1 | MODULE etat0_dcmip3_mod |
---|
2 | |
---|
3 | ! test cases DCMIP 2012, category 3 : Non-hydrostatic gravity waves |
---|
4 | |
---|
5 | ! Questions |
---|
6 | ! Replace ps0 by preff ?? |
---|
7 | |
---|
8 | USE genmod |
---|
9 | USE dcmip_initial_conditions_test_1_2_3 |
---|
10 | |
---|
11 | PRIVATE |
---|
12 | |
---|
13 | PUBLIC etat0 |
---|
14 | |
---|
15 | CONTAINS |
---|
16 | |
---|
17 | |
---|
18 | SUBROUTINE etat0(f_ps,f_phis,f_theta_rhodz,f_u, f_q) |
---|
19 | USE icosa |
---|
20 | USE theta2theta_rhodz_mod |
---|
21 | IMPLICIT NONE |
---|
22 | TYPE(t_field),POINTER :: f_ps(:) |
---|
23 | TYPE(t_field),POINTER :: f_phis(:) |
---|
24 | TYPE(t_field),POINTER :: f_theta_rhodz(:) |
---|
25 | TYPE(t_field),POINTER :: f_u(:) |
---|
26 | TYPE(t_field),POINTER :: f_q(:) |
---|
27 | TYPE(t_field),POINTER,SAVE :: f_temp(:) |
---|
28 | |
---|
29 | REAL(rstd),POINTER :: ps(:) |
---|
30 | REAL(rstd),POINTER :: phis(:) |
---|
31 | REAL(rstd),POINTER :: u(:,:) |
---|
32 | REAL(rstd),POINTER :: Temp(:,:) |
---|
33 | REAL(rstd),POINTER :: q(:,:,:) |
---|
34 | |
---|
35 | INTEGER :: ind |
---|
36 | |
---|
37 | CALL allocate_field(f_temp,field_t,type_real,llm,name='temp') |
---|
38 | |
---|
39 | DO ind=1,ndomain |
---|
40 | IF (.NOT. assigned_domain(ind)) CYCLE |
---|
41 | CALL swap_dimensions(ind) |
---|
42 | CALL swap_geometry(ind) |
---|
43 | |
---|
44 | ps=f_ps(ind) |
---|
45 | phis=f_phis(ind) |
---|
46 | u=f_u(ind) |
---|
47 | q=f_q(ind) |
---|
48 | temp=f_temp(ind) |
---|
49 | CALL compute_etat0_DCMIP3(ps,phis,u,Temp,q) |
---|
50 | ENDDO |
---|
51 | |
---|
52 | CALL temperature2theta_rhodz(f_ps,f_temp,f_theta_rhodz) |
---|
53 | CALL deallocate_field(f_temp) |
---|
54 | |
---|
55 | END SUBROUTINE etat0 |
---|
56 | |
---|
57 | |
---|
58 | SUBROUTINE compute_etat0_DCMIP3(ps, phis, u, temp,q) |
---|
59 | USE icosa |
---|
60 | USE pression_mod |
---|
61 | USE theta2theta_rhodz_mod |
---|
62 | USE wind_mod |
---|
63 | IMPLICIT NONE |
---|
64 | REAL(rstd),PARAMETER :: u0=20. ! Maximum amplitude of the zonal wind (m.s-1) |
---|
65 | REAL(rstd),PARAMETER :: N=0.01 ! Brunt-Vaisala frequency (s-1) |
---|
66 | REAL(rstd),PARAMETER :: Teq=300. ! Surface temperature at the equator (K) |
---|
67 | REAL(rstd),PARAMETER :: Peq=1e5 ! Reference surface pressure at the equator (hPa) |
---|
68 | REAL(rstd),PARAMETER :: d=5000. ! Witdth parameter for theta |
---|
69 | REAL(rstd),PARAMETER :: lonc=2*pi/3 ! Longitudinal centerpoint of theta |
---|
70 | REAL(rstd),PARAMETER :: latc=0 ! Longitudinal centerpoint of theta |
---|
71 | REAL(rstd),PARAMETER :: dtheta=1. ! Maximum amplitude of theta (K) |
---|
72 | REAL(rstd),PARAMETER :: Lz=20000. ! Vertical wave lenght of the theta perturbation |
---|
73 | |
---|
74 | REAL(rstd), INTENT(OUT) :: ps(iim*jjm) |
---|
75 | REAL(rstd), INTENT(OUT) :: phis(iim*jjm) |
---|
76 | REAL(rstd), INTENT(OUT) :: u(3*iim*jjm,llm) |
---|
77 | REAL(rstd), INTENT(OUT) :: Temp(iim*jjm,llm) |
---|
78 | REAL(rstd), INTENT(OUT) :: q(iim*jjm,llm,nqtot) |
---|
79 | |
---|
80 | REAL(rstd) :: Ts(iim*jjm) |
---|
81 | REAL(rstd) :: s(iim*jjm) |
---|
82 | REAL(rstd) :: p(iim*jjm,llm+1) |
---|
83 | REAL(rstd) :: theta(iim*jjm,llm) |
---|
84 | REAL(rstd) :: ulon(3*iim*jjm,llm) |
---|
85 | REAL(rstd) :: ulat(3*iim*jjm,llm) |
---|
86 | |
---|
87 | |
---|
88 | INTEGER :: i,j,l,ij |
---|
89 | REAL(rstd) :: Rd ! gas constant of dry air, P=rho.Rd.T |
---|
90 | REAL(rstd) :: alpha, rm |
---|
91 | REAL(rstd) :: C0, C1, GG |
---|
92 | REAL(rstd) :: p0psk, pspsk,r,zz, thetab, thetap |
---|
93 | REAL(rstd) :: dummy, pp |
---|
94 | LOGICAL :: use_dcmip_routine |
---|
95 | |
---|
96 | Rd=cpp*kappa |
---|
97 | |
---|
98 | GG=(g/N)**2/cpp |
---|
99 | C0=0.25*u0*(u0+2.*Omega*radius) |
---|
100 | |
---|
101 | q(:,:,:)=0 |
---|
102 | |
---|
103 | ! use_dcmip_routine=.TRUE. |
---|
104 | use_dcmip_routine=.FALSE. |
---|
105 | dummy=0. |
---|
106 | |
---|
107 | pp=peq |
---|
108 | DO j=jj_begin,jj_end |
---|
109 | DO i=ii_begin,ii_end |
---|
110 | ij=(j-1)*iim+i |
---|
111 | |
---|
112 | IF(use_dcmip_routine) THEN |
---|
113 | CALL test3_gravity_wave(lon_i(ij),lat_i(ij),pp,dummy,0, dummy,dummy,dummy,dummy,phis(ij),ps(ij),dummy,dummy) |
---|
114 | ELSE |
---|
115 | C1=C0*(cos(2*lat_i(ij))-1) |
---|
116 | |
---|
117 | !--- GROUND GEOPOTENTIAL |
---|
118 | phis(ij)=0. |
---|
119 | |
---|
120 | !--- GROUND TEMPERATURE |
---|
121 | Ts(ij) = GG+(Teq-GG)*EXP(-C1*(N/g)**2) |
---|
122 | |
---|
123 | !--- GROUND PRESSURE |
---|
124 | Ps(ij) = peq*EXP(C1/GG/Rd)*(Ts(ij)/Teq)**(1/kappa) |
---|
125 | |
---|
126 | |
---|
127 | r=radius*acos(sin(latc)*sin(lat_i(ij))+cos(latc)*cos(lat_i(ij))*cos(lon_i(ij)-lonc)) |
---|
128 | s(ij)= d**2/(d**2+r**2) |
---|
129 | END IF |
---|
130 | END DO |
---|
131 | END DO |
---|
132 | |
---|
133 | !$OMP BARRIER |
---|
134 | CALL compute_pression(ps,p,0) |
---|
135 | !$OMP BARRIER |
---|
136 | |
---|
137 | DO l=1,llm |
---|
138 | DO j=jj_begin,jj_end |
---|
139 | DO i=ii_begin,ii_end |
---|
140 | ij=(j-1)*iim+i |
---|
141 | pp=0.5*(p(ij,l+1)+p(ij,l)) ! full-layer pressure |
---|
142 | IF(use_dcmip_routine) THEN |
---|
143 | CALL test3_gravity_wave(lon_i(ij),lat_i(ij),pp,dummy,0, & |
---|
144 | dummy,dummy,dummy,Temp(ij,l),dummy,dummy,dummy,dummy) |
---|
145 | ELSE |
---|
146 | pspsk=(pp/ps(ij))**kappa |
---|
147 | p0psk=(Peq/ps(ij))**kappa |
---|
148 | thetab = Ts(ij)*p0psk / ( Ts(ij) / GG * ( pspsk-1) +1) ! background pot. temp. |
---|
149 | zz = -g/N**2*log( Ts(ij)/GG * (pspsk -1)+1) ! altitude |
---|
150 | thetap = dtheta *sin(2*Pi*zz/Lz) * s(ij) ! perturbation pot. temp. |
---|
151 | theta(ij,l) = thetab + thetap |
---|
152 | Temp(ij,l) = theta(ij,l)* ((pp/peq)**kappa) |
---|
153 | ! T(ij,l) = Ts(ij)*pspsk / ( Ts(ij) / GG * ( pspsk-1) +1) ! background temp. |
---|
154 | END IF |
---|
155 | ENDDO |
---|
156 | ENDDO |
---|
157 | ENDDO |
---|
158 | |
---|
159 | ! IF(use_dcmip_routine) THEN |
---|
160 | ! CALL compute_temperature2theta_rhodz(ps,T,theta_rhodz,0) |
---|
161 | ! ELSE |
---|
162 | ! CALL compute_temperature2theta_rhodz(ps,T,theta_rhodz,0) |
---|
163 | ! END IF |
---|
164 | |
---|
165 | pp=peq |
---|
166 | DO l=1,llm |
---|
167 | DO j=jj_begin-1,jj_end+1 |
---|
168 | DO i=ii_begin-1,ii_end+1 |
---|
169 | ij=(j-1)*iim+i |
---|
170 | IF(use_dcmip_routine) THEN |
---|
171 | CALL test3_gravity_wave(lon_e(ij+u_right),lat_e(ij+u_right), & |
---|
172 | pp,0.,0, ulon(ij+u_right,l),ulat(ij+u_right,l),& |
---|
173 | dummy,dummy,dummy,dummy,dummy,dummy) |
---|
174 | CALL test3_gravity_wave(lon_e(ij+u_lup),lat_e(ij+u_lup), & |
---|
175 | pp,0.,0, ulon(ij+u_lup,l),ulat(ij+u_lup,l),& |
---|
176 | dummy,dummy,dummy,dummy,dummy,dummy) |
---|
177 | CALL test3_gravity_wave(lon_e(ij+u_ldown),lat_e(ij+u_ldown), & |
---|
178 | pp,0.,0, ulon(ij+u_ldown,l),ulat(ij+u_ldown,l),& |
---|
179 | dummy,dummy,dummy,dummy,dummy,dummy) |
---|
180 | ELSE |
---|
181 | ulon(ij+u_right,l) = u0*cos(lat_e(ij+u_right)) |
---|
182 | ulat(ij+u_right,l) = 0 |
---|
183 | ulon(ij+u_lup,l) = u0*cos(lat_e(ij+u_lup)) |
---|
184 | ulat(ij+u_lup,l) = 0 |
---|
185 | ulon(ij+u_ldown,l) = u0*cos(lat_e(ij+u_ldown)) |
---|
186 | ulat(ij+u_ldown,l) = 0 |
---|
187 | END IF |
---|
188 | ENDDO |
---|
189 | ENDDO |
---|
190 | ENDDO |
---|
191 | |
---|
192 | CALL compute_wind_perp_from_lonlat_compound(ulon,ulat,u) |
---|
193 | |
---|
194 | END SUBROUTINE compute_etat0_DCMIP3 |
---|
195 | |
---|
196 | |
---|
197 | END MODULE etat0_DCMIP3_mod |
---|