188 | ! CR: ponderation entrainement des couches instables |
---|
1189 | ! def des alim_star tels que alim=f*alim_star |
---|
1190 | DO l = 1, klev |
---|
1191 | DO ig = 1, ngrid |
---|
1192 | alim_star(ig, l) = 0. |
---|
1193 | alim(ig, l) = 0. |
---|
1194 | END DO |
---|
1195 | END DO |
---|
1196 | ! determination de la longueur de la couche d entrainement |
---|
1197 | DO ig = 1, ngrid |
---|
1198 | lentr(ig) = 1 |
---|
1199 | END DO |
---|
1200 | |
---|
1201 | ! on ne considere que les premieres couches instables |
---|
1202 | therm = .FALSE. |
---|
1203 | DO k = nlay - 2, 1, -1 |
---|
1204 | DO ig = 1, ngrid |
---|
1205 | IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<=ztv(ig,k+2)) THEN |
---|
1206 | lentr(ig) = k + 1 |
---|
1207 | therm = .TRUE. |
---|
1208 | END IF |
---|
1209 | END DO |
---|
1210 | END DO |
---|
1211 | |
---|
1212 | ! determination du lmin: couche d ou provient le thermique |
---|
1213 | DO ig = 1, ngrid |
---|
1214 | lmin(ig) = 1 |
---|
1215 | END DO |
---|
1216 | DO ig = 1, ngrid |
---|
1217 | DO l = nlay, 2, -1 |
---|
1218 | IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
---|
1219 | lmin(ig) = l - 1 |
---|
1220 | END IF |
---|
1221 | END DO |
---|
1222 | END DO |
---|
1223 | |
---|
1224 | ! definition de l'entrainement des couches |
---|
1225 | DO l = 1, klev - 1 |
---|
1226 | DO ig = 1, ngrid |
---|
1227 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<lentr(ig)) THEN |
---|
1228 | ! def possibles pour alim_star: zdthetadz, dthetadz, zdtheta |
---|
1229 | alim_star(ig, l) = max((ztv(ig,l)-ztv(ig,l+1)), 0.) & ! s |
---|
1230 | ! *(zlev(ig,l+1)-zlev(ig,l)) |
---|
1231 | *sqrt(zlev(ig,l+1)) |
---|
1232 | ! alim_star(ig,l)=zlev(ig,l+1)*(1.-(zlev(ig,l+1) |
---|
1233 | ! s /zlev(ig,lentr(ig)+2)))**(3./2.) |
---|
1234 | END IF |
---|
1235 | END DO |
---|
1236 | END DO |
---|
1237 | |
---|
1238 | ! pas de thermique si couche 1 stable |
---|
1239 | DO ig = 1, ngrid |
---|
1240 | ! if (lmin(ig).gt.1) then |
---|
1241 | ! CRnouveau test |
---|
1242 | IF (alim_star(ig,1)<1.E-10) THEN |
---|
1243 | DO l = 1, klev |
---|
1244 | alim_star(ig, l) = 0. |
---|
1245 | END DO |
---|
1246 | END IF |
---|
1247 | END DO |
---|
1248 | ! calcul de l entrainement total |
---|
1249 | DO ig = 1, ngrid |
---|
1250 | alim_star_tot(ig) = 0. |
---|
1251 | entr_star_tot(ig) = 0. |
---|
1252 | detr_star_tot(ig) = 0. |
---|
1253 | END DO |
---|
1254 | DO ig = 1, ngrid |
---|
1255 | DO k = 1, klev |
---|
1256 | alim_star_tot(ig) = alim_star_tot(ig) + alim_star(ig, k) |
---|
1257 | END DO |
---|
1258 | END DO |
---|
1259 | |
---|
1260 | ! Calcul entrainement normalise |
---|
1261 | DO ig = 1, ngrid |
---|
1262 | IF (alim_star_tot(ig)>1.E-10) THEN |
---|
1263 | ! do l=1,lentr(ig) |
---|
1264 | DO l = 1, klev |
---|
1265 | ! def possibles pour entr_star: zdthetadz, dthetadz, zdtheta |
---|
1266 | alim_star(ig, l) = alim_star(ig, l)/alim_star_tot(ig) |
---|
1267 | END DO |
---|
1268 | END IF |
---|
1269 | END DO |
---|
1270 | |
---|
1271 | ! print*,'fin calcul alim_star' |
---|
1272 | |
---|
1273 | ! AM:initialisations |
---|
1274 | DO k = 1, nlay |
---|
1275 | DO ig = 1, ngrid |
---|
1276 | ztva(ig, k) = ztv(ig, k) |
---|
1277 | ztla(ig, k) = zthl(ig, k) |
---|
1278 | zqla(ig, k) = 0. |
---|
1279 | zqta(ig, k) = po(ig, k) |
---|
1280 | zsat(ig) = .FALSE. |
---|
1281 | END DO |
---|
1282 | END DO |
---|
1283 | DO k = 1, klev |
---|
1284 | DO ig = 1, ngrid |
---|
1285 | detr_star(ig, k) = 0. |
---|
1286 | entr_star(ig, k) = 0. |
---|
1287 | detr(ig, k) = 0. |
---|
1288 | entr(ig, k) = 0. |
---|
1289 | END DO |
---|
1290 | END DO |
---|
1291 | ! print*,'7 OK convect8' |
---|
1292 | DO k = 1, klev + 1 |
---|
1293 | DO ig = 1, ngrid |
---|
1294 | zw2(ig, k) = 0. |
---|
1295 | fmc(ig, k) = 0. |
---|
1296 | ! CR |
---|
1297 | f_star(ig, k) = 0. |
---|
1298 | ! RC |
---|
1299 | larg_cons(ig, k) = 0. |
---|
1300 | larg_detr(ig, k) = 0. |
---|
1301 | wa_moy(ig, k) = 0. |
---|
1302 | END DO |
---|
1303 | END DO |
---|
1304 | |
---|
1305 | ! n print*,'8 OK convect8' |
---|
1306 | DO ig = 1, ngrid |
---|
1307 | linter(ig) = 1. |
---|
1308 | lmaxa(ig) = 1 |
---|
1309 | lmix(ig) = 1 |
---|
1310 | wmaxa(ig) = 0. |
---|
1311 | END DO |
---|
1312 | |
---|
1313 | nu_min = l_mix |
---|
1314 | nu_max = 1000. |
---|
1315 | ! do ig=1,ngrid |
---|
1316 | ! nu_max=wmax_sec(ig) |
---|
1317 | ! enddo |
---|
1318 | DO ig = 1, ngrid |
---|
1319 | DO k = 1, klev |
---|
1320 | nu(ig, k) = 0. |
---|
1321 | nu_e(ig, k) = 0. |
---|
1322 | END DO |
---|
1323 | END DO |
---|
1324 | ! Calcul de l'excès de température du à la diffusion turbulente |
---|
1325 | DO ig = 1, ngrid |
---|
1326 | DO l = 1, klev |
---|
1327 | dtheta(ig, l) = 0. |
---|
1328 | END DO |
---|
1329 | END DO |
---|
1330 | DO ig = 1, ngrid |
---|
1331 | DO l = 1, lentr(ig) - 1 |
---|
1332 | dtheta(ig, l) = sqrt(10.*0.4*zlev(ig,l+1)**2*1.*((ztv(ig,l+1)- & |
---|
1333 | ztv(ig,l))/(zlev(ig,l+1)-zlev(ig,l)))**2) |
---|
1334 | END DO |
---|
1335 | END DO |
---|
1336 | ! do l=1,nlay-2 |
---|
1337 | DO l = 1, klev - 1 |
---|
1338 | DO ig = 1, ngrid |
---|
1339 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. alim_star(ig,l)>1.E-10 .AND. & |
---|
1340 | zw2(ig,l)<1E-10) THEN |
---|
1341 | ! AM |
---|
1342 | ! test:on rajoute un excès de T dans couche alim |
---|
1343 | ! ztla(ig,l)=zthl(ig,l)+dtheta(ig,l) |
---|
1344 | ztla(ig, l) = zthl(ig, l) |
---|
1345 | ! test: on rajoute un excès de q dans la couche alim |
---|
1346 | ! zqta(ig,l)=po(ig,l)+0.001 |
---|
1347 | zqta(ig, l) = po(ig, l) |
---|
1348 | zqla(ig, l) = zl(ig, l) |
---|
1349 | ! AM |
---|
1350 | f_star(ig, l+1) = alim_star(ig, l) |
---|
1351 | ! test:calcul de dteta |
---|
1352 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
1353 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
1354 | w_est(ig, l+1) = zw2(ig, l+1) |
---|
1355 | larg_detr(ig, l) = 0. |
---|
1356 | ! print*,'coucou boucle 1' |
---|
1357 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+alim_star(ig, & |
---|
1358 | l))>1.E-10) THEN |
---|
1359 | ! print*,'coucou boucle 2' |
---|
1360 | ! estimation du detrainement a partir de la geometrie du pas |
---|
1361 | ! precedent |
---|
1362 | IF ((test(ig)==1) .OR. ((.NOT. debut) .AND. (f0(ig)<1.E-10))) THEN |
---|
1363 | detr_star(ig, l) = 0. |
---|
1364 | entr_star(ig, l) = 0. |
---|
1365 | ! print*,'coucou test(ig)',test(ig),f0(ig),zmax0(ig) |
---|
1366 | ELSE |
---|
1367 | ! print*,'coucou debut detr' |
---|
1368 | ! tests sur la definition du detr |
---|
1369 | IF (zqla(ig,l-1)>1.E-10) THEN |
---|
1370 | nuage = .TRUE. |
---|
1371 | END IF |
---|
1372 | |
---|
1373 | w_est(ig, l+1) = zw2(ig, l)*((f_star(ig,l))**2)/(f_star(ig,l)+ & |
---|
1374 | alim_star(ig,l))**2 + 2.*rg*(ztva(ig,l-1)-ztv(ig,l))/ztv(ig, l)*( & |
---|
1375 | zlev(ig,l+1)-zlev(ig,l)) |
---|
1376 | IF (w_est(ig,l+1)<0.) THEN |
---|
1377 | w_est(ig, l+1) = zw2(ig, l) |
---|
1378 | END IF |
---|
1379 | IF (l>2) THEN |
---|
1380 | IF ((w_est(ig,l+1)>w_est(ig,l)) .AND. (zlev(ig, & |
---|
1381 | l+1)<zmax_sec(ig)) .AND. (zqla(ig,l-1)<1.E-10)) THEN |
---|
1382 | detr_star(ig, l) = max(0., (rhobarz(ig, & |
---|
1383 | l+1)*sqrt(w_est(ig,l+1))*sqrt(nu(ig,l)* & |
---|
1384 | zlev(ig,l+1))-rhobarz(ig,l)*sqrt(w_est(ig,l))*sqrt(nu(ig,l)* & |
---|
1385 | zlev(ig,l)))/(r_aspect*zmax_sec(ig))) |
---|
1386 | ELSE IF ((zlev(ig,l+1)<zmax_sec(ig)) .AND. (zqla(ig, & |
---|
1387 | l-1)<1.E-10)) THEN |
---|
1388 | detr_star(ig, l) = -f0(ig)*f_star(ig, lmix(ig))/(rhobarz(ig, & |
---|
1389 | lmix(ig))*wmaxa(ig))*(rhobarz(ig,l+1)*sqrt(w_est(ig, & |
---|
1390 | l+1))*((zmax_sec(ig)-zlev(ig,l+1))/((zmax_sec(ig)-zlev(ig, & |
---|
1391 | lmix(ig)))))**2.-rhobarz(ig,l)*sqrt(w_est(ig, & |
---|
1392 | l))*((zmax_sec(ig)-zlev(ig,l))/((zmax_sec(ig)-zlev(ig,lmix(ig & |
---|
1393 | )))))**2.) |
---|
1394 | ELSE |
---|
1395 | detr_star(ig, l) = 0.002*f0(ig)*f_star(ig, l)* & |
---|
1396 | (zlev(ig,l+1)-zlev(ig,l)) |
---|
1397 | |
---|
1398 | END IF |
---|
1399 | ELSE |
---|
1400 | detr_star(ig, l) = 0. |
---|
1401 | END IF |
---|
1402 | |
---|
1403 | detr_star(ig, l) = detr_star(ig, l)/f0(ig) |
---|
1404 | IF (nuage) THEN |
---|
1405 | entr_star(ig, l) = 0.4*detr_star(ig, l) |
---|
1406 | ELSE |
---|
1407 | entr_star(ig, l) = 0.4*detr_star(ig, l) |
---|
1408 | END IF |
---|
1409 | |
---|
1410 | IF ((detr_star(ig,l))>f_star(ig,l)) THEN |
---|
1411 | detr_star(ig, l) = f_star(ig, l) |
---|
1412 | ! entr_star(ig,l)=0. |
---|
1413 | END IF |
---|
1414 | |
---|
1415 | IF ((l<lentr(ig))) THEN |
---|
1416 | entr_star(ig, l) = 0. |
---|
1417 | ! detr_star(ig,l)=0. |
---|
1418 | END IF |
---|
1419 | |
---|
1420 | ! print*,'ok detr_star' |
---|
1421 | END IF |
---|
1422 | ! prise en compte du detrainement dans le calcul du flux |
---|
1423 | f_star(ig, l+1) = f_star(ig, l) + alim_star(ig, l) + & |
---|
1424 | entr_star(ig, l) - detr_star(ig, l) |
---|
1425 | ! test |
---|
1426 | ! if (f_star(ig,l+1).lt.0.) then |
---|
1427 | ! f_star(ig,l+1)=0. |
---|
1428 | ! entr_star(ig,l)=0. |
---|
1429 | ! detr_star(ig,l)=f_star(ig,l)+alim_star(ig,l) |
---|
1430 | ! endif |
---|
1431 | ! test sur le signe de f_star |
---|
1432 | IF (f_star(ig,l+1)>1.E-10) THEN |
---|
1433 | ! then |
---|
1434 | ! test |
---|
1435 | ! if (((f_star(ig,l+1)+detr_star(ig,l)).gt.1.e-10)) then |
---|
1436 | ! AM on melange Tl et qt du thermique |
---|
1437 | ! on rajoute un excès de T dans la couche alim |
---|
1438 | ! if (l.lt.lentr(ig)) then |
---|
1439 | ! ztla(ig,l)=(f_star(ig,l)*ztla(ig,l-1)+ |
---|
1440 | ! s |
---|
1441 | ! (alim_star(ig,l)+entr_star(ig,l))*(zthl(ig,l)+dtheta(ig,l))) |
---|
1442 | ! s /(f_star(ig,l+1)+detr_star(ig,l)) |
---|
1443 | ! else |
---|
1444 | ztla(ig, l) = (f_star(ig,l)*ztla(ig,l-1)+(alim_star(ig, & |
---|
1445 | l)+entr_star(ig,l))*zthl(ig,l))/(f_star(ig,l+1)+detr_star(ig,l)) |
---|
1446 | ! s /(f_star(ig,l+1)) |
---|
1447 | ! endif |
---|
1448 | ! on rajoute un excès de q dans la couche alim |
---|
1449 | ! if (l.lt.lentr(ig)) then |
---|
1450 | ! zqta(ig,l)=(f_star(ig,l)*zqta(ig,l-1)+ |
---|
1451 | ! s (alim_star(ig,l)+entr_star(ig,l))*(po(ig,l)+0.001)) |
---|
1452 | ! s /(f_star(ig,l+1)+detr_star(ig,l)) |
---|
1453 | ! else |
---|
1454 | zqta(ig, l) = (f_star(ig,l)*zqta(ig,l-1)+(alim_star(ig, & |
---|
1455 | l)+entr_star(ig,l))*po(ig,l))/(f_star(ig,l+1)+detr_star(ig,l)) |
---|
1456 | ! s /(f_star(ig,l+1)) |
---|
1457 | ! endif |
---|
1458 | ! AM on en deduit thetav et ql du thermique |
---|
1459 | ! CR test |
---|
1460 | ! Tbef(ig)=ztla(ig,l)*zpspsk(ig,l) |
---|
1461 | tbef(ig) = ztla(ig, l)*zpspsk(ig, l) |
---|
1462 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
1463 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
---|
1464 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
1465 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
1466 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
1467 | zsat(ig) = (max(0.,zqta(ig,l)-qsatbef(ig))>1.E-10) |
---|
1468 | |
---|
1469 | IF (zsat(ig) .AND. (1==1)) THEN |
---|
1470 | qlbef = max(0., zqta(ig,l)-qsatbef(ig)) |
---|
1471 | dt = 0.5*rlvcp*qlbef |
---|
1472 | ! write(17,*)'DT0=',DT |
---|
1473 | DO WHILE (abs(dt)>ddt0) |
---|
1474 | ! print*,'aie' |
---|
1475 | tbef(ig) = tbef(ig) + dt |
---|
1476 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
1477 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
---|
1478 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
1479 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
1480 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
1481 | qlbef = zqta(ig, l) - qsatbef(ig) |
---|
1482 | |
---|
1483 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
1484 | zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
---|
1485 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
1486 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
1487 | num = -tbef(ig) + ztla(ig, l)*zpspsk(ig, l) + rlvcp*qlbef |
---|
1488 | denom = 1. + rlvcp*dqsat_dt |
---|
1489 | IF (denom<1.E-10) THEN |
---|
1490 | PRINT *, 'pb denom' |
---|
1491 | END IF |
---|
1492 | dt = num/denom |
---|
1493 | ! write(17,*)'DT=',DT |
---|
1494 | END DO |
---|
1495 | zqla(ig, l) = max(0., zqta(ig,l)-qsatbef(ig)) |
---|
1496 | zqla(ig, l) = max(0., qlbef) |
---|
1497 | ! zqla(ig,l)=0. |
---|
1498 | END IF |
---|
1499 | ! zqla(ig,l) = max(0.,zqta(ig,l)-qsatbef(ig)) |
---|
1500 | |
---|
1501 | ! on ecrit de maniere conservative (sat ou non) |
---|
1502 | ! T = Tl +Lv/Cp ql |
---|
1503 | ! CR rq utilisation de humidite specifique ou rapport de melange? |
---|
1504 | ztva(ig, l) = ztla(ig, l)*zpspsk(ig, l) + rlvcp*zqla(ig, l) |
---|
1505 | ztva(ig, l) = ztva(ig, l)/zpspsk(ig, l) |
---|
1506 | ! on rajoute le calcul de zha pour diagnostiques (temp potentielle) |
---|
1507 | zha(ig, l) = ztva(ig, l) |
---|
1508 | ! if (l.lt.lentr(ig)) then |
---|
1509 | ! ztva(ig,l) = ztva(ig,l)*(1.+RETV*(zqta(ig,l) |
---|
1510 | ! s -zqla(ig,l))-zqla(ig,l)) + 0.1 |
---|
1511 | ! else |
---|
1512 | ztva(ig, l) = ztva(ig, l)*(1.+retv*(zqta(ig,l)-zqla(ig, & |
---|
1513 | l))-zqla(ig,l)) |
---|
1514 | ! endif |
---|
1515 | ! ztva(ig,l) = ztla(ig,l)*zpspsk(ig,l)+RLvCp*zqla(ig,l) |
---|
1516 | ! s /(1.-retv*zqla(ig,l)) |
---|
1517 | ! ztva(ig,l) = ztva(ig,l)/zpspsk(ig,l) |
---|
1518 | ! ztva(ig,l) = ztva(ig,l)*(1.+RETV*(zqta(ig,l) |
---|
1519 | ! s /(1.-retv*zqta(ig,l)) |
---|
1520 | ! s -zqla(ig,l)/(1.-retv*zqla(ig,l))) |
---|
1521 | ! s -zqla(ig,l)/(1.-retv*zqla(ig,l))) |
---|
1522 | ! write(13,*)zqla(ig,l),zqla(ig,l)/(1.-retv*zqla(ig,l)) |
---|
1523 | ! on ecrit zqsat |
---|
1524 | zqsatth(ig, l) = qsatbef(ig) |
---|
1525 | ! enddo |
---|
1526 | ! DO ig=1,ngrid |
---|
1527 | ! if (zw2(ig,l).ge.1.e-10.and. |
---|
1528 | ! s f_star(ig,l)+entr_star(ig,l).gt.1.e-10) then |
---|
1529 | ! mise a jour de la vitesse ascendante (l'air entraine de la couche |
---|
1530 | ! consideree commence avec une vitesse nulle). |
---|
1531 | |
---|
1532 | ! if (f_star(ig,l+1).gt.1.e-10) then |
---|
1533 | zw2(ig, l+1) = zw2(ig, l)* & ! s |
---|
1534 | ! ((f_star(ig,l)-detr_star(ig,l))**2) |
---|
1535 | ! s /f_star(ig,l+1)**2+ |
---|
1536 | ((f_star(ig,l))**2)/(f_star(ig,l+1)+detr_star(ig,l))**2 + & ! s |
---|
1537 | ! /(f_star(ig,l+1))**2+ |
---|
1538 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
1539 | ! s *(f_star(ig,l)/f_star(ig,l+1))**2 |
---|
1540 | |
---|
1541 | END IF |
---|
1542 | END IF |
---|
1543 | |
---|
1544 | IF (zw2(ig,l+1)<0.) THEN |
---|
1545 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
1546 | ig,l)) |
---|
1547 | zw2(ig, l+1) = 0. |
---|
1548 | ! print*,'linter=',linter(ig) |
---|
1549 | ! else if ((zw2(ig,l+1).lt.1.e-10).and.(zw2(ig,l+1).ge.0.)) then |
---|
1550 | ! linter(ig)=l+1 |
---|
1551 | ! print*,'linter=l',zw2(ig,l),zw2(ig,l+1) |
---|
1552 | ELSE |
---|
1553 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
1554 | ! wa_moy(ig,l+1)=zw2(ig,l+1) |
---|
1555 | END IF |
---|
1556 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
1557 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
1558 | lmix(ig) = l + 1 |
---|
1559 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
1560 | END IF |
---|
1561 | END DO |
---|
1562 | END DO |
---|
1563 | PRINT *, 'fin calcul zw2' |
---|
1564 | |
---|
1565 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
1566 | DO ig = 1, ngrid |
---|
1567 | lmax(ig) = lentr(ig) |
---|
1568 | END DO |
---|
1569 | DO ig = 1, ngrid |
---|
1570 | DO l = nlay, lentr(ig) + 1, -1 |
---|
1571 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
1572 | lmax(ig) = l - 1 |
---|
1573 | END IF |
---|
1574 | END DO |
---|
1575 | END DO |
---|
1576 | ! pas de thermique si couche 1 stable |
---|
1577 | DO ig = 1, ngrid |
---|
1578 | IF (lmin(ig)>1) THEN |
---|
1579 | lmax(ig) = 1 |
---|
1580 | lmin(ig) = 1 |
---|
1581 | lentr(ig) = 1 |
---|
1582 | END IF |
---|
1583 | END DO |
---|
1584 | |
---|
1585 | ! Determination de zw2 max |
---|
1586 | DO ig = 1, ngrid |
---|
1587 | wmax(ig) = 0. |
---|
1588 | END DO |
---|
1589 | |
---|
1590 | DO l = 1, nlay |
---|
1591 | DO ig = 1, ngrid |
---|
1592 | IF (l<=lmax(ig)) THEN |
---|
1593 | IF (zw2(ig,l)<0.) THEN |
---|
1594 | PRINT *, 'pb2 zw2<0' |
---|
1595 | END IF |
---|
1596 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
1597 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
1598 | ELSE |
---|
1599 | zw2(ig, l) = 0. |
---|
1600 | END IF |
---|
1601 | END DO |
---|
1602 | END DO |
---|
1603 | |
---|
1604 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
1605 | DO ig = 1, ngrid |
---|
1606 | zmax(ig) = 0. |
---|
1607 | zlevinter(ig) = zlev(ig, 1) |
---|
1608 | END DO |
---|
1609 | DO ig = 1, ngrid |
---|
1610 | ! calcul de zlevinter |
---|
1611 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
1612 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
1613 | ! pour le cas ou on prend tjs lmin=1 |
---|
1614 | ! zmax(ig)=max(zmax(ig),zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
1615 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,1)) |
---|
1616 | zmax0(ig) = zmax(ig) |
---|
1617 | WRITE (11, *) 'ig,lmax,linter', ig, lmax(ig), linter(ig) |
---|
1618 | WRITE (12, *) 'ig,zlevinter,zmax', ig, zmax(ig), zlevinter(ig) |
---|
1619 | END DO |
---|
1620 | |
---|
1621 | ! Calcul de zmax_sec et wmax_sec |
---|
1622 | CALL fermeture_seche(ngrid, nlay, pplay, pplev, pphi, zlev, rhobarz, f0, & |
---|
1623 | zpspsk, alim, zh, zo, lentr, lmin, nu_min, nu_max, r_aspect, zmax_sec2, & |
---|
1624 | wmax_sec2) |
---|
1625 | |
---|
1626 | PRINT *, 'avant fermeture' |
---|
1627 | ! Fermeture,determination de f |
---|
1628 | ! en lmax f=d-e |
---|
1629 | DO ig = 1, ngrid |
---|
1630 | ! entr_star(ig,lmax(ig))=0. |
---|
1631 | ! f_star(ig,lmax(ig)+1)=0. |
---|
1632 | ! detr_star(ig,lmax(ig))=f_star(ig,lmax(ig))+entr_star(ig,lmax(ig)) |
---|
1633 | ! s +alim_star(ig,lmax(ig)) |
---|
1634 | END DO |
---|
1635 | |
---|
1636 | DO ig = 1, ngrid |
---|
1637 | alim_star2(ig) = 0. |
---|
1638 | END DO |
---|
1639 | ! calcul de entr_star_tot |
---|
1640 | DO ig = 1, ngrid |
---|
1641 | DO k = 1, lmix(ig) |
---|
1642 | entr_star_tot(ig) = entr_star_tot(ig) & ! s |
---|
1643 | ! +entr_star(ig,k) |
---|
1644 | +alim_star(ig, k) |
---|
1645 | ! s -detr_star(ig,k) |
---|
1646 | detr_star_tot(ig) = detr_star_tot(ig) & ! s |
---|
1647 | ! +alim_star(ig,k) |
---|
1648 | -detr_star(ig, k) + entr_star(ig, k) |
---|
1649 | END DO |
---|
1650 | END DO |
---|
1651 | |
---|
1652 | DO ig = 1, ngrid |
---|
1653 | IF (alim_star_tot(ig)<1.E-10) THEN |
---|
1654 | f(ig) = 0. |
---|
1655 | ELSE |
---|
1656 | ! do k=lmin(ig),lentr(ig) |
---|
1657 | DO k = 1, lentr(ig) |
---|
1658 | alim_star2(ig) = alim_star2(ig) + alim_star(ig, k)**2/(rho(ig,k)*( & |
---|
1659 | zlev(ig,k+1)-zlev(ig,k))) |
---|
1660 | END DO |
---|
1661 | IF ((zmax_sec(ig)>1.E-10) .AND. (1==1)) THEN |
---|
1662 | f(ig) = wmax_sec(ig)/(max(500.,zmax_sec(ig))*r_aspect*alim_star2(ig)) |
---|
1663 | f(ig) = f(ig) + (f0(ig)-f(ig))*exp((-ptimestep/zmax_sec(ig))*wmax_sec & |
---|
1664 | (ig)) |
---|
1665 | ELSE |
---|
1666 | f(ig) = wmax(ig)/(max(500.,zmax(ig))*r_aspect*alim_star2(ig)) |
---|
1667 | f(ig) = f(ig) + (f0(ig)-f(ig))*exp((-ptimestep/zmax(ig))*wmax(ig)) |
---|
1668 | END IF |
---|
1669 | END IF |
---|
1670 | f0(ig) = f(ig) |
---|
1671 | END DO |
---|
1672 | PRINT *, 'apres fermeture' |
---|
1673 | ! Calcul de l'entrainement |
---|
1674 | DO ig = 1, ngrid |
---|
1675 | DO k = 1, klev |
---|
1676 | alim(ig, k) = f(ig)*alim_star(ig, k) |
---|
1677 | END DO |
---|
1678 | END DO |
---|
1679 | ! CR:test pour entrainer moins que la masse |
---|
1680 | ! do ig=1,ngrid |
---|
1681 | ! do l=1,lentr(ig) |
---|
1682 | ! if ((alim(ig,l)*ptimestep).gt.(0.9*masse(ig,l))) then |
---|
1683 | ! alim(ig,l+1)=alim(ig,l+1)+alim(ig,l) |
---|
1684 | ! s -0.9*masse(ig,l)/ptimestep |
---|
1685 | ! alim(ig,l)=0.9*masse(ig,l)/ptimestep |
---|
1686 | ! endif |
---|
1687 | ! enddo |
---|
1688 | ! enddo |
---|
1689 | ! calcul du détrainement |
---|
1690 | DO ig = 1, klon |
---|
1691 | DO k = 1, klev |
---|
1692 | detr(ig, k) = f(ig)*detr_star(ig, k) |
---|
1693 | IF (detr(ig,k)<0.) THEN |
---|
1694 | ! print*,'detr1<0!!!' |
---|
1695 | END IF |
---|
1696 | END DO |
---|
1697 | DO k = 1, klev |
---|
1698 | entr(ig, k) = f(ig)*entr_star(ig, k) |
---|
1699 | IF (entr(ig,k)<0.) THEN |
---|
1700 | ! print*,'entr1<0!!!' |
---|
1701 | END IF |
---|
1702 | END DO |
---|
1703 | END DO |
---|
1704 | |
---|
1705 | ! do ig=1,ngrid |
---|
1706 | ! do l=1,klev |
---|
1707 | ! if (((detr(ig,l)+entr(ig,l)+alim(ig,l))*ptimestep).gt. |
---|
1708 | ! s (masse(ig,l))) then |
---|
1709 | ! print*,'d2+e2+a2>m2','ig=',ig,'l=',l,'lmax(ig)=',lmax(ig),'d+e+a=' |
---|
1710 | ! s,(detr(ig,l)+entr(ig,l)+alim(ig,l))*ptimestep,'m=',masse(ig,l) |
---|
1711 | ! endif |
---|
1712 | ! enddo |
---|
1713 | ! enddo |
---|
1714 | ! Calcul des flux |
---|
1715 | |
---|
1716 | DO ig = 1, ngrid |
---|
1717 | DO l = 1, lmax(ig) |
---|
1718 | ! do l=1,klev |
---|
1719 | ! fmc(ig,l+1)=f(ig)*f_star(ig,l+1) |
---|
1720 | fmc(ig, l+1) = fmc(ig, l) + alim(ig, l) + entr(ig, l) - detr(ig, l) |
---|
1721 | ! print*,'??!!','ig=',ig,'l=',l,'lmax=',lmax(ig),'lmix=',lmix(ig), |
---|
1722 | ! s 'e=',entr(ig,l),'d=',detr(ig,l),'a=',alim(ig,l),'f=',fmc(ig,l), |
---|
1723 | ! s 'f+1=',fmc(ig,l+1) |
---|
1724 | IF (fmc(ig,l+1)<0.) THEN |
---|
1725 | PRINT *, 'fmc1<0', l + 1, lmax(ig), fmc(ig, l+1) |
---|
1726 | fmc(ig, l+1) = fmc(ig, l) |
---|
1727 | detr(ig, l) = alim(ig, l) + entr(ig, l) |
---|
1728 | ! fmc(ig,l+1)=0. |
---|
1729 | ! print*,'fmc1<0',l+1,lmax(ig),fmc(ig,l+1) |
---|
1730 | END IF |
---|
1731 | ! if ((fmc(ig,l+1).gt.fmc(ig,l)).and.(l.gt.lentr(ig))) then |
---|
1732 | ! f_old=fmc(ig,l+1) |
---|
1733 | ! fmc(ig,l+1)=fmc(ig,l) |
---|
1734 | ! detr(ig,l)=detr(ig,l)+f_old-fmc(ig,l+1) |
---|
1735 | ! endif |
---|
1736 | |
---|
1737 | ! if ((fmc(ig,l+1).gt.fmc(ig,l)).and.(l.gt.lentr(ig))) then |
---|
1738 | ! f_old=fmc(ig,l+1) |
---|
1739 | ! fmc(ig,l+1)=fmc(ig,l) |
---|
1740 | ! detr(ig,l)=detr(ig,l)+f_old-fmc(ig,l) |
---|
1741 | ! endif |
---|
1742 | ! rajout du test sur alpha croissant |
---|
1743 | ! if test |
---|
1744 | ! if (1.eq.0) then |
---|
1745 | |
---|
1746 | IF (l==klev) THEN |
---|
1747 | PRINT *, 'THERMCELL PB ig=', ig, ' l=', l |
---|
1748 | abort_message = 'THERMCELL PB' |
---|
1749 | CALL abort_physic(modname, abort_message, 1) |
---|
1750 | END IF |
---|
1751 | ! if ((zw2(ig,l+1).gt.1.e-10).and.(zw2(ig,l).gt.1.e-10).and. |
---|
1752 | ! s (l.ge.lentr(ig)).and. |
---|
1753 | IF ((zw2(ig,l+1)>1.E-10) .AND. (zw2(ig,l)>1.E-10) .AND. (l>=lentr(ig))) & |
---|
1754 | THEN |
---|
1755 | IF (((fmc(ig,l+1)/(rhobarz(ig,l+1)*zw2(ig,l+1)))>(fmc(ig,l)/ & |
---|
1756 | (rhobarz(ig,l)*zw2(ig,l))))) THEN |
---|
1757 | f_old = fmc(ig, l+1) |
---|
1758 | fmc(ig, l+1) = fmc(ig, l)*rhobarz(ig, l+1)*zw2(ig, l+1)/ & |
---|
1759 | (rhobarz(ig,l)*zw2(ig,l)) |
---|
1760 | detr(ig, l) = detr(ig, l) + f_old - fmc(ig, l+1) |
---|
1761 | ! detr(ig,l)=(fmc(ig,l+1)-fmc(ig,l))/(0.4-1.) |
---|
1762 | ! entr(ig,l)=0.4*detr(ig,l) |
---|
1763 | ! entr(ig,l)=fmc(ig,l+1)-fmc(ig,l)+detr(ig,l) |
---|
1764 | END IF |
---|
1765 | END IF |
---|
1766 | IF ((fmc(ig,l+1)>fmc(ig,l)) .AND. (l>lentr(ig))) THEN |
---|
1767 | f_old = fmc(ig, l+1) |
---|
1768 | fmc(ig, l+1) = fmc(ig, l) |
---|
1769 | detr(ig, l) = detr(ig, l) + f_old - fmc(ig, l+1) |
---|
1770 | END IF |
---|
1771 | IF (detr(ig,l)>fmc(ig,l)) THEN |
---|
1772 | detr(ig, l) = fmc(ig, l) |
---|
1773 | entr(ig, l) = fmc(ig, l+1) - alim(ig, l) |
---|
1774 | END IF |
---|
1775 | IF (fmc(ig,l+1)<0.) THEN |
---|
1776 | detr(ig, l) = detr(ig, l) + fmc(ig, l+1) |
---|
1777 | fmc(ig, l+1) = 0. |
---|
1778 | PRINT *, 'fmc2<0', l + 1, lmax(ig) |
---|
1779 | END IF |
---|
1780 | |
---|
1781 | ! test pour ne pas avoir f=0 et d=e/=0 |
---|
1782 | ! if (fmc(ig,l+1).lt.1.e-10) then |
---|
1783 | ! detr(ig,l+1)=0. |
---|
1784 | ! entr(ig,l+1)=0. |
---|
1785 | ! zqla(ig,l+1)=0. |
---|
1786 | ! zw2(ig,l+1)=0. |
---|
1787 | ! lmax(ig)=l+1 |
---|
1788 | ! zmax(ig)=zlev(ig,lmax(ig)) |
---|
1789 | ! endif |
---|
1790 | IF (zw2(ig,l+1)>1.E-10) THEN |
---|
1791 | IF ((((fmc(ig,l+1))/(rhobarz(ig,l+1)*zw2(ig,l+1)))>1.)) THEN |
---|
1792 | f_old = fmc(ig, l+1) |
---|
1793 | fmc(ig, l+1) = rhobarz(ig, l+1)*zw2(ig, l+1) |
---|
1794 | zw2(ig, l+1) = 0. |
---|
1795 | zqla(ig, l+1) = 0. |
---|
1796 | detr(ig, l) = detr(ig, l) + f_old - fmc(ig, l+1) |
---|
1797 | lmax(ig) = l + 1 |
---|
1798 | zmax(ig) = zlev(ig, lmax(ig)) |
---|
1799 | PRINT *, 'alpha>1', l + 1, lmax(ig) |
---|
1800 | END IF |
---|
1801 | END IF |
---|
1802 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
1803 | ! endif test |
---|
1804 | ! endif |
---|
1805 | END DO |
---|
1806 | END DO |
---|
1807 | DO ig = 1, ngrid |
---|
1808 | ! if (fmc(ig,lmax(ig)+1).ne.0.) then |
---|
1809 | fmc(ig, lmax(ig)+1) = 0. |
---|
1810 | entr(ig, lmax(ig)) = 0. |
---|
1811 | detr(ig, lmax(ig)) = fmc(ig, lmax(ig)) + entr(ig, lmax(ig)) + & |
---|
1812 | alim(ig, lmax(ig)) |
---|
1813 | ! endif |
---|
1814 | END DO |
---|
1815 | ! test sur le signe de fmc |
---|
1816 | DO ig = 1, ngrid |
---|
1817 | DO l = 1, klev + 1 |
---|
1818 | IF (fmc(ig,l)<0.) THEN |
---|
1819 | PRINT *, 'fm1<0!!!', 'ig=', ig, 'l=', l, 'a=', alim(ig, l-1), 'e=', & |
---|
1820 | entr(ig, l-1), 'f=', fmc(ig, l-1), 'd=', detr(ig, l-1), 'f+1=', & |
---|
1821 | fmc(ig, l) |
---|
1822 | END IF |
---|
1823 | END DO |
---|
1824 | END DO |
---|
1825 | ! test de verification |
---|
1826 | DO ig = 1, ngrid |
---|
1827 | DO l = 1, lmax(ig) |
---|
1828 | IF ((abs(fmc(ig,l+1)-fmc(ig,l)-alim(ig,l)-entr(ig,l)+ & |
---|
1829 | detr(ig,l)))>1.E-4) THEN |
---|
1830 | ! print*,'pbcm!!','ig=',ig,'l=',l,'lmax=',lmax(ig),'lmix=',lmix(ig), |
---|
1831 | ! s 'e=',entr(ig,l),'d=',detr(ig,l),'a=',alim(ig,l),'f=',fmc(ig,l), |
---|
1832 | ! s 'f+1=',fmc(ig,l+1) |
---|
1833 | END IF |
---|
1834 | IF (detr(ig,l)<0.) THEN |
---|
1835 | PRINT *, 'detrdemi<0!!!' |
---|
1836 | END IF |
---|
1837 | END DO |
---|
1838 | END DO |
---|
1839 | |
---|
1840 | ! RC |
---|
1841 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
1842 | DO ig = 1, ngrid |
---|
1843 | IF (lmix(ig)>1.) THEN |
---|
1844 | ! test |
---|
1845 | IF (((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
1846 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
1847 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))- & |
---|
1848 | (zlev(ig,lmix(ig)))))>1E-10) THEN |
---|
1849 | |
---|
1850 | zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)) & |
---|
1851 | )**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
---|
1852 | lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
---|
1853 | (2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
1854 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
1855 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
---|
1856 | ELSE |
---|
1857 | zmix(ig) = zlev(ig, lmix(ig)) |
---|
1858 | PRINT *, 'pb zmix' |
---|
1859 | END IF |
---|
1860 | ELSE |
---|
1861 | zmix(ig) = 0. |
---|
1862 | END IF |
---|
1863 | ! test |
---|
1864 | IF ((zmax(ig)-zmix(ig))<=0.) THEN |
---|
1865 | zmix(ig) = 0.9*zmax(ig) |
---|
1866 | ! print*,'pb zmix>zmax' |
---|
1867 | END IF |
---|
1868 | END DO |
---|
1869 | DO ig = 1, klon |
---|
1870 | zmix0(ig) = zmix(ig) |
---|
1871 | END DO |
---|
1872 | |
---|
1873 | ! calcul du nouveau lmix correspondant |
---|
1874 | DO ig = 1, ngrid |
---|
1875 | DO l = 1, klev |
---|
1876 | IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
---|
1877 | lmix(ig) = l |
---|
1878 | END IF |
---|
1879 | END DO |
---|
1880 | END DO |
---|
1881 | |
---|
1882 | ! ne devrait pas arriver!!!!! |
---|
1883 | DO ig = 1, ngrid |
---|
1884 | DO l = 1, klev |
---|
1885 | IF (detr(ig,l)>(fmc(ig,l)+alim(ig,l))+entr(ig,l)) THEN |
---|
1886 | PRINT *, 'detr2>fmc2!!!', 'ig=', ig, 'l=', l, 'd=', detr(ig, l), & |
---|
1887 | 'f=', fmc(ig, l), 'lmax=', lmax(ig) |
---|
1888 | ! detr(ig,l)=fmc(ig,l)+alim(ig,l)+entr(ig,l) |
---|
1889 | ! entr(ig,l)=0. |
---|
1890 | ! fmc(ig,l+1)=0. |
---|
1891 | ! zw2(ig,l+1)=0. |
---|
1892 | ! zqla(ig,l+1)=0. |
---|
1893 | PRINT *, 'pb!fm=0 et f_star>0', l, lmax(ig) |
---|
1894 | ! lmax(ig)=l |
---|
1895 | END IF |
---|
1896 | END DO |
---|
1897 | END DO |
---|
1898 | DO ig = 1, ngrid |
---|
1899 | DO l = lmax(ig) + 1, klev + 1 |
---|
1900 | ! fmc(ig,l)=0. |
---|
1901 | ! detr(ig,l)=0. |
---|
1902 | ! entr(ig,l)=0. |
---|
1903 | ! zw2(ig,l)=0. |
---|
1904 | ! zqla(ig,l)=0. |
---|
1905 | END DO |
---|
1906 | END DO |
---|
1907 | |
---|
1908 | ! Calcul du detrainement lors du premier passage |
---|
1909 | ! print*,'9 OK convect8' |
---|
1910 | ! print*,'WA1 ',wa_moy |
---|
1911 | |
---|
1912 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
1913 | |
---|
1914 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
1915 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
1916 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
1917 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
1918 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
1919 | |
---|
1920 | DO l = 2, nlay |
---|
1921 | DO ig = 1, ngrid |
---|
1922 | IF (l<=lmax(ig) .AND. (test(ig)==1)) THEN |
---|
1923 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
1924 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
1925 | END IF |
---|
1926 | END DO |
---|
1927 | END DO |
---|
1928 | |
---|
1929 | DO l = 2, nlay |
---|
1930 | DO ig = 1, ngrid |
---|
1931 | IF (l<=lmax(ig) .AND. (test(ig)==1)) THEN |
---|
1932 | ! if (idetr.eq.0) then |
---|
1933 | ! cette option est finalement en dur. |
---|
1934 | IF ((l_mix*zlev(ig,l))<0.) THEN |
---|
1935 | PRINT *, 'pb l_mix*zlev<0' |
---|
1936 | END IF |
---|
1937 | ! CR: test: nouvelle def de lambda |
---|
1938 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
1939 | IF (zw2(ig,l)>1.E-10) THEN |
---|
1940 | larg_detr(ig, l) = sqrt((l_mix/zw2(ig,l))*zlev(ig,l)) |
---|
1941 | ELSE |
---|
1942 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
1943 | END IF |
---|
1944 | ! else if (idetr.eq.1) then |
---|
1945 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
1946 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
1947 | ! else if (idetr.eq.2) then |
---|
1948 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
1949 | ! s *sqrt(wa_moy(ig,l)) |
---|
1950 | ! else if (idetr.eq.4) then |
---|
1951 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
1952 | ! s *wa_moy(ig,l) |
---|
1953 | ! endif |
---|
1954 | END IF |
---|
1955 | END DO |
---|
1956 | END DO |
---|
1957 | |
---|
1958 | ! print*,'10 OK convect8' |
---|
1959 | ! print*,'WA2 ',wa_moy |
---|
1960 | ! cal1cul de la fraction de la maille concernée par l'ascendance en tenant |
---|
1961 | ! compte de l'epluchage du thermique. |
---|
1962 | |
---|
1963 | |
---|
1964 | DO l = 2, nlay |
---|
1965 | DO ig = 1, ngrid |
---|
1966 | IF (larg_cons(ig,l)>1. .AND. (test(ig)==1)) THEN |
---|
1967 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
1968 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
1969 | ! test |
---|
1970 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
1971 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
1972 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
1973 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
1974 | ELSE |
---|
1975 | ! wa_moy(ig,l)=0. |
---|
1976 | fraca(ig, l) = 0. |
---|
1977 | fracc(ig, l) = 0. |
---|
1978 | fracd(ig, l) = 1. |
---|
1979 | END IF |
---|
1980 | END DO |
---|
1981 | END DO |
---|
1982 | ! CR: calcul de fracazmix |
---|
1983 | DO ig = 1, ngrid |
---|
1984 | IF (test(ig)==1) THEN |
---|
1985 | fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
---|
1986 | (zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
---|
1987 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca( & |
---|
1988 | ig,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
---|
1989 | END IF |
---|
1990 | END DO |
---|
1991 | |
---|
1992 | DO l = 2, nlay |
---|
1993 | DO ig = 1, ngrid |
---|
1994 | IF (larg_cons(ig,l)>1. .AND. (test(ig)==1)) THEN |
---|
1995 | IF (l>lmix(ig)) THEN |
---|
1996 | ! test |
---|
1997 | IF (zmax(ig)-zmix(ig)<1.E-10) THEN |
---|
1998 | ! print*,'pb xxx' |
---|
1999 | xxx(ig, l) = (lmax(ig)+1.-l)/(lmax(ig)+1.-lmix(ig)) |
---|
2000 | ELSE |
---|
2001 | xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
---|
2002 | END IF |
---|
2003 | IF (idetr==0) THEN |
---|
2004 | fraca(ig, l) = fracazmix(ig) |
---|
2005 | ELSE IF (idetr==1) THEN |
---|
2006 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
---|
2007 | ELSE IF (idetr==2) THEN |
---|
2008 | fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
---|
2009 | ELSE |
---|
2010 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
---|
2011 | END IF |
---|
2012 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
2013 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
2014 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
2015 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
2016 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
2017 | END IF |
---|
2018 | END IF |
---|
2019 | END DO |
---|
2020 | END DO |
---|
2021 | |
---|
2022 | PRINT *, 'fin calcul fraca' |
---|
2023 | ! print*,'11 OK convect8' |
---|
2024 | ! print*,'Ea3 ',wa_moy |
---|
2025 | ! ------------------------------------------------------------------ |
---|
2026 | ! Calcul de fracd, wd |
---|
2027 | ! somme wa - wd = 0 |
---|
2028 | ! ------------------------------------------------------------------ |
---|
2029 | |
---|
2030 | |
---|
2031 | DO ig = 1, ngrid |
---|
2032 | fm(ig, 1) = 0. |
---|
2033 | fm(ig, nlay+1) = 0. |
---|
2034 | END DO |
---|
2035 | |
---|
2036 | DO l = 2, nlay |
---|
2037 | DO ig = 1, ngrid |
---|
2038 | IF (test(ig)==1) THEN |
---|
2039 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
2040 | ! CR:test |
---|
2041 | IF (alim(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) & |
---|
2042 | THEN |
---|
2043 | fm(ig, l) = fm(ig, l-1) |
---|
2044 | ! write(1,*)'ajustement fm, l',l |
---|
2045 | END IF |
---|
2046 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
2047 | ! RC |
---|
2048 | END IF |
---|
2049 | END DO |
---|
2050 | DO ig = 1, ngrid |
---|
2051 | IF (fracd(ig,l)<0.1 .AND. (test(ig)==1)) THEN |
---|
2052 | abort_message = 'fracd trop petit' |
---|
2053 | CALL abort_physic(modname, abort_message, 1) |
---|
2054 | ELSE |
---|
2055 | ! vitesse descendante "diagnostique" |
---|
2056 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
2057 | END IF |
---|
2058 | END DO |
---|
2059 | END DO |
---|
2060 | |
---|
2061 | DO l = 1, nlay + 1 |
---|
2062 | DO ig = 1, ngrid |
---|
2063 | IF (test(ig)==0) THEN |
---|
2064 | fm(ig, l) = fmc(ig, l) |
---|
2065 | END IF |
---|
2066 | END DO |
---|
2067 | END DO |
---|
2068 | |
---|
2069 | ! fin du first |
---|
2070 | DO l = 1, nlay |
---|
2071 | DO ig = 1, ngrid |
---|
2072 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
2073 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
2074 | END DO |
---|
2075 | END DO |
---|
2076 | |
---|
2077 | ! print*,'12 OK convect8' |
---|
2078 | ! print*,'WA4 ',wa_moy |
---|
2079 | ! c------------------------------------------------------------------ |
---|
2080 | ! calcul du transport vertical |
---|
2081 | ! ------------------------------------------------------------------ |
---|
2082 | |
---|
2083 | GO TO 4444 |
---|
2084 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
2085 | DO l = 2, nlay - 1 |
---|
2086 | DO ig = 1, ngrid |
---|
2087 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
2088 | ig,l+1)) THEN |
---|
2089 | PRINT *, 'WARN!!! FM>M ig=', ig, ' l=', l, ' FM=', & |
---|
2090 | fm(ig, l+1)*ptimestep, ' M=', masse(ig, l), masse(ig, l+1) |
---|
2091 | END IF |
---|
2092 | END DO |
---|
2093 | END DO |
---|
2094 | |
---|
2095 | DO l = 1, nlay |
---|
2096 | DO ig = 1, ngrid |
---|
2097 | IF ((alim(ig,l)+entr(ig,l))*ptimestep>masse(ig,l)) THEN |
---|
2098 | PRINT *, 'WARN!!! E>M ig=', ig, ' l=', l, ' E==', & |
---|
2099 | (entr(ig,l)+alim(ig,l))*ptimestep, ' M=', masse(ig, l) |
---|
2100 | END IF |
---|
2101 | END DO |
---|
2102 | END DO |
---|
2103 | |
---|
2104 | DO l = 1, nlay |
---|
2105 | DO ig = 1, ngrid |
---|
2106 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
2107 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
2108 | ! s ,' FM=',fm(ig,l) |
---|
2109 | END IF |
---|
2110 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
2111 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
2112 | ! s ,' M=',masse(ig,l) |
---|
2113 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
2114 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
2115 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
2116 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
2117 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
2118 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
2119 | END IF |
---|
2120 | IF (.NOT. alim(ig,l)>=0. .OR. .NOT. alim(ig,l)<=10.) THEN |
---|
2121 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
2122 | ! s ,' E=',entr(ig,l) |
---|
2123 | END IF |
---|
2124 | END DO |
---|
2125 | END DO |
---|
2126 | |
---|
2127 | 4444 CONTINUE |
---|
2128 | |
---|
2129 | ! CR:redefinition du entr |
---|
2130 | ! CR:test:on ne change pas la def du entr mais la def du fm |
---|
2131 | DO l = 1, nlay |
---|
2132 | DO ig = 1, ngrid |
---|
2133 | IF (test(ig)==1) THEN |
---|
2134 | detr(ig, l) = fm(ig, l) + alim(ig, l) - fm(ig, l+1) |
---|
2135 | IF (detr(ig,l)<0.) THEN |
---|
2136 | ! entr(ig,l)=entr(ig,l)-detr(ig,l) |
---|
2137 | fm(ig, l+1) = fm(ig, l) + alim(ig, l) |
---|
2138 | detr(ig, l) = 0. |
---|
2139 | ! write(11,*)'l,ig,entr',l,ig,entr(ig,l) |
---|
2140 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
2141 | END IF |
---|
2142 | END IF |
---|
2143 | END DO |
---|
2144 | END DO |
---|
2145 | ! RC |
---|
2146 | |
---|
2147 | IF (w2di==1) THEN |
---|
2148 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
2149 | entr0 = entr0 + ptimestep*(alim+entr-entr0)/tho |
---|
2150 | ELSE |
---|
2151 | fm0 = fm |
---|
2152 | entr0 = alim + entr |
---|
2153 | detr0 = detr |
---|
2154 | alim0 = alim |
---|
2155 | ! zoa=zqta |
---|
2156 | ! entr0=alim |
---|
2157 | END IF |
---|
2158 | |
---|
2159 | IF (1==1) THEN |
---|
2160 | ! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
2161 | ! . ,zh,zdhadj,zha) |
---|
2162 | ! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
2163 | ! . ,zo,pdoadj,zoa) |
---|
2164 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zthl, & |
---|
2165 | zdthladj, zta) |
---|
2166 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, po, pdoadj, & |
---|
2167 | zoa) |
---|
2168 | ELSE |
---|
2169 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
2170 | zdhadj, zha) |
---|
2171 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
2172 | pdoadj, zoa) |
---|
2173 | END IF |
---|
2174 | |
---|
2175 | IF (1==0) THEN |
---|
2176 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
2177 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
2178 | ELSE |
---|
2179 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
2180 | zua) |
---|
2181 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
2182 | zva) |
---|
2183 | END IF |
---|
2184 | |
---|
2185 | ! Calcul des moments |
---|
2186 | ! do l=1,nlay |
---|
2187 | ! do ig=1,ngrid |
---|
2188 | ! zf=0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
2189 | ! zf2=zf/(1.-zf) |
---|
2190 | ! thetath2(ig,l)=zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
2191 | ! wth2(ig,l)=zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
2192 | ! enddo |
---|
2193 | ! enddo |
---|
2194 | |
---|
2195 | |
---|
2196 | |
---|
2197 | |
---|
2198 | |
---|
2199 | |
---|
2200 | ! print*,'13 OK convect8' |
---|
2201 | ! print*,'WA5 ',wa_moy |
---|
2202 | DO l = 1, nlay |
---|
2203 | DO ig = 1, ngrid |
---|
2204 | ! pdtadj(ig,l)=zdhadj(ig,l)*zpspsk(ig,l) |
---|
2205 | pdtadj(ig, l) = zdthladj(ig, l)*zpspsk(ig, l) |
---|
2206 | END DO |
---|
2207 | END DO |
---|
2208 | |
---|
2209 | |
---|
2210 | ! do l=1,nlay |
---|
2211 | ! do ig=1,ngrid |
---|
2212 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
2213 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
2214 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
2215 | ! endif |
---|
2216 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
2217 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
2218 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
2219 | ! endif |
---|
2220 | ! enddo |
---|
2221 | ! enddo |
---|
2222 | |
---|
2223 | ! print*,'14 OK convect8' |
---|
2224 | ! ------------------------------------------------------------------ |
---|
2225 | ! Calculs pour les sorties |
---|
2226 | ! ------------------------------------------------------------------ |
---|
2227 | ! calcul de fraca pour les sorties |
---|
2228 | DO l = 2, klev |
---|
2229 | DO ig = 1, klon |
---|
2230 | IF (zw2(ig,l)>1.E-10) THEN |
---|
2231 | fraca(ig, l) = fm(ig, l)/(rhobarz(ig,l)*zw2(ig,l)) |
---|
2232 | ELSE |
---|
2233 | fraca(ig, l) = 0. |
---|
2234 | END IF |
---|
2235 | END DO |
---|
2236 | END DO |
---|
2237 | IF (sorties) THEN |
---|
2238 | DO l = 1, nlay |
---|
2239 | DO ig = 1, ngrid |
---|
2240 | zla(ig, l) = (1.-fracd(ig,l))*zmax(ig) |
---|
2241 | zld(ig, l) = fracd(ig, l)*zmax(ig) |
---|
2242 | IF (1.-fracd(ig,l)>1.E-10) zwa(ig, l) = wd(ig, l)*fracd(ig, l)/ & |
---|
2243 | (1.-fracd(ig,l)) |
---|
2244 | END DO |
---|
2245 | END DO |
---|
2246 | ! CR calcul du niveau de condensation |
---|
2247 | ! initialisation |
---|
2248 | DO ig = 1, ngrid |
---|
2249 | nivcon(ig) = 0. |
---|
2250 | zcon(ig) = 0. |
---|
2251 | END DO |
---|
2252 | DO k = nlay, 1, -1 |
---|
2253 | DO ig = 1, ngrid |
---|
2254 | IF (zqla(ig,k)>1E-10) THEN |
---|
2255 | nivcon(ig) = k |
---|
2256 | zcon(ig) = zlev(ig, k) |
---|
2257 | END IF |
---|
2258 | ! if (zcon(ig).gt.1.e-10) then |
---|
2259 | ! nuage=.true. |
---|
2260 | ! else |
---|
2261 | ! nuage=.false. |
---|
2262 | ! endif |
---|
2263 | END DO |
---|
2264 | END DO |
---|
2265 | |
---|
2266 | DO l = 1, nlay |
---|
2267 | DO ig = 1, ngrid |
---|
2268 | zf = fraca(ig, l) |
---|
2269 | zf2 = zf/(1.-zf) |
---|
2270 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l)/zpspsk(ig,l))**2 |
---|
2271 | wth2(ig, l) = zf2*(zw2(ig,l))**2 |
---|
2272 | ! print*,'wth2=',wth2(ig,l) |
---|
2273 | wth3(ig, l) = zf2*(1-2.*fraca(ig,l))/(1-fraca(ig,l))*zw2(ig, l)* & |
---|
2274 | zw2(ig, l)*zw2(ig, l) |
---|
2275 | q2(ig, l) = zf2*(zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
2276 | ! test: on calcul q2/po=ratqsc |
---|
2277 | ! if (nuage) then |
---|
2278 | ratqscth(ig, l) = sqrt(q2(ig,l))/(po(ig,l)*1000.) |
---|
2279 | ! else |
---|
2280 | ! ratqscth(ig,l)=0. |
---|
2281 | ! endif |
---|
2282 | END DO |
---|
2283 | END DO |
---|
2284 | ! calcul du ratqscdiff |
---|
2285 | sum = 0. |
---|
2286 | sumdiff = 0. |
---|
2287 | ratqsdiff(:, :) = 0. |
---|
2288 | DO ig = 1, ngrid |
---|
2289 | DO l = 1, lentr(ig) |
---|
2290 | sum = sum + alim_star(ig, l)*zqta(ig, l)*1000. |
---|
2291 | END DO |
---|
2292 | END DO |
---|
2293 | DO ig = 1, ngrid |
---|
2294 | DO l = 1, lentr(ig) |
---|
2295 | zf = fraca(ig, l) |
---|
2296 | zf2 = zf/(1.-zf) |
---|
2297 | sumdiff = sumdiff + alim_star(ig, l)*(zqta(ig,l)*1000.-sum)**2 |
---|
2298 | ! ratqsdiff=ratqsdiff+alim_star(ig,l)* |
---|
2299 | ! s (zqta(ig,l)*1000.-po(ig,l)*1000.)**2 |
---|
2300 | END DO |
---|
2301 | END DO |
---|
2302 | DO l = 1, klev |
---|
2303 | DO ig = 1, ngrid |
---|
2304 | ratqsdiff(ig, l) = sqrt(sumdiff)/(po(ig,l)*1000.) |
---|
2305 | ! write(11,*)'ratqsdiff=',ratqsdiff(ig,l) |
---|
2306 | END DO |
---|
2307 | END DO |
---|
2308 | |
---|
2309 | END IF |
---|
2310 | |
---|
2311 | ! print*,'19 OK convect8' |
---|
2312 | RETURN |
---|
2313 | END SUBROUTINE thermcell_cld |
---|
2314 | |
---|
2315 | SUBROUTINE thermcell_eau(ngrid, nlay, ptimestep, pplay, pplev, pphi, pu, pv, & |
---|
2316 | pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0 & ! s |
---|
2317 | ! ,pu_therm,pv_therm |
---|
2318 | , r_aspect, l_mix, w2di, tho) |
---|
2319 | |
---|
2320 | USE dimphy |
---|
2321 | IMPLICIT NONE |
---|
2322 | |
---|
2323 | ! ======================================================================= |
---|
2324 | |
---|
2325 | ! Calcul du transport verticale dans la couche limite en presence |
---|
2326 | ! de "thermiques" explicitement representes |
---|
2327 | |
---|
2328 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
2329 | |
---|
2330 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
2331 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
2332 | ! mélange |
---|
2333 | |
---|
2334 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
2335 | ! en compte: |
---|
2336 | ! 1. un flux de masse montant |
---|
2337 | ! 2. un flux de masse descendant |
---|
2338 | ! 3. un entrainement |
---|
2339 | ! 4. un detrainement |
---|
2340 | |
---|
2341 | ! ======================================================================= |
---|
2342 | |
---|
2343 | ! ----------------------------------------------------------------------- |
---|
2344 | ! declarations: |
---|
2345 | ! ------------- |
---|
2346 | |
---|
2347 | include "dimensions.h" |
---|
2348 | ! ccc#include "dimphy.h" |
---|
2349 | include "YOMCST.h" |
---|
2350 | include "YOETHF.h" |
---|
2351 | include "FCTTRE.h" |
---|
2352 | |
---|
2353 | ! arguments: |
---|
2354 | ! ---------- |
---|
2355 | |
---|
2356 | INTEGER ngrid, nlay, w2di |
---|
2357 | REAL tho |
---|
2358 | REAL ptimestep, l_mix, r_aspect |
---|
2359 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
2360 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
2361 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
2362 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
2363 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
2364 | REAL pphi(ngrid, nlay) |
---|
2365 | |
---|
2366 | INTEGER idetr |
---|
2367 | SAVE idetr |
---|
2368 | DATA idetr/3/ |
---|
2369 | !$OMP THREADPRIVATE(idetr) |
---|
2370 | |
---|
2371 | ! local: |
---|
2372 | ! ------ |
---|
2373 | |
---|
2374 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
2375 | REAL zsortie1d(klon) |
---|
2376 | ! CR: on remplace lmax(klon,klev+1) |
---|
2377 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
2378 | REAL linter(klon) |
---|
2379 | REAL zmix(klon), fracazmix(klon) |
---|
2380 | ! RC |
---|
2381 | REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
---|
2382 | |
---|
2383 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
2384 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
2385 | REAL zthl(klon, klev), zdthladj(klon, klev) |
---|
2386 | REAL ztv(klon, klev) |
---|
2387 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
2388 | REAL zl(klon, klev) |
---|
2389 | REAL wh(klon, klev+1) |
---|
2390 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
2391 | REAL zla(klon, klev+1) |
---|
2392 | REAL zwa(klon, klev+1) |
---|
2393 | REAL zld(klon, klev+1) |
---|
2394 | REAL zwd(klon, klev+1) |
---|
2395 | REAL zsortie(klon, klev) |
---|
2396 | REAL zva(klon, klev) |
---|
2397 | REAL zua(klon, klev) |
---|
2398 | REAL zoa(klon, klev) |
---|
2399 | |
---|
2400 | REAL zta(klon, klev) |
---|
2401 | REAL zha(klon, klev) |
---|
2402 | REAL wa_moy(klon, klev+1) |
---|
2403 | REAL fraca(klon, klev+1) |
---|
2404 | REAL fracc(klon, klev+1) |
---|
2405 | REAL zf, zf2 |
---|
2406 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
2407 | ! common/comtherm/thetath2,wth2 |
---|
2408 | |
---|
2409 | REAL count_time |
---|
2410 | INTEGER ialt |
---|
2411 | |
---|
2412 | LOGICAL sorties |
---|
2413 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
2414 | REAL zpspsk(klon, klev) |
---|
2415 | |
---|
2416 | ! real wmax(klon,klev),wmaxa(klon) |
---|
2417 | REAL wmax(klon), wmaxa(klon) |
---|
2418 | REAL wa(klon, klev, klev+1) |
---|
2419 | REAL wd(klon, klev+1) |
---|
2420 | REAL larg_part(klon, klev, klev+1) |
---|
2421 | REAL fracd(klon, klev+1) |
---|
2422 | REAL xxx(klon, klev+1) |
---|
2423 | REAL larg_cons(klon, klev+1) |
---|
2424 | REAL larg_detr(klon, klev+1) |
---|
2425 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
2426 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
2427 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
2428 | REAL fmc(klon, klev+1) |
---|
2429 | |
---|
2430 | REAL zcor, zdelta, zcvm5, qlbef |
---|
2431 | REAL tbef(klon), qsatbef(klon) |
---|
2432 | REAL dqsat_dt, dt, num, denom |
---|
2433 | REAL reps, rlvcp, ddt0 |
---|
2434 | REAL ztla(klon, klev), zqla(klon, klev), zqta(klon, klev) |
---|
2435 | |
---|
2436 | PARAMETER (ddt0=.01) |
---|
2437 | |
---|
2438 | ! CR:nouvelles variables |
---|
2439 | REAL f_star(klon, klev+1), entr_star(klon, klev) |
---|
2440 | REAL entr_star_tot(klon), entr_star2(klon) |
---|
2441 | REAL f(klon), f0(klon) |
---|
2442 | REAL zlevinter(klon) |
---|
2443 | LOGICAL first |
---|
2444 | DATA first/.FALSE./ |
---|
2445 | SAVE first |
---|
2446 | !$OMP THREADPRIVATE(first) |
---|
2447 | |
---|
2448 | ! RC |
---|
2449 | |
---|
2450 | CHARACTER *2 str2 |
---|
2451 | CHARACTER *10 str10 |
---|
2452 | |
---|
2453 | CHARACTER (LEN=20) :: modname = 'thermcell_eau' |
---|
2454 | CHARACTER (LEN=80) :: abort_message |
---|
2455 | |
---|
2456 | LOGICAL vtest(klon), down |
---|
2457 | LOGICAL zsat(klon) |
---|
2458 | |
---|
2459 | EXTERNAL scopy |
---|
2460 | |
---|
2461 | INTEGER ncorrec, ll |
---|
2462 | SAVE ncorrec |
---|
2463 | DATA ncorrec/0/ |
---|
2464 | !$OMP THREADPRIVATE(ncorrec) |
---|
2465 | |
---|
2466 | |
---|
2467 | |
---|
2468 | ! ----------------------------------------------------------------------- |
---|
2469 | ! initialisation: |
---|
2470 | ! --------------- |
---|
2471 | |
---|
2472 | sorties = .TRUE. |
---|
2473 | IF (ngrid/=klon) THEN |
---|
2474 | PRINT * |
---|
2475 | PRINT *, 'STOP dans convadj' |
---|
2476 | PRINT *, 'ngrid =', ngrid |
---|
2477 | PRINT *, 'klon =', klon |
---|
2478 | END IF |
---|
2479 | |
---|
2480 | ! Initialisation |
---|
2481 | rlvcp = rlvtt/rcpd |
---|
2482 | reps = rd/rv |
---|
2483 | |
---|
2484 | ! ----------------------------------------------------------------------- |
---|
2485 | ! AM Calcul de T,q,ql a partir de Tl et qT |
---|
2486 | ! --------------------------------------------------- |
---|
2487 | |
---|
2488 | ! Pr Tprec=Tl calcul de qsat |
---|
2489 | ! Si qsat>qT T=Tl, q=qT |
---|
2490 | ! Sinon DDT=(-Tprec+Tl+RLVCP (qT-qsat(T')) / (1+RLVCP dqsat/dt) |
---|
2491 | ! On cherche DDT < DDT0 |
---|
2492 | |
---|
2493 | ! defaut |
---|
2494 | DO ll = 1, nlay |
---|
2495 | DO ig = 1, ngrid |
---|
2496 | zo(ig, ll) = po(ig, ll) |
---|
2497 | zl(ig, ll) = 0. |
---|
2498 | zh(ig, ll) = pt(ig, ll) |
---|
2499 | END DO |
---|
2500 | END DO |
---|
2501 | DO ig = 1, ngrid |
---|
2502 | zsat(ig) = .FALSE. |
---|
2503 | END DO |
---|
2504 | |
---|
2505 | |
---|
2506 | DO ll = 1, nlay |
---|
2507 | ! les points insatures sont definitifs |
---|
2508 | DO ig = 1, ngrid |
---|
2509 | tbef(ig) = pt(ig, ll) |
---|
2510 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
2511 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
---|
2512 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
2513 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
2514 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
2515 | zsat(ig) = (max(0.,po(ig,ll)-qsatbef(ig))>0.00001) |
---|
2516 | END DO |
---|
2517 | |
---|
2518 | DO ig = 1, ngrid |
---|
2519 | IF (zsat(ig)) THEN |
---|
2520 | qlbef = max(0., po(ig,ll)-qsatbef(ig)) |
---|
2521 | ! si sature: ql est surestime, d'ou la sous-relax |
---|
2522 | dt = 0.5*rlvcp*qlbef |
---|
2523 | ! on pourra enchainer 2 ou 3 calculs sans Do while |
---|
2524 | DO WHILE (dt>ddt0) |
---|
2525 | ! il faut verifier si c,a conserve quand on repasse en insature ... |
---|
2526 | tbef(ig) = tbef(ig) + dt |
---|
2527 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
2528 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, ll) |
---|
2529 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
2530 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
2531 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
2532 | ! on veut le signe de qlbef |
---|
2533 | qlbef = po(ig, ll) - qsatbef(ig) |
---|
2534 | ! dqsat_dT |
---|
2535 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
2536 | zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
---|
2537 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
2538 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
2539 | num = -tbef(ig) + pt(ig, ll) + rlvcp*qlbef |
---|
2540 | denom = 1. + rlvcp*dqsat_dt |
---|
2541 | dt = num/denom |
---|
2542 | END DO |
---|
2543 | ! on ecrit de maniere conservative (sat ou non) |
---|
2544 | zl(ig, ll) = max(0., qlbef) |
---|
2545 | ! T = Tl +Lv/Cp ql |
---|
2546 | zh(ig, ll) = pt(ig, ll) + rlvcp*zl(ig, ll) |
---|
2547 | zo(ig, ll) = po(ig, ll) - zl(ig, ll) |
---|
2548 | END IF |
---|
2549 | END DO |
---|
2550 | END DO |
---|
2551 | ! AM fin |
---|
2552 | |
---|
2553 | ! ----------------------------------------------------------------------- |
---|
2554 | ! incrementation eventuelle de tendances precedentes: |
---|
2555 | ! --------------------------------------------------- |
---|
2556 | |
---|
2557 | ! print*,'0 OK convect8' |
---|
2558 | |
---|
2559 | DO l = 1, nlay |
---|
2560 | DO ig = 1, ngrid |
---|
2561 | zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
---|
2562 | ! zh(ig,l)=pt(ig,l)/zpspsk(ig,l) |
---|
2563 | zu(ig, l) = pu(ig, l) |
---|
2564 | zv(ig, l) = pv(ig, l) |
---|
2565 | ! zo(ig,l)=po(ig,l) |
---|
2566 | ! ztv(ig,l)=zh(ig,l)*(1.+0.61*zo(ig,l)) |
---|
2567 | ! AM attention zh est maintenant le profil de T et plus le profil de |
---|
2568 | ! theta ! |
---|
2569 | |
---|
2570 | ! T-> Theta |
---|
2571 | ztv(ig, l) = zh(ig, l)/zpspsk(ig, l) |
---|
2572 | ! AM Theta_v |
---|
2573 | ztv(ig, l) = ztv(ig, l)*(1.+retv*(zo(ig,l))-zl(ig,l)) |
---|
2574 | ! AM Thetal |
---|
2575 | zthl(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
2576 | |
---|
2577 | END DO |
---|
2578 | END DO |
---|
2579 | |
---|
2580 | ! print*,'1 OK convect8' |
---|
2581 | ! -------------------- |
---|
2582 | |
---|
2583 | |
---|
2584 | ! + + + + + + + + + + + |
---|
2585 | |
---|
2586 | |
---|
2587 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
2588 | ! wh,wt,wo ... |
---|
2589 | |
---|
2590 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
2591 | |
---|
2592 | |
---|
2593 | ! -------------------- zlev(1) |
---|
2594 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
2595 | |
---|
2596 | |
---|
2597 | |
---|
2598 | ! ----------------------------------------------------------------------- |
---|
2599 | ! Calcul des altitudes des couches |
---|
2600 | ! ----------------------------------------------------------------------- |
---|
2601 | |
---|
2602 | DO l = 2, nlay |
---|
2603 | DO ig = 1, ngrid |
---|
2604 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
2605 | END DO |
---|
2606 | END DO |
---|
2607 | DO ig = 1, ngrid |
---|
2608 | zlev(ig, 1) = 0. |
---|
2609 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
2610 | END DO |
---|
2611 | DO l = 1, nlay |
---|
2612 | DO ig = 1, ngrid |
---|
2613 | zlay(ig, l) = pphi(ig, l)/rg |
---|
2614 | END DO |
---|
2615 | END DO |
---|
2616 | |
---|
2617 | ! print*,'2 OK convect8' |
---|
2618 | ! ----------------------------------------------------------------------- |
---|
2619 | ! Calcul des densites |
---|
2620 | ! ----------------------------------------------------------------------- |
---|
2621 | |
---|
2622 | DO l = 1, nlay |
---|
2623 | DO ig = 1, ngrid |
---|
2624 | ! rho(ig,l)=pplay(ig,l)/(zpspsk(ig,l)*RD*zh(ig,l)) |
---|
2625 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*ztv(ig,l)) |
---|
2626 | END DO |
---|
2627 | END DO |
---|
2628 | |
---|
2629 | DO l = 2, nlay |
---|
2630 | DO ig = 1, ngrid |
---|
2631 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
2632 | END DO |
---|
2633 | END DO |
---|
2634 | |
---|
2635 | DO k = 1, nlay |
---|
2636 | DO l = 1, nlay + 1 |
---|
2637 | DO ig = 1, ngrid |
---|
2638 | wa(ig, k, l) = 0. |
---|
2639 | END DO |
---|
2640 | END DO |
---|
2641 | END DO |
---|
2642 | |
---|
2643 | ! print*,'3 OK convect8' |
---|
2644 | ! ------------------------------------------------------------------ |
---|
2645 | ! Calcul de w2, quarre de w a partir de la cape |
---|
2646 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
2647 | |
---|
2648 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
2649 | ! w2 est stoke dans wa |
---|
2650 | |
---|
2651 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
2652 | ! independants par couches que pour calculer l'entrainement |
---|
2653 | ! a la base et la hauteur max de l'ascendance. |
---|
2654 | |
---|
2655 | ! Indicages: |
---|
2656 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
2657 | ! une vitesse wa(k,l). |
---|
2658 | |
---|
2659 | ! -------------------- |
---|
2660 | |
---|
2661 | ! + + + + + + + + + + |
---|
2662 | |
---|
2663 | ! wa(k,l) ---- -------------------- l |
---|
2664 | ! /\ |
---|
2665 | ! /||\ + + + + + + + + + + |
---|
2666 | ! || |
---|
2667 | ! || -------------------- |
---|
2668 | ! || |
---|
2669 | ! || + + + + + + + + + + |
---|
2670 | ! || |
---|
2671 | ! || -------------------- |
---|
2672 | ! ||__ |
---|
2673 | ! |___ + + + + + + + + + + k |
---|
2674 | |
---|
2675 | ! -------------------- |
---|
2676 | |
---|
2677 | |
---|
2678 | |
---|
2679 | ! ------------------------------------------------------------------ |
---|
2680 | |
---|
2681 | ! CR: ponderation entrainement des couches instables |
---|
2682 | ! def des entr_star tels que entr=f*entr_star |
---|
2683 | DO l = 1, klev |
---|
2684 | DO ig = 1, ngrid |
---|
2685 | entr_star(ig, l) = 0. |
---|
2686 | END DO |
---|
2687 | END DO |
---|
2688 | ! determination de la longueur de la couche d entrainement |
---|
2689 | DO ig = 1, ngrid |
---|
2690 | lentr(ig) = 1 |
---|
2691 | END DO |
---|
2692 | |
---|
2693 | ! on ne considere que les premieres couches instables |
---|
2694 | DO k = nlay - 1, 1, -1 |
---|
2695 | DO ig = 1, ngrid |
---|
2696 | IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<ztv(ig,k+2)) THEN |
---|
2697 | lentr(ig) = k |
---|
2698 | END IF |
---|
2699 | END DO |
---|
2700 | END DO |
---|
2701 | |
---|
2702 | ! determination du lmin: couche d ou provient le thermique |
---|
2703 | DO ig = 1, ngrid |
---|
2704 | lmin(ig) = 1 |
---|
2705 | END DO |
---|
2706 | DO ig = 1, ngrid |
---|
2707 | DO l = nlay, 2, -1 |
---|
2708 | IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
---|
2709 | lmin(ig) = l - 1 |
---|
2710 | END IF |
---|
2711 | END DO |
---|
2712 | END DO |
---|
2713 | |
---|
2714 | ! definition de l'entrainement des couches |
---|
2715 | DO l = 1, klev - 1 |
---|
2716 | DO ig = 1, ngrid |
---|
2717 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<=lentr(ig)) THEN |
---|
2718 | entr_star(ig, l) = (ztv(ig,l)-ztv(ig,l+1))*(zlev(ig,l+1)-zlev(ig,l)) |
---|
2719 | END IF |
---|
2720 | END DO |
---|
2721 | END DO |
---|
2722 | ! pas de thermique si couche 1 stable |
---|
2723 | DO ig = 1, ngrid |
---|
2724 | IF (lmin(ig)>1) THEN |
---|
2725 | DO l = 1, klev |
---|
2726 | entr_star(ig, l) = 0. |
---|
2727 | END DO |
---|
2728 | END IF |
---|
2729 | END DO |
---|
2730 | ! calcul de l entrainement total |
---|
2731 | DO ig = 1, ngrid |
---|
2732 | entr_star_tot(ig) = 0. |
---|
2733 | END DO |
---|
2734 | DO ig = 1, ngrid |
---|
2735 | DO k = 1, klev |
---|
2736 | entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
---|
2737 | END DO |
---|
2738 | END DO |
---|
2739 | |
---|
2740 | DO k = 1, klev |
---|
2741 | DO ig = 1, ngrid |
---|
2742 | ztva(ig, k) = ztv(ig, k) |
---|
2743 | END DO |
---|
2744 | END DO |
---|
2745 | ! RC |
---|
2746 | ! AM:initialisations |
---|
2747 | DO k = 1, nlay |
---|
2748 | DO ig = 1, ngrid |
---|
2749 | ztva(ig, k) = ztv(ig, k) |
---|
2750 | ztla(ig, k) = zthl(ig, k) |
---|
2751 | zqla(ig, k) = 0. |
---|
2752 | zqta(ig, k) = po(ig, k) |
---|
2753 | zsat(ig) = .FALSE. |
---|
2754 | END DO |
---|
2755 | END DO |
---|
2756 | |
---|
2757 | ! print*,'7 OK convect8' |
---|
2758 | DO k = 1, klev + 1 |
---|
2759 | DO ig = 1, ngrid |
---|
2760 | zw2(ig, k) = 0. |
---|
2761 | fmc(ig, k) = 0. |
---|
2762 | ! CR |
---|
2763 | f_star(ig, k) = 0. |
---|
2764 | ! RC |
---|
2765 | larg_cons(ig, k) = 0. |
---|
2766 | larg_detr(ig, k) = 0. |
---|
2767 | wa_moy(ig, k) = 0. |
---|
2768 | END DO |
---|
2769 | END DO |
---|
2770 | |
---|
2771 | ! print*,'8 OK convect8' |
---|
2772 | DO ig = 1, ngrid |
---|
2773 | linter(ig) = 1. |
---|
2774 | lmaxa(ig) = 1 |
---|
2775 | lmix(ig) = 1 |
---|
2776 | wmaxa(ig) = 0. |
---|
2777 | END DO |
---|
2778 | |
---|
2779 | ! CR: |
---|
2780 | DO l = 1, nlay - 2 |
---|
2781 | DO ig = 1, ngrid |
---|
2782 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. entr_star(ig,l)>1.E-10 .AND. & |
---|
2783 | zw2(ig,l)<1E-10) THEN |
---|
2784 | ! AM |
---|
2785 | ztla(ig, l) = zthl(ig, l) |
---|
2786 | zqta(ig, l) = po(ig, l) |
---|
2787 | zqla(ig, l) = zl(ig, l) |
---|
2788 | ! AM |
---|
2789 | f_star(ig, l+1) = entr_star(ig, l) |
---|
2790 | ! test:calcul de dteta |
---|
2791 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
2792 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
2793 | larg_detr(ig, l) = 0. |
---|
2794 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+entr_star(ig, & |
---|
2795 | l)>1.E-10)) THEN |
---|
2796 | f_star(ig, l+1) = f_star(ig, l) + entr_star(ig, l) |
---|
2797 | |
---|
2798 | ! AM on melange Tl et qt du thermique |
---|
2799 | ztla(ig, l) = (f_star(ig,l)*ztla(ig,l-1)+entr_star(ig,l)*zthl(ig,l))/ & |
---|
2800 | f_star(ig, l+1) |
---|
2801 | zqta(ig, l) = (f_star(ig,l)*zqta(ig,l-1)+entr_star(ig,l)*po(ig,l))/ & |
---|
2802 | f_star(ig, l+1) |
---|
2803 | |
---|
2804 | ! ztva(ig,l)=(f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l) |
---|
2805 | ! s *ztv(ig,l))/f_star(ig,l+1) |
---|
2806 | |
---|
2807 | ! AM on en deduit thetav et ql du thermique |
---|
2808 | tbef(ig) = ztla(ig, l)*zpspsk(ig, l) |
---|
2809 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
2810 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
---|
2811 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
2812 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
2813 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
2814 | zsat(ig) = (max(0.,zqta(ig,l)-qsatbef(ig))>0.00001) |
---|
2815 | END IF |
---|
2816 | END DO |
---|
2817 | DO ig = 1, ngrid |
---|
2818 | IF (zsat(ig)) THEN |
---|
2819 | qlbef = max(0., zqta(ig,l)-qsatbef(ig)) |
---|
2820 | dt = 0.5*rlvcp*qlbef |
---|
2821 | DO WHILE (dt>ddt0) |
---|
2822 | tbef(ig) = tbef(ig) + dt |
---|
2823 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
2824 | qsatbef(ig) = r2es*foeew(tbef(ig), zdelta)/pplev(ig, l) |
---|
2825 | qsatbef(ig) = min(0.5, qsatbef(ig)) |
---|
2826 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
2827 | qsatbef(ig) = qsatbef(ig)*zcor |
---|
2828 | qlbef = zqta(ig, l) - qsatbef(ig) |
---|
2829 | |
---|
2830 | zdelta = max(0., sign(1.,rtt-tbef(ig))) |
---|
2831 | zcvm5 = r5les*(1.-zdelta) + r5ies*zdelta |
---|
2832 | zcor = 1./(1.-retv*qsatbef(ig)) |
---|
2833 | dqsat_dt = foede(tbef(ig), zdelta, zcvm5, qsatbef(ig), zcor) |
---|
2834 | num = -tbef(ig) + ztla(ig, l)*zpspsk(ig, l) + rlvcp*qlbef |
---|
2835 | denom = 1. + rlvcp*dqsat_dt |
---|
2836 | dt = num/denom |
---|
2837 | END DO |
---|
2838 | zqla(ig, l) = max(0., zqta(ig,l)-qsatbef(ig)) |
---|
2839 | END IF |
---|
2840 | ! on ecrit de maniere conservative (sat ou non) |
---|
2841 | ! T = Tl +Lv/Cp ql |
---|
2842 | ztva(ig, l) = ztla(ig, l)*zpspsk(ig, l) + rlvcp*zqla(ig, l) |
---|
2843 | ztva(ig, l) = ztva(ig, l)/zpspsk(ig, l) |
---|
2844 | ztva(ig, l) = ztva(ig, l)*(1.+retv*(zqta(ig,l)-zqla(ig,l))-zqla(ig,l)) |
---|
2845 | |
---|
2846 | END DO |
---|
2847 | DO ig = 1, ngrid |
---|
2848 | IF (zw2(ig,l)>=1.E-10 .AND. f_star(ig,l)+entr_star(ig,l)>1.E-10) THEN |
---|
2849 | ! mise a jour de la vitesse ascendante (l'air entraine de la couche |
---|
2850 | ! consideree commence avec une vitesse nulle). |
---|
2851 | |
---|
2852 | zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/f_star(ig,l+1))**2 + & |
---|
2853 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
2854 | END IF |
---|
2855 | ! determination de zmax continu par interpolation lineaire |
---|
2856 | IF (zw2(ig,l+1)<0.) THEN |
---|
2857 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
2858 | ig,l)) |
---|
2859 | zw2(ig, l+1) = 0. |
---|
2860 | lmaxa(ig) = l |
---|
2861 | ELSE |
---|
2862 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
2863 | END IF |
---|
2864 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
2865 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
2866 | lmix(ig) = l + 1 |
---|
2867 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
2868 | END IF |
---|
2869 | END DO |
---|
2870 | END DO |
---|
2871 | |
---|
2872 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
2873 | DO ig = 1, ngrid |
---|
2874 | lmax(ig) = lentr(ig) |
---|
2875 | END DO |
---|
2876 | DO ig = 1, ngrid |
---|
2877 | DO l = nlay, lentr(ig) + 1, -1 |
---|
2878 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
2879 | lmax(ig) = l - 1 |
---|
2880 | END IF |
---|
2881 | END DO |
---|
2882 | END DO |
---|
2883 | ! pas de thermique si couche 1 stable |
---|
2884 | DO ig = 1, ngrid |
---|
2885 | IF (lmin(ig)>1) THEN |
---|
2886 | lmax(ig) = 1 |
---|
2887 | lmin(ig) = 1 |
---|
2888 | END IF |
---|
2889 | END DO |
---|
2890 | |
---|
2891 | ! Determination de zw2 max |
---|
2892 | DO ig = 1, ngrid |
---|
2893 | wmax(ig) = 0. |
---|
2894 | END DO |
---|
2895 | |
---|
2896 | DO l = 1, nlay |
---|
2897 | DO ig = 1, ngrid |
---|
2898 | IF (l<=lmax(ig)) THEN |
---|
2899 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
2900 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
2901 | ELSE |
---|
2902 | zw2(ig, l) = 0. |
---|
2903 | END IF |
---|
2904 | END DO |
---|
2905 | END DO |
---|
2906 | |
---|
2907 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
2908 | DO ig = 1, ngrid |
---|
2909 | zmax(ig) = 500. |
---|
2910 | zlevinter(ig) = zlev(ig, 1) |
---|
2911 | END DO |
---|
2912 | DO ig = 1, ngrid |
---|
2913 | ! calcul de zlevinter |
---|
2914 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
2915 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
2916 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
2917 | END DO |
---|
2918 | |
---|
2919 | ! Fermeture,determination de f |
---|
2920 | DO ig = 1, ngrid |
---|
2921 | entr_star2(ig) = 0. |
---|
2922 | END DO |
---|
2923 | DO ig = 1, ngrid |
---|
2924 | IF (entr_star_tot(ig)<1.E-10) THEN |
---|
2925 | f(ig) = 0. |
---|
2926 | ELSE |
---|
2927 | DO k = lmin(ig), lentr(ig) |
---|
2928 | entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2/(rho(ig,k)*( & |
---|
2929 | zlev(ig,k+1)-zlev(ig,k))) |
---|
2930 | END DO |
---|
2931 | ! Nouvelle fermeture |
---|
2932 | f(ig) = wmax(ig)/(zmax(ig)*r_aspect*entr_star2(ig))*entr_star_tot(ig) |
---|
2933 | ! test |
---|
2934 | IF (first) THEN |
---|
2935 | f(ig) = f(ig) + (f0(ig)-f(ig))*exp(-ptimestep/zmax(ig)*wmax(ig)) |
---|
2936 | END IF |
---|
2937 | END IF |
---|
2938 | f0(ig) = f(ig) |
---|
2939 | first = .TRUE. |
---|
2940 | END DO |
---|
2941 | |
---|
2942 | ! Calcul de l'entrainement |
---|
2943 | DO k = 1, klev |
---|
2944 | DO ig = 1, ngrid |
---|
2945 | entr(ig, k) = f(ig)*entr_star(ig, k) |
---|
2946 | END DO |
---|
2947 | END DO |
---|
2948 | ! Calcul des flux |
---|
2949 | DO ig = 1, ngrid |
---|
2950 | DO l = 1, lmax(ig) - 1 |
---|
2951 | fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
---|
2952 | END DO |
---|
2953 | END DO |
---|
2954 | |
---|
2955 | ! RC |
---|
2956 | |
---|
2957 | |
---|
2958 | ! print*,'9 OK convect8' |
---|
2959 | ! print*,'WA1 ',wa_moy |
---|
2960 | |
---|
2961 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
2962 | |
---|
2963 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
2964 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
2965 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
2966 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
2967 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
2968 | |
---|
2969 | DO l = 2, nlay |
---|
2970 | DO ig = 1, ngrid |
---|
2971 | IF (l<=lmaxa(ig)) THEN |
---|
2972 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
2973 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
2974 | END IF |
---|
2975 | END DO |
---|
2976 | END DO |
---|
2977 | |
---|
2978 | DO l = 2, nlay |
---|
2979 | DO ig = 1, ngrid |
---|
2980 | IF (l<=lmaxa(ig)) THEN |
---|
2981 | ! if (idetr.eq.0) then |
---|
2982 | ! cette option est finalement en dur. |
---|
2983 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
2984 | ! else if (idetr.eq.1) then |
---|
2985 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
2986 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
2987 | ! else if (idetr.eq.2) then |
---|
2988 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
2989 | ! s *sqrt(wa_moy(ig,l)) |
---|
2990 | ! else if (idetr.eq.4) then |
---|
2991 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
2992 | ! s *wa_moy(ig,l) |
---|
2993 | ! endif |
---|
2994 | END IF |
---|
2995 | END DO |
---|
2996 | END DO |
---|
2997 | |
---|
2998 | ! print*,'10 OK convect8' |
---|
2999 | ! print*,'WA2 ',wa_moy |
---|
3000 | ! calcul de la fraction de la maille concernée par l'ascendance en tenant |
---|
3001 | ! compte de l'epluchage du thermique. |
---|
3002 | |
---|
3003 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
3004 | DO ig = 1, ngrid |
---|
3005 | IF (lmix(ig)>1.) THEN |
---|
3006 | zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig))) & |
---|
3007 | **2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
---|
3008 | lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
---|
3009 | (2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
3010 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))-zw2(ig,lmix(ig)+1))*((zlev( & |
---|
3011 | ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
---|
3012 | ELSE |
---|
3013 | zmix(ig) = 0. |
---|
3014 | END IF |
---|
3015 | END DO |
---|
3016 | |
---|
3017 | ! calcul du nouveau lmix correspondant |
---|
3018 | DO ig = 1, ngrid |
---|
3019 | DO l = 1, klev |
---|
3020 | IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
---|
3021 | lmix(ig) = l |
---|
3022 | END IF |
---|
3023 | END DO |
---|
3024 | END DO |
---|
3025 | |
---|
3026 | DO l = 2, nlay |
---|
3027 | DO ig = 1, ngrid |
---|
3028 | IF (larg_cons(ig,l)>1.) THEN |
---|
3029 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
3030 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
3031 | ! test |
---|
3032 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
3033 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
3034 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
3035 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
3036 | ELSE |
---|
3037 | ! wa_moy(ig,l)=0. |
---|
3038 | fraca(ig, l) = 0. |
---|
3039 | fracc(ig, l) = 0. |
---|
3040 | fracd(ig, l) = 1. |
---|
3041 | END IF |
---|
3042 | END DO |
---|
3043 | END DO |
---|
3044 | ! CR: calcul de fracazmix |
---|
3045 | DO ig = 1, ngrid |
---|
3046 | fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
---|
3047 | (zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
---|
3048 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca(ig & |
---|
3049 | ,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
---|
3050 | END DO |
---|
3051 | |
---|
3052 | DO l = 2, nlay |
---|
3053 | DO ig = 1, ngrid |
---|
3054 | IF (larg_cons(ig,l)>1.) THEN |
---|
3055 | IF (l>lmix(ig)) THEN |
---|
3056 | xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
---|
3057 | IF (idetr==0) THEN |
---|
3058 | fraca(ig, l) = fracazmix(ig) |
---|
3059 | ELSE IF (idetr==1) THEN |
---|
3060 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
---|
3061 | ELSE IF (idetr==2) THEN |
---|
3062 | fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
---|
3063 | ELSE |
---|
3064 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
---|
3065 | END IF |
---|
3066 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
3067 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
3068 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
3069 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
3070 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
3071 | END IF |
---|
3072 | END IF |
---|
3073 | END DO |
---|
3074 | END DO |
---|
3075 | |
---|
3076 | ! print*,'11 OK convect8' |
---|
3077 | ! print*,'Ea3 ',wa_moy |
---|
3078 | ! ------------------------------------------------------------------ |
---|
3079 | ! Calcul de fracd, wd |
---|
3080 | ! somme wa - wd = 0 |
---|
3081 | ! ------------------------------------------------------------------ |
---|
3082 | |
---|
3083 | |
---|
3084 | DO ig = 1, ngrid |
---|
3085 | fm(ig, 1) = 0. |
---|
3086 | fm(ig, nlay+1) = 0. |
---|
3087 | END DO |
---|
3088 | |
---|
3089 | DO l = 2, nlay |
---|
3090 | DO ig = 1, ngrid |
---|
3091 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
3092 | ! CR:test |
---|
3093 | IF (entr(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) THEN |
---|
3094 | fm(ig, l) = fm(ig, l-1) |
---|
3095 | ! write(1,*)'ajustement fm, l',l |
---|
3096 | END IF |
---|
3097 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
3098 | ! RC |
---|
3099 | END DO |
---|
3100 | DO ig = 1, ngrid |
---|
3101 | IF (fracd(ig,l)<0.1) THEN |
---|
3102 | abort_message = 'fracd trop petit' |
---|
3103 | CALL abort_physic(modname, abort_message, 1) |
---|
3104 | ELSE |
---|
3105 | ! vitesse descendante "diagnostique" |
---|
3106 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
3107 | END IF |
---|
3108 | END DO |
---|
3109 | END DO |
---|
3110 | |
---|
3111 | DO l = 1, nlay |
---|
3112 | DO ig = 1, ngrid |
---|
3113 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
3114 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
3115 | END DO |
---|
3116 | END DO |
---|
3117 | |
---|
3118 | ! print*,'12 OK convect8' |
---|
3119 | ! print*,'WA4 ',wa_moy |
---|
3120 | ! c------------------------------------------------------------------ |
---|
3121 | ! calcul du transport vertical |
---|
3122 | ! ------------------------------------------------------------------ |
---|
3123 | |
---|
3124 | GO TO 4444 |
---|
3125 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
3126 | DO l = 2, nlay - 1 |
---|
3127 | DO ig = 1, ngrid |
---|
3128 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
3129 | ig,l+1)) THEN |
---|
3130 | ! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
3131 | ! s ,fm(ig,l+1)*ptimestep |
---|
3132 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
3133 | END IF |
---|
3134 | END DO |
---|
3135 | END DO |
---|
3136 | |
---|
3137 | DO l = 1, nlay |
---|
3138 | DO ig = 1, ngrid |
---|
3139 | IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
---|
3140 | ! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
3141 | ! s ,entr(ig,l)*ptimestep |
---|
3142 | ! s ,' M=',masse(ig,l) |
---|
3143 | END IF |
---|
3144 | END DO |
---|
3145 | END DO |
---|
3146 | |
---|
3147 | DO l = 1, nlay |
---|
3148 | DO ig = 1, ngrid |
---|
3149 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
3150 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
3151 | ! s ,' FM=',fm(ig,l) |
---|
3152 | END IF |
---|
3153 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
3154 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
3155 | ! s ,' M=',masse(ig,l) |
---|
3156 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
3157 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
3158 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
3159 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
3160 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
3161 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
3162 | END IF |
---|
3163 | IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
---|
3164 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
3165 | ! s ,' E=',entr(ig,l) |
---|
3166 | END IF |
---|
3167 | END DO |
---|
3168 | END DO |
---|
3169 | |
---|
3170 | 4444 CONTINUE |
---|
3171 | |
---|
3172 | IF (w2di==1) THEN |
---|
3173 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
3174 | entr0 = entr0 + ptimestep*(entr-entr0)/tho |
---|
3175 | ELSE |
---|
3176 | fm0 = fm |
---|
3177 | entr0 = entr |
---|
3178 | END IF |
---|
3179 | |
---|
3180 | IF (1==1) THEN |
---|
3181 | ! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
3182 | ! . ,zh,zdhadj,zha) |
---|
3183 | ! call dqthermcell(ngrid,nlay,ptimestep,fm0,entr0,masse |
---|
3184 | ! . ,zo,pdoadj,zoa) |
---|
3185 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zthl, & |
---|
3186 | zdthladj, zta) |
---|
3187 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, po, pdoadj, & |
---|
3188 | zoa) |
---|
3189 | ELSE |
---|
3190 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
3191 | zdhadj, zha) |
---|
3192 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
3193 | pdoadj, zoa) |
---|
3194 | END IF |
---|
3195 | |
---|
3196 | IF (1==0) THEN |
---|
3197 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
3198 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
3199 | ELSE |
---|
3200 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
3201 | zua) |
---|
3202 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
3203 | zva) |
---|
3204 | END IF |
---|
3205 | |
---|
3206 | DO l = 1, nlay |
---|
3207 | DO ig = 1, ngrid |
---|
3208 | zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
3209 | zf2 = zf/(1.-zf) |
---|
3210 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
3211 | wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
3212 | END DO |
---|
3213 | END DO |
---|
3214 | |
---|
3215 | |
---|
3216 | |
---|
3217 | ! print*,'13 OK convect8' |
---|
3218 | ! print*,'WA5 ',wa_moy |
---|
3219 | DO l = 1, nlay |
---|
3220 | DO ig = 1, ngrid |
---|
3221 | ! pdtadj(ig,l)=zdhadj(ig,l)*zpspsk(ig,l) |
---|
3222 | pdtadj(ig, l) = zdthladj(ig, l)*zpspsk(ig, l) |
---|
3223 | END DO |
---|
3224 | END DO |
---|
3225 | |
---|
3226 | |
---|
3227 | ! do l=1,nlay |
---|
3228 | ! do ig=1,ngrid |
---|
3229 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
3230 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
3231 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
3232 | ! endif |
---|
3233 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
3234 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
3235 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
3236 | ! endif |
---|
3237 | ! enddo |
---|
3238 | ! enddo |
---|
3239 | |
---|
3240 | ! print*,'14 OK convect8' |
---|
3241 | ! ------------------------------------------------------------------ |
---|
3242 | ! Calculs pour les sorties |
---|
3243 | ! ------------------------------------------------------------------ |
---|
3244 | |
---|
3245 | RETURN |
---|
3246 | END SUBROUTINE thermcell_eau |
---|
3247 | |
---|
3248 | SUBROUTINE thermcell(ngrid, nlay, ptimestep, pplay, pplev, pphi, pu, pv, pt, & |
---|
3249 | po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0 & ! s |
---|
3250 | ! ,pu_therm,pv_therm |
---|
3251 | , r_aspect, l_mix, w2di, tho) |
---|
3252 | |
---|
3253 | USE dimphy |
---|
3254 | IMPLICIT NONE |
---|
3255 | |
---|
3256 | ! ======================================================================= |
---|
3257 | |
---|
3258 | ! Calcul du transport verticale dans la couche limite en presence |
---|
3259 | ! de "thermiques" explicitement representes |
---|
3260 | |
---|
3261 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
3262 | |
---|
3263 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
3264 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
3265 | ! mélange |
---|
3266 | |
---|
3267 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
3268 | ! en compte: |
---|
3269 | ! 1. un flux de masse montant |
---|
3270 | ! 2. un flux de masse descendant |
---|
3271 | ! 3. un entrainement |
---|
3272 | ! 4. un detrainement |
---|
3273 | |
---|
3274 | ! ======================================================================= |
---|
3275 | |
---|
3276 | ! ----------------------------------------------------------------------- |
---|
3277 | ! declarations: |
---|
3278 | ! ------------- |
---|
3279 | |
---|
3280 | include "dimensions.h" |
---|
3281 | ! ccc#include "dimphy.h" |
---|
3282 | include "YOMCST.h" |
---|
3283 | |
---|
3284 | ! arguments: |
---|
3285 | ! ---------- |
---|
3286 | |
---|
3287 | INTEGER ngrid, nlay, w2di |
---|
3288 | REAL tho |
---|
3289 | REAL ptimestep, l_mix, r_aspect |
---|
3290 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
3291 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
3292 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
3293 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
3294 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
3295 | REAL pphi(ngrid, nlay) |
---|
3296 | |
---|
3297 | INTEGER idetr |
---|
3298 | SAVE idetr |
---|
3299 | DATA idetr/3/ |
---|
3300 | !$OMP THREADPRIVATE(idetr) |
---|
3301 | |
---|
3302 | ! local: |
---|
3303 | ! ------ |
---|
3304 | |
---|
3305 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
3306 | REAL zsortie1d(klon) |
---|
3307 | ! CR: on remplace lmax(klon,klev+1) |
---|
3308 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
3309 | REAL linter(klon) |
---|
3310 | REAL zmix(klon), fracazmix(klon) |
---|
3311 | ! RC |
---|
3312 | REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
---|
3313 | |
---|
3314 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
3315 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
3316 | REAL ztv(klon, klev) |
---|
3317 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
3318 | REAL wh(klon, klev+1) |
---|
3319 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
3320 | REAL zla(klon, klev+1) |
---|
3321 | REAL zwa(klon, klev+1) |
---|
3322 | REAL zld(klon, klev+1) |
---|
3323 | REAL zwd(klon, klev+1) |
---|
3324 | REAL zsortie(klon, klev) |
---|
3325 | REAL zva(klon, klev) |
---|
3326 | REAL zua(klon, klev) |
---|
3327 | REAL zoa(klon, klev) |
---|
3328 | |
---|
3329 | REAL zha(klon, klev) |
---|
3330 | REAL wa_moy(klon, klev+1) |
---|
3331 | REAL fraca(klon, klev+1) |
---|
3332 | REAL fracc(klon, klev+1) |
---|
3333 | REAL zf, zf2 |
---|
3334 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
3335 | ! common/comtherm/thetath2,wth2 |
---|
3336 | |
---|
3337 | REAL count_time |
---|
3338 | INTEGER ialt |
---|
3339 | |
---|
3340 | LOGICAL sorties |
---|
3341 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
3342 | REAL zpspsk(klon, klev) |
---|
3343 | |
---|
3344 | ! real wmax(klon,klev),wmaxa(klon) |
---|
3345 | REAL wmax(klon), wmaxa(klon) |
---|
3346 | REAL wa(klon, klev, klev+1) |
---|
3347 | REAL wd(klon, klev+1) |
---|
3348 | REAL larg_part(klon, klev, klev+1) |
---|
3349 | REAL fracd(klon, klev+1) |
---|
3350 | REAL xxx(klon, klev+1) |
---|
3351 | REAL larg_cons(klon, klev+1) |
---|
3352 | REAL larg_detr(klon, klev+1) |
---|
3353 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
3354 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
3355 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
3356 | REAL fmc(klon, klev+1) |
---|
3357 | |
---|
3358 | ! CR:nouvelles variables |
---|
3359 | REAL f_star(klon, klev+1), entr_star(klon, klev) |
---|
3360 | REAL entr_star_tot(klon), entr_star2(klon) |
---|
3361 | REAL f(klon), f0(klon) |
---|
3362 | REAL zlevinter(klon) |
---|
3363 | LOGICAL first |
---|
3364 | DATA first/.FALSE./ |
---|
3365 | SAVE first |
---|
3366 | !$OMP THREADPRIVATE(first) |
---|
3367 | ! RC |
---|
3368 | |
---|
3369 | CHARACTER *2 str2 |
---|
3370 | CHARACTER *10 str10 |
---|
3371 | |
---|
3372 | CHARACTER (LEN=20) :: modname = 'thermcell' |
---|
3373 | CHARACTER (LEN=80) :: abort_message |
---|
3374 | |
---|
3375 | LOGICAL vtest(klon), down |
---|
3376 | |
---|
3377 | EXTERNAL scopy |
---|
3378 | |
---|
3379 | INTEGER ncorrec, ll |
---|
3380 | SAVE ncorrec |
---|
3381 | DATA ncorrec/0/ |
---|
3382 | !$OMP THREADPRIVATE(ncorrec) |
---|
3383 | |
---|
3384 | |
---|
3385 | ! ----------------------------------------------------------------------- |
---|
3386 | ! initialisation: |
---|
3387 | ! --------------- |
---|
3388 | |
---|
3389 | sorties = .TRUE. |
---|
3390 | IF (ngrid/=klon) THEN |
---|
3391 | PRINT * |
---|
3392 | PRINT *, 'STOP dans convadj' |
---|
3393 | PRINT *, 'ngrid =', ngrid |
---|
3394 | PRINT *, 'klon =', klon |
---|
3395 | END IF |
---|
3396 | |
---|
3397 | ! ----------------------------------------------------------------------- |
---|
3398 | ! incrementation eventuelle de tendances precedentes: |
---|
3399 | ! --------------------------------------------------- |
---|
3400 | |
---|
3401 | ! print*,'0 OK convect8' |
---|
3402 | |
---|
3403 | DO l = 1, nlay |
---|
3404 | DO ig = 1, ngrid |
---|
3405 | zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
---|
3406 | zh(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
3407 | zu(ig, l) = pu(ig, l) |
---|
3408 | zv(ig, l) = pv(ig, l) |
---|
3409 | zo(ig, l) = po(ig, l) |
---|
3410 | ztv(ig, l) = zh(ig, l)*(1.+0.61*zo(ig,l)) |
---|
3411 | END DO |
---|
3412 | END DO |
---|
3413 | |
---|
3414 | ! print*,'1 OK convect8' |
---|
3415 | ! -------------------- |
---|
3416 | |
---|
3417 | |
---|
3418 | ! + + + + + + + + + + + |
---|
3419 | |
---|
3420 | |
---|
3421 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
3422 | ! wh,wt,wo ... |
---|
3423 | |
---|
3424 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
3425 | |
---|
3426 | |
---|
3427 | ! -------------------- zlev(1) |
---|
3428 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
3429 | |
---|
3430 | |
---|
3431 | |
---|
3432 | ! ----------------------------------------------------------------------- |
---|
3433 | ! Calcul des altitudes des couches |
---|
3434 | ! ----------------------------------------------------------------------- |
---|
3435 | |
---|
3436 | DO l = 2, nlay |
---|
3437 | DO ig = 1, ngrid |
---|
3438 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
3439 | END DO |
---|
3440 | END DO |
---|
3441 | DO ig = 1, ngrid |
---|
3442 | zlev(ig, 1) = 0. |
---|
3443 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
3444 | END DO |
---|
3445 | DO l = 1, nlay |
---|
3446 | DO ig = 1, ngrid |
---|
3447 | zlay(ig, l) = pphi(ig, l)/rg |
---|
3448 | END DO |
---|
3449 | END DO |
---|
3450 | |
---|
3451 | ! print*,'2 OK convect8' |
---|
3452 | ! ----------------------------------------------------------------------- |
---|
3453 | ! Calcul des densites |
---|
3454 | ! ----------------------------------------------------------------------- |
---|
3455 | |
---|
3456 | DO l = 1, nlay |
---|
3457 | DO ig = 1, ngrid |
---|
3458 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*zh(ig,l)) |
---|
3459 | END DO |
---|
3460 | END DO |
---|
3461 | |
---|
3462 | DO l = 2, nlay |
---|
3463 | DO ig = 1, ngrid |
---|
3464 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
3465 | END DO |
---|
3466 | END DO |
---|
3467 | |
---|
3468 | DO k = 1, nlay |
---|
3469 | DO l = 1, nlay + 1 |
---|
3470 | DO ig = 1, ngrid |
---|
3471 | wa(ig, k, l) = 0. |
---|
3472 | END DO |
---|
3473 | END DO |
---|
3474 | END DO |
---|
3475 | |
---|
3476 | ! print*,'3 OK convect8' |
---|
3477 | ! ------------------------------------------------------------------ |
---|
3478 | ! Calcul de w2, quarre de w a partir de la cape |
---|
3479 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
3480 | |
---|
3481 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
3482 | ! w2 est stoke dans wa |
---|
3483 | |
---|
3484 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
3485 | ! independants par couches que pour calculer l'entrainement |
---|
3486 | ! a la base et la hauteur max de l'ascendance. |
---|
3487 | |
---|
3488 | ! Indicages: |
---|
3489 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
3490 | ! une vitesse wa(k,l). |
---|
3491 | |
---|
3492 | ! -------------------- |
---|
3493 | |
---|
3494 | ! + + + + + + + + + + |
---|
3495 | |
---|
3496 | ! wa(k,l) ---- -------------------- l |
---|
3497 | ! /\ |
---|
3498 | ! /||\ + + + + + + + + + + |
---|
3499 | ! || |
---|
3500 | ! || -------------------- |
---|
3501 | ! || |
---|
3502 | ! || + + + + + + + + + + |
---|
3503 | ! || |
---|
3504 | ! || -------------------- |
---|
3505 | ! ||__ |
---|
3506 | ! |___ + + + + + + + + + + k |
---|
3507 | |
---|
3508 | ! -------------------- |
---|
3509 | |
---|
3510 | |
---|
3511 | |
---|
3512 | ! ------------------------------------------------------------------ |
---|
3513 | |
---|
3514 | ! CR: ponderation entrainement des couches instables |
---|
3515 | ! def des entr_star tels que entr=f*entr_star |
---|
3516 | DO l = 1, klev |
---|
3517 | DO ig = 1, ngrid |
---|
3518 | entr_star(ig, l) = 0. |
---|
3519 | END DO |
---|
3520 | END DO |
---|
3521 | ! determination de la longueur de la couche d entrainement |
---|
3522 | DO ig = 1, ngrid |
---|
3523 | lentr(ig) = 1 |
---|
3524 | END DO |
---|
3525 | |
---|
3526 | ! on ne considere que les premieres couches instables |
---|
3527 | DO k = nlay - 2, 1, -1 |
---|
3528 | DO ig = 1, ngrid |
---|
3529 | IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<=ztv(ig,k+2)) THEN |
---|
3530 | lentr(ig) = k |
---|
3531 | END IF |
---|
3532 | END DO |
---|
3533 | END DO |
---|
3534 | |
---|
3535 | ! determination du lmin: couche d ou provient le thermique |
---|
3536 | DO ig = 1, ngrid |
---|
3537 | lmin(ig) = 1 |
---|
3538 | END DO |
---|
3539 | DO ig = 1, ngrid |
---|
3540 | DO l = nlay, 2, -1 |
---|
3541 | IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
---|
3542 | lmin(ig) = l - 1 |
---|
3543 | END IF |
---|
3544 | END DO |
---|
3545 | END DO |
---|
3546 | |
---|
3547 | ! definition de l'entrainement des couches |
---|
3548 | DO l = 1, klev - 1 |
---|
3549 | DO ig = 1, ngrid |
---|
3550 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<=lentr(ig)) THEN |
---|
3551 | entr_star(ig, l) = (ztv(ig,l)-ztv(ig,l+1))*(zlev(ig,l+1)-zlev(ig,l)) |
---|
3552 | END IF |
---|
3553 | END DO |
---|
3554 | END DO |
---|
3555 | ! pas de thermique si couches 1->5 stables |
---|
3556 | DO ig = 1, ngrid |
---|
3557 | IF (lmin(ig)>5) THEN |
---|
3558 | DO l = 1, klev |
---|
3559 | entr_star(ig, l) = 0. |
---|
3560 | END DO |
---|
3561 | END IF |
---|
3562 | END DO |
---|
3563 | ! calcul de l entrainement total |
---|
3564 | DO ig = 1, ngrid |
---|
3565 | entr_star_tot(ig) = 0. |
---|
3566 | END DO |
---|
3567 | DO ig = 1, ngrid |
---|
3568 | DO k = 1, klev |
---|
3569 | entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
---|
3570 | END DO |
---|
3571 | END DO |
---|
3572 | |
---|
3573 | PRINT *, 'fin calcul entr_star' |
---|
3574 | DO k = 1, klev |
---|
3575 | DO ig = 1, ngrid |
---|
3576 | ztva(ig, k) = ztv(ig, k) |
---|
3577 | END DO |
---|
3578 | END DO |
---|
3579 | ! RC |
---|
3580 | ! print*,'7 OK convect8' |
---|
3581 | DO k = 1, klev + 1 |
---|
3582 | DO ig = 1, ngrid |
---|
3583 | zw2(ig, k) = 0. |
---|
3584 | fmc(ig, k) = 0. |
---|
3585 | ! CR |
---|
3586 | f_star(ig, k) = 0. |
---|
3587 | ! RC |
---|
3588 | larg_cons(ig, k) = 0. |
---|
3589 | larg_detr(ig, k) = 0. |
---|
3590 | wa_moy(ig, k) = 0. |
---|
3591 | END DO |
---|
3592 | END DO |
---|
3593 | |
---|
3594 | ! print*,'8 OK convect8' |
---|
3595 | DO ig = 1, ngrid |
---|
3596 | linter(ig) = 1. |
---|
3597 | lmaxa(ig) = 1 |
---|
3598 | lmix(ig) = 1 |
---|
3599 | wmaxa(ig) = 0. |
---|
3600 | END DO |
---|
3601 | |
---|
3602 | ! CR: |
---|
3603 | DO l = 1, nlay - 2 |
---|
3604 | DO ig = 1, ngrid |
---|
3605 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. entr_star(ig,l)>1.E-10 .AND. & |
---|
3606 | zw2(ig,l)<1E-10) THEN |
---|
3607 | f_star(ig, l+1) = entr_star(ig, l) |
---|
3608 | ! test:calcul de dteta |
---|
3609 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
3610 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
3611 | larg_detr(ig, l) = 0. |
---|
3612 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+entr_star(ig, & |
---|
3613 | l)>1.E-10)) THEN |
---|
3614 | f_star(ig, l+1) = f_star(ig, l) + entr_star(ig, l) |
---|
3615 | ztva(ig, l) = (f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l)*ztv(ig,l))/ & |
---|
3616 | f_star(ig, l+1) |
---|
3617 | zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/f_star(ig,l+1))**2 + & |
---|
3618 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
3619 | END IF |
---|
3620 | ! determination de zmax continu par interpolation lineaire |
---|
3621 | IF (zw2(ig,l+1)<0.) THEN |
---|
3622 | ! test |
---|
3623 | IF (abs(zw2(ig,l+1)-zw2(ig,l))<1E-10) THEN |
---|
3624 | PRINT *, 'pb linter' |
---|
3625 | END IF |
---|
3626 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
3627 | ig,l)) |
---|
3628 | zw2(ig, l+1) = 0. |
---|
3629 | lmaxa(ig) = l |
---|
3630 | ELSE |
---|
3631 | IF (zw2(ig,l+1)<0.) THEN |
---|
3632 | PRINT *, 'pb1 zw2<0' |
---|
3633 | END IF |
---|
3634 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
3635 | END IF |
---|
3636 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
3637 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
3638 | lmix(ig) = l + 1 |
---|
3639 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
3640 | END IF |
---|
3641 | END DO |
---|
3642 | END DO |
---|
3643 | PRINT *, 'fin calcul zw2' |
---|
3644 | |
---|
3645 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
3646 | DO ig = 1, ngrid |
---|
3647 | lmax(ig) = lentr(ig) |
---|
3648 | END DO |
---|
3649 | DO ig = 1, ngrid |
---|
3650 | DO l = nlay, lentr(ig) + 1, -1 |
---|
3651 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
3652 | lmax(ig) = l - 1 |
---|
3653 | END IF |
---|
3654 | END DO |
---|
3655 | END DO |
---|
3656 | ! pas de thermique si couches 1->5 stables |
---|
3657 | DO ig = 1, ngrid |
---|
3658 | IF (lmin(ig)>5) THEN |
---|
3659 | lmax(ig) = 1 |
---|
3660 | lmin(ig) = 1 |
---|
3661 | END IF |
---|
3662 | END DO |
---|
3663 | |
---|
3664 | ! Determination de zw2 max |
---|
3665 | DO ig = 1, ngrid |
---|
3666 | wmax(ig) = 0. |
---|
3667 | END DO |
---|
3668 | |
---|
3669 | DO l = 1, nlay |
---|
3670 | DO ig = 1, ngrid |
---|
3671 | IF (l<=lmax(ig)) THEN |
---|
3672 | IF (zw2(ig,l)<0.) THEN |
---|
3673 | PRINT *, 'pb2 zw2<0' |
---|
3674 | END IF |
---|
3675 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
3676 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
3677 | ELSE |
---|
3678 | zw2(ig, l) = 0. |
---|
3679 | END IF |
---|
3680 | END DO |
---|
3681 | END DO |
---|
3682 | |
---|
3683 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
3684 | DO ig = 1, ngrid |
---|
3685 | zmax(ig) = 0. |
---|
3686 | zlevinter(ig) = zlev(ig, 1) |
---|
3687 | END DO |
---|
3688 | DO ig = 1, ngrid |
---|
3689 | ! calcul de zlevinter |
---|
3690 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
3691 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
3692 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
3693 | END DO |
---|
3694 | |
---|
3695 | PRINT *, 'avant fermeture' |
---|
3696 | ! Fermeture,determination de f |
---|
3697 | DO ig = 1, ngrid |
---|
3698 | entr_star2(ig) = 0. |
---|
3699 | END DO |
---|
3700 | DO ig = 1, ngrid |
---|
3701 | IF (entr_star_tot(ig)<1.E-10) THEN |
---|
3702 | f(ig) = 0. |
---|
3703 | ELSE |
---|
3704 | DO k = lmin(ig), lentr(ig) |
---|
3705 | entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2/(rho(ig,k)*( & |
---|
3706 | zlev(ig,k+1)-zlev(ig,k))) |
---|
3707 | END DO |
---|
3708 | ! Nouvelle fermeture |
---|
3709 | f(ig) = wmax(ig)/(max(500.,zmax(ig))*r_aspect*entr_star2(ig))* & |
---|
3710 | entr_star_tot(ig) |
---|
3711 | ! test |
---|
3712 | ! if (first) then |
---|
3713 | ! f(ig)=f(ig)+(f0(ig)-f(ig))*exp(-ptimestep/zmax(ig) |
---|
3714 | ! s *wmax(ig)) |
---|
3715 | ! endif |
---|
3716 | END IF |
---|
3717 | ! f0(ig)=f(ig) |
---|
3718 | ! first=.true. |
---|
3719 | END DO |
---|
3720 | PRINT *, 'apres fermeture' |
---|
3721 | |
---|
3722 | ! Calcul de l'entrainement |
---|
3723 | DO k = 1, klev |
---|
3724 | DO ig = 1, ngrid |
---|
3725 | entr(ig, k) = f(ig)*entr_star(ig, k) |
---|
3726 | END DO |
---|
3727 | END DO |
---|
3728 | ! Calcul des flux |
---|
3729 | DO ig = 1, ngrid |
---|
3730 | DO l = 1, lmax(ig) - 1 |
---|
3731 | fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
---|
3732 | END DO |
---|
3733 | END DO |
---|
3734 | |
---|
3735 | ! RC |
---|
3736 | |
---|
3737 | |
---|
3738 | ! print*,'9 OK convect8' |
---|
3739 | ! print*,'WA1 ',wa_moy |
---|
3740 | |
---|
3741 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
3742 | |
---|
3743 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
3744 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
3745 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
3746 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
3747 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
3748 | |
---|
3749 | DO l = 2, nlay |
---|
3750 | DO ig = 1, ngrid |
---|
3751 | IF (l<=lmaxa(ig)) THEN |
---|
3752 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
3753 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
3754 | END IF |
---|
3755 | END DO |
---|
3756 | END DO |
---|
3757 | |
---|
3758 | DO l = 2, nlay |
---|
3759 | DO ig = 1, ngrid |
---|
3760 | IF (l<=lmaxa(ig)) THEN |
---|
3761 | ! if (idetr.eq.0) then |
---|
3762 | ! cette option est finalement en dur. |
---|
3763 | IF ((l_mix*zlev(ig,l))<0.) THEN |
---|
3764 | PRINT *, 'pb l_mix*zlev<0' |
---|
3765 | END IF |
---|
3766 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
3767 | ! else if (idetr.eq.1) then |
---|
3768 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
3769 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
3770 | ! else if (idetr.eq.2) then |
---|
3771 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
3772 | ! s *sqrt(wa_moy(ig,l)) |
---|
3773 | ! else if (idetr.eq.4) then |
---|
3774 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
3775 | ! s *wa_moy(ig,l) |
---|
3776 | ! endif |
---|
3777 | END IF |
---|
3778 | END DO |
---|
3779 | END DO |
---|
3780 | |
---|
3781 | ! print*,'10 OK convect8' |
---|
3782 | ! print*,'WA2 ',wa_moy |
---|
3783 | ! calcul de la fraction de la maille concernée par l'ascendance en tenant |
---|
3784 | ! compte de l'epluchage du thermique. |
---|
3785 | |
---|
3786 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
3787 | DO ig = 1, ngrid |
---|
3788 | IF (lmix(ig)>1.) THEN |
---|
3789 | ! test |
---|
3790 | IF (((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
3791 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
3792 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))- & |
---|
3793 | (zlev(ig,lmix(ig)))))>1E-10) THEN |
---|
3794 | |
---|
3795 | zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)) & |
---|
3796 | )**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
---|
3797 | lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
---|
3798 | (2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
3799 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
3800 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
---|
3801 | ELSE |
---|
3802 | zmix(ig) = zlev(ig, lmix(ig)) |
---|
3803 | PRINT *, 'pb zmix' |
---|
3804 | END IF |
---|
3805 | ELSE |
---|
3806 | zmix(ig) = 0. |
---|
3807 | END IF |
---|
3808 | ! test |
---|
3809 | IF ((zmax(ig)-zmix(ig))<0.) THEN |
---|
3810 | zmix(ig) = 0.99*zmax(ig) |
---|
3811 | ! print*,'pb zmix>zmax' |
---|
3812 | END IF |
---|
3813 | END DO |
---|
3814 | |
---|
3815 | ! calcul du nouveau lmix correspondant |
---|
3816 | DO ig = 1, ngrid |
---|
3817 | DO l = 1, klev |
---|
3818 | IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
---|
3819 | lmix(ig) = l |
---|
3820 | END IF |
---|
3821 | END DO |
---|
3822 | END DO |
---|
3823 | |
---|
3824 | DO l = 2, nlay |
---|
3825 | DO ig = 1, ngrid |
---|
3826 | IF (larg_cons(ig,l)>1.) THEN |
---|
3827 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
3828 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
3829 | ! test |
---|
3830 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
3831 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
3832 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
3833 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
3834 | ELSE |
---|
3835 | ! wa_moy(ig,l)=0. |
---|
3836 | fraca(ig, l) = 0. |
---|
3837 | fracc(ig, l) = 0. |
---|
3838 | fracd(ig, l) = 1. |
---|
3839 | END IF |
---|
3840 | END DO |
---|
3841 | END DO |
---|
3842 | ! CR: calcul de fracazmix |
---|
3843 | DO ig = 1, ngrid |
---|
3844 | fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
---|
3845 | (zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
---|
3846 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca(ig & |
---|
3847 | ,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
---|
3848 | END DO |
---|
3849 | |
---|
3850 | DO l = 2, nlay |
---|
3851 | DO ig = 1, ngrid |
---|
3852 | IF (larg_cons(ig,l)>1.) THEN |
---|
3853 | IF (l>lmix(ig)) THEN |
---|
3854 | ! test |
---|
3855 | IF (zmax(ig)-zmix(ig)<1.E-10) THEN |
---|
3856 | ! print*,'pb xxx' |
---|
3857 | xxx(ig, l) = (lmaxa(ig)+1.-l)/(lmaxa(ig)+1.-lmix(ig)) |
---|
3858 | ELSE |
---|
3859 | xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
---|
3860 | END IF |
---|
3861 | IF (idetr==0) THEN |
---|
3862 | fraca(ig, l) = fracazmix(ig) |
---|
3863 | ELSE IF (idetr==1) THEN |
---|
3864 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
---|
3865 | ELSE IF (idetr==2) THEN |
---|
3866 | fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
---|
3867 | ELSE |
---|
3868 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
---|
3869 | END IF |
---|
3870 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
3871 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
3872 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
3873 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
3874 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
3875 | END IF |
---|
3876 | END IF |
---|
3877 | END DO |
---|
3878 | END DO |
---|
3879 | |
---|
3880 | PRINT *, 'fin calcul fraca' |
---|
3881 | ! print*,'11 OK convect8' |
---|
3882 | ! print*,'Ea3 ',wa_moy |
---|
3883 | ! ------------------------------------------------------------------ |
---|
3884 | ! Calcul de fracd, wd |
---|
3885 | ! somme wa - wd = 0 |
---|
3886 | ! ------------------------------------------------------------------ |
---|
3887 | |
---|
3888 | |
---|
3889 | DO ig = 1, ngrid |
---|
3890 | fm(ig, 1) = 0. |
---|
3891 | fm(ig, nlay+1) = 0. |
---|
3892 | END DO |
---|
3893 | |
---|
3894 | DO l = 2, nlay |
---|
3895 | DO ig = 1, ngrid |
---|
3896 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
3897 | ! CR:test |
---|
3898 | IF (entr(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) THEN |
---|
3899 | fm(ig, l) = fm(ig, l-1) |
---|
3900 | ! write(1,*)'ajustement fm, l',l |
---|
3901 | END IF |
---|
3902 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
3903 | ! RC |
---|
3904 | END DO |
---|
3905 | DO ig = 1, ngrid |
---|
3906 | IF (fracd(ig,l)<0.1) THEN |
---|
3907 | abort_message = 'fracd trop petit' |
---|
3908 | CALL abort_physic(modname, abort_message, 1) |
---|
3909 | ELSE |
---|
3910 | ! vitesse descendante "diagnostique" |
---|
3911 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
3912 | END IF |
---|
3913 | END DO |
---|
3914 | END DO |
---|
3915 | |
---|
3916 | DO l = 1, nlay |
---|
3917 | DO ig = 1, ngrid |
---|
3918 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
3919 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
3920 | END DO |
---|
3921 | END DO |
---|
3922 | |
---|
3923 | ! print*,'12 OK convect8' |
---|
3924 | ! print*,'WA4 ',wa_moy |
---|
3925 | ! c------------------------------------------------------------------ |
---|
3926 | ! calcul du transport vertical |
---|
3927 | ! ------------------------------------------------------------------ |
---|
3928 | |
---|
3929 | GO TO 4444 |
---|
3930 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
3931 | DO l = 2, nlay - 1 |
---|
3932 | DO ig = 1, ngrid |
---|
3933 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
3934 | ig,l+1)) THEN |
---|
3935 | ! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
3936 | ! s ,fm(ig,l+1)*ptimestep |
---|
3937 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
3938 | END IF |
---|
3939 | END DO |
---|
3940 | END DO |
---|
3941 | |
---|
3942 | DO l = 1, nlay |
---|
3943 | DO ig = 1, ngrid |
---|
3944 | IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
---|
3945 | ! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
3946 | ! s ,entr(ig,l)*ptimestep |
---|
3947 | ! s ,' M=',masse(ig,l) |
---|
3948 | END IF |
---|
3949 | END DO |
---|
3950 | END DO |
---|
3951 | |
---|
3952 | DO l = 1, nlay |
---|
3953 | DO ig = 1, ngrid |
---|
3954 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
3955 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
3956 | ! s ,' FM=',fm(ig,l) |
---|
3957 | END IF |
---|
3958 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
3959 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
3960 | ! s ,' M=',masse(ig,l) |
---|
3961 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
3962 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
3963 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
3964 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
3965 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
3966 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
3967 | END IF |
---|
3968 | IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
---|
3969 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
3970 | ! s ,' E=',entr(ig,l) |
---|
3971 | END IF |
---|
3972 | END DO |
---|
3973 | END DO |
---|
3974 | |
---|
3975 | 4444 CONTINUE |
---|
3976 | |
---|
3977 | ! CR:redefinition du entr |
---|
3978 | DO l = 1, nlay |
---|
3979 | DO ig = 1, ngrid |
---|
3980 | detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l+1) |
---|
3981 | IF (detr(ig,l)<0.) THEN |
---|
3982 | entr(ig, l) = entr(ig, l) - detr(ig, l) |
---|
3983 | detr(ig, l) = 0. |
---|
3984 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
3985 | END IF |
---|
3986 | END DO |
---|
3987 | END DO |
---|
3988 | ! RC |
---|
3989 | IF (w2di==1) THEN |
---|
3990 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
3991 | entr0 = entr0 + ptimestep*(entr-entr0)/tho |
---|
3992 | ELSE |
---|
3993 | fm0 = fm |
---|
3994 | entr0 = entr |
---|
3995 | END IF |
---|
3996 | |
---|
3997 | IF (1==1) THEN |
---|
3998 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
---|
3999 | zha) |
---|
4000 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
---|
4001 | zoa) |
---|
4002 | ELSE |
---|
4003 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
4004 | zdhadj, zha) |
---|
4005 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
4006 | pdoadj, zoa) |
---|
4007 | END IF |
---|
4008 | |
---|
4009 | IF (1==0) THEN |
---|
4010 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
4011 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
4012 | ELSE |
---|
4013 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
4014 | zua) |
---|
4015 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
4016 | zva) |
---|
4017 | END IF |
---|
4018 | |
---|
4019 | DO l = 1, nlay |
---|
4020 | DO ig = 1, ngrid |
---|
4021 | zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
4022 | zf2 = zf/(1.-zf) |
---|
4023 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
4024 | wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
4025 | END DO |
---|
4026 | END DO |
---|
4027 | |
---|
4028 | |
---|
4029 | |
---|
4030 | ! print*,'13 OK convect8' |
---|
4031 | ! print*,'WA5 ',wa_moy |
---|
4032 | DO l = 1, nlay |
---|
4033 | DO ig = 1, ngrid |
---|
4034 | pdtadj(ig, l) = zdhadj(ig, l)*zpspsk(ig, l) |
---|
4035 | END DO |
---|
4036 | END DO |
---|
4037 | |
---|
4038 | |
---|
4039 | ! do l=1,nlay |
---|
4040 | ! do ig=1,ngrid |
---|
4041 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
4042 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
4043 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
4044 | ! endif |
---|
4045 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
4046 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
4047 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
4048 | ! endif |
---|
4049 | ! enddo |
---|
4050 | ! enddo |
---|
4051 | |
---|
4052 | ! print*,'14 OK convect8' |
---|
4053 | ! ------------------------------------------------------------------ |
---|
4054 | ! Calculs pour les sorties |
---|
4055 | ! ------------------------------------------------------------------ |
---|
4056 | |
---|
4057 | IF (sorties) THEN |
---|
4058 | DO l = 1, nlay |
---|
4059 | DO ig = 1, ngrid |
---|
4060 | zla(ig, l) = (1.-fracd(ig,l))*zmax(ig) |
---|
4061 | zld(ig, l) = fracd(ig, l)*zmax(ig) |
---|
4062 | IF (1.-fracd(ig,l)>1.E-10) zwa(ig, l) = wd(ig, l)*fracd(ig, l)/ & |
---|
4063 | (1.-fracd(ig,l)) |
---|
4064 | END DO |
---|
4065 | END DO |
---|
4066 | |
---|
4067 | ! deja fait |
---|
4068 | ! do l=1,nlay |
---|
4069 | ! do ig=1,ngrid |
---|
4070 | ! detr(ig,l)=fm(ig,l)+entr(ig,l)-fm(ig,l+1) |
---|
4071 | ! if (detr(ig,l).lt.0.) then |
---|
4072 | ! entr(ig,l)=entr(ig,l)-detr(ig,l) |
---|
4073 | ! detr(ig,l)=0. |
---|
4074 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
4075 | ! endif |
---|
4076 | ! enddo |
---|
4077 | ! enddo |
---|
4078 | |
---|
4079 | ! print*,'15 OK convect8' |
---|
4080 | |
---|
4081 | |
---|
4082 | ! #define und |
---|
4083 | GO TO 123 |
---|
4084 | #ifdef und |
---|
4085 | CALL writeg1d(1, nlay, wd, 'wd ', 'wd ') |
---|
4086 | CALL writeg1d(1, nlay, zwa, 'wa ', 'wa ') |
---|
4087 | CALL writeg1d(1, nlay, fracd, 'fracd ', 'fracd ') |
---|
4088 | CALL writeg1d(1, nlay, fraca, 'fraca ', 'fraca ') |
---|
4089 | CALL writeg1d(1, nlay, wa_moy, 'wam ', 'wam ') |
---|
4090 | CALL writeg1d(1, nlay, zla, 'la ', 'la ') |
---|
4091 | CALL writeg1d(1, nlay, zld, 'ld ', 'ld ') |
---|
4092 | CALL writeg1d(1, nlay, pt, 'pt ', 'pt ') |
---|
4093 | CALL writeg1d(1, nlay, zh, 'zh ', 'zh ') |
---|
4094 | CALL writeg1d(1, nlay, zha, 'zha ', 'zha ') |
---|
4095 | CALL writeg1d(1, nlay, zu, 'zu ', 'zu ') |
---|
4096 | CALL writeg1d(1, nlay, zv, 'zv ', 'zv ') |
---|
4097 | CALL writeg1d(1, nlay, zo, 'zo ', 'zo ') |
---|
4098 | CALL writeg1d(1, nlay, wh, 'wh ', 'wh ') |
---|
4099 | CALL writeg1d(1, nlay, wu, 'wu ', 'wu ') |
---|
4100 | CALL writeg1d(1, nlay, wv, 'wv ', 'wv ') |
---|
4101 | CALL writeg1d(1, nlay, wo, 'w15uo ', 'wXo ') |
---|
4102 | CALL writeg1d(1, nlay, zdhadj, 'zdhadj ', 'zdhadj ') |
---|
4103 | CALL writeg1d(1, nlay, pduadj, 'pduadj ', 'pduadj ') |
---|
4104 | CALL writeg1d(1, nlay, pdvadj, 'pdvadj ', 'pdvadj ') |
---|
4105 | CALL writeg1d(1, nlay, pdoadj, 'pdoadj ', 'pdoadj ') |
---|
4106 | CALL writeg1d(1, nlay, entr, 'entr ', 'entr ') |
---|
4107 | CALL writeg1d(1, nlay, detr, 'detr ', 'detr ') |
---|
4108 | CALL writeg1d(1, nlay, fm, 'fm ', 'fm ') |
---|
4109 | |
---|
4110 | CALL writeg1d(1, nlay, pdtadj, 'pdtadj ', 'pdtadj ') |
---|
4111 | CALL writeg1d(1, nlay, pplay, 'pplay ', 'pplay ') |
---|
4112 | CALL writeg1d(1, nlay, pplev, 'pplev ', 'pplev ') |
---|
4113 | |
---|
4114 | ! recalcul des flux en diagnostique... |
---|
4115 | ! print*,'PAS DE TEMPS ',ptimestep |
---|
4116 | CALL dt2f(pplev, pplay, pt, pdtadj, wh) |
---|
4117 | CALL writeg1d(1, nlay, wh, 'wh2 ', 'wh2 ') |
---|
4118 | #endif |
---|
4119 | 123 CONTINUE |
---|
4120 | |
---|
4121 | END IF |
---|
4122 | |
---|
4123 | ! if(wa_moy(1,4).gt.1.e-10) stop |
---|
4124 | |
---|
4125 | ! print*,'19 OK convect8' |
---|
4126 | RETURN |
---|
4127 | END SUBROUTINE thermcell |
---|
4128 | |
---|
4129 | SUBROUTINE dqthermcell(ngrid, nlay, ptimestep, fm, entr, masse, q, dq, qa) |
---|
4130 | USE dimphy |
---|
4131 | IMPLICIT NONE |
---|
4132 | |
---|
4133 | ! ======================================================================= |
---|
4134 | |
---|
4135 | ! Calcul du transport verticale dans la couche limite en presence |
---|
4136 | ! de "thermiques" explicitement representes |
---|
4137 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
4138 | |
---|
4139 | ! ======================================================================= |
---|
4140 | |
---|
4141 | include "dimensions.h" |
---|
4142 | ! ccc#include "dimphy.h" |
---|
4143 | |
---|
4144 | INTEGER ngrid, nlay |
---|
4145 | |
---|
4146 | REAL ptimestep |
---|
4147 | REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
---|
4148 | REAL entr(ngrid, nlay) |
---|
4149 | REAL q(ngrid, nlay) |
---|
4150 | REAL dq(ngrid, nlay) |
---|
4151 | |
---|
4152 | REAL qa(klon, klev), detr(klon, klev), wqd(klon, klev+1) |
---|
4153 | |
---|
4154 | INTEGER ig, k |
---|
4155 | |
---|
4156 | ! calcul du detrainement |
---|
4157 | |
---|
4158 | DO k = 1, nlay |
---|
4159 | DO ig = 1, ngrid |
---|
4160 | detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
---|
4161 | ! test |
---|
4162 | IF (detr(ig,k)<0.) THEN |
---|
4163 | entr(ig, k) = entr(ig, k) - detr(ig, k) |
---|
4164 | detr(ig, k) = 0. |
---|
4165 | ! print*,'detr2<0!!!','ig=',ig,'k=',k,'f=',fm(ig,k), |
---|
4166 | ! s 'f+1=',fm(ig,k+1),'e=',entr(ig,k),'d=',detr(ig,k) |
---|
4167 | END IF |
---|
4168 | IF (fm(ig,k+1)<0.) THEN |
---|
4169 | ! print*,'fm2<0!!!' |
---|
4170 | END IF |
---|
4171 | IF (entr(ig,k)<0.) THEN |
---|
4172 | ! print*,'entr2<0!!!' |
---|
4173 | END IF |
---|
4174 | END DO |
---|
4175 | END DO |
---|
4176 | |
---|
4177 | ! calcul de la valeur dans les ascendances |
---|
4178 | DO ig = 1, ngrid |
---|
4179 | qa(ig, 1) = q(ig, 1) |
---|
4180 | END DO |
---|
4181 | |
---|
4182 | DO k = 2, nlay |
---|
4183 | DO ig = 1, ngrid |
---|
4184 | IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
---|
4185 | qa(ig, k) = (fm(ig,k)*qa(ig,k-1)+entr(ig,k)*q(ig,k))/ & |
---|
4186 | (fm(ig,k+1)+detr(ig,k)) |
---|
4187 | ELSE |
---|
4188 | qa(ig, k) = q(ig, k) |
---|
4189 | END IF |
---|
4190 | IF (qa(ig,k)<0.) THEN |
---|
4191 | ! print*,'qa<0!!!' |
---|
4192 | END IF |
---|
4193 | IF (q(ig,k)<0.) THEN |
---|
4194 | ! print*,'q<0!!!' |
---|
4195 | END IF |
---|
4196 | END DO |
---|
4197 | END DO |
---|
4198 | |
---|
4199 | DO k = 2, nlay |
---|
4200 | DO ig = 1, ngrid |
---|
4201 | ! wqd(ig,k)=fm(ig,k)*0.5*(q(ig,k-1)+q(ig,k)) |
---|
4202 | wqd(ig, k) = fm(ig, k)*q(ig, k) |
---|
4203 | IF (wqd(ig,k)<0.) THEN |
---|
4204 | ! print*,'wqd<0!!!' |
---|
4205 | END IF |
---|
4206 | END DO |
---|
4207 | END DO |
---|
4208 | DO ig = 1, ngrid |
---|
4209 | wqd(ig, 1) = 0. |
---|
4210 | wqd(ig, nlay+1) = 0. |
---|
4211 | END DO |
---|
4212 | |
---|
4213 | DO k = 1, nlay |
---|
4214 | DO ig = 1, ngrid |
---|
4215 | dq(ig, k) = (detr(ig,k)*qa(ig,k)-entr(ig,k)*q(ig,k)-wqd(ig,k)+wqd(ig,k+ & |
---|
4216 | 1))/masse(ig, k) |
---|
4217 | ! if (dq(ig,k).lt.0.) then |
---|
4218 | ! print*,'dq<0!!!' |
---|
4219 | ! endif |
---|
4220 | END DO |
---|
4221 | END DO |
---|
4222 | |
---|
4223 | RETURN |
---|
4224 | END SUBROUTINE dqthermcell |
---|
4225 | SUBROUTINE dvthermcell(ngrid, nlay, ptimestep, fm, entr, masse, fraca, larga, & |
---|
4226 | u, v, du, dv, ua, va) |
---|
4227 | USE dimphy |
---|
4228 | IMPLICIT NONE |
---|
4229 | |
---|
4230 | ! ======================================================================= |
---|
4231 | |
---|
4232 | ! Calcul du transport verticale dans la couche limite en presence |
---|
4233 | ! de "thermiques" explicitement representes |
---|
4234 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
4235 | |
---|
4236 | ! ======================================================================= |
---|
4237 | |
---|
4238 | include "dimensions.h" |
---|
4239 | ! ccc#include "dimphy.h" |
---|
4240 | |
---|
4241 | INTEGER ngrid, nlay |
---|
4242 | |
---|
4243 | REAL ptimestep |
---|
4244 | REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
---|
4245 | REAL fraca(ngrid, nlay+1) |
---|
4246 | REAL larga(ngrid) |
---|
4247 | REAL entr(ngrid, nlay) |
---|
4248 | REAL u(ngrid, nlay) |
---|
4249 | REAL ua(ngrid, nlay) |
---|
4250 | REAL du(ngrid, nlay) |
---|
4251 | REAL v(ngrid, nlay) |
---|
4252 | REAL va(ngrid, nlay) |
---|
4253 | REAL dv(ngrid, nlay) |
---|
4254 | |
---|
4255 | REAL qa(klon, klev), detr(klon, klev) |
---|
4256 | REAL wvd(klon, klev+1), wud(klon, klev+1) |
---|
4257 | REAL gamma0, gamma(klon, klev+1) |
---|
4258 | REAL dua, dva |
---|
4259 | INTEGER iter |
---|
4260 | |
---|
4261 | INTEGER ig, k |
---|
4262 | |
---|
4263 | ! calcul du detrainement |
---|
4264 | |
---|
4265 | DO k = 1, nlay |
---|
4266 | DO ig = 1, ngrid |
---|
4267 | detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
---|
4268 | END DO |
---|
4269 | END DO |
---|
4270 | |
---|
4271 | ! calcul de la valeur dans les ascendances |
---|
4272 | DO ig = 1, ngrid |
---|
4273 | ua(ig, 1) = u(ig, 1) |
---|
4274 | va(ig, 1) = v(ig, 1) |
---|
4275 | END DO |
---|
4276 | |
---|
4277 | DO k = 2, nlay |
---|
4278 | DO ig = 1, ngrid |
---|
4279 | IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
---|
4280 | ! On itère sur la valeur du coeff de freinage. |
---|
4281 | ! gamma0=rho(ig,k)*(zlev(ig,k+1)-zlev(ig,k)) |
---|
4282 | gamma0 = masse(ig, k)*sqrt(0.5*(fraca(ig,k+1)+fraca(ig, & |
---|
4283 | k)))*0.5/larga(ig) |
---|
4284 | ! gamma0=0. |
---|
4285 | ! la première fois on multiplie le coefficient de freinage |
---|
4286 | ! par le module du vent dans la couche en dessous. |
---|
4287 | dua = ua(ig, k-1) - u(ig, k-1) |
---|
4288 | dva = va(ig, k-1) - v(ig, k-1) |
---|
4289 | DO iter = 1, 5 |
---|
4290 | gamma(ig, k) = gamma0*sqrt(dua**2+dva**2) |
---|
4291 | ua(ig, k) = (fm(ig,k)*ua(ig,k-1)+(entr(ig,k)+gamma(ig, & |
---|
4292 | k))*u(ig,k))/(fm(ig,k+1)+detr(ig,k)+gamma(ig,k)) |
---|
4293 | va(ig, k) = (fm(ig,k)*va(ig,k-1)+(entr(ig,k)+gamma(ig, & |
---|
4294 | k))*v(ig,k))/(fm(ig,k+1)+detr(ig,k)+gamma(ig,k)) |
---|
4295 | ! print*,k,ua(ig,k),va(ig,k),u(ig,k),v(ig,k),dua,dva |
---|
4296 | dua = ua(ig, k) - u(ig, k) |
---|
4297 | dva = va(ig, k) - v(ig, k) |
---|
4298 | END DO |
---|
4299 | ELSE |
---|
4300 | ua(ig, k) = u(ig, k) |
---|
4301 | va(ig, k) = v(ig, k) |
---|
4302 | gamma(ig, k) = 0. |
---|
4303 | END IF |
---|
4304 | END DO |
---|
4305 | END DO |
---|
4306 | |
---|
4307 | DO k = 2, nlay |
---|
4308 | DO ig = 1, ngrid |
---|
4309 | wud(ig, k) = fm(ig, k)*u(ig, k) |
---|
4310 | wvd(ig, k) = fm(ig, k)*v(ig, k) |
---|
4311 | END DO |
---|
4312 | END DO |
---|
4313 | DO ig = 1, ngrid |
---|
4314 | wud(ig, 1) = 0. |
---|
4315 | wud(ig, nlay+1) = 0. |
---|
4316 | wvd(ig, 1) = 0. |
---|
4317 | wvd(ig, nlay+1) = 0. |
---|
4318 | END DO |
---|
4319 | |
---|
4320 | DO k = 1, nlay |
---|
4321 | DO ig = 1, ngrid |
---|
4322 | du(ig, k) = ((detr(ig,k)+gamma(ig,k))*ua(ig,k)-(entr(ig,k)+gamma(ig, & |
---|
4323 | k))*u(ig,k)-wud(ig,k)+wud(ig,k+1))/masse(ig, k) |
---|
4324 | dv(ig, k) = ((detr(ig,k)+gamma(ig,k))*va(ig,k)-(entr(ig,k)+gamma(ig, & |
---|
4325 | k))*v(ig,k)-wvd(ig,k)+wvd(ig,k+1))/masse(ig, k) |
---|
4326 | END DO |
---|
4327 | END DO |
---|
4328 | |
---|
4329 | RETURN |
---|
4330 | END SUBROUTINE dvthermcell |
---|
4331 | SUBROUTINE dqthermcell2(ngrid, nlay, ptimestep, fm, entr, masse, frac, q, dq, & |
---|
4332 | qa) |
---|
4333 | USE dimphy |
---|
4334 | IMPLICIT NONE |
---|
4335 | |
---|
4336 | ! ======================================================================= |
---|
4337 | |
---|
4338 | ! Calcul du transport verticale dans la couche limite en presence |
---|
4339 | ! de "thermiques" explicitement representes |
---|
4340 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
4341 | |
---|
4342 | ! ======================================================================= |
---|
4343 | |
---|
4344 | include "dimensions.h" |
---|
4345 | ! ccc#include "dimphy.h" |
---|
4346 | |
---|
4347 | INTEGER ngrid, nlay |
---|
4348 | |
---|
4349 | REAL ptimestep |
---|
4350 | REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
---|
4351 | REAL entr(ngrid, nlay), frac(ngrid, nlay) |
---|
4352 | REAL q(ngrid, nlay) |
---|
4353 | REAL dq(ngrid, nlay) |
---|
4354 | |
---|
4355 | REAL qa(klon, klev), detr(klon, klev), wqd(klon, klev+1) |
---|
4356 | REAL qe(klon, klev), zf, zf2 |
---|
4357 | |
---|
4358 | INTEGER ig, k |
---|
4359 | |
---|
4360 | ! calcul du detrainement |
---|
4361 | |
---|
4362 | DO k = 1, nlay |
---|
4363 | DO ig = 1, ngrid |
---|
4364 | detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
---|
4365 | END DO |
---|
4366 | END DO |
---|
4367 | |
---|
4368 | ! calcul de la valeur dans les ascendances |
---|
4369 | DO ig = 1, ngrid |
---|
4370 | qa(ig, 1) = q(ig, 1) |
---|
4371 | qe(ig, 1) = q(ig, 1) |
---|
4372 | END DO |
---|
4373 | |
---|
4374 | DO k = 2, nlay |
---|
4375 | DO ig = 1, ngrid |
---|
4376 | IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
---|
4377 | zf = 0.5*(frac(ig,k)+frac(ig,k+1)) |
---|
4378 | zf2 = 1./(1.-zf) |
---|
4379 | qa(ig, k) = (fm(ig,k)*qa(ig,k-1)+zf2*entr(ig,k)*q(ig,k))/ & |
---|
4380 | (fm(ig,k+1)+detr(ig,k)+entr(ig,k)*zf*zf2) |
---|
4381 | qe(ig, k) = (q(ig,k)-zf*qa(ig,k))*zf2 |
---|
4382 | ELSE |
---|
4383 | qa(ig, k) = q(ig, k) |
---|
4384 | qe(ig, k) = q(ig, k) |
---|
4385 | END IF |
---|
4386 | END DO |
---|
4387 | END DO |
---|
4388 | |
---|
4389 | DO k = 2, nlay |
---|
4390 | DO ig = 1, ngrid |
---|
4391 | ! wqd(ig,k)=fm(ig,k)*0.5*(q(ig,k-1)+q(ig,k)) |
---|
4392 | wqd(ig, k) = fm(ig, k)*qe(ig, k) |
---|
4393 | END DO |
---|
4394 | END DO |
---|
4395 | DO ig = 1, ngrid |
---|
4396 | wqd(ig, 1) = 0. |
---|
4397 | wqd(ig, nlay+1) = 0. |
---|
4398 | END DO |
---|
4399 | |
---|
4400 | DO k = 1, nlay |
---|
4401 | DO ig = 1, ngrid |
---|
4402 | dq(ig, k) = (detr(ig,k)*qa(ig,k)-entr(ig,k)*qe(ig,k)-wqd(ig,k)+wqd(ig,k & |
---|
4403 | +1))/masse(ig, k) |
---|
4404 | END DO |
---|
4405 | END DO |
---|
4406 | |
---|
4407 | RETURN |
---|
4408 | END SUBROUTINE dqthermcell2 |
---|
4409 | SUBROUTINE dvthermcell2(ngrid, nlay, ptimestep, fm, entr, masse, fraca, & |
---|
4410 | larga, u, v, du, dv, ua, va) |
---|
4411 | USE dimphy |
---|
4412 | IMPLICIT NONE |
---|
4413 | |
---|
4414 | ! ======================================================================= |
---|
4415 | |
---|
4416 | ! Calcul du transport verticale dans la couche limite en presence |
---|
4417 | ! de "thermiques" explicitement representes |
---|
4418 | ! calcul du dq/dt une fois qu'on connait les ascendances |
---|
4419 | |
---|
4420 | ! ======================================================================= |
---|
4421 | |
---|
4422 | include "dimensions.h" |
---|
4423 | ! ccc#include "dimphy.h" |
---|
4424 | |
---|
4425 | INTEGER ngrid, nlay |
---|
4426 | |
---|
4427 | REAL ptimestep |
---|
4428 | REAL masse(ngrid, nlay), fm(ngrid, nlay+1) |
---|
4429 | REAL fraca(ngrid, nlay+1) |
---|
4430 | REAL larga(ngrid) |
---|
4431 | REAL entr(ngrid, nlay) |
---|
4432 | REAL u(ngrid, nlay) |
---|
4433 | REAL ua(ngrid, nlay) |
---|
4434 | REAL du(ngrid, nlay) |
---|
4435 | REAL v(ngrid, nlay) |
---|
4436 | REAL va(ngrid, nlay) |
---|
4437 | REAL dv(ngrid, nlay) |
---|
4438 | |
---|
4439 | REAL qa(klon, klev), detr(klon, klev), zf, zf2 |
---|
4440 | REAL wvd(klon, klev+1), wud(klon, klev+1) |
---|
4441 | REAL gamma0, gamma(klon, klev+1) |
---|
4442 | REAL ue(klon, klev), ve(klon, klev) |
---|
4443 | REAL dua, dva |
---|
4444 | INTEGER iter |
---|
4445 | |
---|
4446 | INTEGER ig, k |
---|
4447 | |
---|
4448 | ! calcul du detrainement |
---|
4449 | |
---|
4450 | DO k = 1, nlay |
---|
4451 | DO ig = 1, ngrid |
---|
4452 | detr(ig, k) = fm(ig, k) - fm(ig, k+1) + entr(ig, k) |
---|
4453 | END DO |
---|
4454 | END DO |
---|
4455 | |
---|
4456 | ! calcul de la valeur dans les ascendances |
---|
4457 | DO ig = 1, ngrid |
---|
4458 | ua(ig, 1) = u(ig, 1) |
---|
4459 | va(ig, 1) = v(ig, 1) |
---|
4460 | ue(ig, 1) = u(ig, 1) |
---|
4461 | ve(ig, 1) = v(ig, 1) |
---|
4462 | END DO |
---|
4463 | |
---|
4464 | DO k = 2, nlay |
---|
4465 | DO ig = 1, ngrid |
---|
4466 | IF ((fm(ig,k+1)+detr(ig,k))*ptimestep>1.E-5*masse(ig,k)) THEN |
---|
4467 | ! On itère sur la valeur du coeff de freinage. |
---|
4468 | ! gamma0=rho(ig,k)*(zlev(ig,k+1)-zlev(ig,k)) |
---|
4469 | gamma0 = masse(ig, k)*sqrt(0.5*(fraca(ig,k+1)+fraca(ig, & |
---|
4470 | k)))*0.5/larga(ig)*1. |
---|
4471 | ! s *0.5 |
---|
4472 | ! gamma0=0. |
---|
4473 | zf = 0.5*(fraca(ig,k)+fraca(ig,k+1)) |
---|
4474 | zf = 0. |
---|
4475 | zf2 = 1./(1.-zf) |
---|
4476 | ! la première fois on multiplie le coefficient de freinage |
---|
4477 | ! par le module du vent dans la couche en dessous. |
---|
4478 | dua = ua(ig, k-1) - u(ig, k-1) |
---|
4479 | dva = va(ig, k-1) - v(ig, k-1) |
---|
4480 | DO iter = 1, 5 |
---|
4481 | ! On choisit une relaxation lineaire. |
---|
4482 | gamma(ig, k) = gamma0 |
---|
4483 | ! On choisit une relaxation quadratique. |
---|
4484 | gamma(ig, k) = gamma0*sqrt(dua**2+dva**2) |
---|
4485 | ua(ig, k) = (fm(ig,k)*ua(ig,k-1)+(zf2*entr(ig,k)+gamma(ig, & |
---|
4486 | k))*u(ig,k))/(fm(ig,k+1)+detr(ig,k)+entr(ig,k)*zf*zf2+gamma(ig,k) & |
---|
4487 | ) |
---|
4488 | va(ig, k) = (fm(ig,k)*va(ig,k-1)+(zf2*entr(ig,k)+gamma(ig, & |
---|
4489 | k))*v(ig,k))/(fm(ig,k+1)+detr(ig,k)+entr(ig,k)*zf*zf2+gamma(ig,k) & |
---|
4490 | ) |
---|
4491 | ! print*,k,ua(ig,k),va(ig,k),u(ig,k),v(ig,k),dua,dva |
---|
4492 | dua = ua(ig, k) - u(ig, k) |
---|
4493 | dva = va(ig, k) - v(ig, k) |
---|
4494 | ue(ig, k) = (u(ig,k)-zf*ua(ig,k))*zf2 |
---|
4495 | ve(ig, k) = (v(ig,k)-zf*va(ig,k))*zf2 |
---|
4496 | END DO |
---|
4497 | ELSE |
---|
4498 | ua(ig, k) = u(ig, k) |
---|
4499 | va(ig, k) = v(ig, k) |
---|
4500 | ue(ig, k) = u(ig, k) |
---|
4501 | ve(ig, k) = v(ig, k) |
---|
4502 | gamma(ig, k) = 0. |
---|
4503 | END IF |
---|
4504 | END DO |
---|
4505 | END DO |
---|
4506 | |
---|
4507 | DO k = 2, nlay |
---|
4508 | DO ig = 1, ngrid |
---|
4509 | wud(ig, k) = fm(ig, k)*ue(ig, k) |
---|
4510 | wvd(ig, k) = fm(ig, k)*ve(ig, k) |
---|
4511 | END DO |
---|
4512 | END DO |
---|
4513 | DO ig = 1, ngrid |
---|
4514 | wud(ig, 1) = 0. |
---|
4515 | wud(ig, nlay+1) = 0. |
---|
4516 | wvd(ig, 1) = 0. |
---|
4517 | wvd(ig, nlay+1) = 0. |
---|
4518 | END DO |
---|
4519 | |
---|
4520 | DO k = 1, nlay |
---|
4521 | DO ig = 1, ngrid |
---|
4522 | du(ig, k) = ((detr(ig,k)+gamma(ig,k))*ua(ig,k)-(entr(ig,k)+gamma(ig, & |
---|
4523 | k))*ue(ig,k)-wud(ig,k)+wud(ig,k+1))/masse(ig, k) |
---|
4524 | dv(ig, k) = ((detr(ig,k)+gamma(ig,k))*va(ig,k)-(entr(ig,k)+gamma(ig, & |
---|
4525 | k))*ve(ig,k)-wvd(ig,k)+wvd(ig,k+1))/masse(ig, k) |
---|
4526 | END DO |
---|
4527 | END DO |
---|
4528 | |
---|
4529 | RETURN |
---|
4530 | END SUBROUTINE dvthermcell2 |
---|
4531 | SUBROUTINE thermcell_sec(ngrid, nlay, ptimestep, pplay, pplev, pphi, zlev, & |
---|
4532 | pu, pv, pt, po, pduadj, pdvadj, pdtadj, pdoadj, fm0, entr0 & ! s |
---|
4533 | ! ,pu_therm,pv_therm |
---|
4534 | , r_aspect, l_mix, w2di, tho) |
---|
4535 | |
---|
4536 | USE dimphy |
---|
4537 | IMPLICIT NONE |
---|
4538 | |
---|
4539 | ! ======================================================================= |
---|
4540 | |
---|
4541 | ! Calcul du transport verticale dans la couche limite en presence |
---|
4542 | ! de "thermiques" explicitement representes |
---|
4543 | |
---|
4544 | ! Réécriture à partir d'un listing papier à Habas, le 14/02/00 |
---|
4545 | |
---|
4546 | ! le thermique est supposé homogène et dissipé par mélange avec |
---|
4547 | ! son environnement. la longueur l_mix contrôle l'efficacité du |
---|
4548 | ! mélange |
---|
4549 | |
---|
4550 | ! Le calcul du transport des différentes espèces se fait en prenant |
---|
4551 | ! en compte: |
---|
4552 | ! 1. un flux de masse montant |
---|
4553 | ! 2. un flux de masse descendant |
---|
4554 | ! 3. un entrainement |
---|
4555 | ! 4. un detrainement |
---|
4556 | |
---|
4557 | ! ======================================================================= |
---|
4558 | |
---|
4559 | ! ----------------------------------------------------------------------- |
---|
4560 | ! declarations: |
---|
4561 | ! ------------- |
---|
4562 | |
---|
4563 | include "dimensions.h" |
---|
4564 | ! ccc#include "dimphy.h" |
---|
4565 | include "YOMCST.h" |
---|
4566 | |
---|
4567 | ! arguments: |
---|
4568 | ! ---------- |
---|
4569 | |
---|
4570 | INTEGER ngrid, nlay, w2di |
---|
4571 | REAL tho |
---|
4572 | REAL ptimestep, l_mix, r_aspect |
---|
4573 | REAL pt(ngrid, nlay), pdtadj(ngrid, nlay) |
---|
4574 | REAL pu(ngrid, nlay), pduadj(ngrid, nlay) |
---|
4575 | REAL pv(ngrid, nlay), pdvadj(ngrid, nlay) |
---|
4576 | REAL po(ngrid, nlay), pdoadj(ngrid, nlay) |
---|
4577 | REAL pplay(ngrid, nlay), pplev(ngrid, nlay+1) |
---|
4578 | REAL pphi(ngrid, nlay) |
---|
4579 | |
---|
4580 | INTEGER idetr |
---|
4581 | SAVE idetr |
---|
4582 | DATA idetr/3/ |
---|
4583 | !$OMP THREADPRIVATE(idetr) |
---|
4584 | |
---|
4585 | ! local: |
---|
4586 | ! ------ |
---|
4587 | |
---|
4588 | INTEGER ig, k, l, lmaxa(klon), lmix(klon) |
---|
4589 | REAL zsortie1d(klon) |
---|
4590 | ! CR: on remplace lmax(klon,klev+1) |
---|
4591 | INTEGER lmax(klon), lmin(klon), lentr(klon) |
---|
4592 | REAL linter(klon) |
---|
4593 | REAL zmix(klon), fracazmix(klon) |
---|
4594 | ! RC |
---|
4595 | REAL zmax(klon), zw, zz, zw2(klon, klev+1), ztva(klon, klev), zzz |
---|
4596 | |
---|
4597 | REAL zlev(klon, klev+1), zlay(klon, klev) |
---|
4598 | REAL zh(klon, klev), zdhadj(klon, klev) |
---|
4599 | REAL ztv(klon, klev) |
---|
4600 | REAL zu(klon, klev), zv(klon, klev), zo(klon, klev) |
---|
4601 | REAL wh(klon, klev+1) |
---|
4602 | REAL wu(klon, klev+1), wv(klon, klev+1), wo(klon, klev+1) |
---|
4603 | REAL zla(klon, klev+1) |
---|
4604 | REAL zwa(klon, klev+1) |
---|
4605 | REAL zld(klon, klev+1) |
---|
4606 | REAL zwd(klon, klev+1) |
---|
4607 | REAL zsortie(klon, klev) |
---|
4608 | REAL zva(klon, klev) |
---|
4609 | REAL zua(klon, klev) |
---|
4610 | REAL zoa(klon, klev) |
---|
4611 | |
---|
4612 | REAL zha(klon, klev) |
---|
4613 | REAL wa_moy(klon, klev+1) |
---|
4614 | REAL fraca(klon, klev+1) |
---|
4615 | REAL fracc(klon, klev+1) |
---|
4616 | REAL zf, zf2 |
---|
4617 | REAL thetath2(klon, klev), wth2(klon, klev) |
---|
4618 | ! common/comtherm/thetath2,wth2 |
---|
4619 | |
---|
4620 | REAL count_time |
---|
4621 | INTEGER ialt |
---|
4622 | |
---|
4623 | LOGICAL sorties |
---|
4624 | REAL rho(klon, klev), rhobarz(klon, klev+1), masse(klon, klev) |
---|
4625 | REAL zpspsk(klon, klev) |
---|
4626 | |
---|
4627 | ! real wmax(klon,klev),wmaxa(klon) |
---|
4628 | REAL wmax(klon), wmaxa(klon) |
---|
4629 | REAL wa(klon, klev, klev+1) |
---|
4630 | REAL wd(klon, klev+1) |
---|
4631 | REAL larg_part(klon, klev, klev+1) |
---|
4632 | REAL fracd(klon, klev+1) |
---|
4633 | REAL xxx(klon, klev+1) |
---|
4634 | REAL larg_cons(klon, klev+1) |
---|
4635 | REAL larg_detr(klon, klev+1) |
---|
4636 | REAL fm0(klon, klev+1), entr0(klon, klev), detr(klon, klev) |
---|
4637 | REAL pu_therm(klon, klev), pv_therm(klon, klev) |
---|
4638 | REAL fm(klon, klev+1), entr(klon, klev) |
---|
4639 | REAL fmc(klon, klev+1) |
---|
4640 | |
---|
4641 | ! CR:nouvelles variables |
---|
4642 | REAL f_star(klon, klev+1), entr_star(klon, klev) |
---|
4643 | REAL entr_star_tot(klon), entr_star2(klon) |
---|
4644 | REAL f(klon), f0(klon) |
---|
4645 | REAL zlevinter(klon) |
---|
4646 | LOGICAL first |
---|
4647 | DATA first/.FALSE./ |
---|
4648 | SAVE first |
---|
4649 | !$OMP THREADPRIVATE(first) |
---|
4650 | ! RC |
---|
4651 | |
---|
4652 | CHARACTER *2 str2 |
---|
4653 | CHARACTER *10 str10 |
---|
4654 | |
---|
4655 | CHARACTER (LEN=20) :: modname = 'thermcell_sec' |
---|
4656 | CHARACTER (LEN=80) :: abort_message |
---|
4657 | |
---|
4658 | LOGICAL vtest(klon), down |
---|
4659 | |
---|
4660 | EXTERNAL scopy |
---|
4661 | |
---|
4662 | INTEGER ncorrec, ll |
---|
4663 | SAVE ncorrec |
---|
4664 | DATA ncorrec/0/ |
---|
4665 | !$OMP THREADPRIVATE(ncorrec) |
---|
4666 | |
---|
4667 | |
---|
4668 | ! ----------------------------------------------------------------------- |
---|
4669 | ! initialisation: |
---|
4670 | ! --------------- |
---|
4671 | |
---|
4672 | sorties = .TRUE. |
---|
4673 | IF (ngrid/=klon) THEN |
---|
4674 | PRINT * |
---|
4675 | PRINT *, 'STOP dans convadj' |
---|
4676 | PRINT *, 'ngrid =', ngrid |
---|
4677 | PRINT *, 'klon =', klon |
---|
4678 | END IF |
---|
4679 | |
---|
4680 | ! ----------------------------------------------------------------------- |
---|
4681 | ! incrementation eventuelle de tendances precedentes: |
---|
4682 | ! --------------------------------------------------- |
---|
4683 | |
---|
4684 | ! print*,'0 OK convect8' |
---|
4685 | |
---|
4686 | DO l = 1, nlay |
---|
4687 | DO ig = 1, ngrid |
---|
4688 | zpspsk(ig, l) = (pplay(ig,l)/pplev(ig,1))**rkappa |
---|
4689 | zh(ig, l) = pt(ig, l)/zpspsk(ig, l) |
---|
4690 | zu(ig, l) = pu(ig, l) |
---|
4691 | zv(ig, l) = pv(ig, l) |
---|
4692 | zo(ig, l) = po(ig, l) |
---|
4693 | ztv(ig, l) = zh(ig, l)*(1.+0.61*zo(ig,l)) |
---|
4694 | END DO |
---|
4695 | END DO |
---|
4696 | |
---|
4697 | ! print*,'1 OK convect8' |
---|
4698 | ! -------------------- |
---|
4699 | |
---|
4700 | |
---|
4701 | ! + + + + + + + + + + + |
---|
4702 | |
---|
4703 | |
---|
4704 | ! wa, fraca, wd, fracd -------------------- zlev(2), rhobarz |
---|
4705 | ! wh,wt,wo ... |
---|
4706 | |
---|
4707 | ! + + + + + + + + + + + zh,zu,zv,zo,rho |
---|
4708 | |
---|
4709 | |
---|
4710 | ! -------------------- zlev(1) |
---|
4711 | ! \\\\\\\\\\\\\\\\\\\\ |
---|
4712 | |
---|
4713 | |
---|
4714 | |
---|
4715 | ! ----------------------------------------------------------------------- |
---|
4716 | ! Calcul des altitudes des couches |
---|
4717 | ! ----------------------------------------------------------------------- |
---|
4718 | |
---|
4719 | DO l = 2, nlay |
---|
4720 | DO ig = 1, ngrid |
---|
4721 | zlev(ig, l) = 0.5*(pphi(ig,l)+pphi(ig,l-1))/rg |
---|
4722 | END DO |
---|
4723 | END DO |
---|
4724 | DO ig = 1, ngrid |
---|
4725 | zlev(ig, 1) = 0. |
---|
4726 | zlev(ig, nlay+1) = (2.*pphi(ig,klev)-pphi(ig,klev-1))/rg |
---|
4727 | END DO |
---|
4728 | DO l = 1, nlay |
---|
4729 | DO ig = 1, ngrid |
---|
4730 | zlay(ig, l) = pphi(ig, l)/rg |
---|
4731 | END DO |
---|
4732 | END DO |
---|
4733 | |
---|
4734 | ! print*,'2 OK convect8' |
---|
4735 | ! ----------------------------------------------------------------------- |
---|
4736 | ! Calcul des densites |
---|
4737 | ! ----------------------------------------------------------------------- |
---|
4738 | |
---|
4739 | DO l = 1, nlay |
---|
4740 | DO ig = 1, ngrid |
---|
4741 | rho(ig, l) = pplay(ig, l)/(zpspsk(ig,l)*rd*zh(ig,l)) |
---|
4742 | END DO |
---|
4743 | END DO |
---|
4744 | |
---|
4745 | DO l = 2, nlay |
---|
4746 | DO ig = 1, ngrid |
---|
4747 | rhobarz(ig, l) = 0.5*(rho(ig,l)+rho(ig,l-1)) |
---|
4748 | END DO |
---|
4749 | END DO |
---|
4750 | |
---|
4751 | DO k = 1, nlay |
---|
4752 | DO l = 1, nlay + 1 |
---|
4753 | DO ig = 1, ngrid |
---|
4754 | wa(ig, k, l) = 0. |
---|
4755 | END DO |
---|
4756 | END DO |
---|
4757 | END DO |
---|
4758 | |
---|
4759 | ! print*,'3 OK convect8' |
---|
4760 | ! ------------------------------------------------------------------ |
---|
4761 | ! Calcul de w2, quarre de w a partir de la cape |
---|
4762 | ! a partir de w2, on calcule wa, vitesse de l'ascendance |
---|
4763 | |
---|
4764 | ! ATTENTION: Dans cette version, pour cause d'economie de memoire, |
---|
4765 | ! w2 est stoke dans wa |
---|
4766 | |
---|
4767 | ! ATTENTION: dans convect8, on n'utilise le calcule des wa |
---|
4768 | ! independants par couches que pour calculer l'entrainement |
---|
4769 | ! a la base et la hauteur max de l'ascendance. |
---|
4770 | |
---|
4771 | ! Indicages: |
---|
4772 | ! l'ascendance provenant du niveau k traverse l'interface l avec |
---|
4773 | ! une vitesse wa(k,l). |
---|
4774 | |
---|
4775 | ! -------------------- |
---|
4776 | |
---|
4777 | ! + + + + + + + + + + |
---|
4778 | |
---|
4779 | ! wa(k,l) ---- -------------------- l |
---|
4780 | ! /\ |
---|
4781 | ! /||\ + + + + + + + + + + |
---|
4782 | ! || |
---|
4783 | ! || -------------------- |
---|
4784 | ! || |
---|
4785 | ! || + + + + + + + + + + |
---|
4786 | ! || |
---|
4787 | ! || -------------------- |
---|
4788 | ! ||__ |
---|
4789 | ! |___ + + + + + + + + + + k |
---|
4790 | |
---|
4791 | ! -------------------- |
---|
4792 | |
---|
4793 | |
---|
4794 | |
---|
4795 | ! ------------------------------------------------------------------ |
---|
4796 | |
---|
4797 | ! CR: ponderation entrainement des couches instables |
---|
4798 | ! def des entr_star tels que entr=f*entr_star |
---|
4799 | DO l = 1, klev |
---|
4800 | DO ig = 1, ngrid |
---|
4801 | entr_star(ig, l) = 0. |
---|
4802 | END DO |
---|
4803 | END DO |
---|
4804 | ! determination de la longueur de la couche d entrainement |
---|
4805 | DO ig = 1, ngrid |
---|
4806 | lentr(ig) = 1 |
---|
4807 | END DO |
---|
4808 | |
---|
4809 | ! on ne considere que les premieres couches instables |
---|
4810 | DO k = nlay - 2, 1, -1 |
---|
4811 | DO ig = 1, ngrid |
---|
4812 | IF (ztv(ig,k)>ztv(ig,k+1) .AND. ztv(ig,k+1)<=ztv(ig,k+2)) THEN |
---|
4813 | lentr(ig) = k |
---|
4814 | END IF |
---|
4815 | END DO |
---|
4816 | END DO |
---|
4817 | |
---|
4818 | ! determination du lmin: couche d ou provient le thermique |
---|
4819 | DO ig = 1, ngrid |
---|
4820 | lmin(ig) = 1 |
---|
4821 | END DO |
---|
4822 | DO ig = 1, ngrid |
---|
4823 | DO l = nlay, 2, -1 |
---|
4824 | IF (ztv(ig,l-1)>ztv(ig,l)) THEN |
---|
4825 | lmin(ig) = l - 1 |
---|
4826 | END IF |
---|
4827 | END DO |
---|
4828 | END DO |
---|
4829 | |
---|
4830 | ! definition de l'entrainement des couches |
---|
4831 | DO l = 1, klev - 1 |
---|
4832 | DO ig = 1, ngrid |
---|
4833 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. l>=lmin(ig) .AND. l<=lentr(ig)) THEN |
---|
4834 | entr_star(ig, l) = (ztv(ig,l)-ztv(ig,l+1))** & ! s |
---|
4835 | ! (zlev(ig,l+1)-zlev(ig,l)) |
---|
4836 | sqrt(zlev(ig,l+1)) |
---|
4837 | END IF |
---|
4838 | END DO |
---|
4839 | END DO |
---|
4840 | ! pas de thermique si couche 1 stable |
---|
4841 | DO ig = 1, ngrid |
---|
4842 | IF (lmin(ig)>1) THEN |
---|
4843 | DO l = 1, klev |
---|
4844 | entr_star(ig, l) = 0. |
---|
4845 | END DO |
---|
4846 | END IF |
---|
4847 | END DO |
---|
4848 | ! calcul de l entrainement total |
---|
4849 | DO ig = 1, ngrid |
---|
4850 | entr_star_tot(ig) = 0. |
---|
4851 | END DO |
---|
4852 | DO ig = 1, ngrid |
---|
4853 | DO k = 1, klev |
---|
4854 | entr_star_tot(ig) = entr_star_tot(ig) + entr_star(ig, k) |
---|
4855 | END DO |
---|
4856 | END DO |
---|
4857 | |
---|
4858 | ! print*,'fin calcul entr_star' |
---|
4859 | DO k = 1, klev |
---|
4860 | DO ig = 1, ngrid |
---|
4861 | ztva(ig, k) = ztv(ig, k) |
---|
4862 | END DO |
---|
4863 | END DO |
---|
4864 | ! RC |
---|
4865 | ! print*,'7 OK convect8' |
---|
4866 | DO k = 1, klev + 1 |
---|
4867 | DO ig = 1, ngrid |
---|
4868 | zw2(ig, k) = 0. |
---|
4869 | fmc(ig, k) = 0. |
---|
4870 | ! CR |
---|
4871 | f_star(ig, k) = 0. |
---|
4872 | ! RC |
---|
4873 | larg_cons(ig, k) = 0. |
---|
4874 | larg_detr(ig, k) = 0. |
---|
4875 | wa_moy(ig, k) = 0. |
---|
4876 | END DO |
---|
4877 | END DO |
---|
4878 | |
---|
4879 | ! print*,'8 OK convect8' |
---|
4880 | DO ig = 1, ngrid |
---|
4881 | linter(ig) = 1. |
---|
4882 | lmaxa(ig) = 1 |
---|
4883 | lmix(ig) = 1 |
---|
4884 | wmaxa(ig) = 0. |
---|
4885 | END DO |
---|
4886 | |
---|
4887 | ! CR: |
---|
4888 | DO l = 1, nlay - 2 |
---|
4889 | DO ig = 1, ngrid |
---|
4890 | IF (ztv(ig,l)>ztv(ig,l+1) .AND. entr_star(ig,l)>1.E-10 .AND. & |
---|
4891 | zw2(ig,l)<1E-10) THEN |
---|
4892 | f_star(ig, l+1) = entr_star(ig, l) |
---|
4893 | ! test:calcul de dteta |
---|
4894 | zw2(ig, l+1) = 2.*rg*(ztv(ig,l)-ztv(ig,l+1))/ztv(ig, l+1)* & |
---|
4895 | (zlev(ig,l+1)-zlev(ig,l))*0.4*pphi(ig, l)/(pphi(ig,l+1)-pphi(ig,l)) |
---|
4896 | larg_detr(ig, l) = 0. |
---|
4897 | ELSE IF ((zw2(ig,l)>=1E-10) .AND. (f_star(ig,l)+entr_star(ig, & |
---|
4898 | l)>1.E-10)) THEN |
---|
4899 | f_star(ig, l+1) = f_star(ig, l) + entr_star(ig, l) |
---|
4900 | ztva(ig, l) = (f_star(ig,l)*ztva(ig,l-1)+entr_star(ig,l)*ztv(ig,l))/ & |
---|
4901 | f_star(ig, l+1) |
---|
4902 | zw2(ig, l+1) = zw2(ig, l)*(f_star(ig,l)/f_star(ig,l+1))**2 + & |
---|
4903 | 2.*rg*(ztva(ig,l)-ztv(ig,l))/ztv(ig, l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
4904 | END IF |
---|
4905 | ! determination de zmax continu par interpolation lineaire |
---|
4906 | IF (zw2(ig,l+1)<0.) THEN |
---|
4907 | ! test |
---|
4908 | IF (abs(zw2(ig,l+1)-zw2(ig,l))<1E-10) THEN |
---|
4909 | ! print*,'pb linter' |
---|
4910 | END IF |
---|
4911 | linter(ig) = (l*(zw2(ig,l+1)-zw2(ig,l))-zw2(ig,l))/(zw2(ig,l+1)-zw2( & |
---|
4912 | ig,l)) |
---|
4913 | zw2(ig, l+1) = 0. |
---|
4914 | lmaxa(ig) = l |
---|
4915 | ELSE |
---|
4916 | IF (zw2(ig,l+1)<0.) THEN |
---|
4917 | ! print*,'pb1 zw2<0' |
---|
4918 | END IF |
---|
4919 | wa_moy(ig, l+1) = sqrt(zw2(ig,l+1)) |
---|
4920 | END IF |
---|
4921 | IF (wa_moy(ig,l+1)>wmaxa(ig)) THEN |
---|
4922 | ! lmix est le niveau de la couche ou w (wa_moy) est maximum |
---|
4923 | lmix(ig) = l + 1 |
---|
4924 | wmaxa(ig) = wa_moy(ig, l+1) |
---|
4925 | END IF |
---|
4926 | END DO |
---|
4927 | END DO |
---|
4928 | ! print*,'fin calcul zw2' |
---|
4929 | |
---|
4930 | ! Calcul de la couche correspondant a la hauteur du thermique |
---|
4931 | DO ig = 1, ngrid |
---|
4932 | lmax(ig) = lentr(ig) |
---|
4933 | END DO |
---|
4934 | DO ig = 1, ngrid |
---|
4935 | DO l = nlay, lentr(ig) + 1, -1 |
---|
4936 | IF (zw2(ig,l)<=1.E-10) THEN |
---|
4937 | lmax(ig) = l - 1 |
---|
4938 | END IF |
---|
4939 | END DO |
---|
4940 | END DO |
---|
4941 | ! pas de thermique si couche 1 stable |
---|
4942 | DO ig = 1, ngrid |
---|
4943 | IF (lmin(ig)>1) THEN |
---|
4944 | lmax(ig) = 1 |
---|
4945 | lmin(ig) = 1 |
---|
4946 | END IF |
---|
4947 | END DO |
---|
4948 | |
---|
4949 | ! Determination de zw2 max |
---|
4950 | DO ig = 1, ngrid |
---|
4951 | wmax(ig) = 0. |
---|
4952 | END DO |
---|
4953 | |
---|
4954 | DO l = 1, nlay |
---|
4955 | DO ig = 1, ngrid |
---|
4956 | IF (l<=lmax(ig)) THEN |
---|
4957 | IF (zw2(ig,l)<0.) THEN |
---|
4958 | ! print*,'pb2 zw2<0' |
---|
4959 | END IF |
---|
4960 | zw2(ig, l) = sqrt(zw2(ig,l)) |
---|
4961 | wmax(ig) = max(wmax(ig), zw2(ig,l)) |
---|
4962 | ELSE |
---|
4963 | zw2(ig, l) = 0. |
---|
4964 | END IF |
---|
4965 | END DO |
---|
4966 | END DO |
---|
4967 | |
---|
4968 | ! Longueur caracteristique correspondant a la hauteur des thermiques. |
---|
4969 | DO ig = 1, ngrid |
---|
4970 | zmax(ig) = 0. |
---|
4971 | zlevinter(ig) = zlev(ig, 1) |
---|
4972 | END DO |
---|
4973 | DO ig = 1, ngrid |
---|
4974 | ! calcul de zlevinter |
---|
4975 | zlevinter(ig) = (zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig)))*linter(ig) + & |
---|
4976 | zlev(ig, lmax(ig)) - lmax(ig)*(zlev(ig,lmax(ig)+1)-zlev(ig,lmax(ig))) |
---|
4977 | zmax(ig) = max(zmax(ig), zlevinter(ig)-zlev(ig,lmin(ig))) |
---|
4978 | END DO |
---|
4979 | |
---|
4980 | ! print*,'avant fermeture' |
---|
4981 | ! Fermeture,determination de f |
---|
4982 | DO ig = 1, ngrid |
---|
4983 | entr_star2(ig) = 0. |
---|
4984 | END DO |
---|
4985 | DO ig = 1, ngrid |
---|
4986 | IF (entr_star_tot(ig)<1.E-10) THEN |
---|
4987 | f(ig) = 0. |
---|
4988 | ELSE |
---|
4989 | DO k = lmin(ig), lentr(ig) |
---|
4990 | entr_star2(ig) = entr_star2(ig) + entr_star(ig, k)**2/(rho(ig,k)*( & |
---|
4991 | zlev(ig,k+1)-zlev(ig,k))) |
---|
4992 | END DO |
---|
4993 | ! Nouvelle fermeture |
---|
4994 | f(ig) = wmax(ig)/(max(500.,zmax(ig))*r_aspect*entr_star2(ig))* & |
---|
4995 | entr_star_tot(ig) |
---|
4996 | ! test |
---|
4997 | ! if (first) then |
---|
4998 | ! f(ig)=f(ig)+(f0(ig)-f(ig))*exp(-ptimestep/zmax(ig) |
---|
4999 | ! s *wmax(ig)) |
---|
5000 | ! endif |
---|
5001 | END IF |
---|
5002 | ! f0(ig)=f(ig) |
---|
5003 | ! first=.true. |
---|
5004 | END DO |
---|
5005 | ! print*,'apres fermeture' |
---|
5006 | |
---|
5007 | ! Calcul de l'entrainement |
---|
5008 | DO k = 1, klev |
---|
5009 | DO ig = 1, ngrid |
---|
5010 | entr(ig, k) = f(ig)*entr_star(ig, k) |
---|
5011 | END DO |
---|
5012 | END DO |
---|
5013 | ! CR:test pour entrainer moins que la masse |
---|
5014 | DO ig = 1, ngrid |
---|
5015 | DO l = 1, lentr(ig) |
---|
5016 | IF ((entr(ig,l)*ptimestep)>(0.9*masse(ig,l))) THEN |
---|
5017 | entr(ig, l+1) = entr(ig, l+1) + entr(ig, l) - & |
---|
5018 | 0.9*masse(ig, l)/ptimestep |
---|
5019 | entr(ig, l) = 0.9*masse(ig, l)/ptimestep |
---|
5020 | END IF |
---|
5021 | END DO |
---|
5022 | END DO |
---|
5023 | ! CR: fin test |
---|
5024 | ! Calcul des flux |
---|
5025 | DO ig = 1, ngrid |
---|
5026 | DO l = 1, lmax(ig) - 1 |
---|
5027 | fmc(ig, l+1) = fmc(ig, l) + entr(ig, l) |
---|
5028 | END DO |
---|
5029 | END DO |
---|
5030 | |
---|
5031 | ! RC |
---|
5032 | |
---|
5033 | |
---|
5034 | ! print*,'9 OK convect8' |
---|
5035 | ! print*,'WA1 ',wa_moy |
---|
5036 | |
---|
5037 | ! determination de l'indice du debut de la mixed layer ou w decroit |
---|
5038 | |
---|
5039 | ! calcul de la largeur de chaque ascendance dans le cas conservatif. |
---|
5040 | ! dans ce cas simple, on suppose que la largeur de l'ascendance provenant |
---|
5041 | ! d'une couche est égale à la hauteur de la couche alimentante. |
---|
5042 | ! La vitesse maximale dans l'ascendance est aussi prise comme estimation |
---|
5043 | ! de la vitesse d'entrainement horizontal dans la couche alimentante. |
---|
5044 | |
---|
5045 | DO l = 2, nlay |
---|
5046 | DO ig = 1, ngrid |
---|
5047 | IF (l<=lmaxa(ig)) THEN |
---|
5048 | zw = max(wa_moy(ig,l), 1.E-10) |
---|
5049 | larg_cons(ig, l) = zmax(ig)*r_aspect*fmc(ig, l)/(rhobarz(ig,l)*zw) |
---|
5050 | END IF |
---|
5051 | END DO |
---|
5052 | END DO |
---|
5053 | |
---|
5054 | DO l = 2, nlay |
---|
5055 | DO ig = 1, ngrid |
---|
5056 | IF (l<=lmaxa(ig)) THEN |
---|
5057 | ! if (idetr.eq.0) then |
---|
5058 | ! cette option est finalement en dur. |
---|
5059 | IF ((l_mix*zlev(ig,l))<0.) THEN |
---|
5060 | ! print*,'pb l_mix*zlev<0' |
---|
5061 | END IF |
---|
5062 | ! CR: test: nouvelle def de lambda |
---|
5063 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
5064 | IF (zw2(ig,l)>1.E-10) THEN |
---|
5065 | larg_detr(ig, l) = sqrt((l_mix/zw2(ig,l))*zlev(ig,l)) |
---|
5066 | ELSE |
---|
5067 | larg_detr(ig, l) = sqrt(l_mix*zlev(ig,l)) |
---|
5068 | END IF |
---|
5069 | ! RC |
---|
5070 | ! else if (idetr.eq.1) then |
---|
5071 | ! larg_detr(ig,l)=larg_cons(ig,l) |
---|
5072 | ! s *sqrt(l_mix*zlev(ig,l))/larg_cons(ig,lmix(ig)) |
---|
5073 | ! else if (idetr.eq.2) then |
---|
5074 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
5075 | ! s *sqrt(wa_moy(ig,l)) |
---|
5076 | ! else if (idetr.eq.4) then |
---|
5077 | ! larg_detr(ig,l)=sqrt(l_mix*zlev(ig,l)) |
---|
5078 | ! s *wa_moy(ig,l) |
---|
5079 | ! endif |
---|
5080 | END IF |
---|
5081 | END DO |
---|
5082 | END DO |
---|
5083 | |
---|
5084 | ! print*,'10 OK convect8' |
---|
5085 | ! print*,'WA2 ',wa_moy |
---|
5086 | ! calcul de la fraction de la maille concernée par l'ascendance en tenant |
---|
5087 | ! compte de l'epluchage du thermique. |
---|
5088 | |
---|
5089 | ! CR def de zmix continu (profil parabolique des vitesses) |
---|
5090 | DO ig = 1, ngrid |
---|
5091 | IF (lmix(ig)>1.) THEN |
---|
5092 | ! test |
---|
5093 | IF (((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
5094 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
5095 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))- & |
---|
5096 | (zlev(ig,lmix(ig)))))>1E-10) THEN |
---|
5097 | |
---|
5098 | zmix(ig) = ((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)) & |
---|
5099 | )**2-(zlev(ig,lmix(ig)+1))**2)-(zw2(ig,lmix(ig))-zw2(ig, & |
---|
5100 | lmix(ig)+1))*((zlev(ig,lmix(ig)-1))**2-(zlev(ig,lmix(ig)))**2))/ & |
---|
5101 | (2.*((zw2(ig,lmix(ig)-1)-zw2(ig,lmix(ig)))*((zlev(ig,lmix(ig)))- & |
---|
5102 | (zlev(ig,lmix(ig)+1)))-(zw2(ig,lmix(ig))- & |
---|
5103 | zw2(ig,lmix(ig)+1))*((zlev(ig,lmix(ig)-1))-(zlev(ig,lmix(ig)))))) |
---|
5104 | ELSE |
---|
5105 | zmix(ig) = zlev(ig, lmix(ig)) |
---|
5106 | ! print*,'pb zmix' |
---|
5107 | END IF |
---|
5108 | ELSE |
---|
5109 | zmix(ig) = 0. |
---|
5110 | END IF |
---|
5111 | ! test |
---|
5112 | IF ((zmax(ig)-zmix(ig))<0.) THEN |
---|
5113 | zmix(ig) = 0.99*zmax(ig) |
---|
5114 | ! print*,'pb zmix>zmax' |
---|
5115 | END IF |
---|
5116 | END DO |
---|
5117 | |
---|
5118 | ! calcul du nouveau lmix correspondant |
---|
5119 | DO ig = 1, ngrid |
---|
5120 | DO l = 1, klev |
---|
5121 | IF (zmix(ig)>=zlev(ig,l) .AND. zmix(ig)<zlev(ig,l+1)) THEN |
---|
5122 | lmix(ig) = l |
---|
5123 | END IF |
---|
5124 | END DO |
---|
5125 | END DO |
---|
5126 | |
---|
5127 | DO l = 2, nlay |
---|
5128 | DO ig = 1, ngrid |
---|
5129 | IF (larg_cons(ig,l)>1.) THEN |
---|
5130 | ! print*,ig,l,lmix(ig),lmaxa(ig),larg_cons(ig,l),' KKK' |
---|
5131 | fraca(ig, l) = (larg_cons(ig,l)-larg_detr(ig,l))/(r_aspect*zmax(ig)) |
---|
5132 | ! test |
---|
5133 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
5134 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
5135 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
5136 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
5137 | ELSE |
---|
5138 | ! wa_moy(ig,l)=0. |
---|
5139 | fraca(ig, l) = 0. |
---|
5140 | fracc(ig, l) = 0. |
---|
5141 | fracd(ig, l) = 1. |
---|
5142 | END IF |
---|
5143 | END DO |
---|
5144 | END DO |
---|
5145 | ! CR: calcul de fracazmix |
---|
5146 | DO ig = 1, ngrid |
---|
5147 | fracazmix(ig) = (fraca(ig,lmix(ig)+1)-fraca(ig,lmix(ig)))/ & |
---|
5148 | (zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig)))*zmix(ig) + & |
---|
5149 | fraca(ig, lmix(ig)) - zlev(ig, lmix(ig))*(fraca(ig,lmix(ig)+1)-fraca(ig & |
---|
5150 | ,lmix(ig)))/(zlev(ig,lmix(ig)+1)-zlev(ig,lmix(ig))) |
---|
5151 | END DO |
---|
5152 | |
---|
5153 | DO l = 2, nlay |
---|
5154 | DO ig = 1, ngrid |
---|
5155 | IF (larg_cons(ig,l)>1.) THEN |
---|
5156 | IF (l>lmix(ig)) THEN |
---|
5157 | ! test |
---|
5158 | IF (zmax(ig)-zmix(ig)<1.E-10) THEN |
---|
5159 | ! print*,'pb xxx' |
---|
5160 | xxx(ig, l) = (lmaxa(ig)+1.-l)/(lmaxa(ig)+1.-lmix(ig)) |
---|
5161 | ELSE |
---|
5162 | xxx(ig, l) = (zmax(ig)-zlev(ig,l))/(zmax(ig)-zmix(ig)) |
---|
5163 | END IF |
---|
5164 | IF (idetr==0) THEN |
---|
5165 | fraca(ig, l) = fracazmix(ig) |
---|
5166 | ELSE IF (idetr==1) THEN |
---|
5167 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l) |
---|
5168 | ELSE IF (idetr==2) THEN |
---|
5169 | fraca(ig, l) = fracazmix(ig)*(1.-(1.-xxx(ig,l))**2) |
---|
5170 | ELSE |
---|
5171 | fraca(ig, l) = fracazmix(ig)*xxx(ig, l)**2 |
---|
5172 | END IF |
---|
5173 | ! print*,ig,l,lmix(ig),lmaxa(ig),xxx(ig,l),'LLLLLLL' |
---|
5174 | fraca(ig, l) = max(fraca(ig,l), 0.) |
---|
5175 | fraca(ig, l) = min(fraca(ig,l), 0.5) |
---|
5176 | fracd(ig, l) = 1. - fraca(ig, l) |
---|
5177 | fracc(ig, l) = larg_cons(ig, l)/(r_aspect*zmax(ig)) |
---|
5178 | END IF |
---|
5179 | END IF |
---|
5180 | END DO |
---|
5181 | END DO |
---|
5182 | |
---|
5183 | ! print*,'fin calcul fraca' |
---|
5184 | ! print*,'11 OK convect8' |
---|
5185 | ! print*,'Ea3 ',wa_moy |
---|
5186 | ! ------------------------------------------------------------------ |
---|
5187 | ! Calcul de fracd, wd |
---|
5188 | ! somme wa - wd = 0 |
---|
5189 | ! ------------------------------------------------------------------ |
---|
5190 | |
---|
5191 | |
---|
5192 | DO ig = 1, ngrid |
---|
5193 | fm(ig, 1) = 0. |
---|
5194 | fm(ig, nlay+1) = 0. |
---|
5195 | END DO |
---|
5196 | |
---|
5197 | DO l = 2, nlay |
---|
5198 | DO ig = 1, ngrid |
---|
5199 | fm(ig, l) = fraca(ig, l)*wa_moy(ig, l)*rhobarz(ig, l) |
---|
5200 | ! CR:test |
---|
5201 | IF (entr(ig,l-1)<1E-10 .AND. fm(ig,l)>fm(ig,l-1) .AND. l>lmix(ig)) THEN |
---|
5202 | fm(ig, l) = fm(ig, l-1) |
---|
5203 | ! write(1,*)'ajustement fm, l',l |
---|
5204 | END IF |
---|
5205 | ! write(1,*)'ig,l,fm(ig,l)',ig,l,fm(ig,l) |
---|
5206 | ! RC |
---|
5207 | END DO |
---|
5208 | DO ig = 1, ngrid |
---|
5209 | IF (fracd(ig,l)<0.1) THEN |
---|
5210 | abort_message = 'fracd trop petit' |
---|
5211 | CALL abort_physic(modname, abort_message, 1) |
---|
5212 | ELSE |
---|
5213 | ! vitesse descendante "diagnostique" |
---|
5214 | wd(ig, l) = fm(ig, l)/(fracd(ig,l)*rhobarz(ig,l)) |
---|
5215 | END IF |
---|
5216 | END DO |
---|
5217 | END DO |
---|
5218 | |
---|
5219 | DO l = 1, nlay |
---|
5220 | DO ig = 1, ngrid |
---|
5221 | ! masse(ig,l)=rho(ig,l)*(zlev(ig,l+1)-zlev(ig,l)) |
---|
5222 | masse(ig, l) = (pplev(ig,l)-pplev(ig,l+1))/rg |
---|
5223 | END DO |
---|
5224 | END DO |
---|
5225 | |
---|
5226 | ! print*,'12 OK convect8' |
---|
5227 | ! print*,'WA4 ',wa_moy |
---|
5228 | ! c------------------------------------------------------------------ |
---|
5229 | ! calcul du transport vertical |
---|
5230 | ! ------------------------------------------------------------------ |
---|
5231 | |
---|
5232 | GO TO 4444 |
---|
5233 | ! print*,'XXXXXXXXXXXXXXX ptimestep= ',ptimestep |
---|
5234 | DO l = 2, nlay - 1 |
---|
5235 | DO ig = 1, ngrid |
---|
5236 | IF (fm(ig,l+1)*ptimestep>masse(ig,l) .AND. fm(ig,l+1)*ptimestep>masse( & |
---|
5237 | ig,l+1)) THEN |
---|
5238 | ! print*,'WARN!!! FM>M ig=',ig,' l=',l,' FM=' |
---|
5239 | ! s ,fm(ig,l+1)*ptimestep |
---|
5240 | ! s ,' M=',masse(ig,l),masse(ig,l+1) |
---|
5241 | END IF |
---|
5242 | END DO |
---|
5243 | END DO |
---|
5244 | |
---|
5245 | DO l = 1, nlay |
---|
5246 | DO ig = 1, ngrid |
---|
5247 | IF (entr(ig,l)*ptimestep>masse(ig,l)) THEN |
---|
5248 | ! print*,'WARN!!! E>M ig=',ig,' l=',l,' E==' |
---|
5249 | ! s ,entr(ig,l)*ptimestep |
---|
5250 | ! s ,' M=',masse(ig,l) |
---|
5251 | END IF |
---|
5252 | END DO |
---|
5253 | END DO |
---|
5254 | |
---|
5255 | DO l = 1, nlay |
---|
5256 | DO ig = 1, ngrid |
---|
5257 | IF (.NOT. fm(ig,l)>=0. .OR. .NOT. fm(ig,l)<=10.) THEN |
---|
5258 | ! print*,'WARN!!! fm exagere ig=',ig,' l=',l |
---|
5259 | ! s ,' FM=',fm(ig,l) |
---|
5260 | END IF |
---|
5261 | IF (.NOT. masse(ig,l)>=1.E-10 .OR. .NOT. masse(ig,l)<=1.E4) THEN |
---|
5262 | ! print*,'WARN!!! masse exagere ig=',ig,' l=',l |
---|
5263 | ! s ,' M=',masse(ig,l) |
---|
5264 | ! print*,'rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l)', |
---|
5265 | ! s rho(ig,l),pplay(ig,l),zpspsk(ig,l),RD,zh(ig,l) |
---|
5266 | ! print*,'zlev(ig,l+1),zlev(ig,l)' |
---|
5267 | ! s ,zlev(ig,l+1),zlev(ig,l) |
---|
5268 | ! print*,'pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1)' |
---|
5269 | ! s ,pphi(ig,l-1),pphi(ig,l),pphi(ig,l+1) |
---|
5270 | END IF |
---|
5271 | IF (.NOT. entr(ig,l)>=0. .OR. .NOT. entr(ig,l)<=10.) THEN |
---|
5272 | ! print*,'WARN!!! entr exagere ig=',ig,' l=',l |
---|
5273 | ! s ,' E=',entr(ig,l) |
---|
5274 | END IF |
---|
5275 | END DO |
---|
5276 | END DO |
---|
5277 | |
---|
5278 | 4444 CONTINUE |
---|
5279 | |
---|
5280 | ! CR:redefinition du entr |
---|
5281 | DO l = 1, nlay |
---|
5282 | DO ig = 1, ngrid |
---|
5283 | detr(ig, l) = fm(ig, l) + entr(ig, l) - fm(ig, l+1) |
---|
5284 | IF (detr(ig,l)<0.) THEN |
---|
5285 | entr(ig, l) = entr(ig, l) - detr(ig, l) |
---|
5286 | detr(ig, l) = 0. |
---|
5287 | ! print*,'WARNING !!! detrainement negatif ',ig,l |
---|
5288 | END IF |
---|
5289 | END DO |
---|
5290 | END DO |
---|
5291 | ! RC |
---|
5292 | IF (w2di==1) THEN |
---|
5293 | fm0 = fm0 + ptimestep*(fm-fm0)/tho |
---|
5294 | entr0 = entr0 + ptimestep*(entr-entr0)/tho |
---|
5295 | ELSE |
---|
5296 | fm0 = fm |
---|
5297 | entr0 = entr |
---|
5298 | END IF |
---|
5299 | |
---|
5300 | IF (1==1) THEN |
---|
5301 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zh, zdhadj, & |
---|
5302 | zha) |
---|
5303 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zo, pdoadj, & |
---|
5304 | zoa) |
---|
5305 | ELSE |
---|
5306 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zh, & |
---|
5307 | zdhadj, zha) |
---|
5308 | CALL dqthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zo, & |
---|
5309 | pdoadj, zoa) |
---|
5310 | END IF |
---|
5311 | |
---|
5312 | IF (1==0) THEN |
---|
5313 | CALL dvthermcell2(ngrid, nlay, ptimestep, fm0, entr0, masse, fraca, zmax, & |
---|
5314 | zu, zv, pduadj, pdvadj, zua, zva) |
---|
5315 | ELSE |
---|
5316 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zu, pduadj, & |
---|
5317 | zua) |
---|
5318 | CALL dqthermcell(ngrid, nlay, ptimestep, fm0, entr0, masse, zv, pdvadj, & |
---|
5319 | zva) |
---|
5320 | END IF |
---|
5321 | |
---|
5322 | DO l = 1, nlay |
---|
5323 | DO ig = 1, ngrid |
---|
5324 | zf = 0.5*(fracc(ig,l)+fracc(ig,l+1)) |
---|
5325 | zf2 = zf/(1.-zf) |
---|
5326 | thetath2(ig, l) = zf2*(zha(ig,l)-zh(ig,l))**2 |
---|
5327 | wth2(ig, l) = zf2*(0.5*(wa_moy(ig,l)+wa_moy(ig,l+1)))**2 |
---|
5328 | END DO |
---|
5329 | END DO |
---|
5330 | |
---|
5331 | |
---|
5332 | |
---|
5333 | ! print*,'13 OK convect8' |
---|
5334 | ! print*,'WA5 ',wa_moy |
---|
5335 | DO l = 1, nlay |
---|
5336 | DO ig = 1, ngrid |
---|
5337 | pdtadj(ig, l) = zdhadj(ig, l)*zpspsk(ig, l) |
---|
5338 | END DO |
---|
5339 | END DO |
---|
5340 | |
---|
5341 | |
---|
5342 | ! do l=1,nlay |
---|
5343 | ! do ig=1,ngrid |
---|
5344 | ! if(abs(pdtadj(ig,l))*86400..gt.500.) then |
---|
5345 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
5346 | ! s ,' pdtadj=',pdtadj(ig,l) |
---|
5347 | ! endif |
---|
5348 | ! if(abs(pdoadj(ig,l))*86400..gt.1.) then |
---|
5349 | ! print*,'WARN!!! ig=',ig,' l=',l |
---|
5350 | ! s ,' pdoadj=',pdoadj(ig,l) |
---|
5351 | ! endif |
---|
5352 | ! enddo |
---|
5353 | ! enddo |
---|
5354 | |
---|
5355 | ! print*,'14 OK convect8' |
---|
5356 | ! ------------------------------------------------------------------ |
---|
5357 | ! Calculs pour les sorties |
---|
5358 | ! ------------------------------------------------------------------ |
---|
5359 | |
---|
5360 | RETURN |
---|
5361 | END SUBROUTINE thermcell_sec |
---|
5362 | |
---|